ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents viewgraphs on turbulence detection and mitigation technologies in weather accident prevention. The topics include: 1) Organization; 2) Scope of Turbulence Effort; 3) Background; 4) Turbulence Detection and Mitigation Program Metrics; 5) Approach; 6) Turbulence Team Relationships; 7) WBS Structure; 8) Deliverables; 9) TDAM Changes; 10) FY-01 Results/Accomplishments; 11) Out-year Plans; and 12) Element Status.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 73-90; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents the weather accident prevention project review during the period of June 5, through June 7, 2001. The topics include: 1) Background; 2) Guidance; 3) Plan; 4) System Elements; 5) AWIN System; 6) Market Segments; 7) Technology Development Level; 8) Aviation Safety Program Organization; 9) Partnerships; 10) NASA Facilities; 11) Timeline; 12) AWIN Research Areas; and 13) Cooperative Research with FAA. This paper is in viewgraph form.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 33-50; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.
    Keywords: Meteorology and Climatology
    Type: Nature (ISSN 0028-0836); Volume 419; 6903; 215-23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: A laser spectrometer based on difference-frequency generation in periodically poled LiNbO3 (PPLN) has been used to quantify atmospheric formaldehyde with a detection limit of 0.32 parts per billion in a given volume (ppbV) using specifically developed data-processing techniques. With state-of-the-art fiber-coupled diode-laser pump sources at 1083 nm and 1561 nm, difference-frequency radiation has been generated in the 3.53-micrometers (2832-cm-1) spectral region. Formaldehyde in ambient air in the 1- to 10-ppb V range has been detected continuously for nine and five days at two separate field sites in the Greater Houston area operated by the Texas Natural Resource Conservation Commission (TNRCC) and the Houston Regional Monitoring Corporation (HRM). The acquired spectroscopic data are compared with results obtained by a well-established wet-chemical o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) technique.
    Keywords: Meteorology and Climatology
    Type: Applied physics. B, Lasers and optics (ISSN 0946-2171); Volume 72; 8; 947-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Pulsed thermoelectrically cooled QC-DFB lasers operating at 15.6 micrometers were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the sensor configuration giving the advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air, providing information about the concentration of these species.
    Keywords: Meteorology and Climatology
    Type: Applied physics. B, Lasers and optics (ISSN 0946-2171); Volume 75; 2-3; 351-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: We have completed a new generation of water vapor radiometers (WVR), the A- series, in order to support radio science experiments with the Cassini spacecraft. These new instruments sense three frequencies in the vicinity of the 22 GHz emission line of atmospheric water vapor within a 1 degree beamwidth from a clear aperture antenna that is co-pointed with the radio telescope down to 10 degree elevation. The radiometer electronics features almost an order of magnitude improvement in temperature stability compared with earlier WVR designs. For many radio science experiments, the error budget is likely to be dominated by path delay fluctuations due to variable atmospheric water vapor along the line-of-sight to the spacecraft. In order to demonstrate the performance of these new WVRs we are attempting to calibrate the delay fluctuations as seen by a radio interferometer operating over a 21 km baseline with a WVR near each antenna. The characteristics of these new WVRs will be described and the results of our preliminary analysis will be presented indicating an accuracy of 0.2 to 0.5 mm in tracking path delay fluctuations over time scales of 10 to 10,000 seconds.
    Keywords: Meteorology and Climatology
    Type: International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings; 274-279; NASA/CP-2000-209893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: This viewgraph presentation provides information on three flight tests in which NASA Langley's ARIES B-757 research aircraft was intentionally piloted into areas with a high risk for severe atmospheric turbulence. During its encounter with turbulence, instruments aboard the aircraft monitored wind, temperature and acceleration, and onboard Doppler radar detected forward turbulence. Data was collected along a spectrum, from smooth air to severe turbulence.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 476-509; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: A new method for identifying the structure and other characteristics of extreme weather events is introduced and applied to both model simulations and observations. The approach is based on a linear regression model that links daily extreme precipitation amounts for a particular point on the globe to precipitation and related quantities at all other points. We present here some initial results of our analysis of extreme precipitation events over the United States, including how they are influenced by ENSO and various large-scale teleconnection patterns such as the PNA. The results are based on simulations made with the NASA/NCAR AGCM (Lin and Rood 1996). The quality of the simulated climate for the NASA/NCAR AGCM forced with observed SSTs is described in Chang et al. (2001). The runs analyzed here consist of three 20-year runs forced with idealized cold, neutral and warm ENSO SST anomalies (superimposed on the mean seasonal cycle of SST). The idealized warm or cold SST anomalies are fixed throughout each 20- year simulation and consist of the first EOF (+/- 3 standard deviations) of monthly SST data. Comparisons are made with the results obtained from a similar analysis that uses daily NOAA precipitation observations (Higgins et al. 1996) over the United States and NCEP/NCAR reanalysis data for the period 1949-1998.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 153-157; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: The tropics and extratropics are two dynamically distinct regimes. The coupling between these two regimes often defies simple analytical treatment. Progress in understanding of the dynamical interaction between the tropics and extratropics relies on better observational descriptions to guide theoretical development. However, global analyses currently contain significant errors in primary hydrological variables such as precipitation, evaporation, moisture, and clouds, especially in the tropics. Tropical analyses have been shown to be sensitive to parameterized precipitation processes, which are less than perfect, leading to order-one discrepancies between estimates produced by different data assimilation systems. One strategy for improvement is to assimilate rainfall observations to constrain the analysis and reduce uncertainties in variables physically linked to precipitation. At the Data Assimilation Office at the NASA Goddard Space Flight Center, we have been exploring the use of tropical rain rates derived from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments in global data assimilation. Results show that assimilating these data improves not only rainfall and moisture fields but also related climate parameters such as clouds and radiation, as well as the large-scale circulation and short-range forecasts. These studies suggest that assimilation of microwave rainfall observations from space has the potential to significantly improve the quality of 4-D assimilated datasets for climate investigations (Hou et al. 2001). In the next few years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007. Continued improvements in assimilation methodology, rainfall error estimates, and model parameterizations are needed to ensure that we derive maximum benefits from these observations.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23131-132; 131-132; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Data assimilation brings together atmospheric observations and atmospheric models-what we can measure of the atmosphere with how we expect it to behave. NASA's Data Assimilation Office (DAO) sponsors research projects in data reanalysis, which take several years of observational data and analyze them with a fixed assimilation system, to create an improved data set for use in atmospheric studies. Using NCCS computers, one group of NASA researchers employs reanalysis to examine the role of summertime low-level jet (LLJ) winds in regional seasonal climate. Prevailing winds that blow strongly in a fixed direction within a vertically and horizontally confined region of the atmosphere are known as jets. Jets can dominate circulation and have an enormous impact on the weather in a region. Some jets are as famous as they are influential. The jet stream over North America, for instance, is the wind that blows eastward across the continent, bringing weather from the west coast and increasing the speed of airplanes flying to the east coast. The jet stream, while varying in intensity and location, is present in all seasons at the very high altitude of 200-300 millibars - more than 6 miles above Earth's surface.
    Keywords: Meteorology and Climatology
    Type: 1999 NCCS Highlights; 20-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The intraseasonal variation (ISV) in the 30-60 day band, also known as Madden-Julian oscillation (MJO), has been studied for decades. Madden and Julian showed that the oscillation originated from the western Indian Ocean, propagated eastward, got enhanced over the maritime continent and weakened after passing over the dateline. Composite studies showed evidences of a signal in upper and lower level zonal wind propagating around the globe during an oscillation. Theoretical studies pointed out that the interaction with the warm ocean surface and the coupling with the convective and radiative processes in the atmosphere could manifest the oscillation, which propagates eastward via mutual feedbacks between the wave motions and the cumulus heating. Over tropical South America, no independent 30-60 day oscillation has been reported so far, despite that Amazon is the most distinct tropical convection center over the western hemisphere and the fluxes from its surface of tropical rainforests are close to that from the warm tropical ocean. Liebmann et al. showed a distinct spectral peak of 40-50 day oscillation in outgoing longwave radiation (OLR) over tropical South America and considered that was manifested by the MJO propagation. Nogues-Paegle et al. (2000) focused on a dipole pattern of the OLR anomaly with centers of action over the South Atlantic Convergence Zone (SACZ) and the subtropical plain. They used the regional 10-90 day filtered data and demonstrated this pattern could be represented by the fifth mode of the rotated empirical orthogonal function. Its principal component was further analyzed using the singular spectrum analysis. Their result showed two oscillatory modes with periods of 36-40 days and 22-28 days, of which the former was related to the MJO influence and the latter linked to the remote forcing over southwest of Australia, which produced a wave train propagating southeastward, rounding the southern tip of South America and returning back toward the northeast. The 22-28 day mode has distinct impact on SACZ, responsible for the regional seesaw pattern of alternating dry and wet conditions. In this study we will focus on the 30-60-day spectral band and investigate whether the independent oscillation source over tropical South America is existed. First, we will show the seasonal dependence of the tropical South American ISV in Section 3. Then, the leading principal modes of 30-60 day bandpass filtered 850-hPa velocity potential (VP850) will be computed to distinguish the stationary ISV over tropical South America (SISA) from the propagating MJO in the austral summertime in Section 4. The importance of SISA in representing the regional ISV over South America will be discussed. In Section 5, we will demonstrate the mass oscillation regime of SISA, which is well separated from that of MJO by the Andes, and the convective coupling with rainfall. The dynamical response of SISA and the impact on the South American summer monsoon (SASM) will be presented. Finally, we will give the concluding remarks.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 98-102; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This viewgraph presentation provides an overview of the turbulence JSIT program. Topics covered include: CAST process, intervention and project statistics, JSAT turbulence model, initial project subject candidates and project status.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the Second NASA Aviation Safety Program Weather Accident Prevention Review; 738-745; NASA/CP-2003-210964
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Hydrologists have long speculated that soil moisture information can be used to increase skill in monthly to seasonal forecast systems. For this to be true, though, three conditions must be satisfied: (1) an imposed initial soil moisture anomaly in the forecast system must have some memory, so that it persists into the forecast period; (2) the modeled atmosphere must respond in a predictable way to the persisted anomaly; and (3) the forecast model must correctly represent both the soil moisture memory and the atmospheric response as they occur in nature. In this short paper, we review some recent work at NSIPP (NASA Seasonal-to-Interannual Prediction Project) that addresses all three conditions.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 135-138; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: Noting the similarities among the spatial patterns of outgoing longwave radiation among MJO and ENSO, Lau and Chan speculated a possible relationship between the two phenomena. This speculation received a substantial boost in credibility after the 1997-98 El Nino, when MJO activities were found to be substantially enhanced prior to the onset of the warm phase, and clear signals of oceanic Kelvin waves forced by MJO induced anomalous surface wind were detected as possible triggers of ENSO. Yet statistical and modeling studies have so far yielded either nil or at best, very weak relationship between MJO activities and SST. Recently Kessler suggested using an MJO index which includes convective variability in the equatorial central Pacific lead to a more robust MJO-ENSO relationship. Clearly, while MJO might have been instrumental in triggering some El Nino, there are other events that can occur without any MJO trigger.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 88-91; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: Science education is taking the teaching of science from a traditional (lecture) approach to a multidimensional sense-making approach which allows teachers to support students by providing exploratory experiences. Using projects is one way of providing students with opportunities to observe and participate in sense-making activity. We created a learning environment that fostered inquiry-based learning. Students were engaged in a variety of Inquiry activities that enabled them to work in cooperative planning teams where respect for each other was encouraged and their ability to grasp, transform and transfer information was enhanced. Summer, 1998: An air pollution workshop was conducted for high school students in the Medgar Evers College/Middle College High School Liberty Partnership Summer Program. Students learned the basics of meteorology: structure and composition of the atmosphere and the processes that cause weather. The highlight of this workshop was the building of hand-held sunphotometers, which measure the intensity of the sunlight striking the Earth. Summer, 1999: high school students conducted a research project which measured the mass and size of ambient particulates and enhanced our ability to observe through land based measurements changes in the optical depth of ambient aerosols over Brooklyn. Students used hand held Sunphotometers to collect data over a two week period and entered it into the NASA GISS database by way of the internet.
    Keywords: Meteorology and Climatology
    Type: Materials Presented at the MU-SPIN Ninth Annual Users' Conference; 33-36; NASA/CP-2000-209970
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-10-05
    Description: This manuscript describes a method to class@ cirrus cloud ice particle shape using lidar depolarization measurements as a basis for segregating different particle shape regimes. Measurements from the ER-2 Cloud Physics Lidar (CPL) system during CRYSTAL-FACE provide the basis for this work. While the CPL onboard the ER-2 aircraft was providing remote sensing measurements of cirrus clouds, the Cloud Particle Imager (CPI) onboard the WB-57 aircraft was flying inside those same clouds to sample particle sizes. The results of classifying particle shapes using the CPL data are compared to the in situ measurements made using the CPI , and there is found to be good agreement between the particle shape inferred from the CPL data and that actually measured by the CPI. If proven practical, application of this technique to spaceborne observations could lead to large-scale classification of cirrus cloud particle shapes.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-10-05
    Description: During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: In this study, we have applied GCM water vapor tracers (WVT) to simulate the North American water cycle. WVTs allow quantitative computation of the geographical source of water for precipitation that occurs anywhere in the model simulation. This can be used to isolate the impact that local surface evaporation has on precipitation, compared to advection and convection. A 15 year 1 deg, 1.25 deg. simulation has been performed with 11 global and 11 North American regional WVTs. Figure 1 shows the source regions of the North American WVTs. When water evaporates from one of these predefined regions, its mass is used as the source for a distinct prognostic variable in the model. This prognostic variable allows the water to be transported and removed (precipitated) from the system in an identical way that occurs to the prognostic specific humidity. Details of the model are outlined by Bosilovich and Schubert (2002) and Bosilovich (2002). Here, we present results pertaining to the onset of the simulated North American monsoon.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 144-148; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The objectives of this study are to (1) develop a better understanding of how observations constrain/impact the MJO in a data assimilation system with the aim of improving the representation of the MJO, and (2) to carry out AGCM predictability/forecast experiments under various observational constraints to assess model errors and sensitivity to initial conditions. Our current focus is on the second objective.
    Keywords: Meteorology and Climatology
    Type: Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2-Week to 2-Month) Times Scales; Volume 23; 104-107; NASA/TM-2002-104606/VOL23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Some 250,000 weather reports are collected by the National Weather Service (NWS) every day. Important measurements are taken by satellites, weather balloons, ground weather stations, airplanes, oceangoing ships, and tethered ocean buoys. Local or global weather models rely on these reports to provide the raw data used as initial conditions for the models to produce a weather prediction.
    Keywords: Meteorology and Climatology
    Type: 1999 NCCS Highlights; 28-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.
    Keywords: Meteorology and Climatology
    Type: Cadernos de saude publica / Ministerio da Saude, Fundacao Oswaldo Cruz, Escola Nacional de Saude Publica (ISSN 0102-311X); Volume 17 Suppl; 133-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 97; 4; 1359-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation ("snowball Earth" conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O(2) are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 97; 4; 1400-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-23
    Description: The Texas A&M monthly total oceanic rainfall retrieval algorithm is based on radiative transfer models and can only be modified on a physically sound basis. Within this constraint we have examined some improvements to the algorithm and it appears that it can be made significantly better. In particular, it appears that by proper use of the range of frequencies available on TMI (TRMM Microwave Imager) and AMSR that the need for the log-normal fit can be eliminated.
    Keywords: Meteorology and Climatology
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; Volume 4152; 235-242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-23
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS), a major facility instrument on board the Terra Spacecraft, was successfully launched into space in December of 1999. MODIS has several near-IR channels within and around the 0.94 micrometer water vapor bands for remote sensing of integrated atmospheric water vapor over land and above clouds. MODIS also has a special near-IR channel centered at 1.375-micron with a width of 30 nm for remote sensing of cirrus clouds. In this paper, we describe briefly the physical principles on remote sensing of water vapor and cirrus clouds using these channels. We also present sample water vapor images and cirrus cloud images obtained from MODIS data.
    Keywords: Meteorology and Climatology
    Type: Optical Remote Sensing of the Atmosphere and Clouds II; Volume 4150; 217-224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-23
    Description: We evaluated the performance of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) at-launch algorithm for monthly oceanic rain rate using two years (January 1998 - December 1999) of TMI data. The TMI at-launch algorithm is based on Wilheit et al.'s technique for estimating monthly oceanic rainfall that relies on histograms of multichannel microwave measurements. Comparisons with oceanic monthly rain rates derived from the Defense Meteorological Satellite Program (DMSP) F-13 and F-14 Special Sensor Microwave Imager (SSM/I) data show the average rain rates over the TRMM region (between 400S and 40N) are 3.0, 2.85 and 2.89 mm/day, respectively for F-13, F-14 and TMI. Based on the latest version of TB data (version 5), both rainrate and freezing height derived from TMI are similar to those from the F-13 and F-14 SSM/I data. However, regionally the differences are statistically significant at the 95% confidence. Three hourly monthly rainrates are also computed from 3-hourly TB histograms to examine the diurnal cycle of precipitation. Over most of the oceanic TRMM area, a distinct early morning rainfall peak is found. A harmonic analysis shows that the amplitude of the 12h harmonic is significant and comparable to that of the 24h harmonic.
    Keywords: Meteorology and Climatology
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; Volume 4152; 198-207
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: A portable modular gas sensor for measuring the 13C/12C isotopic ratio in CO2 with a precision of 0.8%(+/-1 sigma) was developed for volcanic gas emission studies. This sensor employed a difference frequency generation (DFG)-based spectroscopic source operating at 4.35 micrometers (approximately 2300 cm-1) in combination with a dual-chamber gas absorption cell. Direct absorption spectroscopy using this specially designed cell permitted rapid comparisons of isotopic ratios of a gas sample and a reference standard for appropriately selected CO2 absorption lines. Special attention was given to minimizing undesirable precision degrading effects, in particular temperature and pressure fluctuations.
    Keywords: Meteorology and Climatology
    Type: Applied physics. B, Lasers and optics (ISSN 0946-2171); Volume 75; 2-3; 289-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: A one-week in situ intercomparison campaign was completed on the Rice University campus for measuring HCHO using three different techniques, including a novel optical sensor based on difference frequency generation (DFG) operating at room temperature. Two chemical derivatization methods, 2,4-dinitrophenylhydrazine (DNPH) and o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA), were deployed during the daylight hours for three- to four-hour time-integrated samples. A real-time optical sensor based on laser absorption spectroscopy was operated simultaneously, including nighttime hours. This tunable spectroscopic source based on difference frequency mixing of two fiber-amplified diode lasers in periodically poled LiNb03 (PPLN) was operated at 3.5315 micrometers (2831.64 cm 1) to access a strong HCHO ro-vibrational transition free of interferences from other species. The results showed a bias of -1.7 and -1.2 ppbv and a gross error of 2.6 and 1.5 ppbv for DNPH and PFBHA measurements, respectively, compared with DFG measurements. These results validate the DFG sensor for time-resolved measurements of HCHO in urban areas.
    Keywords: Meteorology and Climatology
    Type: Geophysical research letters (ISSN 0094-8276); Volume 27; 14; 2093-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-07-23
    Description: The terminology East Asian summer monsoon is used to refer to the heavy rainfall in southeast China including the Yangtze River Valley starting in May and ending in August (e.g., Chen and Chang 1980, Tao and Chen 1987, Ding 1992, Chang et al. 2000a.) This rainfall region is associated with the Mei-Yu front, which extends to Japan and its neighborhood and is called Baiu there. The Mei-Yu front becomes prominent in May and has a slow northward movement. From May to July the elongated rain belt moves from the southeast coast of China to the Yangtze River Valley. The rain belt extends north-east-ward to south of Japan in May and later covers Korea also. The purpose of this note is to point out that the terminology of East Asian summer monsoon is a misnomer to refer to the portion of this rainbelt residing over East Asia, in the sense that it is not a monsoon.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-31
    Description: Submillimeter-wave cloud ice radiometry is an innovative technique for determining the amount of ice present in cirrus clouds, measuring median crystal size, and constraining crystal shape. The radiometer described in this poster is being developed to acquire data to validate radiometric retrievals of cloud ice at submillimeter wavelengths. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, meeting key climate modeling and NASA measurement needs.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-31
    Description: A summary is presented of basic lightning characteristics/criteria applicable to current and future aerospace vehicles. The paper provides estimates on the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating the probabilities of launch vehicles/objects being struck by lightning. This paper presents a summary of these results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-29
    Description: Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-29
    Description: A workshop on cumulus parameterization took place at the NASA Goddard Space Flight Center from December 3-5, 2001. The major objectives of this workshop were (1) to review the problem of representation of moist processes in large-scale models (mesoscale models, Numerical Weather Prediction models and Atmospheric General Circulation Models), (2) to review the state-of-the-art in cumulus parameterization schemes, and (3) to discuss the need for future research and applications. There were a total of 31 presentations and about 100 participants from the United States, Japan, the United Kingdom, France and South Korea. The specific presentations and discussions during the workshop are summarized in this paper.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-11-04
    Description: Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to dierent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to dierences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN26978 , Environmental Research Letters (e-ISSN 1748-9326); Volume 10; No. 10; 104010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-10-07
    Description: The goals of this study are the evaluation of current fast radiative transfer models (RTMs) and line-by-line (LBL) models. The intercomparison focuses on the modeling of 11 representative sounding channels routinely used at numerical weather prediction centers: seven HIRS (High-resolution Infrared Sounder) and four AMSU (Advanced Microwave Sounding Unit) channels. Interest in this topic was evidenced by the participation of 24 scientists from 16 institutions. An ensemble of 42 diverse atmospheres was used and results compiled for 19 infrared models and 10 microwave models, including several LBL RTMs. For the first time, not only radiances, but also Jacobians (of temperature, water vapor, and ozone) were compared to various LBL models for many channels. In the infrared, LBL models typically agree to within 0.05-0.15 K (standard deviation) in terms of top-of-the-atmosphere brightness temperature (BT). Individual differences up to 0.5 K still exist, systematic in some channels, and linked to the type of atmosphere in others. The best fast models emulate LBL BTs to within 0.25 K, but no model achieves this desirable level of success for all channels. The ozone modeling is particularly challenging. In the microwave, fast models generally do quite well against the LBL model to which they were tuned. However significant differences were noted among LBL models. Extending the intercomparison to the Jacobians proved very useful in detecting subtle and more obvious modeling errors. In addition, total and single gas optical depths were calculated, which provided additional insight on the nature of differences. Recommendations for future intercomparisons are suggested.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-29
    Description: The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.
    Keywords: Meteorology and Climatology
    Type: 11th Conference on Cloud Physics; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-08-29
    Description: We examine the temporal sampling of tropical regions using observations from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR). We conclude that PR estimates at any one hour, even using three years of data, are inadequate to describe the diurnal cycle of precipitation over regions smaller than 12 degrees, due to high spatial variability in sampling. We show that the optimum period of accumulation is four hours. Diurnal signatures display half as much sampling error when averaged over four hours of local time. A similar pattern of sampling variability is found in the TMI data, despite the TMI's wider swath and increased sampling. These results are verified using an orbital model. The sensitivity of the sampling to satellite altitude is presented, as well as sampling patterns at the new TRMM altitude of 402.5 km.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-29
    Description: Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-29
    Description: In this study, we apply a two-dimensional variational analysis method (2d-VAR) to select a wind solution from NASA Scatterometer (NSCAT) ambiguous winds. 2d-VAR determines a "best" gridded surface wind analysis by minimizing a cost function. The cost function measures the misfit to the observations, the background, and the filtering and dynamical constraints. The ambiguity closest in direction to the minimizing analysis is selected. 2d-VAR method, sensitivity and numerical behavior are described. 2d-VAR is compared to statistical interpolation (OI) by examining the response of both systems to a single ship observation and to a swath of unique scatterometer winds. 2d-VAR is used with both NSCAT ambiguities and NSCAT backscatter values. Results are roughly comparable. When the background field is poor, 2d-VAR ambiguity removal often selects low probability ambiguities. To avoid this behavior, an initial 2d-VAR analysis, using only the two most likely ambiguities, provides the first guess for an analysis using all the ambiguities or the backscatter data. 2d-VAR and median filter selected ambiguities usually agree. Both methods require horizontal consistency, so disagreements occur in clumps, or as linear features. In these cases, 2d-VAR ambiguities are often more meteorologically reasonable and more consistent with satellite imagery.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-29
    Description: We show the comparisons between ground-based measurements of spectrally integrated (300 nm to 380 nm) ultraviolet (UV) irradiance with satellite estimates from the Total Ozone Mapping Spectrometer (TOMS) total ozone and reflectivity data for the whole period of TOMS measurements (1979-2000) over the Meteorological Observatory of Moscow State University (MO MSU), Moscow, Russia. Several aspects of the comparisons are analyzed, including effects of cloudiness, aerosol, and snow cover. Special emphasis is given to the effect of different spatial and temporal averaging of ground-based data when comparing with low-resolution satellite measurements (TOMS footprint area 50-200 sq km). The comparisons in cloudless scenes with different aerosol loading have revealed TOMS irradiance overestimates from +5% to +20%. A-posteriori correction of the TOMS data accounting for boundary layer aerosol absorption (single scattering albedo of 0.92) eliminates the bias for cloud-free conditions. The single scattering albedo was independently verified using CIMEL sun and sky-radiance measurements at MO MSU in September 2001. The mean relative difference between TOMS UV estimates and ground UV measurements mainly lies within 1 10% for both snow-free and snow period with a tendency to TOMS overestimation in snow-free period especially at overcast conditions when the positive bias reaches 15-17%. The analysis of interannual UV variations shows quite similar behavior for both TOMS and ground measurements (correlation coefficient r=0.8). No long-term trend in the annual mean bias was found for both clear-sky and all-sky conditions with snow and without snow. Both TOMS and ground data show positive trend in UV irradiance between 1979 and 2000. The UV trend is attributed to decreases in both cloudiness and aerosol optical thickness during the late 1990's over Moscow region. However, if the analyzed period is extended to include pre-TOMS era (1968-2000 period), no trend in ground UV irradiance is detected.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-29
    Description: The vertical distribution of local and remote sources of water for precipitation and total column water over the United States are evaluated in a general circulation model simulation. The Goddard Earth Observing System (GEOS) general circulation model (GCM) includes passive constituent tracers to determine the geographical sources of the water in the column. Results show that the local percentage of precipitable water and local percentage of precipitation can be very different. The transport of water vapor from remote oceanic sources at mid and upper levels is important to the total water in the column over the central United States, while the access of locally evaporated water in convective precipitation processes is important to the local precipitation ratio. This result resembles the conceptual formulation of the convective parameterization. However, the formulations of simple models of precipitation recycling include the assumption that the ratio of the local water in the column is equal to the ratio of the local precipitation. The present results demonstrate the uncertainty in that assumption, as locally evaporated water is more concentrated near the surface.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-29
    Description: In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-29
    Description: Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-29
    Description: Observations of brightness temperature, Tb made over land regions by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer have been analyzed along with the nearly simultaneous measurements of the vertical profiles of reflectivity factor, Z, made by the Precipitation Radar (PR) onboard the TRMM satellite. This analysis is performed to explore the interrelationship between the TMI and PR data in areas that are covered predominantly by convective or stratiform rain. In particular, we have compared on a scale of 20 km, average vertical profiles of Z with the averages of Tbs in the 19, 37 and 85 GHz channels. Generally, we find from these data that as Z increases, Tbs in the three channels decrease due to extinction. In order to explain physically the relationship between the Tb and Z observations, we have performed radiative transfer simulations utilizing vertical profiles of hydrometeors applicable to convective and stratiform rain regions. These profiles are constructed taking guidance from the Z observations of PR and recent LDR and ZDR measurements made by land-based polarimetric radars.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: Deviations of radiosonde reports' geopotential heights from the zonal mean are examined. In the summer Northern Hemisphere stratosphere, systematic differences are found between radiosonde instrument types. Persistent meridional wind anomalies, approximately constant in magnitude and fixed in location, have previously been reported in the summer stratosphere, and one such anomaly over Europe is found to be co-located with boundaries between regions in which differing types of radiosonde instruments are used. The magnitude and orientation of the radiosonde geopotential height biases are consistent with the wind anomalies. Because the overall winds tend to be light in this region and season, these wind anomalies can represent significant perturbations of the flow and must be considered when interpreting the results of trajectory and diagnostic studies.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-29
    Description: The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (〈 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-29
    Description: A pattern of variability in precipitation and 1000mb zonal winds for the tropical Indian Ocean during, 1979 to 1999 (AtmIO mode) is described using EOFs. The AtmIO mode consists of a cross-equatorial gradient of precipitation anomalies and equatorial wind anomalies of alternating signs on the Equator. The positive phase is defined as enhanced precipitation to the In "n south of the equator, suppressed precipitation to the north, and anomalous westerlies centered on the island of Sumatra. In September-October 1981, February-March 1990, and October-December 1996 the AtmIO mod-, was positive and there was a significant 30-60 day variability in the gradient of precipitation anomalies. These cases coincided with moderate to heavy ,activity in the Madden-Jullan Oscillation (MJO). Links between the AtmIO, MJO, and El Nino are discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-29
    Description: This study represents one of the first published attempts to identify rainfall modification by urban areas using satellite-based rainfall measurements. Data from the first space-based rain-radar, the Tropical Rainfall Measuring Mission's (TRMM) Precipitation Radar, are employed. Analysis of the data enables identification of rainfall patterns around Atlanta, Montgomery, Nashville, San Antonio, Waco, and Dallas during the warm season. Results reveal an average increase of -28% in monthly rainfall rates within 30-60 kilometers downwind of the metropolis with a modest increase of 5.6% over the metropolis. Portions of the downwind area exhibit increases as high as 51%. The percentage chances are relative to an upwind CONTROL area. It was also found that maximum rainfall rates in the downwind impact area can exceed the mean value in the upwind CONTROL area by 48%-116%. The maximum value was generally found at an average distance of 39 km from the edge of the urban center or 64 km from the center of the city. These results are consistent with METROMEX studies of St. Louis almost two decades ago and more recent studies near Atlanta. Future work will investi(yate hypothesized factors causing rainfall modification by urban areas. Additional work is also needed to provide more robust validation of space-based rain estimates near major urban areas. Such research has implications for urban planning, water resource management, and understanding human impact on the environment.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-29
    Description: A network of 10 southern hemisphere tropical and Subtropical stations, designated the Southern Hemisphere ADditional OZonesondes, (SHADOZ) project and established from operational sites, provided over 1000 ozone profiles during the period 1998-2000. Balloon-borne electrochemical concentration cell (ECC) ozonesondes, combined with standard radiosondes for pressure, temperature and relative humidity measurements, collected profiles in the troposphere and lower- to mid-stratosphere at: Ascension Island; Nairobi, Kenya; Irene, South Africa: Reunion Island, Watukosek Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-29
    Description: This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.
    Keywords: Meteorology and Climatology
    Type: AMS Meteorological Monographs Symposium on Cloud Systems, Hurricanes and TRMM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: There are several hemispheric-scale satellite-derived snow-cover maps available, but none has been fully validated. For the period October 23 - December 25, 2000, we compare snow maps of North America derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National Oceanic and Atmospheric Administration (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC), which both rely on satellite data from the visible and near-infrared parts of the spectrum; we also compare MODIS and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) passive-microwave snow maps. The maps derived from visible and near-infrared data are more accurate for mapping snow cover than are the passive-microwave-derived maps, however discrepancies exist as to the location and extent of the snow cover among those maps. The large (approx. 30 km) footprint of the SSM/I data and the difficulty in distinguishing wet and shallow snow from wet or snow-free ground, reveal differences up to 5.32 million sq km in the amount of snow mapped using MODIS versus SSM/I data. Algorithms that utilize both visible and passive-microwave data, which would take advantage of the all-weather mapping ability of the passive-microwave data, will be refined following the launch of the Advanced Microwave Scanning Radiometer (AMSR) in the fall of 2001.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: The sensitivities of convective storm structure and intensity to changes in the altitudes of the prestorm environmental lifted condensation level and level of free convection axe studied using a full-physics three-dimensional cloud model. Matrices of simulations are conducted for a range of LCL=LFC altitudes, using a single moderately-sheared curved hodograph trace in conjunction with 1 convective available potential energy values of either 800 or 2000 J/kg, with the matrices consisting of all four combinations of two distinct choices of buoyancy and shear profile shape. For each value of CAPE, the LCL=LFC altitudes are also allowed to vary in a series of simulations based on the most highly compressed buoyancy and shear profiles for that CAPE, with the environmental buoyancy profile shape, subcloud equivalent potential temperature, subcloud lapse rates of temperature and moisture, and wind profile held fixed. For each CAPE, one final simulation is conducted using a near optimal LFC, but a lowered LCL, with a neutrally buoyant environmental thermal profile specified in between. Results show that, for the buoyancy-starved small-CAPE environments, the simulated storms are supercells and are generally largest and most intense when LCL=LFC altitudes lie in the approximate range 1.5-2.5 km above the surface. The simulations show similar trends for the shear-starved large-CAPE environments, except that conversion from supercell to multicell morphology frequently occurs when the LCL is high. For choices of LCL=LFC height within the optimal 1.5-2.5 km range, peak storm updraft overturning efficiency may approaches unity relative to parcel theory, while for lower LCL=LFC heights, overturning efficiency is reduced significantly. The enhancements of overturning efficiency and updraft diameter with increasing LFC height are shown to be the result of systematic increases in the mean equivalent potential temperature of the updraft at cloud base. For the shear-starved environments, the tendency for outflow dominance is eliminated, but a large overturning efficiency maintained, when a low LCL is used in conjunction with a high LFC. The result regarding outflow dominance at high LCL is consistent with expectations, but the beneficial effect of a high LFC on convective overturning efficiency has not previously been widely recognized. The simulation findings here also appear to be consistent with statistics from previous severe storm environment climatologies, but provide a new framework for interpreting those statistics.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: Nearly three years of Tropical Rainfall Measuring Mission Satellite (TRMM Satellite) monthly estimates of tropical surface rainfall are analyzed to document and understand the differences among the TRMM-based estimates and how these differences relate to the pre-TRMM estimates and current operational analyses. Variation among the TRMM estimates is shown to be considerably smaller than among a pre-TRMM collection of passive microwave-based products. Use of both passive and active microwave techniques in TRMM should lead to increased confidence in converged estimates. Current TRMM estimates are shown to have a range of about 20% for the tropical ocean as a whole, with variations in heavily raining ocean areas of the ITCZ and SPCZ having differences over 30%. In mid-latitude ocean areas the differences are smaller. Over land there is a distinct difference between the tropics and mid-latitude with a reversal between some of the products as to which tends to be relatively high or low. Comparisons of TRMM estimates with ocean atoll and land gauge information point to products that might have significant regional biases. The radar-based product is significantly low biased compared with atoll raingauge data, while the passive microwave product is significantly high compared to raingauge data in the deep tropics. The evolution of rainfall patterns during the recent change from intense El Nino to a long period of La Nina and then a gradual return to near neutral conditions is described using TRMM. The time history of integrated rainfall over the tropical oceans (and land) during this period differs among the passive and active microwave TRMM estimates.
    Keywords: Meteorology and Climatology
    Type: Symposium on Cloud Systems, Hurricanes and TRMM; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: Observations made by the Precipitation Radar (PR) and the Microwave Imager (TMI) radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite help us to show the significance of the 85 GHz polarization difference, PD85, measured by TMI. Rain type, convective or stratiform, deduced from the PR allows us to infer that PD85 is generally positive in stratiform rain clouds, while PD85 can be markedly negative in deep convective rain clouds. Furthermore, PD85 increases in a gross manner as stratiform rain rate increases. On the contrary, in a crude fashion PD85 decreases as convective rain rate increases. From the observations of TMI and PR, we find that PD85 is a weak indicator of rain rate. Utilizing information from existing polarimetric radar studies, we infer that negative values of PD85 are likely associated with vertically-oriented small oblate or wet hail that are found in deep convective updrafts.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-29
    Description: Major droughts and floods over the U.S. continent may be related to a far field energy source in the Asian Pacific. This is illustrated by two climate patterns associated with summertime rainfall over the U.S. and large-scale circulation on interannual timescale. The first shows an opposite variation between the drought/flood over the Midwest and that over eastern and southeastern U.S., coupled to a coherent wave pattern spanning the entire East Asia-North Pacific-North America region related to the East Asian jetstream. The second shows a continental-scale drought/flood in the central U.S., coupled to a wavetrain linking Asian/Pacific monsoon region to North America.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: A set of global, monthly rainfall products has been intercompared to understand the quality and utility of the estimates. The products include 25 observational (satellite-based), four model and two climatological products. The results of the intercomparison indicate a very large range (factor of two or three) of values when all products are considered. The range of values is reduced considerably when the set of observational products is limited to those considered quasi-standard. The model products do significantly poorer in the tropics, but are competitive with satellite-based fields in mid-latitudes over land. Over ocean, products are compared to frequency of precipitation from ship observations. The evaluation of the observational products point to merged data products (including rain gauge information) as providing the overall best results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar. TMI rain depths are significantly higher than corresponding rain depths from the PR in the ITCZ, but are similar in magnitude elsewhere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: We built a direct detection Doppler lidar based on the double-edge molecular technique and made the first molecular based wind measurements using the eyesafe 355 nm wavelength. Three etalon bandpasses are obtained with Step etalons on a single pair of etalon plates. Long-term frequency drift of the laser and the capacitively stabilized etalon is removed by locking the etalon to the laser frequency. We use a low angle design to avoid polarization effects. Wind measurements of 1 to 2 m/s accuracy are obtained to 10 km altitude with 5 mJ of laser energy, a 750s integration, and a 25 cm telescope. Good agreement is obtained between the lidar and rawinsonde measurements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-29
    Description: We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-29
    Description: A symposium celebrating the first 50 years of Dr. Joanne Simpson's career took place at the NASA/Goddard Space Flight Center from December 1 - 3, 1999. This symposium consisted of presentations that focused on: historical and personal points of view concerning Dr. Simpson's research career, her interactions with the American Meteorological Society, and her leadership in TRMM; scientific interactions with Dr. Simpson that influenced personal research; research related to observations and modeling of clouds, cloud systems and hurricanes; and research related to the Tropical Rainfall Measuring Mission (TRMM). There were a total of 36 presentations and 103 participants from the US, Japan and Australia. The specific presentations during the symposium are summarized in this paper.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: We present results of simulations of the distribution of 1809 keV radiation from the decay of Al-26 in the Galaxy. Recent observations of this emission line using the Gamma Ray Imaging Spectrometer (GRIS) have indicated that the bulk of the AL-26 must have a velocity of approx. 500 km/ s. We have previously shown that a velocity this large could be maintained over the 10(exp 6) year lifetime of the Al-26 if it is trapped in dust grains that are reaccelerated periodically in the ISM. Here we investigate whether a dust grain velocity of approx. 500 km/ s will produce a distribution of 1809 keV emission in latitude that is consistent with the narrow distribution seen by COMPTEL. We find that dust grain velocities in the range 275 - 1000 km/ s are able to reproduce the COMPTEL 1809 keV emission maps reconstructed using the Richardson-Lucy and Maximum Entropy image reconstruction methods while the emission map reconstructed using the Multiresolution Regularized Expectation Maximization algorithm is not well fit by any of our models. The Al-26 production rate that is needed to reproduce the observed 1809 keV intensity yields in a Galactic mass of Al-26 of approx. 1.5 - 2 solar mass which is in good agreement with both other observations and theoretical production rates.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-29
    Description: This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results. Linear calculations that include forcing from the AGCM variance of the tropical forcing and submonthly transients show a small impact on the variability over the Pacific/North American region compared with that of the base state differences.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-29
    Description: Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a hypothesis that anomalous wind forcings derived from the anticyclone may be instrumental in inducing a strong biennial modulation to natural ENSO cycles.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-29
    Description: In general, there are two broad scientific objectives when using cloud resolving models (CRMs or cloud ensemble models-CEMs) to study tropical convection. The first one is to use them as a physics resolving models to understand the dynamic and microphysical processes associated with the tropical water and energy cycles and their role in the climate system. The second approach is to use the CRMs to improve the representation of moist processes and their interaction with radiation in large-scale models. In order to improve the credibility of the CRMs and achieve the above goals, CRMs using identical initial conditions and large-scale influences need to produce very similar results. Two CRMs produced different statistical equilibrium (SE) states even though both used the same initial thermodynamic and wind conditions. Sensitivity tests to identify the major physical processes that determine the SE states for the different CRM simulations were performed. Their results indicated that atmospheric horizontal wind is treated quite differently in these two CRMs. The model that had stronger surface winds and consequently larger latent and sensible heat fluxes from the ocean produced a warmer and more humid modeled thermodynamic SE state. In addition, the domain mean thermodynamic state is more unstable for those experiments that produced a warmer and more humid SE state. Their simulated wet (warm and humid) SE states are thermally more stable in the lower troposphere (from the surface to 4-5 km in altitude). The large-scale horizontal advective effects on temperature and water vapor mixing ratio are needed when using CRMs to perform long-term integrations to study convective feedback under specified large-scale environments. In addition, it is suggested that the dry and cold SE state simulated was caused by enhanced precipitation but not enough surface evaporation. We find some problems with the interpretation of these three phenomena.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-29
    Description: The effectiveness of techniques for creating "bogus" vortices in numerical simulations of hurricanes is examined by using the Penn State/NCAR nonhydrostatic mesoscale model (MM5) and its adjoint system. A series of four-dimensional variational data assimilation (4-D VAR) experiments is conducted to generate an initial vortex for Hurricane Georges (1998) in the Atlantic Ocean by assimilating bogus sea-level pressure and surface wind information into the mesoscale numerical model. Several different strategies are tested for improving the vortex representation. The initial vortices produced by the 4-D VAR technique are able to reproduce many of the structural features of mature hurricanes. The vortices also result in significant improvements to the hurricane forecasts in terms of both intensity and track. In particular, with assimilation of only bogus sea-level pressure information, the response in the wind field is contained largely within the divergent component, with strong convergence leading to strong upward motion near the center. Although the intensity of the initial vortex seems to be well represented, a dramatic spin down of the storm occurs within the first 6 h of the forecast. With assimilation of bogus surface wind data only, an expected dominance of the rotational component of the wind field is generated, but the minimum pressure is adjusted inadequately compared to the actual hurricane minimum pressure. Only when both the bogus surface pressure and wind information are assimilated together does the model produce a vortex that represents the actual intensity of the hurricane and results in significant improvements to forecasts of both hurricane intensity and track.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-29
    Description: This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar) rainfall information on latent heating structures.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-29
    Description: The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island in the Bahamas during August - September, 1998 as a part of the third Convection and Moisture Experiment (CAMEX-3) which focussed on hurricane development and tracking. During the period August 21 - 24, hurricane Bonnie passed near Andros Island and influenced the water vapor and cirrus cloud measurements acquired by the SRL. Two drying signatures related to the hurricane were recorded by the SRL (Scanning Raman Lidar) and other sensors. Cirrus cloud optical depths (at 351 nm) were also measured during this period. Optical depth values ranged from approximately 0.01 to 1.4. The influence of multiple scattering on these optical depth measurements was studied with the conclusion that the measured values of optical depth are less than the actual value by up to 20% . The UV/IR cirrus cloud optical depth ratio was estimated based on a comparison of lidar and GOES measurements. Simple radiative transfer model calculations compared with GOES satellite brightness temperatures indicate that satellite radiances are significantly affected by the presence of cirrus clouds if IR optical depths are approximately 0.02 or greater. This has implications for satellite cirrus detection requirements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-29
    Description: Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-29
    Description: Hurricanes are well known for their strong winds and heavy rainfall, particularly in the intense rainband (eyewall) surrounding the calmer eye of the storm. In some hurricanes, the rainfall is distributed evenly around the eye so that it has a donut shape on radar images. In other cases, the rainfall is concentrated on one side of the eyewall and nearly absent on the other side and is said to be asymmetric. This study examines how the vertical air motions that produce the rainfall are distributed within the eyewall of an asymmetric hurricane and the factors that cause this pattern of rainfall. We use a sophisticated numerical forecast model to simulate Hurricane Bonnie, which occurred in late August of 1998 during a special NASA field experiment designed to study hurricanes. The simulation results suggest that vertical wind shear (a rapid change in wind speed or direction with height) caused the asymmetric rainfall and vertical air motion patterns by tilting the hurricane vortex and favoring upward air motions in the direction of tilt. Although the rainfall in the hurricane eyewall may surround more than half of the eye, the updrafts that produce the rainfall are concentrated in very small-scale, intense updraft cores that occupy only about 10% of the eyewall area. The model simulation suggests that the timing and location of individual updraft cores are controlled by intense, small-scale vortices (regions of rapidly swirling flow) in the eyewall and that the updrafts form when the vortices encounter low-level air moving into the eyewall.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-29
    Description: In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-29
    Description: NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical sto~ins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and have helped us learn more about why this storm didn't develop.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-29
    Description: Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-29
    Description: The National Center for Atmospheric Research (NCAR) regional climate model version 2 (RegCM2) is used to investigate the observed characteristics of intraseasonal oscillations over South America. Our study is mainly concentrated on an intraseaonal mode, which is observed to account for a large portion of the intraseasonal variation, to have a standing feature and to be independent of the MJO. The NCEPDOE AMIP-II reanalysis is utilized to provide initial and lateral boundary conditions for the RegCM2 based upon the OOZ, 062, 122 and 182 data.Our results indicate that the intraseasonal oscillation still exists with time- averaged lateral boundary condition, which prevents the MJO and other outside disturbances from entering the model's domain, suggesting a locally forced oscillation responsible for ths intraseasonal mode independent of the MJO. Further experiments show that the annual and daily variabilities and a radiative-convective interaction are not essential to the locally forced intraseasonal oscillation. The intraseasonal oscillations over Amazon in our model essentially result from interactions among atmospheric continental- scale circulation, surface radiation, surface sensible and latent heat fluxes, and cumulus convection. The wavelet analyses of various surface energy fluxes and surface energy budget also verify that the primary cause of intraseasonal oscillation is the interaction of land surface processes with the atmosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-29
    Description: A case of torrential precipitation process in the Mei-yu front, an Asian monsoon system east to the Tibetan Plateau, is studied with the coupled Penn State University/NCAR MM5 and NASA/GSFC PLACE (Parameterization for Land - Atmosphere - Cloud Exchange) models. Remote and local impacts of water vapor on the location and intensity of Mei-yu precipitation are studied by numerical experiments. Results demonstrate that the water vapor source for this heavy precipitation case in Yangtze river basin is derived mostly from the Bay of Bengal, transported by the southwesterly low-level Jet (LLJ) southeast to the Tibetan Plateau. The moist convection is a critical process in the development and maintenance of the front. The meridional and zonal secondary circulations resulted from Mei-yu condensation heating both act to increase the wind speed in the LLJ. The condensation induced local circulation strengthens the moisture transport in the LLJ, providing a positive feedback to sustain the Mei-yu precipitation system. It is found that local precipitation recycling shifts heavy rain toward the warm side of the Mei-yu front. This shift of rainfall location is due to the pronounced increase of atmospheric moisture and decrease of surface temperature over the warm side of the front.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-29
    Description: This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-29
    Description: Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-29
    Description: Firn-temperature profiles are calculated in a thermal model using continuous surface temperatures derived from Automatic Weather Station (AWS) data and passive microwave data in the Greenland Summit region during the period 1987-1999. The results show that significant interannual variations of mean summer (June to August) and annual temperatures occur in the top 15 m, in addition to the normal seasonal cycle of firn temperature. At 5 m depth, the seasonal cycle is damped to 13% of the surface seasonal amplitude, but even at 15 m about 1% or 0.6 C of the seasonal cycle persists. Both summer and mean annual temperatures decrease from 1987 to 1992, followed by a general increasing trend. Interannual variability is 5 C at the surface, but only is only dampened to 3.2 C at 10 m depth and 0.7 C at 15 m depth. Dampening of the interannual variability with depth is slower than dampening of the seasonal cycle, because of the longer time constant of the interannual variation. The warmer spring and summer temperatures experienced in the top 5 m, due to both the seasonal cycle and interannual variations, affect the rate of firn densification, which is non-linearly dependent on temperature. During the 12 year period 1987-1999, the mean annual surface temperature is -29.2 C, and the mean annual 15 m temperature is -30. 1 C, which is more than 1 C warmer than a 15-m borehole temperature representing the period of about 1959 and warmer than the best-fit temperature history by Alley and Koci back to 1500 A.D..
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-29
    Description: In this paper, changes in the large-scale circulation, cloud structures and regional water cycle associated with the evolution of the South China Sea (SCS) monsoon in May-June 1998 were investigated using data from the Tropical Rainfall Measuring Mission (TRMM) and field data from the South China Sea Monsoon Experiment (SCSMEX). Results showed that both tropical and extratropical processes strongly influenced the onset and evolution of the SCS monsoon. Prior to the onset of the SCS monsoon, enhanced convective activities associated with the Madden and Julian Oscillation were detected over the Indian Ocean, and the SCS was under the influence of the West Pacific Anticyclone (WPA) with prevailing low level easterlies and suppressed convection. Establishment of low-level westerlies across Indo-China, following the development of a Bay of Bengal depression played an important role in building up convective available potential energy over the SCS. The onset of SCS monsoon appeared to be triggered by the equatorward penetration of extratropical frontal system, which was established over the coastal region of southern China and Taiwan in early May. Convective activities over the SCS were found to vary inversely with those over the Yangtze River Valley (YRV). Analysis of TRMM microwave and precipitation radar data revealed that during the onset phase, convection over the northern SCS consisted of squall-type rain cell embedded in meso-scale complexes similar to extratropical systems. The radar Z-factor intensity indicated that SCS clouds possessed a bimodal distribution, with a pronounced signal (less than 30dBz) at a height of 2-3 km, and another one (less than 25 dBz) at the 8-10 km level, separated by a well-defined melting level indicated by a bright band at around 5-km level. The stratiform-to-convective cloud ratio was approximately 1:1 in the pre-onset phase, but increased to 5:1 in the active phase. Regional water budget calculations indicated that during the active phase, the SCS was a strong sink (E-P much less than 0) of atmospheric moisture, with the primary source of moisture coming from regions further west over Indo-China and the eastern Indian Ocean. Before onset and during the break, the SCS was a moisture source (E-P greater than ) to the overlying atmosphere. In particular, the SCS provided the bulk of moisture to the torrential rain over the YRV in mid-June 1998.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-29
    Description: Cloud microphysics budgets in the tropical deep convective regime are analyzed based on a 2-D cloud resolving simulation. The model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. The role of cloud microphysics is first examined by analyzing mass-weighted mean heat budget and column-integrated moisture budget. Hourly budgets show that local changes of mass-weighted mean temperature and column-integrated moisture are mainly determined by the residuals between vertical thermal advection and latent heat of condensation and between vertical moisture advection and condensation respectively. Thus, atmospheric thermodynamics depends on how cloud microphysical processes are parameterized. Cloud microphysics budgets are then analyzed for raining conditions. For cloud-vapor exchange between cloud system and its embedded environment, rainfall and evaporation of raindrop are compensated by the condensation and deposition of supersaturated vapor. Inside the cloud system, the condensation of supersaturated vapor balances conversion from cloud water to raindrop, snow, and graupel through collection and accretion processes. The deposition of supersaturated vapor balances conversion from cloud ice to snow through conversion and riming processes. The conversion and riming of cloud ice and the accretion of cloud water balance conversion from snow to graupel through accretion process. Finally, the collection of cloud water and the melting of graupel increase raindrop to compensate the loss of raindrop due to rainfall and the evaporation of raindrop.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-29
    Description: A numerical simulation of Hurricane Bob (1991) is conducted using the Penn State University-National Center for Atmospheric Research mesoscale model MM5 with a horizontal grid spacing of 1.3 Km on the finest nested mesh The model produces a realistic hurricane that intensifies slowly during the period of fine-scale simulation. Time-averaged results reveal the effects of storm motion. vertical shear, beta gyres and deformation forcing on the structure of radial inflow, vertical motion, and precipitation. Instantaneous model fields show that radial inflow in the eyewall is very intense near the surface but transitions to strong low-level outflow near the top of the boundary layer. The low-level structure is modulated by a wavenumber 2 disturbance that rotates around the eyewall at half the speed of the maximum tangential winds and is consistent with a vortex Rossby edge wave. The statistical distribution of vertical velocity in the eyewall indicates that the eyewall is composed of a small number of intense updrafts that account for the majority of the upward mass flux rather than a more gradual and symmetric eyewall circulation, consistent with the concept of hot towers. Tongues of high equivalent potential temperature, Theta(sub e), are seen along the inner edge of the eyewall updraft and within the low-level outflow. This air originates from outside of the eyewall with the highest theta(sub e) air coming from the layer closest to the surface after penetrating closest to the center. Occasionally, high Theta(sub e), air within the eye is drawn into the eyewall updrafts. The high Theta(sub e), air rising within the eyewall is shown to be associated with positive eyewall buoyancy with sufficient convective available potential energy along its path to produce relatively strong convective updrafts. Although the requirements for conditional symmetric instability are met within the eyewall and the air parcel trajectories follow slanted paths, the radial displacement of air parcels in the low-level outflow moves the air parcel sufficiently far away from the upper- warm core that the air becomes unstable to vertical displacements. Hence, convective instability rather than symmetric instability accounts for the stronger updrafts in the eyewall.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-29
    Description: Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in arctic winter reveal a strong correlation between the particle optical properties, specifically depolarization ratio and extinction-to-backscatter ratio, for ambient cloud temperatures above approximately -45 C, and an anti-correlation for colder temperatures. Similar correlations are evident in a 2-year midlatitude (53.4 deg N) cirrus data set. Scattering calculations show that the observed dependences can be interpreted in terms of the shapes and sizes of the cirrus ice particles. These findings suggest a retrieval method for determining cirrus extinction profiles from spaceborne lidar polarization data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-29
    Description: Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-29
    Description: The 1997-1999 ENSO period was very powerful, but also well observed. Multiple satellite rainfall estimates combined with gauge observations allow for a quantitative analysis of precipitation anomalies in the tropics and elsewhere accompanying the 1997-99 ENSO cycle. An examination of the evolution of the El Nino and accompanying precipitation anomalies revealed that a dry Maritime Continent preceded the formation of positive SST anomalies in the eastern Pacific Ocean. 30-60 day oscillations in the winter of 1996/97 may have contributed to this lag relationship. Furthermore, westerly wind burst events may have maintained the drought over the Maritime Continent. The warming of the equatorial Pacific was then followed by an increase in convection. A rapid transition from El Nino to La Nina occurred in May 1998, but as early as October-November 1997 precipitation indices captured substantial changes in Pacific rainfall anomalies. The global precipitation patterns for this event were in good agreement with the strong consistent ENSO-related precipitation signals identified in earlier studies. Differences included a shift in precipitation anomalies over Africa during the 1997-98 El Nino and unusually wet conditions over northeast Australia during the later stages of the El Nino. Also, the typically wet region in the north tropical Pacific was mostly dry during the 1998-99 La Nina. Reanalysis precipitation was compared to observations during this time period and substantial differences were noted. In particular, the model had a bias towards positive precipitation anomalies and the magnitudes of the anomalies in the equatorial Pacific were small compared to the observations. Also, the evolution of the precipitation field, including the drying of the Maritime Continent and eastward progression of rainfall in the equatorial Pacific was less pronounced for the model compared to the observations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-29
    Description: The predictability of the 1997 and 1998 south Asian summer monsoon winds is examined from an ensemble of 10 Atmospheric General Circulation Model (AGCM) simulations with prescribed sea surface temperatures (SSTs) and soil moisture, The simulations are started in September 1996 so that they have lost all memory of the atmospheric initial conditions for the periods of interest. The model simulations show that the 1998 monsoon is considerably more predictable than the 1997 monsoon. During May and June of 1998 the predictability of the low-level wind anomalies is largely associated with a local response to anomalously warm Indian Ocean SSTs. Predictability increases late in the season (July and August) as a result of the strengthening of the anomalous Walker circulation and the associated development of easterly low level wind anomalies that extend westward across India and the Arabian Sea. During these months the model is also the most skillful with the observations showing a similar late-season westward extension of the easterly CD wind anomalies. The model shows little predictability or skill in the low level winds over southeast Asia during, 1997. Predictable wind anomalies do occur over the western Indian Ocean and Indonesia, however, over the Indian Ocean they are a response to SST anomalies that were wind driven and they show no skill. The reduced predictability in the low level winds during 1997 appears to be the result of a weaker (compared with 1998) simulated anomalous Walker circulation, while the reduced skill is associated with pronounced intraseasonal activity that is not well captured by the model. Remarkably, the model does produce an ensemble mean Madden-Julian Oscillation (MJO) response that is approximately in phase with (though weaker than) the observed MJ0 anomalies. This is consistent with the idea that SST coupling may play an important role in the MJO.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-29
    Description: This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides a unified framework in which monsoon predictability, the role of regional vs. basin-scale processes, its relationship with different climate subsystems, and causes of secular changes in monsoon-ENSO relationship can be investigated.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-29
    Description: The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud cover and precipitable water are from the National Centers for Environmental Prediction (NCEP) Reanalysis.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-29
    Description: The potential role of soil moisture initialization in seasonal forecasting is illustrated through ensembles of simulations with the NASA Seasonal-to-Interannual Prediction Project (NSIPP) model. For each boreal summer during 1997-2001, we generated two 16-member ensembles of 3-month simulations. The first, "AMIP-style" ensemble establishes the degree to which a perfect prediction of SSTs would contribute to the seasonal prediction of precipitation and temperature over continents. The second ensemble is identical to the first, except that the land surface is also initialized with "realistic" soil moisture contents through the continuous prior application (within GCM simulations leading up to the start of the forecast period) of a daily observational precipitation data set and the associated avoidance of model drift through the scaling of all surface prognostic variables. A comparison of the two ensembles shows that soil moisture initialization has a statistically significant impact on summertime precipitation and temperature over only a handful of continental regions. These regions agree, to first order, with regions that satisfy three conditions: (1) a tendency toward large initial soil moisture anomalies, (2) a strong sensitivity of evaporation to soil moisture, and (3) a strong sensitivity of precipitation to evaporation. The degree to which the initialization improves forecasts relative to observations is mixed, reflecting a critical need for the continued development of model parameterizations and data analysis strategies.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-29
    Description: This paper proposes a method for obtaining new information on 3D radiative effects that arise from horizontal radiative interactions in heterogeneous clouds. Unlike current radiative transfer models, it can not only calculate how 3D effects change radiative quantities at any given point, but can also determine which areas contribute to these 3D effects, to what degree, and through what mechanisms. After describing the proposed method, the paper illustrates its new capabilities both for detailed case studies and for the statistical processing of large datasets. Because the proposed method makes it possible, for the first time, to link a particular change in cloud properties to the resulting 3D effect, in future studies it can be used to develop new radiative transfer parameterizations that would consider 3D effects in practical applications currently limited to 1D theory-such as remote sensing of cloud properties and dynamical cloud modeling.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-29
    Description: Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-29
    Description: Observations by the airborne X-band Doppler radar (EDOP) and the NCAR S-band polarimetric (S-Pol) radar from two field experiments are used to evaluate the surface reference technique (SRT) for measuring the path integrated attenuation (PIA) and to study attenuation in deep convective storms. The EDOP, flying at an altitude of 20 km, uses a nadir beam and a forward pointing beam. It is found that over land, the surface scattering cross-section is highly variable at nadir incidence but relatively stable at forward incidence. It is concluded that measurement by the forward beam provides a viable technique for measuring PIA using the SRT. Vertical profiles of peak attenuation coefficient are derived in two deep convective storms by the dual-wavelength method. Using the measured Doppler velocity, the reflectivities at the two wavelengths, the differential reflectivity and the estimated attenuation coefficients, it is shown that: supercooled drops and (dry) ice particles probably co-existed above the melting level in regions of updraft, that water-coated partially melted ice particles probably contributed to high attenuation below the melting level.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-29
    Description: Precipitation efficiency in the tropical deep convective regime is analyzed based on a 2-D cloud resolving simulation. The cloud resolving model is forced by the large-scale vertical velocity and zonal wind and large-scale horizontal advections derived from TOGA COARE for a 20-day period. Precipitation efficiency may be defined as a ratio of surface rain rate to sum of surface evaporation and moisture convergence (LSPE) or a ratio of surface rain rate to sum of condensation and deposition rates of supersaturated vapor (CMPE). Moisture budget shows that the atmosphere is moistened (dryed) when the LSPE is less (more) than 100 %. The LSPE could be larger than 100 % for strong convection. This indicates that the drying processes should be included in cumulus parameterization to avoid moisture bias. Statistical analysis shows that the sum of the condensation and deposition rates is bout 80 % of the sum of the surface evaporation rate and moisture convergence, which ads to proportional relation between the two efficiencies when both efficiencies are less han 100 %. The CMPE increases with increasing mass-weighted mean temperature and creasing surface rain rate. This suggests that precipitation is more efficient for warm environment and strong convection. Approximate balance of rates among the condensation, deposition, rain, and the raindrop evaporation is used to derive an analytical solution of the CMPE.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-29
    Description: Abstract A 1999 study reports an advancement of spring in Europe by 0.2 days per year in the 30 years since 1960. Our analysis indicates that this trend results directly from a change in the late-winter surface winds over the eastern North Atlantic: the southwesterly direction became more dominant, and the speed of these southwesterlies increased slightly. Splitting the 52-year NCEP reanalysis dataset into the First Half, FH (1948-1973)), and the Second Half, SH (1974-1999), we analyze the wind direction for the February mean at three sites at 45N: site A at 30W, site B at 20W, and site C at 10W. The incidence (number of years) of the southwesterlies in SH Vs. (FH) at these sites respectively increased in SH as follows: 24(18), 19(12), 14(l 1); whereas the incidence of northeasterlies decreased: 0(2), 1(2), and 1(6). When the February mean wind is southwesterly, the monthly mean sensible heat flux from the ocean at these sites takes zero or slightly negative values, that is, the surface air is warmer than the ocean. Analyzing the scenario in the warm late winter 1990, we observe that the sensible heat flux from the ocean surface in February 1990 shows a "tongue" of negative values extending southwest from southern England to 7N. This indicates that the source of the maritime air advected into Europe lies to the south of the "tongue." Streamline analysis suggests that the Southwestern or southcentral North Atlantic is the source. For February 1990, we find strong, ascending motions over Europe at 700 mb, up to -0.4 Pa/s as monthly averages. Associated with the unstable low-levels of the troposphere are positive rain and cloud anomalies. Thus, positive in situ feedback over land in late winter (when shortwave absorption is not significant) apparently further enhances the surface temperature through an increase in the greenhouse effect due to increased water vapor and cloudiness.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-29
    Description: It is a long-held fundamental belief that the basic cause of a monsoon is land-sea thermal contrast on the continental scale. Through general circulation model experiments we demonstrate that this belief should be changed. The Asian and Australian summer monsoon circulations are largely intact in an experiment in which Asia, maritime continent, and Australia are replaced by ocean. It is also shown that the change resulting from such replacement is in general due more to the removal of topography than to the removal of land-sea contrast. Therefore, land-sea contrast plays only a minor modifying role in Asian and Australian summer monsoons. This also happens to the Central American summer monsoon. However, the same thing cannot be said of the African and South American summer monsoons. In Asian and Australian winter monsoons land-sea contrast also plays only a minor role. Our interpretation for the origin of monsoon is that the summer monsoon is the result of ITCZ's (intertropical convergence zones) peak being substantially (more than 10 degrees) away from the equator. The origin of the ITCZ has been previously interpreted by Chao. The circulation around thus located ITCZ, previously interpreted by Chao and Chen through the modified Gill solution and briefly described in this paper, explains the monsoon circulation. The longitudinal location of the ITCZs is determined by the distribution of surface conditions. ITCZ's favor locations of higher SST as in western Pacific and Indian Ocean, or tropical landmass, due to land-sea contrast, as in tropical Africa and South America. Thus, the role of landmass in the origin of monsoon can be replaced by ocean of sufficiently high SST. Furthermore, the ITCZ circulation extends into the tropics in the other hemisphere to give rise to the winter monsoon circulation there. Also through the equivalence of land-sea contrast and higher SST, it is argued that the basic monsoon onset mechanism proposed by Chao is valid for all monsoons.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-29
    Description: We evaluated the impact of several newly available sources of meteorological data on mesoscale model forecasts of precipitation produced by the extra-tropical cyclone that struck Florida on February 2, 1998. Precipitation distributions of convective rainfall events were derived from Special Sensor Microwave Imager (SSM/I) and Multi-Channel Passive Microwave Sensor (TMI) microwave radiometric data by means of the Goddard PROFiling (GPROF) algorithm. Continuous lightning distributions were obtained from sferics measurements obtained from a network of VLF radio receivers. Histograms of coincident sferics frequency distributions were matched to those of precipitation to derive bogus convective rainfall rates from the continuously available sferics measurements. SSM/I and TMI microwave data were used to derive Integrated Precipitable Water (IPW) distributions. The TMI also provided sea surface temperatures (SSTS) of the Loop Current and Gulf Stream with improved structural detail. A series of experiments assimilated IPW and latent heating from the bogus convective rainfall for six-hours in the MM5 mesoscale forecast model to produce nine-hour forecasts of all rainfall as well as other weather parameters. Although continuously assimilating latent heating only slightly improved the surface pressure distribution forecast, it significantly improved the precipitation forecasts. Correctly locating convective rainfall was found critical for assimilating latent heating in the forecast model, but measurement of the rainfall intensity proved to be less important. The improved SSTs also had a positive impact on rainfall forecasts for this case. Assimilating bogus rainfall in the model produced nine-hour forecasts of radar reflectivity distributions that agreed well with coincident observations from the TRMM spaceborne precipitation radar, ground based radar and spaceborne microwave measurements.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-29
    Description: Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Fractional solar absorptances were approx. 0.21-0.22 with the exception of March 3 when two sets of instruments gave values smaller by approx. 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems with the aid of 500 nm spectral fluxes. Grand averages of 500 nm apparent absorptance cover a wide range of values for these three days, namely from a large positive (approx. 0.011) average for March 3, to a small negative (approximately -0.03) for March 21, to near zero (approx. 0.01) for March 29. We present evidence suggesting that a large part of the discrepancies among the three days is due to the different nature of clouds and their non-uniform sampling. Hence, corrections to the grand average broadband absorptance values may be necessary. However, application of the known correction techniques may be precarious due to the sparsity of collocated flux measurements above and below the clouds. Our analysis leads to the conclusion that only March 29 fulfills all requirements for reliable estimates of cloud absorption, that is, the presence of thick, overcast, homogeneous clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-29
    Description: This study uses a twenty-three year (1979-2001) satellite-gauge merged community data set to further describe the relationship between El Nino Southern Oscillation (ENSO) and precipitation. The globally complete precipitation fields reveal coherent bands of anomalies that extend from the tropics to the polar regions. Also, ENSO-precipitation relationships were analyzed during the six strongest El Ninos from 1979 to 2001. Seasons of evolution, Pre-onset, Onset, Peak, Decay, and Post-decay, were identified based on the strength of the El Nino. Then two simple and independent models, first order harmonic and linear, were fit to the monthly time series of normalized precipitation anomalies for each grid block. The sinusoidal model represents a three-phase evolution of precipitation, either dry-wet-dry or wet-dry-wet. This model is also highly correlated with the evolution of sea surface temperatures in the equatorial Pacific. The linear model represents a two-phase evolution of precipitation, either dry-wet or wet-dry. These models combine to account for over 50% of the precipitation variability for over half the globe during El Nino. Most regions, especially away from the Equator, favor the linear model. Areas that show the largest trend from dry to wet are southeastern Australia, eastern Indian Ocean, southern Japan, and off the coast of Peru. The northern tropical Pacific and Southeast Asia show the opposite trend.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-29
    Description: The fixed-lag Kalman smoother (FLKS) has been proposed as a framework to construct data assimilation procedures capable of producing high-quality climate research datasets. Fixed-lag Kalman smoother-based systems, referred to as retrospective data assimilation systems, are an extension to three-dimensional filtering procedures with the added capability of incorporating observations not only in the past and present time of the estimate, but also at future times. A variety of simplifications are necessary to render retrospective assimilation procedures practical. In this article, we present an FLKS-based retrospective data assimilation system implementation for the Goddard Earth Observing System (GOES) Data Assimilation System (DAS). The practicality of this implementation comes from the practicality of its underlying (filter) analysis system, i.e., the physical-space statistical analysis system (PSAS). The behavior of two schemes is studied here. The first retrospective analysis (RA) scheme is designed simply to update the regular PSAS analyses with observations available at times ahead of the regular analysis times. Although our GEOS DAS implementation is general, results are only presented for when observations 6-hours ahead of the analysis time are used to update the PSAS analyses and thereby to calculate the so-called lag-1 retrospective analyses. Consistency tests for this RA scheme show that the lag-1 retrospective analyses indeed have better 6-hour predictive skills than the predictions from the regular analyses. This motivates the introduction of the second retrospective analysis scheme which, at each analysis time, uses the 6-hour retrospective analysis to replace the first-guess normally used in the PSAS analysis, and therefore allows the calculation of a revised (filter) PSAS analysis. Since in this scheme the lag-1 retrospective analyses influence the filter results, this procedure is referred to as the retrospective-based iterative analysis (RIA) scheme. Results from the RIA scheme indicate its potential for improving the overall quality of the assimilation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-29
    Description: The implications of using different control variables for the analysis of moisture observations in a global atmospheric data assimilation system are investigated. A moisture analysis based on either mixing ratio or specific humidity is prone to large extrapolation errors, due to the high variability in space and time of these parameters and to the difficulties in modeling their error covariances. Using the logarithm of specific humidity does not alleviate these problems, and has the further disadvantage that very dry background estimates cannot be effectively corrected by observations. Relative humidity is a better choice from a statistical point of view, because this field is spatially and temporally more coherent and error statistics are therefore easier to obtain. If, however, the analysis is designed to preserve relative humidity in the absence of moisture observations, then the analyzed specific humidity field depends entirely on analyzed temperature changes. If the model has a cool bias in the stratosphere this will lead to an unstable accumulation of excess moisture there. A pseudo-relative humidity can be defined by scaling the mixing ratio by the background saturation mixing ratio. A univariate pseudo-relative humidity analysis will preserve the specific humidity field in the absence of moisture observations. A pseudorelative humidity analysis is shown to be equivalent to a mixing ratio analysis with flow-dependent covariances. In the presence of multivariate (temperature-moisture) observations it produces analyzed relative humidity values that are nearly identical to those produced by a relative humidity analysis. Based on a time series analysis of radiosonde observed-minus-background differences it appears to be more justifiable to neglect specific humidity-temperature correlations (in a univariate pseudo-relative humidity analysis) than to neglect relative humidity-temperature correlations (in a univariate relative humidity analysis). A pseudo-relative humidity analysis is easily implemented in an existing moisture analysis system, by simply scaling observed-minus background moisture residuals prior to solving the analysis equation, and rescaling the analyzed increments afterward.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-29
    Description: This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...