ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • Protein Structure, Tertiary  (14)
  • American Association for the Advancement of Science (AAAS)  (14)
  • Blackwell Publishing Ltd
  • Institute of Physics
  • Springer Nature
  • 2010-2014  (14)
  • 2014  (14)
Collection
  • Articles  (14)
Publisher
  • American Association for the Advancement of Science (AAAS)  (14)
  • Blackwell Publishing Ltd
  • Institute of Physics
  • Springer Nature
  • Nature Publishing Group (NPG)  (20)
Years
  • 2010-2014  (14)
Year
  • 1
    Publication Date: 2014-12-17
    Description: The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from 〈/=0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349400/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straimer, Judith -- Gnadig, Nina F -- Witkowski, Benoit -- Amaratunga, Chanaki -- Duru, Valentine -- Ramadani, Arba Pramundita -- Dacheux, Melanie -- Khim, Nimol -- Zhang, Lei -- Lam, Stephen -- Gregory, Philip D -- Urnov, Fyodor D -- Mercereau-Puijalon, Odile -- Benoit-Vical, Francoise -- Fairhurst, Rick M -- Menard, Didier -- Fidock, David A -- R01 AI109023/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):428-31. doi: 10.1126/science.1260867. Epub 2014 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. ; Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie de Coordination UPR8241, Toulouse, France. Universite de Toulouse, UPS, Institut National Polytechnique de Toulouse, Toulouse, France. ; Sangamo BioSciences, Richmond, CA, USA. ; Institut Pasteur, Parasite Molecular Immunology Unit, Paris, France. ; Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA. Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA. df2260@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25502314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antimalarials/*pharmacology ; Artemisinins/*pharmacology ; Cambodia ; Drug Resistance/*genetics ; Genetic Loci ; Humans ; Malaria, Falciparum/drug therapy/parasitology ; Molecular Sequence Data ; Mutation ; Plasmodium falciparum/*drug effects/*genetics ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-21
    Description: Primate lentiviruses exhibit narrow host tropism, reducing the occurrence of zoonoses but also impairing the development of optimal animal models of AIDS. To delineate the factors limiting cross-species HIV-1 transmission, we passaged a modified HIV-1 in pigtailed macaques that were transiently depleted of CD8(+) cells during acute infection. During adaptation over four passages in macaques, HIV-1 acquired the ability to antagonize the macaque restriction factor tetherin, replicated at progressively higher levels, and ultimately caused marked CD4(+) T cell depletion and AIDS-defining conditions. Transient treatment with an antibody to CD8 during acute HIV-1 infection caused rapid progression to AIDS, whereas untreated animals exhibited an elite controller phenotype. Thus, an adapted HIV-1 can cause AIDS in macaques, and stark differences in outcome can be determined by immunological perturbations during early infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266393/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hatziioannou, Theodora -- Del Prete, Gregory Q -- Keele, Brandon F -- Estes, Jacob D -- McNatt, Matthew W -- Bitzegeio, Julia -- Raymond, Alice -- Rodriguez, Anthony -- Schmidt, Fabian -- Mac Trubey, C -- Smedley, Jeremy -- Piatak, Michael Jr -- KewalRamani, Vineet N -- Lifson, Jeffrey D -- Bieniasz, Paul D -- HHSN261200800001E/PHS HHS/ -- R01 AI050111/AI/NIAID NIH HHS/ -- R01 AI078788/AI/NIAID NIH HHS/ -- R01AI078788/AI/NIAID NIH HHS/ -- R01AI50111/AI/NIAID NIH HHS/ -- R37 AI064003/AI/NIAID NIH HHS/ -- R37AI64003/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1401-5. doi: 10.1126/science.1250761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. ; Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. ; HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org. ; Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Laboratory of Retrovirology, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA. Howard Hughes Medical Institute, 455 First Avenue, New York, NY 10016, USA. thatziio@adarc.org vineet.kewalramani@nih.gov lifsonj@mail.nih.gov pbienias@adarc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948736" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/immunology/transmission/*virology ; Amino Acid Sequence ; Animals ; Antigens, CD8/immunology ; CD4-Positive T-Lymphocytes/immunology ; *Disease Models, Animal ; HIV-1/genetics/*physiology ; Host-Pathogen Interactions/*immunology ; Human Immunodeficiency Virus Proteins/chemistry/genetics/metabolism ; Lymphocyte Depletion ; Macaca nemestrina/immunology/*virology ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Regulatory and Accessory Proteins/chemistry/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-05-31
    Description: Netrins are secreted proteins that regulate axon guidance and neuronal migration. Deleted in colorectal cancer (DCC) is a well-established netrin-1 receptor mediating attractive responses. We provide evidence that its close relative neogenin is also a functional netrin-1 receptor that acts with DCC to mediate guidance in vivo. We determined the structures of a functional netrin-1 region, alone and in complexes with neogenin or DCC. Netrin-1 has a rigid elongated structure containing two receptor-binding sites at opposite ends through which it brings together receptor molecules. The ligand/receptor complexes reveal two distinct architectures: a 2:2 heterotetramer and a continuous ligand/receptor assembly. The differences result from different lengths of the linker connecting receptor domains fibronectin type III domain 4 (FN4) and FN5, which differs among DCC and neogenin splice variants, providing a basis for diverse signaling outcomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4369087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Kai -- Wu, Zhuhao -- Renier, Nicolas -- Antipenko, Alexander -- Tzvetkova-Robev, Dorothea -- Xu, Yan -- Minchenko, Maria -- Nardi-Dei, Vincenzo -- Rajashankar, Kanagalaghatta R -- Himanen, Juha -- Tessier-Lavigne, Marc -- Nikolov, Dimitar B -- P41 GM103403/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1275-9. doi: 10.1126/science.1255149. Epub 2014 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. ; Department of Chemistry and Chemical Biology, Cornell University and Northeastern Collaborative Access Team, Advanced Photon Source, Argonne, IL 60439, USA. ; Laboratory of Brain Development and Repair, Rockefeller University, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu. ; Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. nikolovd@mskcc.org marctl@mail.rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876346" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Cell Movement ; Fibronectins/chemistry ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Nerve Growth Factors/*chemistry/genetics/ultrastructure ; Neurons/physiology ; Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/ultrastructure ; Tumor Suppressor Proteins/*chemistry/genetics/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-10
    Description: The HIV-1 envelope (Env) mediates viral entry into host cells. To enable the direct imaging of conformational dynamics within Env, we introduced fluorophores into variable regions of the glycoprotein gp120 subunit and measured single-molecule fluorescence resonance energy transfer within the context of native trimers on the surface of HIV-1 virions. Our observations revealed unliganded HIV-1 Env to be intrinsically dynamic, transitioning between three distinct prefusion conformations, whose relative occupancies were remodeled by receptor CD4 and antibody binding. The distinct properties of neutralization-sensitive and neutralization-resistant HIV-1 isolates support a dynamics-based mechanism of immune evasion and ligand recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304640/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Munro, James B -- Gorman, Jason -- Ma, Xiaochu -- Zhou, Zhou -- Arthos, James -- Burton, Dennis R -- Koff, Wayne C -- Courter, Joel R -- Smith, Amos B 3rd -- Kwong, Peter D -- Blanchard, Scott C -- Mothes, Walther -- P01 56550/PHS HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):759-63. doi: 10.1126/science.1254426. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. ; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Immunology and Microbial Science, and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; International AIDS Vaccine Initiative (IAVI), New York, NY 10004, USA. ; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA. walther.mothes@yale.edu scb2005@med.cornell.edu james.munro@tufts.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25298114" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; Fluorescence Resonance Energy Transfer/methods ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Humans ; *Immune Evasion ; Ligands ; Models, Chemical ; Molecular Imaging/methods ; Protein Multimerization ; Protein Structure, Tertiary ; Virion/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-08
    Description: We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the kappa and lambda light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grover, Rajesh K -- Zhu, Xueyong -- Nieusma, Travis -- Jones, Teresa -- Boero, Isabel -- MacLeod, Amanda S -- Mark, Adam -- Niessen, Sherry -- Kim, Helen J -- Kong, Leopold -- Assad-Garcia, Nacyra -- Kwon, Keehwan -- Chesi, Marta -- Smider, Vaughn V -- Salomon, Daniel R -- Jelinek, Diane F -- Kyle, Robert A -- Pyles, Richard B -- Glass, John I -- Ward, Andrew B -- Wilson, Ian A -- Lerner, Richard A -- 5 R21 AI098057-02/AI/NIAID NIH HHS/ -- K08 AR063729/AR/NIAMS NIH HHS/ -- K08 AR063729-01/AR/NIAMS NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AI042266/AI/NIAID NIH HHS/ -- R21 AI098057/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U19 AI06360/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):656-61. doi: 10.1126/science.1246135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503852" target="_blank"〉PubMed〈/a〉
    Keywords: Antigen-Antibody Reactions/genetics/*immunology ; Antigens/*immunology ; Bacterial Proteins/chemistry/genetics/*immunology ; Crystallography, X-Ray ; Humans ; Immunoglobulin G/*immunology ; Immunoglobulin Variable Region/*immunology ; Immunoglobulin kappa-Chains/immunology ; Immunoglobulin lambda-Chains/immunology ; Lymphokines/chemistry/genetics/*immunology ; Membrane Proteins/chemistry/genetics/*immunology ; Mycoplasma/*immunology ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-26
    Description: Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldwin, Maude W -- Toda, Yasuka -- Nakagita, Tomoya -- O'Connell, Mary J -- Klasing, Kirk C -- Misaka, Takumi -- Edwards, Scott V -- Liberles, Stephen D -- R01 DC013289/DC/NIDCD NIH HHS/ -- R01DC013289/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):929-33. doi: 10.1126/science.1255097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu. ; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan. ; Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. ; Department of Animal Science, University of California, Davis, Davis, CA 95616, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, and Museum of Comparative Zoology, Cambridge, MA 02138, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. maudebaldwin@gmail.com stephen_liberles@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146290" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Evolution, Molecular ; Mice ; Molecular Sequence Data ; Plant Nectar ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled/chemistry/classification/*genetics ; Taste/*physiology ; Taste Perception/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-18
    Description: Transcription factors (TFs) are key players in evolution. Changes affecting their function can yield novel life forms but may also have deleterious effects. Consequently, gene duplication events that release one gene copy from selective pressure are thought to be the common mechanism by which TFs acquire new activities. Here, we show that LEAFY, a major regulator of flower development and cell division in land plants, underwent changes to its DNA binding specificity, even though plant genomes generally contain a single copy of the LEAFY gene. We examined how these changes occurred at the structural level and identify an intermediate LEAFY form in hornworts that appears to adopt all different specificities. This promiscuous intermediate could have smoothed the evolutionary transitions, thereby allowing LEAFY to evolve new binding specificities while remaining a single-copy gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sayou, Camille -- Monniaux, Marie -- Nanao, Max H -- Moyroud, Edwige -- Brockington, Samuel F -- Thevenon, Emmanuel -- Chahtane, Hicham -- Warthmann, Norman -- Melkonian, Michael -- Zhang, Yong -- Wong, Gane Ka-Shu -- Weigel, Detlef -- Parcy, Francois -- Dumas, Renaud -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):645-8. doi: 10.1126/science.1248229. Epub 2014 Jan 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Laboratoire de Physiologie Cellulaire et Vegetale (LPCV), UMR 5168, 38054 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis Proteins/chemistry/classification/genetics ; DNA, Plant/*chemistry ; DNA-Binding Proteins/*chemistry/classification/*genetics ; Electrophoretic Mobility Shift Assay ; *Evolution, Molecular ; Gene Dosage ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Proteins/*chemistry/classification/*genetics ; Protein Binding/genetics ; Protein Structure, Tertiary ; Species Specificity ; Transcription Factors/chemistry/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-03-01
    Description: Fibrolamellar hepatocellular carcinoma (FL-HCC) is a rare liver tumor affecting adolescents and young adults with no history of primary liver disease or cirrhosis. We identified a chimeric transcript that is expressed in FL-HCC but not in adjacent normal liver and that arises as the result of a ~400-kilobase deletion on chromosome 19. The chimeric RNA is predicted to code for a protein containing the amino-terminal domain of DNAJB1, a homolog of the molecular chaperone DNAJ, fused in frame with PRKACA, the catalytic domain of protein kinase A. Immunoprecipitation and Western blot analyses confirmed that the chimeric protein is expressed in tumor tissue, and a cell culture assay indicated that it retains kinase activity. Evidence supporting the presence of the DNAJB1-PRKACA chimeric transcript in 100% of the FL-HCCs examined (15/15) suggests that this genetic alteration contributes to tumor pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honeyman, Joshua N -- Simon, Elana P -- Robine, Nicolas -- Chiaroni-Clarke, Rachel -- Darcy, David G -- Lim, Irene Isabel P -- Gleason, Caroline E -- Murphy, Jennifer M -- Rosenberg, Brad R -- Teegan, Lydia -- Takacs, Constantin N -- Botero, Sergio -- Belote, Rachel -- Germer, Soren -- Emde, Anne-Katrin -- Vacic, Vladimir -- Bhanot, Umesh -- LaQuaglia, Michael P -- Simon, Sanford M -- 2UL1RR024143/RR/NCRR NIH HHS/ -- UL1 RR024143/RR/NCRR NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1010-4. doi: 10.1126/science.1249484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578576" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Hepatocellular/enzymology/*genetics ; Chromosome Deletion ; Chromosomes, Human, Pair 19/genetics ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry/*genetics ; Gene Expression Regulation, Neoplastic ; HSP40 Heat-Shock Proteins/chemistry/*genetics ; Humans ; Liver Neoplasms/enzymology/*genetics ; Oncogene Proteins, Fusion/*genetics ; Protein Multimerization ; Protein Structure, Tertiary ; Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-03
    Description: Down-regulation and mutations of the nuclear-architecture proteins lamin A and C cause misshapen nuclei and altered chromatin organization associated with cancer and laminopathies, including the premature-aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here, we identified the small molecule "Remodelin" that improved nuclear architecture, chromatin organization, and fitness of both human lamin A/C-depleted cells and HGPS-derived patient cells and decreased markers of DNA damage in these cells. Using a combination of chemical, cellular, and genetic approaches, we identified the acetyl-transferase protein NAT10 as the target of Remodelin that mediated nuclear shape rescue in laminopathic cells via microtubule reorganization. These findings provide insights into how NAT10 affects nuclear architecture and suggest alternative strategies for treating laminopathies and aging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246063/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larrieu, Delphine -- Britton, Sebastien -- Demir, Mukerrem -- Rodriguez, Raphael -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- C6946/A14492/Cancer Research UK/United Kingdom -- MR/L019116/1/Medical Research Council/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 2;344(6183):527-32. doi: 10.1126/science.1252651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust/Cancer Research UK (CRUK) Gurdon Institute and Department of Biochemistry, University of Cambridge, CB2 1QN Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786082" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Nucleus/*drug effects/genetics/ultrastructure ; Chromatin/metabolism ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Hydrazones/chemistry/*pharmacology ; Lamin Type A/genetics ; Microtubules/metabolism ; N-Terminal Acetyltransferase E/*antagonists & inhibitors/chemistry/genetics ; Nocodazole/pharmacology ; Progeria/*enzymology/genetics ; Protein Structure, Tertiary ; RNA, Small Interfering/genetics ; Thiazoles/chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...