ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-04-14
    Description: Previous studies have demonstrated that allelic deletions of the short arm of chromosome 17 occur in over 75% of colorectal carcinomas. Twenty chromosome 17p markers were used to localize the common region of deletion in these tumors to a region contained within bands 17p12 to 17p13.3. This region contains the gene for the transformation-associated protein p53. Southern and Northern blot hybridization experiments provided no evidence for gross alterations of the p53 gene or surrounding sequences. As a more rigorous test of the possibility that p53 was a target of the deletions, the p53 coding regions from two tumors were analyzed; these two tumors, like most colorectal carcinomas, had allelic deletions of chromosome 17p and expressed considerable amounts of p53 messenger RNA from the remaining allele. The remaining p53 allele was mutated in both tumors, with an alanine substituted for valine at codon 143 of one tumor and a histidine substituted for arginine at codon 175 of the second tumor. Both mutations occurred in a highly conserved region of the p53 gene that was previously found to be mutated in murine p53 oncogenes. The data suggest that p53 gene mutations may be involved in colorectal neoplasia, perhaps through inactivation of a tumor suppressor function of the wild-type p53 gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, S J -- Fearon, E R -- Nigro, J M -- Hamilton, S R -- Preisinger, A C -- Jessup, J M -- vanTuinen, P -- Ledbetter, D H -- Barker, D F -- Nakamura, Y -- White, R -- Vogelstein, B -- GM07184/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- HD20619/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):217-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2649981" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Chromosome Deletion ; *Chromosomes, Human, Pair 17/ultrastructure ; Colorectal Neoplasms/*genetics ; Humans ; Mice ; Mice, Nude ; *Mutation ; Neoplasm Proteins/*genetics ; Nucleic Acid Hybridization ; Oncogenes ; Phosphoproteins/*genetics ; Suppression, Genetic ; Tumor Suppressor Protein p53
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-04-14
    Description: To examine the extent and variation of allelic loss in a common adult tumor, polymorphic DNA markers were studied from every nonacrocentric autosomal arm in 56 paired colorectal carcinoma and adjacent normal colonic mucosa specimens. This analysis was termed an allelotype, in analogy with a karyotype. Three major conclusions were drawn from this analysis: (i) Allelic deletions were remarkably common; one of the alleles of each polymorphic marker tested was lost in at least some tumors, and some tumors lost more than half of their parental alleles. (ii) In addition to allelic deletions, new DNA fragments not present in normal tissue were identified in five carcinomas; these new fragments contained repeated sequences of the variable number of tandem repeat type. (iii) Patients with more than the median percentage of allelic deletions had a considerably worse prognosis than did the other patients, although the size and stage of the primary tumors were very similar in the two groups. In addition to its implications concerning the genetic events underlying tumorigenesis, tumor allelotype may provide a molecular tool for improved estimation of prognosis in patients with colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogelstein, B -- Fearon, E R -- Kern, S E -- Hamilton, S R -- Preisinger, A C -- Nakamura, Y -- White, R -- CA41183/CA/NCI NIH HHS/ -- GM07184/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Apr 14;244(4901):207-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2565047" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosome Aberrations/genetics ; Chromosome Disorders ; Colorectal Neoplasms/*genetics ; DNA, Neoplasm/genetics ; Humans ; *Karyotyping ; Polymorphism, Restriction Fragment Length
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-01-05
    Description: Allelic deletions involving chromosome 18q occur in more than 70 percent of colorectal cancers. Such deletions are thought to signal the existence of a tumor suppressor gene in the affected region, but until now a candidate suppressor gene on this chromosomal arm had not been identified. A contiguous stretch of DNA comprising 370 kilobase pairs (kb) has now been cloned from a region of chromosome 18q suspected to reside near this gene. Potential exons in the 370-kb region were defined by human-rodent sequence identities, and the expression of potential exons was assessed by an "exon-connection" strategy based on the polymerase chain reaction. Expressed exons were used as probes for cDNA screening to obtain clones that encoded a portion of a gene termed DCC; this cDNA was encoded by at least eight exons within the 370-kb genomic region. The predicted amino acid sequence of the cDNA specified a protein with sequence similarity to neural cell adhesion molecules and other related cell surface glycoproteins. While the DCC gene was expressed in most normal tissues, including colonic mucosa, its expression was greatly reduced or absent in most colorectal carcinomas tested. Somatic mutations within the DCC gene observed in colorectal cancers included a homozygous deletion of the 5' end of the gene, a point mutation within one of the introns, and ten examples of DNA insertions within a 0.17-kb fragment immediately downstream of one of the exons. The DCC gene may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fearon, E R -- Cho, K R -- Nigro, J M -- Kern, S E -- Simons, J W -- Ruppert, J M -- Hamilton, S R -- Preisinger, A C -- Thomas, G -- Kinzler, K W -- CA 09243/CA/NCI NIH HHS/ -- GM07184/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jan 5;247(4938):49-56.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2294591" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Blotting, Southern ; Cell Adhesion Molecules, Neuronal/genetics ; *Chromosome Deletion ; *Chromosomes, Human, Pair 18 ; Cloning, Molecular ; Colorectal Neoplasms/*genetics ; Cross Reactions ; DNA Probes ; DNA, Neoplasm/*genetics ; Exons ; Gene Expression Regulation, Neoplastic ; Humans ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA, Neoplasm/genetics ; Sequence Homology, Nucleic Acid ; *Suppression, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-03-15
    Description: Recent studies have suggested the existence of a tumor suppressor gene located at chromosome region 5q21. DNA probes from this region were used to study a panel of sporadic colorectal carcinomas. One of these probes, cosmid 5.71, detected a somatically rearranged restriction fragment in the DNA from a single tumor. Further analysis of the 5.71 cosmid revealed two regions that were highly conserved in rodent DNA. These sequences were used to identify a gene, MCC (mutated in colorectal cancer), which encodes an 829-amino acid protein with a short region of similarity to the G protein-coupled m3 muscarinic acetylcholine receptor. The rearrangement in the tumor disrupted the coding region of the MCC gene. Moreover, two colorectal tumors were found with somatically acquired point mutations in MCC that resulted in amino acid substitutions. MCC is thus a candidate for the putative colorectal tumor suppressor gene located at 5q21. Further studies will be required to determine whether the gene is mutated in other sporadic tumors or in the germ line of patients with an inherited predisposition to colonic tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinzler, K W -- Nilbert, M C -- Vogelstein, B -- Bryan, T M -- Levy, D B -- Smith, K J -- Preisinger, A C -- Hamilton, S R -- Hedge, P -- Markham, A -- 6M 07184/PHS HHS/ -- CA 06973/CA/NCI NIH HHS/ -- CA 09243/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1366-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins Oncology Center, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848370" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; *Chromosomes, Human, Pair 5 ; Colorectal Neoplasms/*genetics ; Exons ; GTP-Binding Proteins/metabolism ; Gene Expression ; *Genes, Tumor Suppressor ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotides/chemistry ; Polymerase Chain Reaction ; Proteins/*genetics/metabolism ; Rats ; Sequence Homology, Nucleic Acid ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-08-09
    Description: Recent studies suggest that one or more genes on chromosome 5q21 are important for the development of colorectal cancers, particularly those associated with familial adenomatous polyposis (FAP). To facilitate the identification of genes from this locus, a portion of the region that is tightly linked to FAP was cloned. Six contiguous stretches of sequence (contigs) containing approximately 5.5 Mb of DNA were isolated. Subclones from these contigs were used to identify and position six genes, all of which were expressed in normal colonic mucosa. Two of these genes (APC and MCC) are likely to contribute to colorectal tumorigenesis. The MCC gene had previously been identified by virtue of its mutation in human colorectal tumors. The APC gene was identified in a contig initiated from the MCC gene and was found to encode an unusually large protein. These two closely spaced genes encode proteins predicted to contain coiled-coil regions. Both genes were also expressed in a wide variety of tissues. Further studies of MCC and APC and their potential interaction should prove useful for understanding colorectal neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinzler, K W -- Nilbert, M C -- Su, L K -- Vogelstein, B -- Bryan, T M -- Levy, D B -- Smith, K J -- Preisinger, A C -- Hedge, P -- McKechnie, D -- CA06973/CA/NCI NIH HHS/ -- CA35494/CA/NCI NIH HHS/ -- CA44688/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 9;253(5020):661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1651562" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Amino Acid Sequence ; Base Sequence ; Chromosome Mapping ; *Chromosomes, Human, Pair 5 ; Colon/physiology ; Colonic Neoplasms/genetics ; Exons ; Gene Expression ; Humans ; Intestinal Mucosa/*physiology ; Molecular Sequence Data ; Muscles/physiology ; Oligonucleotide Probes ; Polymerase Chain Reaction ; Probability ; Protein Conformation ; Receptors, Cholinergic/physiology ; Restriction Mapping ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-05-01
    Description: Germ-line mutations of the APC gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominantly inherited disease in humans. Patients with FAP develop multiple benign colorectal tumors. Recently, a mouse lineage that exhibits an autosomal dominantly inherited predisposition to multiple intestinal neoplasia (Min) was described. Linkage analysis showed that the murine homolog of the APC gene (mApc) was tightly linked to the Min locus. Sequence comparison of mApc between normal and Min-affected mice identified a nonsense mutation, which cosegregated with the Min phenotype. This mutation is analogous to those found in FAP kindreds and in sporadic colorectal cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, L K -- Kinzler, K W -- Vogelstein, B -- Preisinger, A C -- Moser, A R -- Luongo, C -- Gould, K A -- Dove, W F -- CA-06973/CA/NCI NIH HHS/ -- CA-07175/CA/NCI NIH HHS/ -- CA-23076/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1992 May 1;256(5057):668-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1350108" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Animals ; Base Sequence ; Blotting, Southern ; Colorectal Neoplasms/genetics ; DNA, Neoplasm/chemistry/genetics ; *Genes, Tumor Suppressor ; Genetic Linkage ; Humans ; Intestinal Neoplasms/*genetics ; Mice ; Mice, Inbred AKR ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Mutation ; Phenotype ; Polymorphism, Restriction Fragment Length ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...