ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-17
    Description: Palaeoelevation reconstructions of mountain belts have become a focus of modern science since surface elevation provides crucial information for understanding both geodynamic mechanisms of Earth’s interior and the influence of mountain growth on climate. Stable oxygen isotopes palaeoaltimetry is one of the most popular techniques nowadays, and relies on the difference between δ18O of palaeoprecipitation reconstructed using the natural archives, and modern measured values for the point of interest. Our goal is to understand where and how complex climatic changes linked with the growth of mountains affect δ18O in precipi- tation. For this purpose, we develop a theoretical expression for the precipitation composition based on the Rayleigh distillation and the isotope-equipped atmospheric general circulation model LMDZ-iso outputs. Experiments with reduced height over the Tibetan Plateau and the Himalayas have been designed. Our results show that the isotopic composition of precipitation is very sensitive to climate changes related to the growth of the Himalayas and Tibetan Plateau. Specif- ically our simulations suggest that only 40% of sampled sites for palaeoaltimetry depict a full topographic signal, and that uplift-related changes in relative humidity (northern region) and precipitation amount (southern region) could explain absolute deviations of up to 2.5 ‰ of the isotopic signal, thereby creating biases in palaeoelevation reconstructions.
    Description: ITECC - Investigating Tectonism-Erosion-Climate-Couplings Numéro CORDIS : 316966
    Description: Published
    Description: 1401–1420
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Description: reserved
    Keywords: Tibetan Plateau ; oxygen isotopes ; paleoelavations ; Himalayas ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
    Description: Published
    Description: 1333–1361
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; atlantic basin ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: In this study, Mg/Ca, Sr/Ca and Ba/Ca ratios in a Lateglacial to Holocene stalagmite (CC26) from Corchia Cave (central Italy) are compared with stable isotope data to define palaeohydrological changes. For most of the record, the trace element ratios show small absolute variability but similar patterns, which are also consistent with stable isotope variations. Higher trace element-to-calcium values are interpreted as responses to decreasing moisture, inducing changes in the residence time of percolation, producing prior calcite precipitation and/or variations in the hydrological routing. Statistically meaningful levels of covariability were determined using anomalies of Mg/Ca, d18O and d13C. Combining these three time series into a single ‘palaeomoisture-trend’ parameter, we highlight several events of reduced moisture (ca. 8.9–8.4, 6.2, 4.2, 3.1 and 2.0 ka), a humid period between ca. 7.9 and 8.3 ka and other shorter-term wet events at ca. 5.8, 5.3 and 3.7 ka. Most of these events can be correlated with climate changes inferred from other regional studies. For both extremities of the record (i.e. before ca. 12.4 ka and after ca. 0.5 ka) Mg/Ca and Sr/Ca are anti-correlated and show the greatest amplitude of values, a likely explanation for which involves aragonite and/or gypsum precipitation (the latter derived from pyrite oxidation) above the CC26 drip point.
    Description: Published
    Description: 381–392
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: central Italy; Corchia Cave; Holocene; speleothems; trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models
    Description: Published
    Description: 1154–1172
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; general circulation models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-16
    Description: Relatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained fromthis flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine andNWEuropean terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.
    Description: Published
    Description: 450-461
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Speleothem Stable isotopes Central Italy Penultimate deglaciation Last Interglacial ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-08
    Description: Summary. — The thermohaline circulation of the central-north Adriatic basin is investigated by means of a 3D hydrodynamic numerical model. Three diferent runs —where the surface heat fluxes annual average is respectively negative, slightly pos- itive and slightly negative—are performed; the general circulation patterns are then discussed and depicted, also with the aid of the trajectories of numerical particles released during the integrations. Results confirm that surface heat fluxes can start and trigger the general circulation in the basin (both vertically and horizontally), even without prescribing other forcings. Particularly, when the annual budget of the heat fluxes is negative (i.e. the basin loses heat to the atmosphere) a horizontal cyclonic surface circulation is generated, characterized by a northward flow along the eastern coast and a southward return current system along the western one. From the vertical point of view, an antiestuarine circulation is established. A sim- ilar circulation pattern is depicted when the surface fluxes have a slightly negative annual budget. On the other hand, when the annual fluxes balance is positive the vertical circulation switches to estuarine and, as expected, the integrated circulation becomes anticyclonic. A modification in the heat fluxes budget is strictly related to a change in the water column turnover time of the Jabuka pit, the deepest meso- Adriatic depression: when the annual heat fluxes balance is negative but close to zero, the dense-water residence time in the pit becomes minimum and the water has a shorter turnover time, denoting a faster renewal compared to those exhibited in the other experiments.
    Description: Published
    Description: 521-533
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Adriatic Sea ; Climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-06
    Description: Heavy precipitation is a major hazard over Europe. It is well established that climate model projections indicate a tendency towards more extreme daily rainfall events. It is still uncertain, however, how this changing intensity translates at the sub-daily time scales. The main goal of the present study is to examine possible differences in projected changes in intense precipitation events over Europe at the daily and sub-daily (3-hourly) time scales using a state-of-the-science climate model. The focus will be on one Representative Concentration Pathway (RCP 8.5), considered as illustrative of a high rate of increase in greenhouse gas concentrations over this century. There are statistically significant differences in intense precipitation projections (up to 40%) when comparing the results at the daily and sub-daily time scales. Over north-eastern Europe, projected precipitation intensification at the 3-hour scale is lower than at the daily scale. On the other hand, Spain and the western seaboard exhibit an opposite behaviour, with stronger intensification at the 3-hour scale rather than daily scale. While the mean properties of the precipitation distributions are independent of the analysed frequency, projected precipitation intensification exhibits regional differences. This finding has implications on the extrapolation of impacts of intense precipitation events, given the daily time scale the analyses are usually performed at.
    Description: Published
    Description: 6193–6203
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: rainfall ; extreme events ; heavy precipitation ; snow ; europe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Rejected by Annals of Geophysics
    Description: In the expanding Earth framework it is possible to find additional phenomena that could contribute in a proper way to the water balance and general tectonic eustatism involved in the sea lever rising. Recent compilations seems to leave unexplained up to 12 cm/century of sea rising, and possible solutions invoking a polar ice shells melting near to the upper limit of the error bars reveal in confict with the consequent expected decreasing of the Earth angular velocity. It is shown that taking into account possible effects of an expanding Earth, the problem can be initiated towards an appropriate solution, at least as regards the just orders of magnitude. Major effects on sea-level could come from ongoing relaxation of curvature variations that are peculiar for an expanding globe.
    Description: INGV
    Description: Submitted
    Description: 1T. Geodinamica e interno della Terra
    Description: 2A. Fisica dell'alta atmosfera
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Expanding Earth ; Sea level on expanding Earth ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: On October 25th 2011 a devastating flood hit the Vara and Magra valleys in Italy and left an unforgettable scratch in the inhabitants’ minds. Cloudy with a Chance of ideas! (Piovono idee!) is an active journey of discovery and training on hydrogeological risk and climate change. Land preservation and safety of people living on it are issues, which we would like to help citizens get perception about, in order to instill awareness on the actions that can be taken towards risk mitigation. Cloudy with a Chance of ideas! stemmed from this belief, and it is the result of a collaborative planning in which primary and secondary school students, living within cities heavily hit by the flood, took actively part. Children were helped by experts and scientists to build an exhibition devoted to hydrogeological risk. Here interactive workspaces, games and educational laboratories, allow visitors explore concepts, phenomena and their consequences on land and inhabitants. Issues are addressed from a daily actions perspective, where everybody might make the difference towards sustainability and trigger good practices on natural hazards risk reduction.
    Description: Published
    Description: 121-124
    Description: 4A. Clima e Oceani
    Description: restricted
    Keywords: hydrogeological risk, climate change, prevention, environmental impact, territory. ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Climate model simulations are currently the main tool to provide information about possible future climates. Apart from scenario uncertainties and model error, internal variability is a major source of uncertainty, complicating predictions of future changes. Here, a suite of statistical tests is proposed to determine the shortest time window necessary to capture the internal precipitation variability in a stationary climate. The length of this shortest window thus expresses internal variability in terms of years. The method is applied globally to daily precipitation in a 200-yr preindustrial climate simulation with the CMCC-CM coupled general circulation model. The two-sample Cramér–von Mises test is used to assess differences in precipitation distribution, the Walker test accounts for multiple testing at grid cell level, and field significance is determined by calculating the Bejamini–Hochberg false-discovery rate. Results for the investigated simulation show that internal variability of daily precipitation is regionally and seasonally dependent and that regions requiring long time windows do not necessarily coincide with areas with large standard deviation. The estimated time scales are longer over sea than over land, in the tropics than in midlatitudes, and in the transitional seasons than in winter and summer. For many land grid cells, 30 seasons suffice to capture the internal variability of daily precipitation. There exist regions, however, where even 50 years do not suffice to sample the internal variability. The results show that diagnosing daily precipitation change at different times based on fixed global snapshots of one climate simulation might not be a robust detection method.
    Description: Published
    Description: 3624–3630
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: precipitation ; internal variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The warm-temperate regions of the globe characterized by dry summers and wet winters (Mediterranean climate; MED) are especially vulnerable to climate change. The potential impact on water resources,ecosystems and human livelihood requires a detailed picture of the future changes in this unique climate zone. Here we apply a probabilistic approach to quantitatively address how and why the geographic distribution of MED will change based on the latest-available climate projections for the 21st century. Our analysis provides, for the first time, a robust assessment of significant northward and eastward future expansions of MED over both the Euro-Mediterranean and western North America. Concurrently, we show a significant 21st century replacement of the equatorward MED margins by the arid climate type.Moreover, future winters will become wetter and summers drier in both the old and newly established MED zones. Should these projections be realized, living conditions in some of the most densely populated regions in the world will be seriously jeopardized.
    Description: Published
    Description: 7211
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: CMIP5 projections ; Mediterranean climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Società editrice Il Mulino, Bologna
    Publication Date: 2017-04-04
    Description: I fenomeni naturali, anche nei loro aspetti più temibili, ci ricordano che la Terra è un pianeta vivo. L’Italia, paese geologicamente fragile, è soggetto a terremoti, eruzioni, frane, inondazioni dagli effetti spesso devastanti. A un ambiente fisico così difficile si sono colpevolmente aggiunte l’incuria e la disattenzione dell’uomo. Quali sono le cause dei fenomeni naturali? In che misura sono prevedibili? Come possiamo difenderci? Il primo passo è trasformare la cultura del soccorso e dell’emergenza in cultura della prevenzione e della mitigazione del rischio.
    Description: Published
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4V. Vulcani e ambiente
    Description: 4A. Clima e Oceani
    Description: reserved
    Keywords: Rischi naturali ; Terremoti ; Frane ; Eruzioni vulcaniche ; Rischio sismico ; Rischio idrogeologico ; Incendi ; Rischio vulcanico ; Rischio idraulico ; Valanghe ; Tsunami ; Subsidenza ; Cavità sotterranee ; Rischio geochimico ; Rischio geomineralogico ; Rischio minerario ; Rischio meteorologico ; Rischio climatico ; Meteoriti ; Percezione del rischio ; Emergenza ; Prevenzione ; Ciclo del disastro ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Possible changes in the intensity of heavy precipitation events at the end of the twenty-first century over the Euro-Mediterranean region are investigated, using a subset of numerical climate simulations taking part to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). As a measure of the intensity associated with heavy precipitation events, we use the difference between the 99th and the 90th percentiles. Despite a slight tendency to underestimate the observed heavy precipitation intensity during summer and to overestimate it during winter, the considered CMIP5 models well represent the observed patterns of the defined 99th–90th percentile metric during both seasons for the 1997–2005 period over the Euro- Mediterranean region. Over the investigated domain, an increase of the width of the right tail of the precipitation distribution is projected in a warmer climate, even over regions where nearly the entire precipitation distribution becomes dryer. This is the case of the European domain within the 45N–55N belt.
    Description: Published
    Description: 595–602
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: extreme events ; precipitation ; europe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Our improved capability to adapt to future changes in discharge is linked to our capability to predict the magnitude or at least the direction of these changes. For the agricultural U.S. Midwest, too much or too little water has severe socio-economic impacts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed discharge variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven global climate models part of the Coupled Model Intercomparison Project Phase 5 and two representative concentration pathways (RCPs 4.5 and 8.5). There is not a strong signal of change in the discharge projections under the RCP 4.5. However the results for the RCP 8.5 point to a stronger changing signal related to larger projected increases in rainfall, resulting in increasing trends in particular in the upper part of the discharge distribution (i.e., 60th percentile and above). Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be alleviated by decreasing the extent of the agricultural production. We also discuss how the methodology presented in this study represents a viable approach to move forward with the concept of return period for engineering design and management in a non-stationary world.
    Description: Published
    Description: 1361–1371
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: river discharge ; rainfall ; statistical model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Annals of Geophysics (ISSN: 1593-5213; from 2010, 2037-416X) is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica (ISSN: 0365-2556), which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, Earth magnetism, and atmospheric studies....
    Description: Published
    Description: E0191
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: 3A. Ambiente Marino
    Description: 4A. Clima e Oceani
    Description: 5A. Energia e georisorse
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 7A. Geofisica di esplorazione
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: 2IT. Laboratori sperimentali e analitici
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: 4IT. Banche dati
    Description: 5IT. Osservazioni satellitari
    Description: 6IT. Sale operative
    Description: JCR Journal
    Description: open
    Keywords: editorial ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar wind ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous ; 02. Cryosphere::02.01. Permafrost::02.01.01. Active layer ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.01. Permafrost::02.01.03. Cryosol ; 02. Cryosphere::02.01. Permafrost::02.01.04. Periglacial processes ; 02. Cryosphere::02.01. Permafrost::02.01.05. Seasonally frozen ground ; 02. Cryosphere::02.01. Permafrost::02.01.06. Thermokarst ; 02. Cryosphere::02.01. Permafrost::02.01.07. Tundra ; 02. Cryosphere::02.01. Permafrost::02.01.08. Instruments and techniques ; 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous ; 02. Cryosphere::02.02. Glaciers::02.02.01. Avalanches ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphology ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.02. Glaciers::02.02.08. Rock glaciers ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques ; 02. Cryosphere::02.03. Ice cores::02.03.99. General or miscellaneous ; 02. Cryosphere::02.03. Ice cores::02.03.01. Aerosols ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.04. Ice Core Air Bubbles ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 02. Cryosphere::02.03. Ice cores::02.03.07. Teleconnection ; 02. Cryosphere::02.03. Ice cores::02.03.08. Temperature ; 02. Cryosphere::02.03. Ice cores::02.03.09. Instruments and techniques ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 02. Cryosphere::02.04. Sea ice::02.04.02. Leads ; 02. Cryosphere::02.04. Sea ice::02.04.03. Polynas ; 02. Cryosphere::02.04. Sea ice::02.04.04. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.01. Channel networks ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theory ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.02. Data dissemination::05.02.05. Collections ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-09-09
    Description: The Indo-Pacific Ocean (i.e. region between 30E and 150E) has been experiencing a spread warming since the 1950s. At the same time the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related with the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951-2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes in strengthening the western Pacific-Indian Ocean Walker circulation. Associated with it, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Differently from previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and still contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.
    Description: Published
    Description: 949–965
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Indian Ocean warming ; Indo-Pacific moisture ; Indian monsoon rainfall ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-04
    Description: Aerosol optical properties have been measured on the island of Lampedusa (35.5°N, 12.6°E) with sevenband multifilter rotating shadowband radiometers (MFRSRs) and a CE 318 Cimel sunphotometer (part of the AERONET network) since 1999. Four different MFRSRs have operated since 1999. The Cimel sunphotometer has been operational for a short period in 2000 and in 2003–2006 and 2010–present. Simultaneous determinations of the aerosol optical depth (AOD) from the two instruments were compared over a period of almost 4 years at several wavelengths between 415 and 870 nm. This is the first longterm comparison at a site strongly influenced by desert dust and marine aerosols and characterized by frequent cases of elevated AOD. The datasets show a good agreement, with MFRSR underestimating the Cimel AOD in cases with low Ångström exponent; the underestimate decreases for increasing wavelength and increases with AOD. This underestimate is attributed to the effect of aerosol forward scattering on the relatively wide field of view of the MFRSR. An empirical correction of the MFRSR data was implemented. After correction, the mean bias (MB) between MFRSR and Cimel simultaneous AOD determinations is always smaller than 0.004, and the root mean square difference is ≤0.031 at all wavelengths. The MB between MFRSR and Cimel monthly averages (for months with at least 20 days with AOD determinations) is 0.0052. Thus, by combining the MFRSR and Cimel observations, an integrated long-term series is obtained, covering the period 1999–present, with almost continuous measurements since early 2002. The long-term data show a small (nonstatistically significant) decreasing trend over the period 2002–2013, in agreement with independent observations in the Mediterranean. The integrated Lampedusa dataset will be used for aerosol climatological studies and for verification of satellite observations and model analyses.
    Description: Published
    Description: 2725-2737
    Description: 2A. Fisica dell'alta atmosfera
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Description: restricted
    Keywords: remote sensing, aerosol retrievals, sunphotometers, mfrsr, climate ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-11-09
    Description: Ensembles of retrospective 2-month dynamical forecasts initiated on 1May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.
    Description: Published
    Description: 778-793
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: indian summer monsoon ; onset ; seasonal predictions ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-11-23
    Description: Abrupt climate change in the past is thought to have disrupted societies by accelerating environmental degradation, potentially leading to cultural collapse. Linking climate change directly to societal disruption is challenging because socioeconomic factors also play a large role, with climate being secondary or sometimes inconsequential. Combining paleolimnologic, historical, and archaeological methods provides for a more secure basis for interpreting the past impacts of climate on society. We present pollen, nonpollen palynomorph, geochemical, paleomagnetic and sedimentary data from a high-resolution 2700 yr lake sediment core from central Italy and compare these data with local historical documents and archeological surveys to reconstruct a record of environmental change in relation to socioeconomic history and climatic fluctuations. Here we document cases in which environmental change is strongly linked to changes in local land management practices in the absence of clear climatic change, as well as examples when climate change appears to have been a strong catalyst that resulted in significant environmental change that impacted local communities. During the Imperial Roman period, despite a long period of stable, mild climate, and a large urban population in nearby Rome, our site shows only limited evidence for environmental degradation. Warm and mild climate during the Medieval Warm period, on the other hand, led to widespread deforestation and erosion. The ability of the Romans to utilize imported resources through an extensive trade network may have allowed for preservation of the environment near the Roman capital, whereas during medieval time, the need to rely on local resources led to environmental degradation. Cool wet climate during the Little Ice Age led to a breakdown in local land use practices, widespread land abandonment and rapid reforestation. Our results present a highresolution regional case study that explores the effect of climate change on society for an underdocumented region of Europe.
    Description: Published
    Description: 72 - 94
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Ambiente Marino
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Central Italy ; Mediterranean environments ; Society and climate ; Paleoenvironmental change ; Pollen ; Paleomagnetism ; Geochemistry ; Historical documents ; Late Holocene ; Roman Empire ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-06-09
    Description: In this paper we have put forward a Bayesian framework for the analysis and testing of possible non-stationarities in extreme events. We use the extreme value theory to model temperature and precipitation data in the Dar es Salaam region, Tanzania. Temporal trends are modeled writing the location parameter of the generalized extreme value distribution in terms of deterministic functions of explanatory covariates. The analyses are performed using synthetic time series derived from a Regional Climate Model. The simulations, performed in an area around the Dar es Salaam city, Tanzania, take into account two Representative Concentration Pathways scenarios from the Intergovernmental Panel on Climate Change. Our main interest is to analyze extremes with high spatial and temporal resolution and to pursue this requirement we have adopted an individual grid box analysis approach. The approach presented in this paper is composed of the following key elements: (1) an advanced Bayesian method for the estimation of model parameters, (2) a rigorous procedure for model selection, and (3) uncertainty assessment and propagation. The results of our analyses are intended to be used for quantitative hazard and risk assessment and are presented in terms of hazard curves and probabilistic hazard maps. In the case study we found that for both the temperature and precipitation data, a linear trend in the location parameter was the only model performing better than the stationary one in the areas where evidence against the stationary model exists.
    Description: This research has been developed in the framework of the FP7 European project CLUVA (Climate change and Urban Vulnerability in Africa), Grant No. 265137. This research has been funded by the FP7 European project CLUVA (Climate change and Urban ulnerability in Africa).
    Description: Published
    Description: 289-320
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Non-stationary extreme events ; Climate change ; Multi-hazard ; Bayesian inference ; Extreme precipitation ; Extreme temperature ; Dar es Salaam ; Tanzania ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-06-13
    Description: Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La Ninã events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962–2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979–2001, with higher frequency in the south.
    Description: Published
    Description: 211-230
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: precipitation extremes ; La Plata Basin ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-06-10
    Description: Patagonia Argentina is a key area for the study of sea level changes in the southern hemisphere, but the availability of reliable sea level markers in this area is still problematic. In fact the storm deposits (beach ridge) commonly used here to reconstruct past sea level oscillations introduce a wide error. Along the Puerto Deseado coast (Santa Cruz), morphometric analyses of 11 features were carried out using traditional measurement tools and a digital software-based method (tested on one selected feature) with the aim to investigate the possibility of their use as sea level markers. By undertaking accurate topographic profiles we identified the relationship between notches and current sea level. In detail, we identified two clusters of notch retreat point elevations, with a very low internal variability. The lower was located a little below the mean high tide level (mHT) and the upper located at least 0.5m above the maximum high tide level (MHT). Field observations of tidal levels and the position of notches suggest that the lower notches are active and the upper are inactive. This study on the abrasive notches attests their quality as sea level markers and opens up the use of fossil abrasive notches as palaeo sea level markers because the error linked to these features is substantially smaller than that introduced by beach ridges commonly used in the study area
    Description: Published
    Description: 1550 – 1558
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: notch; rocky coast; sea level marker; Patagonia; Argentina ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-06-10
    Description: Stratigraphic, morphologic and radiocarbon data from Puerto Deseado coastal area (Santa Cruz Province, Argentina) indicate that the Holocene coastline formed in response to the discontinuous aggradation of coarse gravely beaches since c. 6300 cal. yr BP related to a progressive falling of relative sea level. Beach ridge crests crudely approximate to the sea level showing at least three steps of aggradation and relative sea-level lowering. Two inactive abrasive notches at c. 7.9 and 3.4 m a.s.l. have recorded this sea-level trend, suggesting two important phases when sea level was stationary. This allows the estimation of a rate of relative sea-level fall in the last c. 3500 years of c. 1.8 mm/yr. Moreover, notches and morphological data indicate that the crest of the beach ridges exceeded the sea-level height by c. 2 ± 0.5 m. This value provides a reasonable regional estimate to be applied to produce comparable relative sea-level curve for Atlantic Patagonia coast.
    Description: Published
    Description: 307-317
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: abrasive notches, Argentina, beach ridges, middle to late Holocene, Patagonia, relative sea level ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-11-18
    Description: Heavy rainfall and flooding associated with tropical cyclones (TCs) are responsible for a large number of fatalities and economic damage worldwide. Despite their large socio-economic impacts, research into heavy rainfall and flooding associated with TCs has received limited attention to date, and still represents a major challenge. Our capability to adapt to future changesin heavy rainfall and flooding associated with TCs is inextricably linked to and informed by ourunderstanding of the sensitivity of TC rainfall to likely future forcing mechanisms. Here we use a set of idealized high-resolution atmospheric model experiments produced as part of the U.S. CLIVAR Hurricane Working Group activity to examine TC response to idealized global-scale perturbations: the doubling of CO2, uniform 2K increases in global sea surface temperature(SST), and their combined impact. As a preliminary but key step, daily rainfall patterns ofcomposite TCs within climate model outputs are first compared and contrasted to the observational records. To assess similarities and differences across different regions in response to the warming scenarios, analyses are performed at the global and hemispheric scales and in six global TC ocean basins. The results indicate a reduction in TC daily precipitation rates in the doubling CO2 scenario (on the order of 5% globally), and an increase in TC rainfall rates associated with a uniform increase of 2K in SST (both alone and in combination with CO2 doubling; on the order of 10-20% globally).
    Description: Published
    Description: 4622–4641
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: tropical cyclones ; precipitation ; rainfall ; extreme events ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-06-16
    Description: While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. CLIVAR (CLImate VARiability and predictability of the ocean-atmosphere system). This work, combined with results from other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate the decrease in tropical cyclone numbers previously shown to be a common response of climate models in a warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.
    Description: Published
    Description: 997–1017
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; hurricanes ; climate change ; CLIVAR ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-06-14
    Description: Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10–40 Tg of CH4 a−1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5Mga−1 (t a−1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g−1 soil d.w. h−1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the topsoil layer, and values greater than 6.23 nmol g−1 h−1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 C, but a still detectable consumption at 80 C (〉1.25 nmol g−1 h−1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical–physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane-containing atmosphere at 37 C. The isolates grow at a pH range of 3.5 to 8 and temperatures of 18–45 C, and consume 160 nmol of CH4 h−1 mL−1 of culture. Soils from Favara Grande showed the largest diversity of methanotrophic bacteria detected until now in a geothermal soil. While methanotrophic Verrucomicrobia are reported as dominating highly acidic geothermal sites, our results suggest that slightly acidic soils, in high-enthalpy geothermal systems, host a more diverse group of both culturable and uncultivated methanotrophs.
    Description: Published
    Description: 5865–5875
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: geothermal soils ; methanotrophic activity ; Verrucomicrobia ; Alphaproteobacteria ; Gammaproteobacteria ; geothermal gases ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: In this work the authors investigate possible changes in the intensity of rainfall events associated 28with tropical cyclones (TCs) under idealized forcing scenarios, including a uniformly warmer climate, with a special focus on landfalling storms. A new set of experiments designed within the U.S. CLIVAR Hurricane Working Group allows disentangling the relative role of changes in atmospheric carbon dioxide from that played by sea surface temperature (SST) in changing theamount of precipitation associated with TCs in a warmer world. Compared to the present day simulation, we found an increase in TC precipitation under the scenarios involving SST increases. On the other hand, in a CO2 doubling-only scenario, the changes in TC rainfall are small and we found that, on average, TC rainfall tends to decrease compared to the present day climate. The results of this study highlight the contribution of landfalling TCs to the projected increase in theprecipitation changes affecting the tropical coastal regions.
    Description: Published
    Description: 4642–4654
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: tropical cyclones ; precipitation ; extreme events ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: In this study, we analyse the observed long-term discharge time-series of the Rhine, the Danube, the Rhone and the Po rivers. These rivers are characterised by different seasonal cycles reflecting the diverse climates and morphologies of the Alpine basins. However, despite the intensive and varied water management adopted in the four basins, we found common features in the trend and low-frequency variability of the spring discharge timings. All the discharge time-series display a tendency towards earlier spring peaks of more than two weeks per century. These results can be explained in terms of snowmelt, total precipitation (i.e. the sum of snowfall and rainfall) and rainfall variability. The relative importance of these factors might be different in each basin. However, we show that the change of seasonality of total precipitation plays a major role in the earlier spring runoff over most of the Alps.
    Description: Published
    Description: 222-232
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: rivers ; alps ; precipitation ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ13C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ13C versus time and the δ13C versus carbon emission curves.
    Description: Published
    Description: 491-496
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: carbon-13; Caribbean Sea; coral reef; isotope ecology; isotope geochemistry; paleoclimate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Future tropical cyclone activity is a topic of great scientific and societal interest. In the absence of a climate theory of tropical cyclogenesis, general circulation models are the primary tool available for investigating the issue. However, the identification of tropical cyclones in model data at moderate resolution is complex, and numerous schemes have been developed for their detection. We here examine the influence of different tracking schemes on detected tropical cyclone activity and responses in the Hurricane Working Group experiments. These are idealized atmospheric general circulation model experiments aimed at determining and distinguishing the effects of increased sea-surface temperature and other increased CO2 effects on tropical cyclone activity. We apply two tracking schemes to these data and also analyze the tracks provided by each modelling group. Our results indicate moderate agreement between the different tracking methods, with some models and experiments showing better agreement across schemes than others. When comparing responses between experiments, we find that much of the disagreement between schemes is due to differences in duration, wind speed, and formation-latitude thresholds. After homogenisation in these thresholds, agreement between different tracking methods is improved. However, much disagreement remains, accountable for by more fundamental differences between the tracking schemes. Our results indicate that sensitivity testing and selection of objective thresholds are the key factors in obtaining meaningful, reproducible results when tracking tropical cyclones in climate model data at these resolutions, but that more fundamental differences between tracking methods can also have a significant impact on the responses in activity detected.
    Description: Published
    Description: 9197–9213
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; tracking schemes ; climate change ; hurricanes ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Precipitation extremes are expected to increase in a warming climate, thus it is essential to characterise their potential future changes. Here we evalu- ate eight high-resolution Global Climate Model simulations in the twenti- eth century and provide new evidence on projected global precipitation ex- tremes for the 21st century. A significant intensification of daily extremes for all seasons is projected for the mid and high latitudes of both hemispheres at the end of the present century. For the subtropics and tropics, the lack of reliable and consistent estimations found for both the historical and fu- ture simulations might be connected with model deficiencies in the repre- sentation of organised convective systems. Low inter-model variability and good agreement with high-resolution regional observations are found for the twentieth century winter over the Northern Hemisphere mid and high lat- itudes.
    Description: Published
    Description: 4887–4892
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: extreme events ; precipitation ; cmip5 ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Global-scale variations in the climate system over the last half of the twentieth century. including long-term increases in global-mean near-surface temperatures. are consistent with concurrent human-induced emissions of radiatively active gases and aerosols. However, such consistency does not preclude the possible influence of other forcing agents, including internal modes of climate variability or unaccounted for aerosol effects. To test whether other unknown forcing agents may have contributed to multidecadal increases in global-mean near-surface temperatures from 1950 to 2000. data pertaining to observed changes in global-scale sea surface temperatures and observed changes in radiatively active atmospheric constituents are incorporated into numerical global climate models. Results indicate that the radiative forcing needed to produce the observed long-term trends in sea surface temperatures-and global-mean near-surface temperatures-is provided predominantly by known changes in greenhouse gases and aerosols. Further, results indicate that less than 10% of the long-term historical increase in global-mean near-surface temperatures over the last half of the twentieth century could have been the result of internal climate variability. In addition. they indicate that less than 25% of the total radiative forcing needed to produce the observed long-term trend in global-mean near-surface temperatures could have been provided by changes in net radiative forcing from unknown sources (either positive or negative). These results, which are derived from simple energy balance requirements. emphasize the important role humans have played in modifying the global climate over the last half of the twentieth century.
    Description: Published
    Description: 7163-7172
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: climate forcing ; temperature increase ; AGCM ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: About 120 rainwater samples were collected through a network of five bulk collectors in the area of the Louros basin (Epirus, Greece) during the wet season from October 2008 to August 2009. They were analysed for their isotopic (δD and δ18O) and chemical (H+, Na+, K+, Mg2+, Ca2+, NH4 +, F−, Cl−, Br−, NO3 −, SO4 2 −) composition. A local meteoric water line (δD‰ = 5.80 ± 0.02 δ18O‰ + 0.02 ± 0.12) and a local isotopic lapse rate (−0.18 δ18O‰/100 m) were obtained considering the volume-weighted means of the five sampling sites. These results agree well with those obtained in nearby areas. The chemical composition of the samples allows to identify an almost entirely marine origin for chloride and sodium with decreasing deposition values at increasing distance from the coast. Nitrate and ammonium are almost completely of anthropogenic origin, calcium and potassium are overwhelmingly geogenic, sulphate has a prevailingly anthropogenic origin with a significant marine contribution and magnesium has a mixedmarine and soil dust origin. Finally, as for most of the Mediterranean area, rainwater acidity is buffered by the dissolution of the abundant geogenic carbonate aerosol.
    Description: Published
    Description: 399-410
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: Precipitation ; Neutralization ; Stable isotopes ; Chemical composition ; Bulk deposition ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: Global warming is believed to be responsible for the reduction of snow amount and duration over the Alps. In fact, a rapid shortening of the snowy season has been measured and perceived by ecosystems and society in the past 30 years, despite the large year-to-year variability. This trend is projected to continue during the 21st century in the climate change scenarios with increasing greenhouse gas concentrations. Superimposed on the long-term trend, however, there is a low-frequency variability of snowfall associated with multi-decadal changes in the large-scale circulation. The amplitude of this natural low-frequency variation might be relatively large, determining rapid and substantial changes of snowfall, as recently observed. This is already known for winter snowfall over the Alps in connection with the recent tendency toward the positive phase of the North Atlantic Oscillation. In this study, we show that the low-frequency variability of Alpine spring snowfall in the past 150 years is affected by the Atlantic Multi-decadal Oscillation (AMO), which is a natural periodic fluctuation of Northern Atlantic sea surface temperature. Therefore, the recently observed spring snowfall reduction might be, at least in part, explained by the shift toward a positive AMO phase that happened in the 1990s.
    Description: Published
    Description: 034026 (7pp)
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: AMO ; snow ; alps ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-03
    Description: Il sistema CUMAS (Cabled Underwater Module for Acquisition of Seismological data) è un prodotto tecnologico-scientifico complesso nato con il Progetto V4 [Iannaccone et al., 2008] allo scopo di monitorare l’area vulcanica dei Campi Flegrei (fenomeno del bradisismo). Si tratta di un modulo sottomarino cablato e connesso a una boa galleggiante (meda elastica). Il sistema è in grado di acquisire e trasmettere alla sala di monitoraggio dell’OV, in continuo e in tempo reale, sia i segnali sismologici sia quelli di interesse geofisico ed oceanografico (maree, correnti marine, segnali acustici subacquei, parametri funzionali di varia natura). Il sistema è in grado di ricevere comandi da remoto per variare diversi parametri di acquisizione e di monitorare un cospicuo numero di variabili di funzionamento. Il sistema si avvale del supporto di una boa galleggiante attrezzata. La boa è installata a largo del golfo di Pozzuoli (Napoli) a circa 3 km dalla costa. Il modulo sottomarino, collegato via cavo alla parte fuori acqua della boa, è installato sul fondale marino a una profondità di circa 100 metri.
    Description: Submitted
    Description: 82-85
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: 5.2. TTC - Banche dati di sismologia strumentale
    Description: N/A or not JCR
    Description: open
    Keywords: Monitoraggio sismico; sistemi sottomarini; boa; meda elastica ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition ; 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts ; 01. Atmosphere::01.02. Ionosphere::01.02.04. Plasma Physics ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 01. Atmosphere::01.02. Ionosphere::01.02.07. Scintillations ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous ; 01. Atmosphere::01.03. Magnetosphere::01.03.01. Interplanetary physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.02. Magnetic storms ; 01. Atmosphere::01.03. Magnetosphere::01.03.03. Magnetospheric physics ; 01. Atmosphere::01.03. Magnetosphere::01.03.04. Structure and dynamics ; 01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar wind ; 01. Atmosphere::01.03. Magnetosphere::01.03.06. Instruments and techniques ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous ; 02. Cryosphere::02.01. Permafrost::02.01.01. Active layer ; 02. Cryosphere::02.01. Permafrost::02.01.02. Cryobiology ; 02. Cryosphere::02.01. Permafrost::02.01.03. Cryosol ; 02. Cryosphere::02.01. Permafrost::02.01.04. Periglacial processes ; 02. Cryosphere::02.01. Permafrost::02.01.05. Seasonally frozen ground ; 02. Cryosphere::02.01. Permafrost::02.01.06. Thermokarst ; 02. Cryosphere::02.01. Permafrost::02.01.07. Tundra ; 02. Cryosphere::02.01. Permafrost::02.01.08. Instruments and techniques ; 02. Cryosphere::02.02. Glaciers::02.02.99. General or miscellaneous ; 02. Cryosphere::02.02. Glaciers::02.02.01. Avalanches ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphology ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance ; 02. Cryosphere::02.02. Glaciers::02.02.07. Ocean/ice interaction ; 02. Cryosphere::02.02. Glaciers::02.02.08. Rock glaciers ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.02. Glaciers::02.02.10. Instruments and techniques ; 02. Cryosphere::02.03. Ice cores::02.03.99. General or miscellaneous ; 02. Cryosphere::02.03. Ice cores::02.03.01. Aerosols ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry ; 02. Cryosphere::02.03. Ice cores::02.03.03. Climate Indicators ; 02. Cryosphere::02.03. Ice cores::02.03.04. Ice Core Air Bubbles ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.06. Precipitation ; 02. Cryosphere::02.03. Ice cores::02.03.07. Teleconnection ; 02. Cryosphere::02.03. Ice cores::02.03.08. Temperature ; 02. Cryosphere::02.03. Ice cores::02.03.09. Instruments and techniques ; 02. Cryosphere::02.04. Sea ice::02.04.99. General or miscellaneous ; 02. Cryosphere::02.04. Sea ice::02.04.01. Atmosphere/sea ice/ocean interaction ; 02. Cryosphere::02.04. Sea ice::02.04.02. Leads ; 02. Cryosphere::02.04. Sea ice::02.04.03. Polynas ; 02. Cryosphere::02.04. Sea ice::02.04.04. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.99. General or miscellaneous ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.01. General::03.01.02. Equatorial and regional oceanography ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis ; 03. Hydrosphere::03.01. General::03.01.05. Operational oceanography ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.02. Hydrology::03.02.99. General or miscellaneous ; 03. Hydrosphere::03.02. Hydrology::03.02.01. Channel networks ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 03. Hydrosphere::03.02. Hydrology::03.02.07. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.99. General or miscellaneous ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.04. Upper ocean and mixed layer processes ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.99. General or miscellaneous ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.02. Earth rotation ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.01. Dynamo theory ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.02. Data dissemination::05.02.05. Collections ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.06. Methods::05.06.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.99. General or miscellaneous ; 05. General::05.07. Space and Planetary sciences::05.07.01. Solar-terrestrial interaction ; 05. General::05.07. Space and Planetary sciences::05.07.02. Space weather ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: In this work the authors investigate possible changes in the distribution of heavy precipitation events under a warmer climate, using the results of a set of 20 climate models taking part in the Coupled Model Intercomparison Project phase 5 effort (CMIP5). Future changes are evaluated as the difference between the last four decades of the 21st and the 20th Century assuming the Representative Concentration Pathway RCP8.5 scenario. As a measure of the width of the right tail of the precipitation distribution, we use the difference between the 99th and the 90th percentiles. Despite a slight tendency to underestimate the observed heavy precipitation, the considered CMIP5 models well represent the observed patterns in terms of the ensemble average, during both summer and winter seasons for the 1997-2005 period. Future changes in average precipitation are consistentwith previous findings based on CMIP3 models. CMIP5 models show a projected increase for the end of the twenty-first century of the width of the right tail of the precipitation distribution, particularly pronounced over India, South East Asia, Indonesia and Central Africa during borealsummer, as well as over South America and southern Africa during boreal winter.
    Description: Published
    Description: 7902–7911
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: precipitation ; extreme events ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is weakly effective in A1B throughout the 21C. Two distinct mechanisms characterize the diverse strengthening of the hydrological cycle in the middle and end- 21C. It is only through a very large perturbation of surface fluxes that A1B achieves a larger increase in global precipitation in the last decades of the 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratio change between the two scenarios. This work warns that mitigation policies that promote aerosol abatement, may lead to an unexpected stronger intensification of the hydrological cycle and associated changes that may last for decades after global warming is effectively mitigated. On the other hand, it is also suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.
    Description: Published
    Description: 199-212
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: N/A or not JCR
    Description: open
    Keywords: Earth System Model ; climate scenario ; mitigation ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: The central United States is a region for which observational studies have indicated an increase in heavy rainfall. This study uses projections of daily rainfall from 20 state-of-the-art global climate models and one scenario (RCP 8.5) to examine projected changes in extreme rainfall. Analyses are performed focusing on trends in the 90th and 99th percentiles of the daily rainfall distributions for two periods (2006-2045 and 2046-2085). The results of this study indicate a large increase in extreme rainfall in particular over the northern part of the study region, with a much less clear signal over the Great Plains and the states along the Gulf of Mexico.
    Description: Published
    Description: 200-205
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: embargoed_20160624
    Keywords: precipitation ; extreme events ; cmip5 ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of obser- vations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal corre- lates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.
    Description: Published
    Description: 775-785
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Decadal prediction 􏰁 Atlantic MOC 􏰁 Predictability 􏰁 Multi-model comparison ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-04-17
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Description: Published
    Description: 375–393
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: Antarctic bedrock topography ; Antarctic mass balance ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.02. Glaciers::02.02.04. Ice ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 02. Cryosphere::02.02. Glaciers::02.02.06. Mass balance
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-06-22
    Description: Within the CIRCE project ‘‘Climate change and Impact Research: the Mediterranean Environment’’, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oce- anic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and sat- isfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sen- sible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty- first century. For the ensemble mean, he decrease in pre- cipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.
    Description: Published
    Description: 1859–1884
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Mediterranean Sea ; scenarios ; coupled regional climate models ; circe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-06-22
    Description: In this article we describe an innovative multi-model system developed within the CIRCEEU-FP6 Project and used to produce simulations of the Mediterranean Sea regional climate.The models include high-resolution Mediterranean Sea components, which allow to assess therole of the basin, and in particular of the air-sea feedbacks in the climate of the region. The models have been integrated from 1951 to 2050, using observed radiative forcings duringthe first half of the simulation period and the IPCC SRES A1B scenario during the secondhalf.The projections show a substantial warming (about 1.5°-2°C) and a significant decrease ofprecipitation (about 5%) in the region for the scenario period. However, locally the changesmight be even larger. In the same period, the projected surface net heat loss decreases, leadingto a weaker cooling of the Mediterranean Sea by the atmosphere, whereas the water budgetappears to increase, leading the basin to loose more water through its surface than in the past.These results are overall consistent with the findings of previous scenario simulations, such asPRUDENCE, ENSEMBLES and CMIP3. The agreement suggests that these findings arerobust to substantial changes in the configuration of the models used to make the simulations.Finally, the models produce a 2021-2050 mean steric sea-level rise that ranges between +7 cm and +12 cm, with respect to the period of reference.
    Description: Published
    Description: 65-81
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Mediterranean Sea ; climate projections ; multi-model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-12-18
    Description: This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1〈A〈0.2, and (-41.2 ± 1.6) Wm-2 for 0.5〈A〈0.6.
    Description: Published
    Description: 953-969
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Arctic radiative balance ; Surface albedo ; Atmospheric aerosols ; Water vapour ; Direct radiative forcing ; Arctic amplification ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-06-25
    Description: This work focuses on the Late Saalian (140 ka) Eurasian ice sheets’ surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet.
    Description: Published
    Description: 531-553
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Sea surface temperatures ; Late Saalian ; Last Glacial Maximum ; Eurasian ice sheet ; Climate modelling ; Quaternary ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2012-02-03
    Description: The climate has always been subject to changes, and these have often caused trouble and posed unexpected threats. People have had to adapt by finding socially, culturally and economically adequate answers. Based on authoritative scientific and historical studies, this book explores the civilizations that have called the Mediterranean their home during the last 3,000 years, and makes their history accessible to a wide readership. Aided by a group of researchers, the authors aim not only to delineate climatic trends and their social repercussions through the centuries, but also to address the ideas and theories set forth by thinkers since time immemorial. This book gives voice to ancient Greek and Latin philosophers, medieval encyclopedists (Christian and Arab), intellectuals of the modern era and the Enlightenment, and exponents of nineteenth-century positivism. Ancient and recent Mediterranean civilizations alike concerned themselves with weather forecasts, the climate and health, and the relationship between climate and the environment: they have elaborated on these issues and come up with answers since antiquity. Casting light on largely unexplored aspects of history, this journey through time works its way to the present global warming. The new challenge that lies before us is best assessed in a perspective of “historical climate change,” to which the doings of humankind are adding great momentum.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate history ; climatic change ; historical Mediterranean cultures ; social answers ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150–250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol−1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors for CO2 and CH4 agree well with those from prior studies conducted in the same area using e.g. airborne plume sampling. We also concur with past suggestions that emission factors for formaldehyde in this environment appear substantially underestimated in widely used databases, but see no evidence to support suggestions by Sinha et al. (2003) of a major overestimation in the emission factor of ammonia in works such as Andreae and Merlet (2001) and Akagi et al. (2011). We also measure somewhat higher CO and NH3 emission ratios and factors than are usually reported for this environment, which is interpreted to result from the OP-FTIR ground-based technique sampling a greater proportion of smoke from smouldering processes than is generally the case with methods such as airborne sampling. Finally, our results suggest that the contribution of burning animal (elephant) dung can be a significant factor in the emissions characteristics of certain KNP fires, and that the ability of remotely sensed fire temperatures to provide information useful in tailoring modified combustion efficiency (MCE) and emissions factor estimates maybe rather limited, at least until the generally available precision of such temperature estimates can be substantially improved. One limitation of the OP-FTIR method is its ability to sample only near-ground level smoke, which may limit application at more intense fires where the majority of smoke is released into a vertically rising convection column. Nevertheless, even in such cases the method potentially enables a much better assessment of the emissions contribution of the RSC stage than is typically conducted currently.
    Description: Published
    Description: 11591-11615
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: X-ray computed microtomography ; preferred orientation ; texture analysis ; volcanic scoria ; synchrotron X-rays ; pumice ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-03
    Description: The inter-annual variability of Adriatic Sea hydrographic characteristics is investigated by means of numerical simulation and direct observation. The period under investigation runs from the beginning of 2000 to the end of 2008. The model used to carry out the simulation is derived from the primitive equation component of the Adriatic Forecasting System (AFS). The model is based on the Princeton Ocean Model (POM) adapted in order to reproduce the features of the Adriatic. Both numerical findings and observations agree in depicting a strong inter-annual variability in the entire Adriatic Sea and its sub-basins. Nevertheless, two model deficiencies are identified: an excessive vertical/horizontal mixing and an inaccurate representation of the thermohaline properties of the entering Mediterranean Waters. The dense water formation process has been found to be intermittent. In addition to inter-annual variability, a long-scale signal has been observed in the salinity content of the basin as a consequence of a prolonged period of reduced Po river runoff and high evaporation rates. As a result, the temperature and salinity of the northern Adriatic dense water vary considerably between the beginning and the end of the period investigated.
    Description: Published
    Description: 549–567
    Description: JCR Journal
    Description: open
    Keywords: Adriatic Sea ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Istituto Nazionale di Geofisica e Vulcanologia,sezione di Napoli,Osservatorio Vesuviano
    Description: Published
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: open
    Keywords: dati meteorologici ; Osservatorio Vesuviano ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: web product
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, par- ticularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geo- graphical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.
    Description: Published
    Description: 2963–2982
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: tropical cyclones ; seasonal forecast ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: One of the conclusions of the IPCC Fourth Assessment Report is that there are evidences that climate change affects the frequency, intensity, and length of many extreme events, such as floods, droughts, storms and extreme temperatures. At the same time, gradual and non-linear changes in ecosystems and natural resources further increase the consequences of extreme weather events. Climate extreme events are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws than averages. The availability of climate simulations (historical + sresA1B scenario) covering the period 1970-2100 from a global Coupled General Circulation Model (70 Km of atmospheric spatial resolution) and a Regional Climate Model (14 Km of spatial resolution) give the possibility to investigate three principal weather fields involved in extreme events conditions such as surface temperature, precipitation and wind velocity. For each of them the computation of several indicators has been done, at global and regional scale, on daily time basis over 4 seasons defined as December-February (DJF), March-May (MAM), June-August (JJA), September-November (SON). These indicators characterize each model grid point over the relative spatial model domain (global/regional). For each index we computed trend maps considering only grid points where the detected trend is statistically significant. Available trend maps are defined over five periods of 30 years: 1971-2000 1981-2010, 2011-2040, 2041-2070, 2071-2100, and two periods of 65 years: 1971-2035 and 2036-2100.
    Description: Unpublished
    Description: Alghero, sardinia, Italy
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: extreme events ; general circulation models ; regional circulation model ; precipitation ; temperature ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-02-24
    Description: Within the framework of the FUME EU project a set of climate projections covering the period 1970-2100 has been performed using a global General Circulation model (CMCC-Med) and a Regional Climate model (CMCC-CLM). Simulation outputs have been post-processed in order to investigate extreme events based on three principal weather parameters: precipitation, surface temperature and 10 metre wind. Using these parameters, several indexes for extreme event characterizations have been computed on daily time basis over 4 seasons. Trends and variability have been computed and examined both for the global and regional model.
    Description: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC)
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: extreme events ; general circulation model ; regional climate model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth- century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 58–188N (188–308N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.
    Description: Published
    Description: 4368–4384
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: tropical cyclones ; ocean heat transport ; general circulation model ; scenario ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Detection of tropical lows is performed in a suite of climate model simulations using objectively-determineddetection thresholds that are resolution-dependent. It is found that there is some relationship between model resolution and tropical cyclone formation rate even after the resolution-dependent tropical cyclone detection threshold is applied. The relationship is investigated between model-simulated tropical cyclone formation and a climate-based tropical cyclone Genesis Potential Index (GPI). It is found that coar- ser-resolution models simulate the GPI better than theysimulate formation of tropical cyclones directly. As a result, there appears to be little relationship from model to modelbetween model GPI and the directly-simulated cyclone formation rate. Statistical analysis of the results shows that themain advantage of increasing model resolution is to give aconsiderably better pattern of cyclone formation. Finer resolution models also simulate a slightly better pattern of GPI, and for these models there is some relationship between the pattern of GPI simulated by each model and that model’s pattern of simulated tropical cyclone formation.
    Description: Published
    Description: 585-599
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: In recent years increasing interest has been put on the role that intense Tropical Cyclones can play in the climate system. The following study is aimed at highlighting the effects of strong Tropical Cyclones over the Tropical Atlantic on the mean climate. Their composite effect on the surface winds is made apparent by a wide cyclonic perturbation that affects a large portion of the Atlantic tropical Ocean. Teleconnection patterns, which are visible in the Sea Level Pressure anomalies associated with this Tropical Composite Cyclone, appear to link the activity of the hurricanes to the Arctic Ocean. A significant negative correlation between the energy dissipated by hurricanes in the Tropical atmosphere and the sea ice cover along the Transpolar Drift Stream path, has also been found.
    Description: Published
    Description: L17704
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; arctic sea ice ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: It is well know that the ocean processes exert a great influence on global climate as well as affect the local climate of coastal areas (Russo et al., 2002). Within the Mediterranean region (see Fig. 1a), the presence of the Adriatic Sea influences the atmospheric properties of the surrounding regions over long and short time-scales, and has obviously a relevant influence on human activities and ecosystems (Boldrin et al., 2009).This Chapter will describe the main climatological characteristics of the northern-central Adriatic Sea (see Figure 1b) assessed on a human time-scale, i.e. the last few decades.
    Description: Published
    Description: 177-212
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Adriatic Sea ; Climatology ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: El Nino-Southern Oscillation (ENSO) is an important air-sea coupled phenomenon that plays a dominant role in the variability of the tropical regions. Observations, atmospheric and oceanic reanalysis datasets are used to classify ENSO and non-ENSO years to investigate the typical features of its periodicity and atmospheric circulation patterns. Among non-ENSO years, we have analyzed a group, called type-II years, with very small SST anomalies in summer that tend to weaken the correlation between ENSO and precipitation in the equatorial regions. A unique character of ENSO is studied in terms of the quasi-biennial periodicity of SST and heat content (HC) fields over the Pacific-Indian Oceans. While the SST tends to have higher biennial frequency along the Equator, the HC maximizes it into two centers in the western Pacific sector. The north-western center, located east of Mindanao, is strongly correlated with SST in the NINO3 region. The classification of El Nino and La Nina years, based on NINO3 SST and north-western Pacific HC respectively, has been used to identify and describe temperature and wind patterns over an extended-ENSO region that includes the tropical Pacific and Indian Oceans. The description of the spatial patterns within the atmospheric ENSO circulation has been extended to tropospheric moisture fields and low-level moisture divergence during November–December–January, differentiating the role of El Nino, when large amounts of condensational heat are concentrated in the central Pacific, from La Nina that tends to mainly redistribute heat to Maritime Continents and higher latitudes. The influence of the described mechanisms on equatorial convection in the context of the variability of ENSO on longer timescales for the end of the 20th century is questioned. However, the inaccuracy of the atmospheric reanalysis products in terms of precipitation and the shorter time length of more reliable datasets hamper a final conclusion on this issue.
    Description: Published
    Description: 35-57
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: ENSO ; atmospheric heating ; biennial variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: Tropical cyclones (TCs) activity and their relationship with the Northern hemispheric Ocean Heat Transport (OHT) is investigated. The analysis has been performed using 20C3M (20th Century) and A1B (21st Century) IPCC scenario climate simulations obtained running a state-of-the-art atmosphere-ocean-seaice coupled global model, with high-resolution in the atmosphere. The capability of the model to reproduce a realistic TC climatology has been assessed by comparing the model results from the simulation of the 20th Century with observations. The model is able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic structure, geographical distribution and interannual variability, indicating that the model is able to reproduce the major basic mechanisms that link the TC activity with the large scale circulation. The TC-induced ocean cooling is well represented and the TCs activity increases significantly the poleward OHT out of the tropics, but also increases the heat transport into the deep tropics. This effect, investigated looking at the 100 most intense Northern hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean: the winds associated to the TCs significantly weaken the Trade Winds in the 5-18oN latitude belt and reinforce them in the 18-30oN band. TCs frequency and intensity appear to be substantially stationary through the whole 1950- 2069 period. Also the effect of the TCs induced OHT (TCiOHT) does not significantly change during the simulated period.
    Description: Published
    Description: Wien, Austria
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: tropical cyclones ; ocean heat transport ; general circulatin model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: In recent years increasing interest has been put on the role that intense Tropical Cyclones (hurricanes and typhoons) can play in modulating the climate system. Here we present a new approach to highlight strong Tropical Cyclones (TCs) fingerprint on the mean climate. Their composite effect on the surface winds is manifested through a wide cyclonic perturbation that affect a large portion of the Pacific and Atlantic tropical Oceans, as revealed by the ERA-Interim reanalysis dataset. The relationship between the resulting Tropical Composite Cyclones and the Northern hemispheric Ocean Heat Transport (OHT) is then investigated through a fully coupled atmosphere-ocean-seaice coupled global model, with high-resolution in the atmosphere (T159). The TCs activity increases significantly the poleward OHT out of the tropics, but also increases the heat transport into the deep tropics on the time scale of weeks. This effect, investigated looking at the 100 most intense Northern hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean: the winds associated to the TCs significantly weaken the Trade Winds in the 5-18oN latitude belt and reinforce them in the 18-30oN band. A comparison between two simulations with and without TCs effect on the wind stress over the ocean is also performed in order to better understand the role of TCs on the annually averaged OHT. The effect of the TCs induced OHT does not significantly change during the whole 1950-2069 (following 20C3M and A1B scenario) simulated period.
    Description: Published
    Description: Rhodes, Greece
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: tropical cyclones ; heat transport ; composite ; ocean-atmosphere coupled system ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: Within the CIRCE (Climate Change and Impact Research: The Mediterranean Environment) EU Project, substantial efforts were devoted to enhance the representation of the oceanic system in the Mediterranean region. This was achieved by developing coupled general circulation models with ocean components which either explicitly resolve, or simply permit, mesoscale circulation features. The inclusion of the eddy variability tail in the spectrum of the processes resolved by the modelled system represents a particularly relevant step forward with respect to the previous CMIP3 generation of climate models , as these were systematically based on coarse resolution ocean components, leading in turn to an extremely rough representation of the Mediterranean Sea sub-system. In this study the role of mesoscale oceanic features on the air-sea interactions over the Mediterranean region was analysed, in the context of one of the CIRCE ensemble of climate models. To this aim, two different simulations of the 20th Century climate, performed with two distinct configurations of the CMCC coupled general circulation model featuring radically different horizontal resolutions in the Mediterranean Sea domain, were compared. This comparison highlights the implications deriving from the inclusion of energetic ocean mesoscale structures in the variability spectrum of the coupled ocean-atmosphere system and points to the need for high-resolution ocean components in the development of next generation climate model.
    Description: Unpublished
    Description: Wien, Austria
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: mediterranean Sea ; eddies ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: The main aim of this work is to identify useful tools to forecast impacts of expected climate change on live fuel moisture content (Live FMC) in Mediterranean shrublands.
    Description: Published
    Description: Alghero, Sardinia, Italy
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: climate change ; fire ; ignition ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: In this work the effects of realistic oceanic initial conditions on a set of decadal climate predictions performed with a state-of-the-art coupled ocean-atmosphere general circulation model (OAGCM), under the framework of the COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) EU Project, are investigated. The decadal predictions are performed in both retrospective (hindcast) and forecast mode. Specifically, the full set of prediction experiments consists of 3-members ensembles of 30-years simulations, start- ing at 5-years intervals from 1960 to 2005, using CMIP5 historical radiative forcing conditions (including green- house gases, aerosols and solar irradiance variability) for the 1960-2005 period, followed by RCP4.5 scenario settings for the 2005-2035 period. The ocean initial state is provided by ocean syntheses differing by assimilation methodologies and assimilated data, but obtained with the same ocean model. The use of alternative ocean anal- yses yields the required perturbation of the full three-dimensional ocean state aimed at generating the ensemble members spread. A full-value initialization technique is adopted. The predictive skill of the system is analysed at both global and regional scale as well as the processes underlying the enhanced predictability exhibited over specific regions (most notably, in the North Atlantic)
    Description: Unpublished
    Description: Wien, Austria
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: decadal predictions ; ocean initialization ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-02-24
    Description: The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geo- physical Fluid Dynamics Laboratory Coupled Model, ver- sion 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90–110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circula- tion anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the south- eastern Indian Ocean warms up as the El Nino proceeds,and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the cli- matological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.
    Description: Published
    Description: 221-236
    Description: JCR Journal
    Description: restricted
    Keywords: El Nino ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-11-23
    Description: Using an atmospheric general circulation model coupled to a slab ocean we study the effect of ocean heat transport (OHT) on climate prescribing OHT from zero to two times the present-day values. In agreement with previous studies an increase in OHT from zero to present-day conditions warms the climate by decreasing the albedo due to reduced sea-ice extent and marine stratus cloud cover and by increasing the greenhouse effect through a moistening of the atmosphere. However, when the OHT is further increased the solution becomes highly dependent on a positive radiative feedback between tropical low clouds and sea surface temperature. We found that the strength of the low clouds-SST feedback combined with the model design may produce solutions that are globally colder than Control mainly due to an unrealistically strong equatorial cooling. Excluding those cases, results indicate that the climate warms only if the OHT increase does not exceed more than 10% of the present-day value in the case of a strong cloud-SST feedback and more than 25% when this feedback is weak. Larger OHT increases lead to a cold state where low clouds cover most of the deep tropics increasing the tropical albedo and drying the atmosphere. This suggests that the present-day climate is close to a state where the OHT maximizes its warming effect on climate and pose doubts about the possibility that greater OHT in the past may have induced significantly warmer climates than that of today.
    Description: Published
    Description: 5015–5030
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: ocean heat transport ; mixed layer model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The connection between Tropical Pacific and North Pacific variability is investigated in a state-of-the art coupled ocean-atmosphere model, comparing two 20th century simulations at T30 and T106 atmospheric horizontal resolutions. Despite a better simulation of the frequency and the spatial distribution of the Tropical Pacific anomalies associated with the El Nino Southern Oscillation (ENSO) in the high-resolution experiment, the response in the North Pacific is scarcely different from the low-resolution experiment where the ENSO variability is weaker and at higher than observed frequency. In the North Pacific, the response of surface atmospheric fields to the variability in the Tropical Pacific appears to be affected by local coupling processes significantly different in the two experiments. The coupling between sea level pressure (SLP) and sea surface temperature (SST) in the North Pacific as well as the influence of the Tropical Pacific SST has been measured here by means of the ‘coupled manifold’ technique. In the low-resolution case the SLP variances linked to the fraction of North Pacific SST not influenced by the Tropical Pacific are weak suggesting that the remote influence is strong, consistently with the observations. On the contrary, in the high-resolution experiment the fractions and the patterns of the SLP variances due to the Tropical Pacific SST and those linked to the North Pacific SST are comparable. In the latter case, model systematic errors in the northwestern Pacific influences the local coupling processes thus triggering the remote response. We conclude that an increased atmospheric horizontal resolution does not reduce the coupled model systematic errors in the representation of the teleconnection between the North and the Tropical Pacific and that the validation of coupled models has to consider both remote and local processes.
    Description: Published
    Description: 1640-1653
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: Tropical Pacific-North Pacific teleconnection ; ENSO ; coupled GCMs ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: The acronym C6 means "Climatic Changes and Carbon Cycle in Canyons and Caves". It is a monitoring project, for the evaluation of climate change signals, based on measuring sites located inside canyons and caves; it merged in the year 2005, under the scientific supervision of the Palermo Branch of the Italian National Institute for Geophysics and Volcanology (I.N.G.V.), two different monitoring programs active since 1999. The choice of these environments is based on their morphological structure: being them more or less segregated respect the outer atmosphere, they act as low-pass filters respect the variations of the monitored parameters, which are rainfall and dropping water amounts and rates, air temperatures and relative humidity and carbon dioxide concentrations in the atmosphere. On the basis of the preliminary data, reported and discussed in the paper, the C6 network seems to be capable to give useful information on the local effects of global changes, even if at the moment the monitored parameters concern only the abiotic components of the studied ecosystems.
    Description: Data presented in this paper have been acquired in part on the behalf of researches financed by the Territory and Environment Department of the Sicilian Government (Regione Siciliana, Assessorato Territorio ed Ambiente), in the framework of the contract with the NGO Legambiente Comitato Regionale Siciliano for the management of the Natural Reserve “Riserva Naturale Integrale Grotta di Carburangeli”.
    Description: Published
    Description: 281-288
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: N/A or not JCR
    Description: restricted
    Keywords: Air temperature ; Canyon ; Carbon Dioxide ; Cave ; Climatic Change ; Infiltration ; Rainfall ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.
    Description: Published
    Description: 83-101
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: carbon dioxide forcing ; monsoon precipitation ; coupled GCMs ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-06-16
    Description: Variations in the intensity of high-latitude Northern Hemisphere summer insolation, driven largely by precession of the equinoxes, are widely thought to control the timing of Late Pleistocene glacial terminations. However, recently it has been suggested that changes in Earth’s obliquity may be a more important mechanism. We present a new speleothem-based North Atlantic marine chronology that shows that the penultimate glacial termination (Termination II) commenced 141,000 ± 2500 years before the present, too early to be explained by Northern Hemisphere summer insolation but consistent with changes in Earth’s obliquity. Our record reveals that Terminations I and II are separated by three obliquity cycles and that they started at near-identical obliquity phases.
    Description: Published
    Description: 1527-1531
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Glacial termination ; Paleoclimate ; Pleistocene ; Speleotems ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-11-16
    Description: The double-intertropical convergence zone (DI) systematic error, affecting state-of-the-art coupled general circulation models (CGCM) is examined in the multi-model Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) ensemble of simulations of the twentieth-century climate. Aim of this study is to quantify the DI error on precipitation in the tropical Pacific, with a specific focus on the relationship between the DI error and the representation of large-scale vertical circulation regimes in climate models. The DI rainfall signal is analysed using a regime sorting approach for the vertical circulation regimes. Through the use of this compositing technique, precipitation events are regime-sorted based on the large scale vertical motions, as represented by the mid-tropospheric lagrangian pressure tendency omega500 dynamical proxy. This methodology allows the partition of the precipitation signal into deep and shallow convective components. Following the regime-sorting diagnosis, the total DI bias is split into an error affecting the magnitude of precipitation associated with individual convective events and an error affecting the frequency of occurrence of single convective regimes. It is shown that, despite the existing large intra-model differences, CGCMs can be ultimately grouped into a few homegenous clusters, each featuring a well defined rainfall-vertical circulation relationship in the DI region. Three major behavioural clusters are identified within the AR4 models ensemble: two unimodal distributions, featuring maximum precipitation under subsidence and deep convection regimes, respectively, and one bimodal distribution, displaying both components. Extending this analysis to both coupled and uncoupled (atmosphere-only) AR4 simulations reveals that the DI bias in CGCMs is mainly due to the overly frequent occurrence of deep convection regimes, whereas the error on rainfall magnitude associated with individual convective events is overall consistent with errors already present in the corresponding atmosphere stand-alone simulations. A critical parameter controlling the strength of the DI systematic error is identified in the model-dependent sea surface temperature (SST) threshold leading to the onset of deep convection (THR), combined with the average SST in the south-eastern Pacific.
    Description: Published
    Description: 1127–1145
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Description: open
    Keywords: double ITCZ ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-06-25
    Description: A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.
    Description: Published
    Description: 1051-1068
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: CLIVAR C20C ; Asian-Australian monsoon circulation ; AGCM ; Reproducibility ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO2 concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO2 levels on monsoons. Generally, the monsoon precipitation responses to CO2 forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarly proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16xCO2 experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO2 sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions(‘‘precipitation-wind paradox’’). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales.
    Description: In press
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: carbon dioxide forcing ; monsoon precipitation ; coupled model experiments ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Lo studio caratterizza le modfIcazioni tendenziali delle principali vat-lab iii che determinano la disponibilità di risorse idriche. Verficata la recente ed anomala incidenza di pet-lodE siccitosi, Si valutano gil effetti tendenziali sulla disponibilità di acque sotrerranee. Si utilizzano datE mensili inerenri le precipitazioni meteoriche e le temperature atmosferiche di 126 stazioni collocate in Italia meridionale, tra il 1821 e ii 2001. Si osservano cali tendenziali della piovosità effettiva in 114 stazioni con trend negativi fino a —9 mm/anno. La tendenza negativa riguarda piI1 del 95% dell ‘area; ii test di Mann-Kendall ne con fermo la sign,fIcativitâ su scala locale e regionale. hi particolare, emerge un consistente deficit di precipitazioni a partire dal 1980. La tendenza è negativa doll ‘autunno alla primavera ed è molto accentuata in inverno. Se le variazioni tendenziali di temperatura non sono risult ate evidenti ed omogenee, ii calcolo delia piovosità efficace ha segnalato una tendenza al calo ancora più grave di quanto osservato per la piovsità effettiva, stante la maggiore incidenza del calo pluviometrico nei mesi umidi. Gil effetti suile acque sotterranee sono valutati mediante serie storiche mensili, dal 1965 al 2003, relative a 63 stazioni piezometriche ubicate nei principali acquferi della Puglia. Mediante metodi di statistica delle serie storiche si caratterizzano I rapporti intercorrenti tra piovosità, temperatura e variazioni piezornetriche. I trend piezometrici risuitano negativi: equivalgono a cali piezomefrici considerevoli in tutte le unità idrogeologiche.
    Description: Published
    Description: Napoli
    Description: open
    Keywords: climate changes ; groundwater availability ; southern Italy ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-04-04
    Description: In this chapter, a review is given of progress to date on an intercomparison project designed to compare and evaluate the ability of climate models to generate tropical cyclones, the Tropical Cyclone climate Model Intercomparison Project(TC-MIP). Like other intercomparison projects, this project aims to evaluate climate models using common metrics in order to make suggestions regarding future development of such models.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: restricted
    Keywords: Tropical Cyclones ; general circulation models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific (NWP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres. An extended version of this work is in available on Journal of Climate (Gualdi et al.,2008 - DOI:10.1175/2008JCLI1921.1)
    Description: Published
    Description: 287-321
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate ; tropical cyclones ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: Il clima è sempre cambiato e i mutamenti hanno causato danni e rischi non previsti, che hanno richiesto nuovi adattamenti e risposte adeguate sul piano sociale, culturale ed economico. Gli autori, coadiuvati da un gruppo di ricercatori, hanno esplorato la storia degli ultimi tre millenni delle civiltà mediterranee, presentando un excursus divulgativo, basato su autorevoli studi scientifici e storici. Lo scopo è di delineare in modo complessivo non solo l’andamento dei mutamenti climatici e le loro ripercussioni sociali, ma anche le idee e le teorie sul clima, dai filosofi dell’antica Grecia, agli scrittori latini, agli enciclopedisti medievali, cristiani e arabi, fino al pensiero di età moderna, all’illuminismo e al positivismo ottocentesco. Le previsioni del tempo, il clima e la salute, il rapporto fra clima e ambiente sono temi presenti in tutte le civiltà mediterranee antiche e recenti: su questi temi le culture hanno sempre elaborato interpretazioni e risposte. Questo “viaggio” nel passato, che mette in luce una storia inedita e in gran parte da esplorare, giunge fino all’attuale riscaldamento globale. Questa nuova sfida è meglio valutabile in una prospettiva di “mutamento climatico storico”, a cui l’azione antropica sta aggiungendo un formidabile acceleratore.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate history ; climatic changes ; historical Mediterranean cultures ; social answers ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the character- istics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high–resolution global general circulation model (INGV-SXG) with a T106 atmospheric resolution. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Using the new fully coupled CMCC model (CMCC_MED), with a T159 atmospheric resolution, we found a significant modulation of the Ocean Heat Transport (OHT) induced by the TC activity. Thus the possible changes that greenhouse induced global warming during 21st century might generate in the characteristics of the TC-induced OHT have been analyzed.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical Cyclones ; Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: In this study, two numerical simulations of the 20th Century climate performed with two global GCM are analysed, with the ultimate goal of isolating the impact of oceanic mesoscale features on the climate of the euro- mediterranean region, and its interannual variability. In the first experiment (L), a T159 atmosphere (equivalent to ∼80 Km horizontal resolution) is coupled to a 2x2- degree global ocean model, with a locally enhanced 0.5-degree resolution over the Mediterranean Sea region. In the second experiment (H), the same T159 atmosphere is coupled to a global ocean model regional high-resolution 1/16-degree (∼7 Km) ocean model for the Mediterranea Sea, which is connected to a low-resolution OGCM for the global ocean (identical to the ocean model used in L) . Thus, in H, as far as the Mediterranean area is concerned, the atmosphere is coupled to an ocean model which resolves mesoscale features (“turbulent” ocean), whereas in L the atmosphere interacts with a more “laminar” oceanic system. Since these two experiments are identical except for the resolution of the ocean model over the Mediterranean Sea , the systematic comparison of H and L will allow the assessment of the net effects on the climate of the Euro-Mediterranean region from explicitly resolving mesoscale oceanic features in the coupled model.
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Mediterranean Sea ; eddies ; climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: This study investigates the Tropical Cyclone (TC) effect on the northern hemisphere Ocean Heat Transport (OHT) and the possible changes that greenhouse induced global warming might generate in the characteristics of the TC-induced OHT (TCiOHT). The analysis has been performed using 20C3M (20th Century) and A1B (21st Century) IPCC scenario climate simulations obtained running a fully coupled high-resolution global general circulation model named CMCC_MED. The Atmospheric model component has a T159 horizontal resolution and 31 vertical levels. The Ocean model component has a horizontal resolution ranging from 2 degrees to 0.5 degrees near the equator and 31 vertical levels. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from the simulation of the 20th Century with observations. TC detection method has been implemented thanks to the TC-MIP project. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic structure, geographical distribution and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC activity with the large scale circulation. The TC-induced ocean cooling is well represented and the resulting column-integrated ocean heating makes the poleward OHT larger in the subtropics and decreases the poleward heat transport out of the deep tropics. This effect, investigated looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean: the winds associated to the TCs significantly weaken the trade winds in the 5-18N latitude belt and reinforce them in the 18-30N band. TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 period. The effect of the TCs on the OHT is overall less pronounced in the 21st century when compared to the 20th century.
    Description: Unpublished
    Description: Tucson - Arizona
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; ocean heat transport ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle. The model used is the CMCC-MED model, developed under the framework of the EU CIRCE Project (Climate Change and Impact Research: the Mediterranean Environment), which provides, for the first time, the possibility to accurately assess the role and feedbacks of the Mediterranean Sea in the global climate system. CMCC-MED, in fact, is a global coupled ocean-atmosphere general circulation model (AOGCM) coupled with a high-resolution model of the Mediterranean Sea. The atmospheric model component (ECHAM-5) has a horizontal resolution of about 80 Km, the global ocean model (OPA8.2) has horizontal resolution of about 2◦ with an equatorial refinement (0.5◦) and the Mediterranean Sea model (NEMO in the MFS implementation) has horizontal resolution of 1/16◦ (∼7 Km) and 72 vertical levels. The communication between the atmospheric model and the ocean models is performed through the OASIS3 coupler, and the exchange of SST, surface momentum, heat, and water fluxes occurs approximately every 2 hours. The global ocean-Mediterranean connection occurs through the exchange of dynamical and tracer fields via simple input/output operations. In particular, horizontal velocities, tracers and sea-level are transferred from the global ocean to the Mediterranean model through the open boundaries in the Atlantic box. Similarly, vertical profiles of temperature, salinity and horizontal velocities at Gibraltar Strait are transferred from the regional Mediterranean model to the global ocean. The ocean-to-ocean exchange occurs with a daily frequency, with the exchanged variables being averaged over the daily time-window.
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: mediterranean region region ; climate change ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: In this work we present and discuss the results obtained from a set of present and future climate simulations performed with a high-resolution model able to represent the dynamics of the Mediterranean Sea. The ability of the model to reproduce the basic features of the observed climate in the Mediterranean region and the beneficial effects of both atmospheric improved resolution and interactive Mediterranean Sea are assessed. In particular, the major characteristics of the variability in the Mediterranean basin and its connection with the large-scale circulation are investigated. Furthermore, the mechanisms through which global warming might affect the regional features of the climate are explored, focusing especially on the characteristics of the hydrological cycle.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: euro-mediterranean region ; climate variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: In this study the interplay between Tropical Cyclones (TCs) and the Northern hemispheric Ocean Heat Transport (OHT) is investigated. In particular, results from a numerical simulation of the 20th and 21st Century climate, following the Intergovernmental Panel for Climate Change (IPCC) 20C3M and A1B scenario protocols respectively have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere-ocean-sea-ice coupled general circulation model - CGCM (CMCC-MED, Gualdi et al. 2010, Scoccimarro et al. 2010) with relatively high-resolution (T159) in the atmosphere. The model is an evolution of the INGV-SXG (Gualdi et al. 2008, Bellucci et al. 2008) and the ECHAM-OPA-LIM (Fogli et al. 2009, Vichi et al. 2010) The simulated TCs exhibit realistic structure, geographical distribution (Fig.2) and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model (Fig.3). TC activity is shown to significantly affect the poleward OHT out of the tropics, and the heat transport into the deep tropics (Fig.4). This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface (Fig.7). TCs frequency and intensity appear to be substantially stationary through the whole 1950-2069 simulated period as well as the effect of the TCs on the meridional OHT.
    Description: Unpublished
    Description: S.Francisco. USA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; Ocean Heat Transoport ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: Numerous documentary collections are available in the Mediterranean countries, which hold potential to build and rearrange climatic reconstructions. These data are vital for obtaining reliable temperature estimates in pre-instrumental age but, in general, they have not been fully explored or analyzed. Past temperature reconstructions showed a wide range of variability, raising questions about the reliability of currently available reconstruction techniques and the uniqueness of late 20th century warming. Taking this challenge up, the present paper has attempted to exploit an historical documentation for the temperature modelling in pre-instrumental time. Combining information derived from proxy-information and large-scale simulation data, a regression-based downscaling mixed model was developed to accommodate the regional temperature field to a location of the Southern Italy (Catanzaro station). The statistical methodology used and the results of winter temperature modelling are discussed. A final exhortation on the robustness of this approach recalls on the accuracy of the model itself, but also on the overall ability to extract the right information to replicate coherently the temperature series.
    Description: MetEROBS – Met European Research Observatory
    Description: Unpublished
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: open
    Keywords: Temperature, Timer-series, climate, modeling ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: Il clima è sempre cambiato e i mutamenti hanno causato danni e rischi non previsti, che hanno richiesto nuovi adattamenti e risposte adeguate sul piano sociale, culturale ed economico. Gli autori, coadiuvati da un gruppo di ricercatori, hanno esplorato la storia degli ultimi tre millenni delle civiltà mediterranee, presentando un excursus divulgativo, basato su autorevoli studi scientifici e storici. Lo scopo è di delineare in modo complessivo non solo l’andamento dei mutamenti climatici e le loro ripercussioni sociali, ma anche le idee e le teorie sul clima, dai filosofi dell’antica Grecia, agli scrittori latini, agli enciclopedisti medievali, cristiani e arabi, fino al pensiero di età moderna, all’illuminismo e al positivismo ottocentesco. Le previsioni del tempo, il clima e la salute, il rapporto fra clima e ambiente sono temi presenti in tutte le civiltà mediterranee antiche e recenti: su questi temi le culture hanno sempre elaborato interpretazioni e risposte. Questo “viaggio” nel passato, che mette in luce una storia inedita e in gran parte da esplorare, giunge fino all’attuale riscaldamento globale. Questa nuova sfida è meglio valutabile in una prospettiva di “mutamento climatico storico”, a cui l’azione antropica sta aggiungendo un formidabile acceleratore.
    Description: Published
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: climate history ; climatic change ; historical Mediterranean cultures ; social answers ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: Preliminary results are presented of a study aiming at producing a climatology of Mediterranean cyclones making use of a global AOGCM coupled with an interactive high-resolution model of the Mediterranean Sea. Cyclones are analyzed with both the lagrangian and the eulerian approaches, applied to three different simulations: a control one (present climate conditions) and two IPCC scenarios (A1B and A2). Both the North Atlantic stormtrack and cyclone track and genesis density statistics from the control dataset are analyzed compared to ERA40 reanalysis. Cyclones are grouped according to their genesis location and the corresponding lysis regions are identified. Partic- ular attention is devoted to the effects of sea-surface fields (temperature gradients and heat fluxes). The wet season (October–March) is examined in relation to the decrease in the intensity of cyclogenesis events in the region and trends are investigated.
    Description: Unpublished
    Description: Zurich
    Description: open
    Keywords: Mediterranean region ; Cyclones ; general circulation model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: The interannual variability of the teleconnection between the Eastern Mediterranean (EM) and the Indian Ocean is investigated using 20th century simulations conducted with a fully coupled high-resolution global general circu- lation model, and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). Comparison with observations, reanalysis, and model simulations shows that, though the model results slightly underestimate the magnitude of the anomalies, they provide a reliable representation of its real space and time va-riability. The model appears to be able to reproduce the observed Eastern Mediterranean climate variability and the associated variability over the Indian Ocean and the Indian subcontinent. Composite analysis of the vertical ve- locity anomalies over the Eastern Mediterranean shows that the subsidence over these regions is increased with the occurrence of positive Indian Ocean Di-pole (IOD) events. It is found that, both in the model and the reanalysis, a positive IOD results in an anomalous meridional overturning circulation between the tropical eastern Indian Ocean and the Indian Subcontinent. This meridional circulation connects an anomalous descent (ascent) branch over the Indian Ocean (Indian subcontinent). The anomalous meridional circulation in turn triggers a rossby wave response to the west of the ascending branch at about 200 hPa, inten-sifying the subsidence over the EM
    Description: Unpublished
    Description: Zurich
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: reserved
    Keywords: General circulation model ; Indian Ocean ; mediterranean sea ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the character- istics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high–resolution global general circulation model (INGV-SXG) with a T106 atmospheric resolution. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Using the new fully coupled CMCC model (CMCC_MED), with a T159 atmospheric resolution, we found a significant modulation of the Ocean Heat Transport (OHT) induced by the TC activity. Thus the possible changes that greenhouse induced global warming during 21st century might generate in the characteristics of the TC-induced OHT have been analyzed.
    Description: Unpublished
    Description: Wien
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical cyclones ; climate variability ; air-sea interaction ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed.
    Description: Published
    Description: 1461-1475
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: atmospheric general circulation models ; climate forcing ; climate sensitivity ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: The connection between Tropical Pacific and North Pacific variability is investigated in a state of the art coupled ocean-atmosphere model, comparing two twentieth century simulations at T30 and T106 atmospheric horizontal resolutions. Despite a better simulation of the frequency and the spatial distribution of the Tropical Pacific anomalies associated with the El Nino Southern Oscillation (ENSO) in the T106 experiment, the response in the North Pacific is scarcely different from the T30 experiment, where the ENSO variability is weaker and more frequent than observed. In both experiments, the weakness of the atmospheric teleconnection in the North Pacific can be related with the weaker than observed precipitation anomalies simulated in the tropical Pacific that act as a less effective vorticity source. The teleconnection as a response to the Rossby waves originating from the tropics appears to be affected by local coupling processes, likely induced by different atmospheric resolutions. The coupling occurring between sea level pressure (SLP) and SST in the North Pacific, as well as the influence of the Tropical Pacific SST, is measured by means of the “coupled manifold”. In the high-resolution experiment, the fraction of the SLP variances linked with the North Pacific SST “free” from the Tropics is comparable to the fraction due to the tropical Pacific SST. On the other hand, in the low-resolution case the SLP variances linked with the “free” North Pacific SST are weak and the regions where the coupling is stronger are somehow driven by the tropics, consistently with the observations. The results show that increasing the atmospheric horizontal resolution does not reduce the coupled model systematic errors in the representation of the teleconnection between the North and the Tropical Pacific. This suggests that the validation of coupled models have to consider separately remote and local processes.
    Description: Submitted
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: North Pacific ; teleconnections ; coupled models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-12-14
    Description: In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground-Based Millimeter-wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007.
    Description: Published
    Description: 135-138
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: open
    Keywords: Precipitable Water Vapor ; ECOWAR ; IR and Millimeter-Wave Spectroscopy ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-12-21
    Description: This SINTA Project establish a scientific cooperation between the Italian Scientific Institution INGV (National Institute of Geophysics and Volcanology) and the Serbian Scientific Institutions such as the Republic HydroMeteorological Service (RHMSS) and the University of Belgrade (UB). INGV contributes the global models, University of Belgrade and RHMSS contribute their expertise on regional models, parameterization ofphysical processes and numerical schemes. In particular, the main objectives of this Project are: 1) Perform a set of global simulations with a Global Climate Model (GCM) available at INGV; 2) Perform a set of regional simulations with the UB Regional Climate Model (RCM) forced by boundary conditions from the GCM simulations; 3) Test the convection parameterization developed at UB in the INGV global model; 4) Training and visit exchanges of Serbian scientists in Italy.
    Description: INGV
    Description: Unpublished
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Climate ; Mediterranean Area ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: We report mineral magnetic results from a 7.5 m loess sequence (150 samples) from the southernmost extremity of the Chinese loess plateau (which includes the last two glacial cycles). In this area the loess sediments experienced particularly intense weathering processes. The magnetic assemblage is dominated by a mixture of pseudo-single domain (PSD) and multidomain (MD) magnetite with associated superparamagnetic (SP) grains of either magnetite or maghemite in the paleosols and weathered loess horizons. All the rock magnetic parameters fluctuate in parallel with marine sediment δ18O data over the last 150Kyr, thus reflecting changing global paleoclimatic conditions. This relationship is also supported by the evidence of Milankovitch cycles in the magnetic susceptibility record. Paleorainfall estimates, when compared with other studies from the Chinese loess plateau, underline the (more) humid character of this region during the last ~130 kyr.
    Description: Published
    Description: 645-659
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic mineralogy ; climatic cycles ; Loess ; China ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that greenhouse global warming might generate in the characteristics of tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the twentieth century with observations. The model appears to be able to simulate tropical cyclone–like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation, and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link TC occurrence with large-scale circulation. The results from the climate scenarios reveal a substantial general reduction of TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical western North Pacific (WNP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with reduced convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Finally, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both hemispheres, notwithstanding the overall warming of the tropical upper ocean and the expansion poleward of warm SSTs.
    Description: Euro-Mediterranean Centre for Climate Change. European Community project ENSEMBLES, Contract GOCE-CT-2003-505539.
    Description: Published
    Description: 5204-5228
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Tropical Cyclone ; Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-04-04
    Description: A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.
    Description: Submitted
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: open
    Keywords: monsoon ; AGCM ; CLIVAR C20C ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high–resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. The tropical cyclone-ocean interaction is captured by the model and the impact of the ocean response to the storm forcing is analyzed under different radiative forcing conditions.
    Description: AMS
    Description: Unpublished
    Description: Orlando-Florida USA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical Cyclones ; Climate Change ; Global Coupled Model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high–resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. The tropical cyclone-ocean interaction is captured by the model and the impact of the ocean response to the storm forcing is analyzed under different radiative forcing conditions.
    Description: AOGS
    Description: Published
    Description: Pusan - KOREA
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Tropical Cyclones ; Climate Change ; General Circulation Model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: The interplay between the North Atlantic Oscillation and the large scale ocean circulation is inspected in a 20th century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are 1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and 2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.
    Description: ENSEMBLES contract:GOCECT-2003-505539
    Description: Published
    Description: 759-777
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: NAO ; Ocean Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: L'acronimo C6 sta per "Climatic Changes and Carbon Cycle in Canyons and Caves". E' un progetto di monitoraggio dei parametri climatici e dell'anidride carbonica, nato come tale nel 2005, ma che ha raggruppato al proprio interno attività di monitoraggio ambientale promosse da gestori di aree protette ed associazioni sportivo-ambientali sin dal 1999. Allo stato attuale sono attivi 6 siti di misura, disposti lungo un transetto Sud-Nord nell'areale mediterraneo, dalla Giordania sino all’Appennino Settentrionale. Un settimo sito sarà attivato entro l'estate 2006 in una cavità carsica in prossimità di Sarajevo (Bosnia Herzegovina). Il progetto si propone di monitorare parametri climatici ed ambientali all'interno di gole e grotte, con particolare riferimento alle concentrazioni di anidride carbonica in atmosfera, a temperatura ed umidità atmosferiche ed alle intensità di pioggia e stillicidio.Il progetto C6 assume rilevanza ai fini della conservazione della biodiversità in quanto le gole, specialmente in ambienti aridi e semi-aridi, rappresentano spesso l'unico luogo della superficie dove è presente acqua, costituendo quindi un rifugio preferenziale per tutte quelle specie viventi per le quali la disponibilità costante di acqua è fondamentale per il proprio ciclo vitale. Attraverso la rete C6 ci si propone di valutare la criticità dei parametri monitorati ai fini della conservazione degli ecosistemi presenti ed i possibili effetti derivanti da processi di cambiamento climatico
    Description: Published
    Description: Viterbo/Civitavecchia (Italia)
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Climate ; Canyon ; Cave ; Infiltration ; Air temperature ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2017-04-04
    Description: The acronym C6 means "Climatic Changes and Carbon Cycle in Canyons and Caves". It is a monitoring project, for the evaluation of climate change signals, based on measuring sites located inside canyons and caves; it merged in the year 2005, under the scientific supervision of the Palermo Branch of the Italian National Institute for Geophysics and Volcanology (I.N.G.V.), two different monitoring programs active since 1999. The choice of these environments is based on their morphological structure: being them more or less segregated respect the outer atmosphere, they act as low-pass filters respect the variations of the monitored parameters, which are rainfall and dropping water amounts and rates, air temperatures and relative humidity and carbon dioxide concentrations in the atmosphere. On the basis of the preliminary data, reported and discussed in the paper, the C6 network seems to be capable to give useful information on the local effects of global changes, even if at the moment the monitored parameters concern only the abiotic components of the studied ecosystems.
    Description: Published
    Description: Malta
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: Climate ; Carbon Dioxide ; Cave ; Canyon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-04-04
    Description: Solar activity influences the Earth’s environment, in particular the atmospheric ozone, by the direct output of the e.m. radiation or through the variability of the incoming cosmic ray flux (solar and galactic particles). Especially energetic particles, arising from huge explosions on the Sun’s surface, travel in the interplanetary medium and, if the circumstances were favorable, they could enter the terrestrial atmosphere (driven by the geomagnetic field lines of our planet) and reach the polar cap regions (geomagnetic latitude 〉 60°). There, they provide additional external energy and are able to produce ionizations, dissociations, dissociative ionizations and excitations phenomena by interacting with the minor constituents. The induced changes are not confined to the ion chemistry but also to the neutral components. In this way a rise of the concentration of HOx and NOx species and the triggering of catalytic cycles which lead to short (hours) and medium (days) term ozone destruction occur. Finally, also no-reactive reservoir species (e.g., HNO3, HCl, HOCl) are involved in these processes and endure large variations. The present thesis highlights the chemical variability of the middle atmosphere during and after some Solar Energetic Particle (SEP) events recorded during the current solar cycle. Special attention has been paid to the relationship between ozone and HOx data (retrieved from the Microwave Limb Sounder of EOS AURA satellite) for four events referred to 2005. The HOx data, recorded for the first time during the intense ionization caused by the SEP flux, have pointed out some features related to these phenomena not wholly captured by the current theoretical models. In addition, they have highlighted that the HOx rise is able to destroy the so-called third ozone peak at the polar latitudes of the winter hemisphere and it occurs also during medium intensity events. Besides, the analyses of January 2005 SEP events have shown that the changes on the hydrogen species leaded to variability in the concentration and partitioning of chlorine family, not discernible in the summer hemisphere. Further, the use of data coming from the HALOE instrument, referred to SEP events occurred in July 2000 and April 2002, has in short confirmed past experimental results. Finally, the study of a little SEP event occurred during May 2003 has pointed out that SEP events are not the unique ionization source inside the polar latitudes during the winter.
    Description: INAF-IFSI, CNR-ICES
    Description: Published
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: open
    Keywords: Ozone, SEP events, minor atmospheric components ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.02. Ionosphere::01.02.01. Ion chemistry and composition
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-04-04
    Description: CO2 Capture & Storage (CCS) is presently one of the most promising technologies for reducing anthropogenic emissions of CO2 . Among the several potential geologi- cal CO2 storage sites, e.g. depleted oil and gas field, unexploitable coal beds, saline aquifers, the latter are estimated to have the highest potential capacity (350-1000 Gt CO2 ) and, being relatively common worldwide, a higher probability to be located close to major CO2 anthropogenic sources. In these sites CO2 can safely be retained at depth for long times, as follows: a) physical trapping into geologic structures; b) hy- drodynamic trapping where CO2(aq) slowly migrates in an aquifer, c) solubility trap- ping after the dissolution of CO2(aq) and d) mineral trapping as secondary carbon- ates precipitate. Despite the potential advantages of CO2 geo-sequestration, risks of CO2 leakage from the reservoir have to be carefully evaluated by both monitoring techniques and numerical modeling used in “CO2 analogues”, although seepage from saline aquifers is unlikely to be occurring. The fate of CO2 once injected into a saline aquifer can be predicted by means of numerical modelling procedures of geochemical processes, these theoretical calculations being one of the few approaches for inves- tigating the short-long-term consequences of CO2 storage. This study is focused on some Italian deep-seated (〉800 m) saline aquifers by assessing solubility and min- eral trapping potentiality as strategic need for some feasibility studies that are about to be started in Italy. Preliminary results obtained by numerical simulations of a geo- chemical modeling applied to an off-shore Italian carbonatic saline aquifer potential suitable to geological CO2 storage are here presented and discussed. Deep well data, still covered by industrial confidentiality, show that the saline aquifer, includes six Late Triassic-Early Jurassic carbonatic formations at the depth of 2500-3700 m b.s.l. These formations, belonging to Tuscan Nappe, consist of porous limestones (mainly calcite) and marly limestones sealed, on the top, by an effective and thick cap-rock (around 2500 m) of clay flysch belonging to the Liguride Units. The evaluation of the potential geochemical impact of CO2 storage and the quantification of water-gas-rock reactions (solubility and mineral trapping) of injection reservoir have been performed by the PRHEEQC (V2.11) Software Package via corrections to the code default ther- modynamic database to obtain a more realistic modelling. The main modifications to the Software Package are, as follows: i) addition of new solid phases, ii) variation of the CO2 supercritical fugacity and solubility under reservoir conditions, iii) addi- tion of kinetic rate equations of several minerals and iv) calculation of reaction sur- face area. Available site-specific data include only basic physical parameters such as temperature, pressure, and salinity of the formation waters. Rocks sampling of each considered formation in the contiguous in-shore zones was carried out. Mineralogy was determined by X-Ray diffraction analysis and Scanning Electronic Microscopy on thin sections. As chemical composition of the aquifer pore water is unknown, this has been inferred by batch modeling assuming thermodynamic equilibrium between minerals and a NaCl equivalent brine at reservoir conditions (up to 135 ̊C and 251 atm). Kinetic modelling was carried out for isothermal conditions (135 ̊C), under a CO2 injection constant pressure of 251 atm, between: a) bulk mineralogy of the six formations constituting the aquifer, and b) pre-CO2 injection water. The kinetic evolu- tion of the CO2 -rich brines interacting with the host-rock minerals performed over 100 years after injection suggests that solubility trapping is prevailing in this early stage of CO2 injection. Further and detailed multidisciplinary studies on rock properties, geochemical and micro seismic monitoring and 3D reservoir simulation are necessary to better characterize the potential storage site and asses the CO2 storage capacity.
    Description: Published
    Description: Vienna (Austria)
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: CO2 storage ; Geochemical modeling ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.06. Thermodynamics ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...