ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Atmospheric science. ; Water. ; Hydrology. ; Climatology. ; Measurement. ; Measuring instruments. ; Atmospheric Science. ; Water. ; Climate Sciences. ; Measurement Science and Instrumentation.
    Description / Table of Contents: SECTION 1 Status of Observations and Satellite Programs: Chapter 1. The Global Precipitation Measurement (GPM) mission -- Chapter 2. Status of the CloudSat mission -- Chapter 3. The Megha-Tropiques mission after seven years in space -- Chapter 4. Microwave sensors, imagers and sounders -- Chapter 5. Microwave and sub-mm wave sensors: A European perspective -- Chapter 6. Plans for future missions -- SECTION 2 Retrieval Techniques, Algorithms and Sensors: Chapter 7. Introduction to passive microwave retrieval methods -- Chapter 8. The Goddard Profiling (GPROF) precipitation retrieval algorithm -- Chapter 9. Precipitation estimation from the Microwave Integrated Retrieval System (MiRS) -- Chapter 10. Introduction to radar rain retrieval methods -- Chapter 11. Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurements (GPM) mission’s Core Observatory -- Chapter 12. DPR dual-frequency precipitation classification -- Chapter 13. Triple-frequency radar retrievals -- Chapter 14. Precipitation retrievals from satellite combined radar and radiometer observations -- Chapter 15. Scattering of hydrometeors -- Chapter 16. Radar snowfall measurement -- Chapter 17. A 1DVar-based snowfall rate algorithm for passive microwave radiometers -- Chapter 18. X-band synthetic aperture radar methods -- SECTION 3 Merged Precipitation Products: Chapter 19. Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) -- Chapter 20. Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era -- Chapter 21. Improving PERSIANN-CCS using passive microwave rainfall estimation -- Chapter 22. TAMSAT -- Chapter 23. Algorithm and data improvements for version 2.1 of the Climate Hazards Center’s Infrared Precipitation with Stations Data Set -- Chapter 24. Merging the infrared fleet and the microwave constellation for tropical hydrometeorology (TAPEER) and global climate monitoring (GIRAFE) applications -- SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Abstract: This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets. Chapter “TAMSAT” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
    Type of Medium: Online Resource
    Pages: LXXI, 450 p. 108 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030245689
    Series Statement: Advances in Global Change Research, 67
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Atmospheric science. ; Climatology. ; Measurement. ; Measuring instruments. ; Water. ; Hydrology. ; Atmospheric Science. ; Climate Sciences. ; Measurement Science and Instrumentation. ; Water.
    Description / Table of Contents: SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Abstract: This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
    Type of Medium: Online Resource
    Pages: XCIII, 725 p. 300 illus., 251 illus. in color. , online resource.
    Edition: 1st ed. 2020.
    ISBN: 9783030357986
    Series Statement: Advances in Global Change Research, 69
    DDC: 551.5
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    New York : Institut of Electrical and Electronics Engineers
    Associated volumes
    Call number: MOP S 12288
    In: IEEE Transactions on Geoscience and Remote Sensing
    Type of Medium: Monograph available for loan
    Pages: 629-638
    Series Statement: IEEE Transactions on Geoscience and Remote Sensing 26,5
    Location: MOP - must be ordered
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: M 20.93963
    In: Advances in global change research, Volume 69
    Description / Table of Contents: This book offers a complete overview of the measurement of precipitation from space, which has made considerable advancements during the last two decades. This is mainly due to the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM) mission, CloudSat and a carefully maintained constellation of satellites hosting passive microwave sensors. The book revisits a previous book, Measuring Precipitation from Space, edited by V. Levizzani, P. Bauer and F. J. Turk, published with Springer in 2007. The current content has been completely renewed to incorporate the advancements of science and technology in the field since then. This book provides unique contributions from field experts and from the International Precipitation Working Group (IPWG). The book will be of interest to meteorologists, hydrologists, climatologists, water management authorities, students at various levels and many other parties interested in making use of satellite precipitation data sets.
    Type of Medium: Monograph available for loan
    Pages: xciii, 453-1176 Seiten , Illustrationen
    ISBN: 9783030357986
    Series Statement: Advances in Global Change Research 69
    Language: English
    Note: SECTION 4 Validation: Chapter 25. The IPWG satellite precipitation validation effort -- Chapter 26. The GPM Ground Validation Program -- Chapter 27. The GPM DPR Validation Program -- Chapter 28. Error and uncertainty characterization -- Chapter 29. Multiscale evaluation of satellite precipitation products: Effective resolution of IMERG -- Chapter 30. Remote sensing of orographic precipitation -- Chapter 31. Integrated multi-satellite evaluation for the Global Precipitation Measurement: Impact of precipitation types on spaceborne precipitation estimation -- Chapter 32. Hydrologic validation and flood analysis -- Chapter 33. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling -- Chapter 34. OceanRAIN – The global ocean surface-reference dataset for characterization, validation and evaluation of the water cycle -- SECTION 5 Observed Characteristics of Precipitation: Chapter 35. GPCP and the global characteristics of precipitation -- Chapter 36. Global snowfall detection and measurement -- Chapter 37. Snowfall detection by spaceborne radars -- Chapter 38. On the duration and lifecyle of precipitation systems in the tropics -- Chapter 39. Observational characteristics of warm-type heavy rainfall -- Chapter 40. Satellite precipitation measurement and extreme rainfall -- Chapter 41. Rainfall trends in East Africa from an ensemble of IR-based satellite products -- Chapter 42. Heavy precipitation systems in the Mediterranean area: The role of GPM -- Chapter 43. Dryland precipitation climatology from satellite observations -- Chapter 44. Haifall detection -- Chapter 45. Improving high-latitude and cold region precipitation analysis -- Chapter 46. Latent heating retrievals from satellite observations -- SECTION 6 Applications: Chapter 47. Operational applications of Global Precipitation Measurement observations -- Chapter 48. Assimilation of precipitation observations from space into numerical weather prediction (NWP) -- Chapter 49. Precipitation ensemble data assimilation in NWP models -- Chapter 50. PERSIANN-CDR for hydrology and hydro-climatic applications -- Chapter 51. Soil moisture and precipitation: The SM2RAIN algorithm for rainfall retrieval from satellite soil moisture -- Chapter 52. Drought risk management using satellite-based rainfall estimates -- Chapter 53. Two decades of urban hydroclimatological studies have yielded discovery and societal benefits -- Chapter 54. Validation of climate models -- Chapter 55. Extreme precipitation in the Himalayan landslide hotspot -- Chapter 56. The value of satellite rainfall estimates in agriculture and food security -- Chapter 57. Using satellite estimates of precipitation for fire danger rating -- Chapter 58. Variability of satellite sea surface salinity under rainfall.
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-24
    Description: Analyses of the Tropical Rainfall Measuring Mission (TRMM) satellite rainfall estimates reveal a substantial disagreement between its active [Precipitation Radar (PR)] and passive [TRMM Microwave Imager (TMI)] sensors over certain regions. This study focuses on understanding the role of the synoptic state of atmosphere in these discrepancies over land regions where passive microwave (PMW) retrievals are limited to scattering signals. As such the variability in the relationship between the ice-induced scattering signal and the surface rainfall is examined. Using the Amazon River and central Africa regions as a test bed, it is found that the systematic difference seen between PR and TMI rainfall estimates is well correlated with both the precipitating system structure and the level of its organization. Relying on a clustering technique to group raining scenes into three broad but distinct organizational categories, it is found that, relative to the PR, deep-organized systems are typically overestimated by TMI while the shallower ones are underestimated. Results suggest that the storm organization level can explain up to 50% of the regional systematic difference between the two sensors. Because of its potential for retrieval improvement, the ability to forecast the level of systems organization is tested. The state of the atmosphere is found to favor certain storm types when constrained by CAPE, wind shear, dewpoint depression, and vertical humidity distribution. Among other findings, the observations reveal that the ratio between boundary layer and midtropospheric moisture correlates well with the organization level of convection. If adjusted by the observed PR-to-TMI ratio under a given environment, the differences between PMW and PR rainfall estimates are diminished, at maximum, by 30% in RMSE and by 40% in the mean.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-03
    Description: Assimilation of observation data in cloudy regions has been challenging due to the unknown properties of clouds such as cloud depth or cloud drop size distributions (DSD). Attempts to assimilate data in cloudy regions generally assume a DSD, but most assimilation systems fail to maintain consistency between models and the observation data, as each has its own set of assumptions. This study tries to retain the consistency between the forecast model and the retrieved data by developing a Bayesian retrieval scheme that uses the forecast model itself for the a priori database. Through the retrieval algorithm, vertical profiles of three variables related to the development of tropical cyclones, including vertical velocity (VV), latent heating (LH), and hydrometeor water contents (HYDRO), are derived from the same reflectivity observation. Each retrieved variable is assimilated in the data assimilation system using a flow‐dependent forecast error covariance matrix. The simulations are compared to evaluate the respective impact of each variable in the assimilation system. In this study, three assimilation experiments were conducted for two hurricane cases captured by the Global Precipitation Measurement satellite: Hurricane Pali (2016) and Hurricane Jimena (2015). Analyses from these two hurricane cases suggest that assimilating LH and HYDRO have similar impacts on the assimilation system while VV has less of an impact than the other two variables. Using these analyses as an initial condition for the forecast model reveals that the assimilations of retrieved LH and HYDRO were able to improve the track forecast as well.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-25
    Description: Discrepancies between Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) oceanic rainfall retrievals are prevalent between El Niño and La Niña conditions with TMI exhibiting systematic shifts in precipitation. To investigate the causality of this relationship, this paper focuses on the evolution of precipitation organization between El Niño and La Niña and their impacts on TRMM precipitation. The results indicate that discrepancies are related to shifts from isolated deep convection during La Niña toward organized precipitation during El Niño with the largest variability occurring in the Pacific basins. During El Niño, organized systems are more frequent, have increased areal coverage of stratiform rainfall, and penetrate deeper into the troposphere compared to La Niña. The increased stratiform raining fraction leads to larger increases in TMI rain rates than PR rain rate retrievals. Reanalysis and water vapor data from the Atmospheric Infrared Sounder (AIRS) indicate that organized systems are aided by midtropospheric moisture increases accompanied by increased convective frequency. During La Niña, tropical rainfall is dominated by isolated deep convection due to drier midtropospheric conditions and strong mid- and upper-level zonal wind shear. To examine tropical rainfall–sea surface temperature relations, regime-based bias corrections derived using ground validation (GV) measurements are applied to the TRMM rain estimates. The robust connection with GV-derived biases and oceanic precipitation leads to a reduction in TMI-PR regional differences and tropics-wide precipitation anomalies. The improved agreement between PR and TMI estimates yields positive responses of precipitation to tropical SSTs of 10% °C−1 and 17% °C−1, respectively, consistent with 15% °C−1 from the Global Precipitation Climatology Project (GPCP).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-01
    Description: The Goddard profiling algorithm (GPROF) is an operational passive microwave retrieval that uses a Bayesian scheme to estimate rainfall. GPROF 2014 retrieves rainfall and hydrometeor vertical profile information based upon a database of profiles constructed to be simultaneously consistent with Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and TRMM Microwave Imager (TMI) observations. A small number of tropical cyclones are in the current database constructed from one year of TRMM data, resulting in the retrieval performing relatively poorly for these systems, particularly for the highest rain rates. To address this deficiency, a new database focusing specifically on hurricanes but consisting of 9 years of TRMM data is created. The new database and retrieval procedure for TMI and GMI is called Hurricane GPROF. An initial assessment of seven tropical cyclones shows that Hurricane GPROF provides a better estimate of hurricane rain rates than GPROF 2014. Hurricane GPROF rain-rate errors relative to the PR are reduced by 20% compared to GPROF, with improvements in the lowest and highest rain rates especially. Vertical profile retrievals for four hydrometeors are also enhanced, as error is reduced by 30% compared to the GPROF retrieval, relative to PR estimates. When compared to the full database of tropical cyclones, Hurricane GPROF improves the RMSE and MAE of rain-rate estimates over those from GPROF by about 22% and 27%, respectively. Similar improvements are also seen in the overall rain-rate bias for hurricanes in the database, which is reduced from 0.20 to −0.06 mm h−1.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-13
    Description: Over coastal mountain ranges of the Asian monsoon region, heavy orographic rainfall is frequently associated with low precipitation-top heights (PTHs). This leads to conspicuous underestimation of rainfall using microwave radiometer algorithms, which conventionally assume that heavy rainfall is associated with high PTHs. Although topographically forced upward motion is important for rainfall occurrence, it does not fully constrain precipitation profiles in this region. This paper focuses on the thermodynamic characteristics of the atmosphere that determine PTHs in tropical coastal mountains of Asia (Western Ghats, Arakan Yoma, Bilauktaung, Cardamom, Annam Range, and the Philippines). PTHs of heavy orographic rainfall generally decrease with enhanced low- and midlevel relative humidity, especially during the summer monsoon. In contrast, PTHs over the Annam Range of the Indochina Peninsula increase with enhanced low-level and midlevel relative humidity during the transition from boreal summer to winter monsoon, demonstrating that convection depth is not simply a function of humidity. Instead, PTHs of heavy orographic rainfall decreased with increasing low-level stability for all monsoon regions considered in this study, as well as the Annam Range during the transition from boreal summer to winter monsoon. Therefore, low-level static stability, which inhibits cloud growth and promotes cloud detrainment, appears to be the most important parameter in determining PTHs of heavy rainfall in the Asian monsoon region.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-01
    Description: Over the tropical oceans, large discrepancies in TRMM passive and active microwave rainfall retrievals become apparent during El Niño–Southern Oscillation (ENSO) events. This manuscript describes the application of defined precipitation regimes to aid the validation of instantaneous rain rates from TRMM using the S-band radar located on the Kwajalein Atoll. Through the evaluation of multiple case studies, biases in rain-rate estimates from the TRMM radar (PR) and radiometer (TMI) are best explained when derived as a function of precipitation organization (e.g., isolated vs organized) and precipitation type (convective vs stratiform). When examining biases at a 1° × 1° scale, large underestimates in both TMI and PR rain rates are associated with predominately convective events in deep isolated regimes, where TMI and PR retrievals are underestimated by 37.8% and 23.4%, respectively. Further, a positive bias of 33.4% is observed in TMI rain rates within organized convective systems containing large stratiform regions. These findings were found to be consistent using additional analysis from the DYNAMO field campaign. When validating at the TMI footprint scale, TMI–PR differences are driven by stratiform rainfall variability in organized regimes; TMI overestimates this stratiform precipitation by 92.3%. Discrepancies between TMI and PR during El Niño events are related to a shift toward more organized convective systems and derived TRMM rain-rate bias estimates are able to explain 70% of TMI–PR differences during El Niño periods. An extension of the results to passive microwave retrievals reveals issues in discriminating convective and stratiform rainfall within the TMI field of view (FOV), and significant reductions in bias are found when convective fraction is constrained within the Bayesian retrieval.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...