ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 54 (1994), S. 123-139 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary The precipitation structure of mature Mesoscale Convective Systems (MCS) is examined in both the midlatitudes and the tropics using SSM/I microwave measurements, geostationary satellite observations, and ground-based radar observations. Discussion includes qualitative comparisons between midlatitude and tropical MCS cases, with particular emphasis on the delineation of convective and stratiform regions and the characterization of microwave polarization difference temperatures in the MCSs. Implications are given regarding the importance of the vertical precipitation structure on top of the atmosphere (TOA) microwave temperatures and for rain retrieval algorithms using measurements from space. Some of the principle findings include the ability of passive microwave brightness temperature measurements to distinguish stratiform and convective regions of MCSs for both tropical and midlatitude cases and over land and ocean backgrounds. Convective regions typically had low differences between the vertical and horizontal brightness temperatures while the stratiform regions have larger differences, and these differences are likely related to the spatial microphysical variations in the upper levels of the precipitation region. Several cases were found in midlatitudes and one case in the tropics where the lowest infrared (IR) brightness temperatures were displaced into the anvil region and were not colocated with the coldest microwave temperatures. Life cycle dependence of the displacement is suggested, but the SSM/I measurements with a maximum of twice daily coverage over the same location were inadequate to answer this question.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-01
    Print ISSN: 0177-7971
    Electronic ISSN: 1436-5065
    Topics: Geography , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-02-07
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-01
    Description: Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-12-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-02-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-01
    Description: An important objective in scatterometry is the estimation of near-surface wind speed and direction in the presence of rain. We investigate an attenuation correction method using data from the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) dual-frequency scatterometer, which operates at Ku and Ka band with dual conical scans at incidence angles of 30° and 40°. The method relies on the fact that the differential normalized surface cross section, δσ0 = σ0(Ka) − σ0(Ku), is relatively insensitive to wind speed and direction and that this quantity is closely related to the magnitude of the differential path attenuation, δA = A(Ka) − A(Ku), arising from precipitation, cloud, and atmospheric gases. As the method relies only on the difference between quantities measured in the presence and absence of rain, the estimates are independent of radar calibration error. As a test of the method’s accuracy, we make use of the fact that the radar rain reflectivities just above the surface, as seen along different incidence angles, are approximately the same. This yields constraint equations in the form of differences between pairs of path attenuations along different lines of sight to the surface. A second validation method uses the dual-frequency radar returns from the rain just above the surface where it can be shown that the difference between the Ku- and Ka-band-measured radar reflectivity factors provide an estimate of differential path attenuation. Comparisons between the path attenuations derived from the normalized surface cross section and those from these surface-independent methods generally show good agreement.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: Data from the high density storm-scale rawinsonde network of the Severe Environmental Storms and Mesoscale Experiment revealed temporal and spatial changes in the divergence fields of the troposphere in response to severe storm evolution on May 2, 1979; these changes were detectable on the meso-beta scale. This unique set of data was subsequently used to study the evolution of the wind, divergence and vertical motion fields in the presence of intense convection. Mid- and upper-tropospheric divergence was superimposed over low-level convergence. The divergence, which has a maximum value of .0004/s, occurred 75 to 100 km upwind as well as over the tornadic cells. To the south of the storm cells, the kinematic pattern was in reverse, upper level convergence was superimposed over low-level divergence. A vertical motion doublet was found to ascend over the squall line and descend about 70 km south of the squall line. It is suggested that the following effects are accountable for the nature of the kinematic fields: (1) blocking of tropospheric environmental flow by the storm cells, (2) anvil outflows, particularly from the tornadic cells, and (3) divergence from the exit region of the jet stream.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 114; 780-787
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: The structure of a severe squall line that developed in Oklahoma on May 2, 1979, is presented during its growth and part of its mature period. The line was analyzed using radar, satellite, sounding, and surface data for examining, in particular, the cell propagation mechanisms, the three-dimensional structure of the squall line and individual cells during the mature period, the mass and moisture fluxes, and precipitation efficiency. Comparison of the 1979 Oklahoma squall line with other documented squall lines indicates less well organized down-drafts on the rear side at low levels to midlevels, and an absence of low level to midlevel inflow on the rear side. The magnitude of mass and moisture fluxes was comparable to previous squall line cases. At one point, the motion of the individual cells, initially associated with a synoptic scale cold front, takes a sharp rightward turn. The mechanism of the motion turn is explained in terms of conditions created by a combination of wind shear and moisture convergence and lifting.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 113; 1563-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-18
    Description: Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Precipitation Meas. from Space:; 5 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...