ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5,279)
  • Elsevier  (4,944)
  • Inter Research  (335)
Collection
Language
  • 101
  • 102
    Publication Date: 2024-02-20
    Description: Highlights • We identify the largest active fault systems of the Alboran Basin. • Characterization of faults is key for accurate tsunamigenic potential estimations. • Alboran largest fault systems may generate Mw 〉 7 earthquakes. • These earthquakes have the potential to generate significant tsunami waves approaching the coast. Abstract The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-02-15
    Description: Highlights • A new numerical model for permafrost in alpine regions. • Importance of lateral fluxes in mountain permafrost modeling. • Influence of unsaturated conditions on freezing processes. • Development of mountain permafrost during warming scenario. Abstract Alpine permafrost environments are highly vulnerable and sensitive to changes in regional and global climate trends. Thawing and degradation of permafrost has numerous adverse environmental, economic, and societal impacts. Mathematical modeling and numerical simulations provide powerful tools for predicting the degree of degradation and evolution of subsurface permafrost as a result of global warming. A particularly significant characteristic of alpine environments is the high variability in their surface geometry which drives large lateral thermal and fluid fluxes along topographic gradients. The combination of these topography-driven fluxes and unsaturated ground makes alpine systems markedly different from Arctic permafrost environments and general geotechnical ground freezing applications, and therefore, alpine permafrost demands its own specialized modeling approaches. In this work, we present a multi-physics permafrost model tailored to subsurface processes of alpine regions. In particular, we resolve the ice–water phase transitions, unsaturated conditions, and capillary actions, and account for the impact of the evolving pore space through freezing and thawing processes. Moreover, the approach is multi-dimensional, and therefore, inherently resolves the topography-driven horizontal fluxes. Through numerical case studies based on the elevation profiles of the Zugspitze (DE) and the Matterhorn (CH), we show the strong influence of lateral fluxes in 2D on active layer dynamics and the distribution of permafrost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-02-14
    Description: Highlights: • The global economic costs of invasive aquatic crustaceans totalled US$ 271 million. • Invasive crayfish and crabs had the highest costs, US$ 120.5 and US$ 150.2 million, respectively. • The signal crayfish was the costliest species (US$ 103.9 million), as seen in Europe. • Among crabs, the European green crab and the Chinese mitten crab had the highest costs. • Taxonomic, geographical, and temporal gaps mean that these costs are severely underestimated. Abstract: Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans — crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-02-14
    Description: The origin of broad intraplate volcanic provinces has been related to deep mantle plumes or shallow lithospheric processes, e.g., underlying large fault systems. One example of an understudied intraplate volcanic province is the Bathymetrists Seamounts (BSM) in the central-eastern Atlantic, an area with dense and extended fracture zones, but the BSM has been associated with a mantle plume origin. Extensive bathymetric mapping and seafloor sampling show that most BSM-seamounts resemble flat-topped guyots capped by carbonate platforms. Vesicular, volcanoclastic samples imply that their tops formed near sea level, followed by reef formation during cessation of volcanism and crustal subsidence. Erosion determines the seamount irregularity proportional to their sizes. Strong ellipticity of some seamounts is related to multiple vents that erupted along fractures. The orientation of the volcanoes, carbonate platforms, and morphological lineaments of the BSM show particular trends that reveal information on their origin and formation mechanisms. Geomorphological analyses indicate a structural control on volcano emplacement related to underlying lithospheric faults resembling a Riedel shear pattern. The stress field corresponding to their orientations is related to a NE-SW tensional setting, fitting to the prevalent tectonic setting ~56–38 Ma years ago that coincides with the BSM formation and an increase in spreading rates. A change in movement of the African plate during this time, together with the reactivation of fracture zones of the strongly sheared equatorial Atlantic, created pathways in the lithosphere and possibly enhanced magmatism. The seamounts do not show distinct differences in erosion state, morphology, carbonate platform depth, or Mn-crust thickness, in contrast to what would be expected for an age progression within the seamount chain. Our observations, therefore, do not support a plume mantle source. While the magmatic source remains undefined, we show that tectonic pathways determined the shape of the seamounts and enabled the broad emplacement of the Bathymetrists seamount chain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-02-14
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-02-14
    Description: Highlights • Collision-related, Oligocene magmatic rocks are abundant in the SE segment of the Urumieh-Dokhtar magmatic belt of Iran. • Zircon U-Pb data show ages of 34-25 Ma for plutonic rocks and 34-27 Ma for volcanic rocks from SE UDMB. • Isotope modelling suggests mixing between the mantle and Cadomian crust for the formation of these rocks. Abstract Despite diverse geochronological-geochemical studies on Cenozoic igneous rocks from the SE segment of the Urumieh-Dokhtar Magmatic Belt (UDMB) of Iran, the nature of the Oligocene magmatic rocks from the farthermost end of the SE segment- where it is linked to the Makran magmatic belt- has been ignored due to the difficulty of access. In this study, we focus on syn-collisional mafic to felsic igneous rocks of calc-alkaline and high-K calc-alkaline affinities from the SE segment of the Urumieh-Dokhtar Magmatic Belt (UDMB) near Nagisun, south of Bam. The Nagisun rocks have low Sr/Y and La(n)/Yb(n), similar to igneous rocks from typical arcs. Zircon Usingle bondPb ages show comparable ages for plutonic (~ 34–25 Ma) and volcanic (~34–27 Ma) rocks. The εHf(t) values for zircons from plutonic rocks range from −0.3 to +12.8, whereas the εHf(t) values for the volcanic rocks vary from −2.6 to +13. Modelling of trace elements compositions using Nagisan basaltic samples indicate that an 87:2:11 mixture of the depleted MORB mantle, subducting (trench)-sediments and altered oceanic crust with 5% aggregated fractional melting closely matches the trace-element abundances of the Nagisun basaltic rocks. Indeed, the modelling of Sr and Nd isotopic data emphasizes that the Nagisun magmatic rocks could be products of bulk mixing between a depleted MORB mantle and/or a mixed, fertilized mantle with the Cadomian lower and upper continental crust. Furthermore, our compiled data display that the magmatism in the SE segment of the UDMB changed through time from normal calc-alkaline magmatism to adakitic magmatism at ~20 Ma, after the collision with Arabia began ca 27 Ma.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-02-14
    Description: Highlights • Plinian eruptions linked to rheologically different mingling andesite magmas. • Magma decompression regimes producing variable degassing/crystallization kinetics. • Least explosive eruptions at slowest decompression, ascent and strain rates. • Plinian phases at rapid/intermittent magma decompression, ascent and strain rates. Abstract Estimating the kinetics of andesite magma vesiculation and crystallization inside volcanic plumbing systems is key for unraveling andesite Plinian eruption dynamics. The conduit kinetics provide the necessary input data for estimating the magma flow rates driving magma ascent and the fragmentation mechanisms controlling shifts in eruption explosivity and style. This information is crucial for increasing knowledge on expected hazards and for developing realistic eruption scenarios. In this work, we estimate conduit magma vesiculation and crystallization kinetics during the 3300 cal BP Upper Inglewood Plinian eruptive episode of Mount Taranaki, New Zealand. This episode comprised (i) low-intensity, conduit-opening phases of dome-collapse PDCs; (ii) pre-climactic, highly explosive phases of diverse PDCs, of up to violent 18-km-runout lateral blasts; (iii) climactic phases of steady 22-km-high Plinian eruption columns; and (iv) waning phases of column-collapse PDCs. By employing synchrotron microtomography, combined with mineral/glass chemistry and electron-microscopy, we quantified 3D vesicle and crystal size and shape distributions in juvenile pyroclasts over time, and corresponding number densities ranging from 1.1 × 105 to 2.5 × 106 mm−3 for vesicles, and from 8.0 × 104 to 5.1 × 106 mm−3 for crystals. Our results indicate that tapping of chemically alike yet rheologically contrasting magmas over a multi-phase andesite eruptive episode is linked to: (a) mafic magma recharge and differentiation in multiple storage reservoirs at distinct crustal levels, (b) stepwise to rapid magma decompression while mingling, producing variable pre- and syn-eruptive degassing and crystallization, and (c) syn-eruptive changes in melt viscosity, strain rate, localized shear deformation, and conduit geometry. The earliest and least explosive eruptive phases (≈ 2 × 106 kg s−1) were produced at the slowest rates of magma decompression (0.3–0.6 MPa s−1), ascent (0.01–0.02 m s−1) and strain (〈 0.002 s−1), driven by volatile diffusion and exsolution. All subsequent pre-climactic and Plinian phases (4 × 107–1 × 108 kg s−1) were produced at either rapid or intermittent rates of magma decompression (2.0–6.0 MPa s−1), ascent (0.06–0.2 m s−1) and strain (〉 0.003–0.010 s−1), powered by combined magma volatile supersaturation and delayed disequilibrium degassing, decompression-induced microlite crystallization and rapid heterogeneous vesiculation kinetics, shear deformation and magma mingling. These processes enabled complex fragmentation mechanisms of the rheologically most homogeneous magmas.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-02-14
    Description: Alteration of volcanogenic aluminosilicates (VAs) in marine sediments is recognized as critical in regulating geochemical cycles and sustaining the oceanic deep biosphere, but rates of VA alteration and its associated authigenic mineral formation are not commonly reported. Here we present results on analyses of sediments and pore water recovered from the upper 150 mbsf of four sites drilled on the northern Hikurangi margin during IODP Expeditions 372 and 375. Petrographic analyses show that volcanogenic materials (glass shards, feldspar, volcanic lithoclasts) constitute important components (15–45 wt%) of the hemipelagic mud, and reveal ongoing glass alteration with accompanying authigenic phase formation. A reaction-transport model constrained by pore water Sr, 87Sr/86Sr, Ca, Mg, and Si was applied to simulate VA diagenetic reactions. Our model results yield VA alteration rates of 0.047–0.64 mmol Sr m−2 yr−1, with substantially higher values at Sites U1517 and U1520 that experienced rapid sediment emplacement. In addition, our simulations show that 〉99% of the dissolved Si generated by VA alteration is fixed in silica cement and authigenic clay, and that ∼50% of Ca incorporated in the authigenic carbonate is supplied by VA alteration. First-order estimates suggest that, in addition to authigenic carbonate precipitation, authigenic clay formation may represent an important sink for dissolved Mg. This study quantitatively examines the linkage between VA alteration and formation of authigenic phases, highlights its role in subsurface geochemical cycles, and indicates that slope instability may play an important role in promoting VA diagenesis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-02-14
    Description: The Toba Caldera on Sumatra, Indonesia is the host of the Young Toba eruption (~74 ka), globally one of the largest and most recognized eruptions during the Quaternary and regionally concentrated in the eastern Indian Ocean. Three older deposits (Middle, and Old Toba Tuff as well as Haranggaol Dacite Tuff) are also attributed to Toba caldera, with their eruption products distributed over the Indian Ocean. We present the Quaternary marine tephra record from an array of 14 sites and 28 holes from deep ocean drilling programs, complementing earlier work on distal to ultra-distal Indian Ocean sediment cores and terrestrial distribution data of Toba deposits. A unique set of major and trace element glass-shard compositions on 115 primary ash layers together with glass shard morphologies, core pictures and statistical analysis support geochemical fingerprinting between marine tephra layers and known deposits from Toba and five so far unidentified medium to large eruptions assigned to northern Sumatra. Additionally, zircon crystallization ages have been determined for the Haranggaol Dacite Tuff resulting in a new maximum eruption age of 1.42 ± 0.034 Ma. Tephra volumes and magma masses for the (co-ignimbrite) fallout are estimated based on the compiled marine tephra distribution that are complemented by published proximal ignimbrite volumes. For YTT the resulting tephra and DRE volumes of 5600 km3 and 3600 km3, respectively, are in between the previous estimates. For MTT (253 km3 DRE), ODT (1550 km3 DRE), HDT (129 km3 DRE), and the five additionally identified eruptions from Northern-Sumatran volcanoes, new magma volumes have been determined. Overall, the Indian Ocean tephra record reveals in one large eruption every 200 kyr in the Quaternary that is derived from northern Sumatra.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-02-14
    Description: Provenance studies of widely distributed tephra deposits are important to deduce systematic changes in the source, size, distribution, and temporal variation of regional explosive volcanism. Long-term deep ocean drilling sedimentary records are particularly useful for these kind of studies. In this study, we establish a robust tephrochronostratigraphy for 235 primary marine tephra layers collected during International Ocean Discovery Program Expeditions 353, 354, and 362, complemented by older drill cores from Deep Sea Drilling Program and Ocean Drilling Program Legs 22, 119, 120, 121, and 183. We infer at least two major phases of highly explosive arc volcanism during the Early Miocene to Pleistocene, as well as three episodes related to explosive ocean island volcanism located in the Kerguelen plateau, the Broken Ridge, and close to Réunion reaching back to the Paleogene. Twenty-two widespread arc-derived tephra layers from individual eruptions can be correlated by geochemical fingerprinting between multiple holes. These provide nine Quaternary and 13 Neogene temporal tie points in the sedimentary sequence including four new Usingle bondPb zircon ages. Provenance analysis of the marine tephra layers, which is based on glass composition, assign eleven of these layers to a Toba-like source, ranging from 24 Ma to 75 ka, with the youngest correlative being Young Toba Tuff. Based on distribution pattern, thickness decay, and compositional evidence another eleven tephra layers can be assigned to a northern Sumatran Arc or to an Andaman Arc provenance. First-order minimum eruptive volume estimates for the Neogene tephra layers imply eruptive magnitudes ranging from M = 6.5 to M = 7.5, proving a continuous history of large explosive eruptions from the Sumatran/Andaman Arc since the Neogene, as previously known from the Quaternary.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-02-14
    Description: The increasing global demand for seafood, coupled with the limitations of current fish stocks and aquaculture practices, requires the development of sustainable aquaculture solutions. In this context, this study explores the potential of a novel cage technology - Flow2Vortex - for the cultivation of jellyfish, a low-trophic-level organism with increasing market demand. The unique cage design creates a laminar and circular water flow, providing optimal conditions for cultivating fragile planktonic species. Indoor experiments demonstrated the successful growth of jellyfish in the cage, with growth rates of up to 11.6% per day. In addition, field tests in open waters confirmed the cage's ability to maintain a diffuse and controlled flow inside, even under strong external currents. The cage also maintained significantly higher zooplankton concentrations than the surrounding environment, offering a consistent food source for the cultivated jellyfish. These findings highlight the potential of the Flow2Vortex cage for scalable indoor and outdoor cultivation of low-trophic-level organisms, such as jellyfish, contributing to the diversification and sustainability of aquaculture practices.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-02-12
    Description: This study investigates the historical characteristics and future trends of marine heatwaves (MHWs) in the Western North Pacific (WNP) region. During the historical period from 1982 to 2014, the WNP region experiences an average MHW frequency of 0.89 ± 0.18 count/year. These events have an average duration of 8.64 ± 1.39 days/count. Annually, the cumulative MHW days amount to 7.76 ± 2.23 days, with an accumulated intensity of 15.73 ± 6.43 °C days. The maximum intensity recorded during this period reaches 2.04 ± 0.54 °C, while the average intensity stands at 1.74 ± 0.48 °C/count. In the evaluation of 14 CMIP6 models, five optimal models, namely GFDL-ESM4, EC-Earth3-Veg, EC-Earth3, BCC-CSM2-MR, and MRI-ESM2-0, are selected for simulating future MHWs. Based on the simulation results of these five models under the SSP2-4.5 and SSP5-8.5 scenarios for the future period (2015–2100), it is found that under the SSP2-4.5, the frequency of MHWs is slightly higher compared to the SSP5-8.5. However, under the SSP5-8.5, MHWs exhibit higher accumulated intensity, maximum intensity, and average intensity, with a predominance of high-intensity MHWs in the Kuroshio Extension region. The occurrence area ratio in the future is significantly larger than in the historical period. Moreover, MHWs intensity displays a seasonal variation, with stronger during summer and weaker during winter. This study provides important insights into MHWs in the WNP region, offering valuable information for decision-makers in formulating response measures and reducing economic losses.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-02-12
    Description: The Cretaceous Twihinate carbonatite in the Moroccan Sahara is a ~ 5 km diameter ring-shaped intrusion made of an inner core preserving sparse occurrences of medium- to coarse-grained calcite carbonatite encircled by a ring of vuggy siliceous breccia. The Twihinate carbonatite is enriched in large ion lithophile elements (Cs, Rb, Ba, U and Th) and light rare earth elements (LREE), but shows negative anomalies in high field strength elements (particularly Ta, Zr, Hf and Ti). Stable and radiogenic isotope ratios vary in the range of δ13Cv-PDB = −10.5 to −1.6‰, δ18OV-SMOW = 6.4–28.3‰, initial 87Sr/86Sr = 0.7034–0.7043 (εSri between −14.5 and − 1.8), 143Nd/144Nd = 0.51282–0.51283 (εNdi between 2.8 and 3.6), 206Pb/204Pbi = 19.52–23.78, 207Pb/204Pbi = 15.56–15.69 and 208Pb/204Pbi = 38.69–39.02). Altogether, these isotopic compositions reflect compositional mantle heterogeneity, and are interpreted to reflect partial melting of heterogenous mantle sources with a potential eclogite component in an intraplate, rift-controlled tectonic setting. From a geodynamic perspective, the time span ascribed to age emplacement of Twihinate carbonatite shortly follows the Upper Jurassic hyper-extension event which ultimately resulted in mantle exhumation and subsequent onset of drifting in the Central Atlantic Ocean and Maghrebian Tethys.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-02-12
    Description: Highlights: • Change in sea urchin species composition from RBC and NRBC habitats. • Sand coverage is an important factor that influences the sea urchin species composition. • The relationship between sea urchins and their habitat is species-specific. Sea urchins are important components of marine ecosystems and can act as bioindicators, reflecting the health of reefs. The spatial patterns of sea urchins are largely shaped by the type of habitat. In Hong Kong, coral communities are divided into two distinct types: reef -building coral habitats and non -reef -building coral habitats. In summer 2020, a qualitative survey was conducted using SCUBA at 56 sites across eastern and western waters, recording a total of 11 species from 6 families of sea urchins. Out of these 56 sites, 14 were selected for a quantitative survey to investigate the relationship between sea urchin assemblages and the two types of coral habitat. We found that the species composition of sea urchins differed significantly between the two habitats, and the presence of sand was a critical factor influencing the species composition of sea urchins. Sand coverage had a positive effect on Salmasic sphaeroides abundance but a negative effect on the abundance of Diadema setosum and Heliocidaris crassispina. The distribution of sea urchins across different degrees of sand coverage may be associated with food availability or species -specific adaptive behaviour, likely due to niche preferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-02-12
    Description: Highlights • East Asian climate evolution was dependent on the latitude of the proto-Tibetan Plateau in the deep past; • Global warming induced wetting at mid-latitude East Asian in the mid-Cretaceous; • The proto-Tibetan Plateau uplift led to drying in the subtropical East Asian in the mid-Cretaceous. Abstract Sedimentary records indicate that subtropical and mid-latitude East Asia exhibited considerable drying and wetting, respectively, during the mid-Cretaceous, which is considered to be relevant to much higher atmospheric carbon dioxide (pCO2) concentrations and/or proto-Tibetan Plateau (proto-TP) uplift. In order to explore and compare their roles on the East Asian climate evolution, we conducted simulations of the mid-Cretaceous climate system with different atmospheric pCO2 levels and varying topographies. The results show that both factors had significant influences on the East Asian climate. As the increase in atmospheric pCO2 levels from ∼560–1120 ppmv to ∼1120–2240 ppmv, the precipitation increases considerably over mid-latitude East Asia, but only small changes in the subtropical portion of East Asia occur. Simultaneously, the effects of the proto-TP uplift are opposite to those of global warming trend during that period. Generally, it leads to a precipitation decrease over subtropical East Asia, but rather minor changes over mid-latitude East Asia. These changes are qualitatively consistent with the deduction based on the geological records, but the magnitudes of the modeled precipitation changes are relatively smaller. Therefore, we can conclude that the subtropical East Asian drying during the mid-Cretaceous can be partly explained by the proto-TP uplift, while the mid-latitude East Asian wetting was partly due to global warming. However, additional factor(s) also played a significant role in the East Asian climate evolution during the mid-Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-02-12
    Description: Carbon dioxide removal (CDR) – the creation, enhancement, and upscaling of carbon sinks – has become a pillar of national and corporate commitments towards Net Zero emissions, as well as pathways towards realizing the Paris Agreement's ambitious temperature targets. In this perspective, we explore CDR as an emerging issue of Earth System Governance (ESG). We draw on the results of a workshop at the 2022 Earth System Governance conference that mapped a range of actors, activities, and issues relevant to carbon removal, and refined them into research questions spanning four intersecting areas: modeling and systems assessment, societal appraisal, policy, and innovation and industry. We filter these questions through the five lenses of the ESG framework and highlight several key ‘cross-cutting’ issues that could form the basis of an integrated ESG research agenda on CDR.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-02-12
    Description: Highlights • Cu complexation was measured for the first time in the Fram Strait region. • Cu-binding ligand concentrations and binding strength varied longitudinally in the Fram Strait. • More than 99 % of dCu was organically complexed by strong ligands. • On the Greenland shelf the Transpolar Drift and the coastal processes were the main sources of Cu ligands. Abstract The Fram Strait represents the major gateway of Arctic Ocean waters towards the Nordic Seas and North Atlantic Ocean and is a key region to study the impact of climate change on biogeochemical cycles. In the region, information about trace metal speciation, such as copper, is scarce. This manuscript presents the concentrations and conditional stability constants of copper-binding ligands (LCu and log KcondCu2+L) in the water column of Fram Strait and the Greenland shelf (GEOTRACES cruise GN05). Cu-binding ligands were analysed by Competitive Ligand Exchange-Adsorptive Cathodic Stripping Voltammetry (CLE-ACSV) using salicylaldoxime (SA) as competitive ligand. Based on water masses and the hydrodynamic influences, three provinces were considered (coast, shelf, and Fram Strait) and differences were observed between regions and water masses. The strongest variability was observed in surface waters, with increasing LCu concentrations (mean values: Fram Strait = 2.6 ± 1.0 nM; shelf = 5.2 ± 1.3 nM; coast = 6.4 ± 0.8 nM) and decreasing log KcondCu2+L values (mean values: Fram Strait = 15.7 ± 0.3; shelf = 15.2 ± 0.3; coast = 14.8 ± 0.3) towards the west. The surface LCu concentrations obtained above the Greenland shelf indicate a supply from the coastal environment to the Polar Surface Water (PSW) which is an addition to the ligand exported from the central Arctic to Fram Strait. The significant differences (in terms of LCu and log KcondCu2+L) between shelf and coastal samples were explained considering the processes which modify ligand concentrations and binding strengths, such as biological activity in sea-ice, phytoplankton bloom in surface waters, bacterial degradation, and meltwater discharge from 79NG glacier terminus. Overall, the ligand concentration exceeded those of dissolved Cu (dCu) and kept the free copper (Cu2+) concentrations at femtomolar levels (0.13–21.13 fM). This indicates that Cu2+ toxicity limits were not reached and dCu levels were stabilized in surface waters by organic complexes, which favoured its transport to the Nordic Seas and North Atlantic Ocean and the development of microorganism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-02-07
    Description: Highlights: • Ecological impacts of Pontogammarus maeoticus increased with temperature • Salinity effects were non-significant across temperatures (14–2 ppt; 18–22 °C) • Gammarids displayed hyperbolic Type II functional responses in all treatments • Future salinity regime shifts will not lessen ecological impacts via predation • Warming will heighten the ecological impacts of this emerging invasive species Abstract: Biological invasions are a growing ecological and socioeconomic problem worldwide. While robust predictions of impactful future invaders are urgently needed, understandings of invader impacts have been challenged by context-dependencies. In aquatic systems in particular, future climate change could alter the impacts of invasive non-native species. Widespread warming coupled with sea freshening may exacerbate ecological impacts of invaders in marine environments, compromising ecosystem structure, function and stability. We examined how multiple abiotic changes affect the potential ecological impact of an emerging invasive non-native species from the Ponto-Caspian region — a notorious origin hotspot for invaders, characterised by high salinity and temperature variation. Using a comparative functional response (feeding rates across prey densities) approach, the potential ecological impacts of the gammarid Pontogammarus maeoticus towards native chironomid prey were examined across a range of current and future temperature (18, 22°C) and salinity (14, 10, 6, 2 ppt) regimes in a factorial design. Feeding rates of P. maeoticus on prey significantly increased with temperature (by 60 %), but were not significantly affected by salinity regime. Gammarids displayed significant Type II functional responses, with attack rates not significantly affected by warming across all salinities. Handling times were, however, shortened by warming, and thus maximum feeding rates significantly increased, irrespective of salinity regime. Functional responses were significantly different following warming at high prey densities under all salinities, except under the ambient 10 ppt. Euryhalinity of invasive non-native species from the Ponto-Caspian region thus could allow sustained ecological impacts across a range of salinity regimes. These results corroborate high invasion success and field impacts of Ponto-Caspian gammarids in brackish through to freshwater ecosystems. Climate warming will likely worsen the potential ecological impact of P. maeoticus. With invasions growing worldwide, quantifications of how combined elements of climate change will alter the impacts of emerging invasive non-native species are needed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-02-07
    Description: Highlights: • Predators displayed a Type II functional response towards prey • Microplastics had no effect on predator feeding efficiency • Functional responses are a useful tool for microplastic exposure studies • An environmentally relevant approach is needed in future microplastic exposure studies Abstract: Microplastics may affect the physiology, behaviour and populations of aquatic and terrestrial fauna through many mechanisms, such as direct consumption and sensory disruption. However, the majority of experimental studies have employed questionably high dosages of microplastics that have little environmental relevance. Predation, in particular, is a key trophic interaction that structures populations and communities and influences ecosystem functioning, but rarely features in microplastic research. Here, we quantify the effects of low (~65-114 MP/L) and high (~650-1140 MP/L) microplastic concentrations on the feeding behaviour of a ubiquitous and globally representative key marine predator, the shore crab, Carcinus maenas. We used a functional response approach (predator consumption across prey densities) to determine crab consumption rates towards a key marine community prey species, the blue mussel Mytilus edulis, under low and high microplastic concentrations with acute (8h) and chronic (120 h) microplastic exposure times. For both the acute and chronic microplastic exposure experiments, proportional prey consumption by crabs did not differ with respect to microplastic concentration, but significantly decreased over increasing prey densities. The crabs thus displayed classical, hyperbolic Type II functional responses in all experimental groups, characterised by high consumption rates at low prey densities. Crab attack rates, handling times and maximum feeding rates (ie functional response curves) were not significantly altered under lower or higher microplastics concentrations, or by acute or chronic microplastic exposures. Here, we show that functional response analyses could be widely employed to ascertain microplastic impacts on consumer-resource interactions. Furthermore, we suggest that future studies should adopt both acute and chronic microplastic exposure regimes, using environmentally-relevant microplastic dosages and types as well as elevated future scenarios of microplastic concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-02-07
    Description: The facies distribution in time and space of sedimentary successions is controlled by a complex interplay between physical, chemical and biological processes, which are nowadays difficult to construe from the geological record. Numerical models constitute a valuable tool to identify and quantify such controlling factors permitting a reliable 3D extrapolation and prediction of stratigraphic and facies architectures beyond outcropping rock strata. This study assesses the roles of three controlling parameters being carbonate production rate, relative sea-level changes and terrigenous clastic sediment supply, on the evolution of an Aptian carbonate system. The SIMSAFADIM-CLASTIC, a 3D process-based sedimentary-stratigraphic forward model, was used for this evaluation. The carbonate succession modelled crops out in the western Maestrat Basin (E Iberia), and corresponded to a platform-to-basin transition comprising three depositional environment-related facies assemblages: platform top, slope and basin. Testing of geological parameters in forward modelling results in a wide range of possible 3D geological scenarios. The documented distribution of facies and sequence-stratigraphic framework combined with a virtual outcrop model were used as a reference to perform geometric (quantitative) and architectural and stacking pattern (qualitative) research by model-data comparison. The time interval modelled spans 1450 ky. The best-fit simulation run characterizes and quantifies (1) relative sea-level fluctuations recording five different genetic types of deposit (systems tracts) belonging to two depositional sequences as expected from field-data analysis, (2) a rate of terrigenous clastic sediment input ranging between 0.5 and 2.5 gr/s, and (3) a mean autochthonous carbonate production maximum rate of 0.08 m/ky. Furthermore, the quantitative and qualitative sensitivity tests carried out highlight that the fluctuation of relative sea level exerted the main control on the resulting stratigraphic and facies architectures, whereas the effect of inflowing terrigenous clastic sediment is less pronounced. Facies assemblages show different sensitivities to each parameter, being the slope carbonates more sensitive than the platform top facies to inflowing fine terrigenous sediments. On slope depositional settings, siliciclastic input also controls stratal stacking patterns and the dimensions of the carbonate bodies formed. The final 3D model allows to spot architectural features such as stacking patterns that can be misinterpreted by looking at the resulting record in the outcrop or by using other 2D approaches, and facilitates the comprehension of reservoir connectivity highlighting the occurrence of initial disconnected regressive platforms, which were later connected during a transgressive stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-02-07
    Description: Highlights: • The pivot point for sea level shifted to the west of the Nino4 region in the 2000s. • This enabled the thermocline feedback to increase strongly in the Central Pacific. • The resulting increase in CP events maintains the pivot point to the west, a positive feedback mechanism. Monthly mean sea level variations computed using a linear, reduced-gravity, multi-mode model are combined with satellite measurements to explore why Central Pacific (CP) ENSO events occur more frequently since 2000s. The pivot point for sea level (and hence thermocline) variations has shifted westward in response to an increase in zonal wind stress variance in the western equatorial Pacific. As a result, the Nino4 region is increasingly to the east of the pivot point enabling the thermocline feedback to operate there, strengthening the Bjerknes feedback mechanism in the Nino4 region and leading to an increase in the occurrence of CP events. The increased variance of wind stress in the western Pacific is, in turn, caused by the resulting increase in the frequency of CP events. These arguments imply a positive feedback in which CP events are self-maintaining and suggest that they may be part of the natural variability of the climate system and could occur without the need for changes in external forcing.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-02-07
    Description: In situ pumps were used to collect size-fractionated particles (〉53 μm and 1–53 μm) from the upper ocean of the high latitude North Atlantic during spring and summer 2010, and samples were subsequently analysed for Al, P, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ba and Pb. Two research cruises during May 2010 coincided with an eruption of the Eyjafjallajökull volcano in southern Iceland, which resulted in widespread dispersal of ash over the region. Ash deposition caused a noticeable perturbation of particulate trace element concentrations and content within marine particles in the Iceland Basin, relative to the Irminger Basin, most evident for lithogenic elements (Al, Ti, Fe), but also noticeable in elemental ratios for the other elements. The initial volcanic ash influence had largely disappeared by the third research cruise in July/August 2010, although there was evidence for a recent wind erosion event having transported remobilized volcanic ash from southern Iceland to the northern Iceland Basin in early July, further perturbing local trace element biogeochemistry. During summer 2010, concentrations of all measured elements except Ba were typically lower 10 m beneath the surface mixed layer relative to those within it, driven primarily by a rapid decrease in the concentrations of large (〉53 μm) biogenic particles. Depth-dependent trends were more variable over the next hundred metres for all elements except the biogenic elements P and Cd, for which concentrations decreased further. The continued loss of biogenic material with depth due to remineralization (reflected by particulate P concentrations) led to an increase in content per mass of material for all other elements measured. The observed differences in upper ocean particulate P and Fe distributions highlight the mechanism driving seasonal Fe limitation in the high latitude North Atlantic: rapid loss of P by remineralization regenerates dissolved phosphate close to the base of the mixed layer, while most particulate Fe persists deeper in the water column, removing the potential for resupply of dissolved Fe to surface waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-02-07
    Description: Highlights • In-situ temperature measurements were conducted at the Danube deep sea fan. • Operations were performed with the MARUM-MeBo200 seafloor drill rig. • The BSR is located ∼20 m below the current gas hydrate stability zone. • Seismic data suggest presence of shallower BSR-like events. Abstract Coring, geophysical logging, and in-situ temperature measurements were performed with the MARUM-MeBo200 seafloor rig to characterize gas hydrate occurrences in sediments of the Danube deep sea fan, off Romania, Black Sea. The new drilling data showed no evidence for significant gas hydrate saturations within the sediments but the presence of free gas at the depth of the bottom-simulating reflector (BSR). In-situ temperature and core-derived geochemical data suggest that the current base of the gas hydrate stability zone (BGHSZ) is ∼20 m shallower than the BSR. Investigation of the seismic data around the drill sites shows several locations where free gas previously trapped at a former BGHSZ migrated upwards forming a new reflection above the BSR. This shows that the gas hydrate system in the Danube deep sea fan is still responding to climate changes initiated at the end of the last glacial maximum.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-02-07
    Description: Body condition and energy reserves are important indicators of organism health, habitat suitability and predictors for the reproductive success in fish. In Greenland waters, Atlantic cod (Gadus morhua) inhabits different habitats in shallow and deep parts on top of the shelf and along slopes, where diet composition differs. We investigated the influence of habitat heterogeneity and trophic niche on body condition using organosomatic indicators, e.g. the morphometric index K, hepatosomatic and gonadosomatic indices, and biochemical indicators, e.g. lipid content and fatty acid compositions, of mature female cod. Body condition differed between sites and peaked in north-eastern regions in depths below 300 m towards the slope of the northern Irminger Sea. Trophic niches as indicated by stable isotope values and stomach composition data varied between sites, which was likely related to depth and differences between benthic and pelagic feeding regimes. Total lipid content and fatty acid profiles important for reproduction were associated with a pelagic diet comprised of mesopelagic fish and crustaceans. Interestingly, consumption of capelin was not linked to highest energy reserves as indicated by traditional body condition indices, such as K and the hepatosomatic index, but lowest ratios of eicosapentaenoic acid to arachidonic acid in gonads, which are known to be beneficial for high egg production. This shows that body condition on biochemical level can differ from conventionally used indices, which emphasizes the need to take fatty acid composition into account, when investigating condition and reproductive potential in cod. Our results emphasize that the factor habitat cannot be ignored for population replenishment of the cod stocks in Greenland waters and indicate that capelin as part of an Arcto-boreal diet benefits reproductive success in cod.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-02-07
    Description: Seagrass meadows are globally recognized as important coastal habitats due to the various ecological functions and ecosystem services they provide. Substantial global decline of seagrass habitats has been recorded over the last decades, underlining the need for extensive studies, including monitoring and mapping these habitats across their distributional range. Cymodocea nodosa (Ucria) Ascherson is the only seagrass species reported in the archipelago of Madeira (NE Atlantic) and systematic or reliable information of its occurrence is very scarce and mostly anecdotal. This study reports the discovery of a yearly-persistent patch of C. nodosa in the southeast coast of Madeira and provides insights into key ecological and biological aspects (e.g. density, leaf length, associated fauna and flora). Seasonal monitoring surveys over a 3-year period, indicate that (1) the patch has increased in size and shoot density over the study period, and (2) leaf lengths follow a typical seasonal pattern over the year. Accounts of past destruction of seagrass meadows in the island, underline the importance of continuous monitoring of the patch and adjacent areas to reveal how the current seagrass patch develops (i.e. patch continuity and/or disappearance), if it integrates a larger meadow and whether anthropogenic pressures as coastal development and/or associated terrigenous sediment runoff events will affect its resilience.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-02-07
    Description: Highlights • First dissolved Nd/Hf isotope and REE data from the Congo River Plume. • High REE and Hf fluxes from the Congo River to the southeast Atlantic. • Conservative river and surface seawater mixing of Nd/Hf isotopes and REEs/Hf at S 〉 23. • Congo River particles impact intermediate and deep water signals of NE Angola Basin. Abstract The Congo River is the second largest river by discharge in the world and a major source of element inputs into the South Atlantic Ocean. Yet, the element fluxes and transport mechanisms across and beyond its estuary and their impacts on the marine distribution and cycling of many major and trace elements are not well understood. We present the first combined dissolved neodymium (Nd) and hafnium (Hf) isotope and rare earth element (REE) concentration distributions following the Congo River plume along its flow path off the West African coast and along a connected offshore latitudinal section at 3°S. The Congo River freshwater itself is characterized by extraordinarily high Nd and Hf concentrations of up to 4000 pmol/kg and 54 pmol/kg, and by Nd (εNd) and Hf (εHf) isotope compositions that range between −15.6 and −16.4 and between 0.35 and −1.4, respectively. Our near- and offshore data indicate that at salinities above 23 conservative mixing of Congo-derived Nd and Hf concentrations and isotopic signatures with ambient surface seawater occurs for at least 1000 km to the northwest of the river mouth. This demonstrates a large spatial extent of the influence of the Congo plume on trace metal distributions in the eastern south Atlantic surface waters. A comparison between dissolved Nd and Hf fluxes from the Congo River and the shelf zone estimated based on radium isotope compositions indicate that release from Congo-derived particulate phases likely balances strong estuarine REE and Hf removal in the low salinity zone. The combined riverine and shelf zone flux for Nd is almost twice as high as that estimated for the Amazon River, despite that the Amazon discharge is about five times higher than that of the Congo River. Even the offshore Nd flux estimated for the 3 °S transect based on radium isotope compositions still corresponds to ∼40% of the Congo-shelf-zone flux and reaches 150 ± 50 Mg/year for Nd. Moreover, intermediate waters below the plume are strongly affected by exchange with particulate inputs from the Congo River given that Nd isotope signatures are inconsistent with values expected from large-scale water mass mixing and instead support unradiogenic Nd release either from sinking or deposited Congo-derived detrital material. Deep and bottom water isotopic signatures are also slightly affected by interaction with particles and benthic Nd release.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-02-07
    Description: We present porosity and free gas estimations and their uncertainties at anactive methane venting site in the UK sector of the North Sea. In the Scan-ner Pockmark area in about 150m water depth, we performed a multi-disciplinary experiment to investigate the physical properties of fluid flowstructures within unconsolidated glaciomarine sediments. Here we focus onthe towed controlled source electromagnetic (CSEM) data analysis with con-straints from seismic reflection and core logging data. Inferred backgroundresistivity values vary between 0.6–1 Ωm at the surface and 1.9–2.4 Ωm at150 mbsf. We calibrate Archie’s parameters with measurements on cores, andestimate porosities of about 50±10% at the seafloor decreasing to 25±3% at 150 mbsf which matches variations expected for mechanical compaction ofclay rich sediments. High reflectivity in seismic reflection data is consistentwith the existence of a gas pocket. A synthetic study of varying gas contentin this gas pocket shows that at least 33±8% of free gas are required to causea distinct CSEM data anomaly. Real data inversions with seismic constraintssupport the presence of up to 34±14% free gas in a 30–40 m thick gas pocketunderneath the pockmark within the stratigraphic highs of a till layer abovethe glacial unconformity in the Aberdeen Ground Formation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-02-07
    Description: Highlights • Loess in Northern Iran sensitively reacted on Pleistocene climate change. • Dust accumulation and soil formation followed climate cycles of the Northern Hemisphere. • Pedostratigraphic correlation provides link within Southern Eurasian loess belt. • Southern Caspian Lowlands provide key area for climate reconstruction in West Asia. The southern Caspian Lowland sensitively reacted to Pleistocene climate change and is a key area for reconstructing climate dynamics and landscape evolution in Southern Eurasia. Loess-paleosol sequences (LPS) of the northern foothills of Alborz Mountains provide detailed records of climate-induced changes of dust accumulation and soil formation correlating with relatively dry or moist conditions of the past. The LPS at Neka-Abelou (NA) was studied in detail in order to understand these dynamics and provide a base for regional pedostratigraphic correlation. We have carried out high-resolution analyses of grain-size, sediment color, mass specific and frequency-dependent magnetic susceptibility and carbonate content and established a temporal framework as based on luminescence dating using a post-IR infrared stimulated luminescence (pIRIR) protocol and fading corrections. The LPS of NA is composed of finely textured loess, which is subdivided by at least eleven paleosols. Moreover, it contains a thin loess layer with lenses of trachytic tephra which most likely originated from the Damavand volcano and was deposited during Marine Isotope Stage (MIS) 4. The lower part of the LPS at NA consists of four strongly-developed reddish-brown paleosols (Bt, Btg horizons) separated by thin layers of pedogenically-altered loess indicating moist climate conditions and low dust accumulation rates during the Middle Pleistocene or earlier. The central part contains a pedocomplex of clay-rich paleosols composed of well developed Bt, ABk and Bw horizons formed under strongly reduced dust accumulation rates and intercalated by loess layers. Pedostratigraphic reasoning suggests that this pedocomplex formed during MIS 5, which is corroborated by luminescence dating. The pedocomplex reflects precession time scale climate change and represents an excellent pedostratigraphic marker recognized in numerous exposures along the northern foothills of the Alborz Mountains. The upper part of the LPS accumulated during the Last Pleniglacial and contains probably six weakly developed synsedimentary paleosols (CBk horizons) as well as the modern soil (Bt horizon). Magnetic susceptibility records show very close similarity with the pleniglacial sequence of the LPS at Toshan located about 100 km farther to the east of the Caspian Lowlands suggesting that the weak paleosols at both locations have formed synchronously, which is supported by luminescence dating. Their presence thus reflects at least a regional-scale climate change between dry phases and those of slightly increased edaphic moisture with ongoing dust supply. The LPS of the Caspian Lowlands document a multitude of changes between dominance of dust accumulation or pedogenesis controlled by moisture availability in the context of Pleistocene climate change. The proposed regional pedostratigraphy for the Late Quaternary provides a scheme for large-scale stratigraphic correlation and reconstruction of climate change in Southern Eurasia.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-02-07
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m 49 below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-02-07
    Description: Carbon Capture and Storage (CCS) is a potential significant mitigation strategy to combat climate change and ocean acidification. The technology is well understood but its current implementation must be scaled up nearly by a hundredfold to become an effective tool that helps meet mitigation targets. Regulations require monitoring and verification at storage sites, and reliable monitoring strategies for detection and quantification of seepage of the stored carbon need to be developed. The Cseep method was developed for reliable determination of CO2 seepage signal in seawater by estimating and filtering out natural variations in dissolved inorganic carbon (C). In this work, we analysed data from the first-ever subsea CO2 release experiment performed in the north-western North Sea by the EU STEMM-CCS project. We successfully demonstrated the ability of the Cseep method to (i) predict natural C variations around the Goldeneye site over seasonal to interannual time scales; (ii) establish a process-based baseline C concentration with minimal variability; (iii) determine CO2 seepage detection threshold (DT) to reliably differentiate released- CO2 signal from natural variability and quantify released- CO2 dissolved in the sampled seawater. DT values were around 20 % of the natural C variations indicating high sensitivity of the method. Moreover, with the availability of DT value, the identification of released- CO2 required no preknowledge of seepage occurrence, but we used additional available information to assess the confidence of the results. Overall, the Cseep method features high sensitivity, automation suitability, and represents a powerful future monitoring tool both for large and confined marine areas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-02-07
    Description: Marine sediments are an important source and sink of bio-essential trace metals to the ocean. However, the different mechanisms leading to trace metal release or burial are not fully understood and the associated fluxes are not well quantified. Here, we present sediment, pore water, sequential extraction and benthic flux data of Mn, Co, Ni, Cu, Zn and Cd along a latitudinal depth transect across the Peruvian oxygen minimum zone at 12°S. Sediments are depleted in Mn and Co compared to the lithogenic background. Diffusive Mn fluxes from the sediments into the bottom water (−26 to −550 μmol m−2 y−1) are largely consistent with the rate of Mn loss from the solid phase (−100 to −1160 μmol m−2 yr−1) suggesting that 50% or more of the sedimentary Mn depletion is attributed to benthic efflux. In contrast, benthic Co fluxes (~ −3 μmol m−2 yr−1) are lower than the rate of Co loss from the solid phase (up to −120 μmol m−2 yr−1), implying Co dissolution in the water column. The trace metals Ni, Cu, Zn and Cd are enriched within the sediments with respect to the lithogenic background. Uptake of Ni by phytoplankton in the photic zone and delivery with organic matter to the sediment surface can account for up to 100% of the excess Ni accumulation (87 to 180 μmol m−2 y−1) in shelf sediments near the coast, whereas at greater water depth additional scavenging by Mn- and Fe-oxides may contribute to Ni accumulation. Up to 20% of excess Cu (33 to 590 μmol m−2 y−1) and generally less than 20% of excess Zn (58 to 2170 μmol m−2 y−1) and Cd (6 to 260 μmol m−2 y−1) can be explained by delivery with fresh organic matter. Sequential extraction data suggest that the discrepancies between the known sources of Cd (and Cu) and their excess accumulation may be driven by the delivery of allochthonous sulphide minerals precipitated from the water column. Additionally, Cu may be scavenged by downward sinking organic material. In contrast, precipitation of Zn sulphide chiefly takes place in the sediment. Diffusive Zn fluxes into the sediment (21 to 1990 μmol m−2 y−1) match the excess Zn accumulation suggesting that Zn delivery is mediated by molecular diffusion from bottom waters. Considering the diverse behavioural pattern of trace metals observed in this study, we argue that declining oxygen and increasing hydrogen sulphide concentrations in a future ocean will modify trace metal fluxes at the seafloor and the trace metal stoichiometry of seawater.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-02-07
    Description: Highlights • Decoupling of volatile element enrichment and magmatic volatile influx. • Multiple sulfide generations with distinct trace element signatures. • Boiling-induced pyrite precipitation revealed by textures and Tl/Pb, Sb/Pb and Bi/Pb ratios. • Boiling-induced Au, electrum and Bi-telluride colloids lead to high Au grades. • Metals sources: shallow upflow- (60–80%) and deep reaction (20–40%) zone. Abstract Shallow (〈1500 mbsl) submarine arc-related hydrothermal systems can host base (Cu), precious (Au) and volatile elements (As, Se, Sb, Te, Tl) in significant quantities. Their wide application in the high-tech industry, but a potential eco-toxicological footprint gives them a strategic importance. However, the processes that concentrate these elements in submarine arc-related hydrothermal systems, compared to their mid-ocean ridge counterparts are still debated, and it is unclear whether boiling-related processes and/or the contribution of magmatic volatiles are key for their enrichment. We present bulk sulfide-sulfate, isotope (S and Pb), and high-resolution microanalytical data of hydrothermal sulfides from the Niua South fore-arc volcano in north Tonga, where numerous black-smoker type sulfide-sulfate chimneys emit boiling fluids with temperatures (up to 325 °C) near the seawater boiling curve at ~1170 m water depth. Hence, this system represents an ideal natural laboratory to investigate the effect of fluid boiling on base, precious, and volatile element enrichment associated with hydrothermal seafloor mineralization. At Niua South, textural and chemical variations of multiple pyrite (framboidal, euhedral and massive), chalcopyrite (linings), and sphalerite (dendrites and linings) generations are indicative for sulfide precipitation from early low-temperature (~240 °C) fluids that underwent abundant mixing with ambient seawater (low Se/Tl and Co/Ni ratios in pyrite) and from later high-temperature (up to 325 °C) (high Se/Tl and Co/Ni ratios in pyrite). In addition, crustiform inclusion-rich pyrite that precipitated from high-temperature boiling fluids shows low Bi/Pb, Tl/Pb and Sb/Pb ratios due to volatile element loss (e.g., Tl and Sb) to the vapor phase compared to pyrite that formed during the low temperature stage. By contrast, late sphalerite (~280 °C) is enriched in elements with an affinity to Cl-complexes like Mn, Co, Ni, Ga, Cd, In, and Sn, and therefore precipitated from the corresponding Cl-rich liquid phase. Gold occurs in solid-solution and as boiling-induced particles of native Au, electrum, and Au-rich Bi-tellurides in pyrite (up to 144 ppm Au), sphalerite (up to 60 ppm Au), and chalcopyrite (up to 37 ppm Au). These particles (〈5–10 µm) probably formed during fluid boiling causing an extreme Au enrichment (〉30 ppm) in the mature and late stage of chimney formation. Lead isotope data indicate that the hydrothermal fluids scavenged metals not only from the deeper basement in the reaction zone (20–40%), but also from young dacitic volcanic rocks near the seafloor in the upflow zone (60–80%). Sulfur isotope (δ34S = −0.3 to 4.4‰) and Se/S*106 values (〈1500) of hydrothermal sulfides provide no evidence for a magmatic volatile influx and indicate that S, and most metals and semi-metals were likely leached from the host rocks. Hence, volatile (As, Se, Sb, Te, Tl), and precious (Au) element enrichments in arc-related submarine hydrothermal systems can be decoupled from magmatic volatiles and are instead a result of boiling-induced trace element fractionation – a hydrothermal enrichment process, which has been underestimated to date.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-02-07
    Description: Highlights • Subduction initiation (SI) is a mechanism for forming Neotethyan ophiolites. • Ophiolites of Iran show SI exerts extensional stress on the overlying plate. • SI-related extension can affect broad regions of the overriding plate. Abstract Subduction initiation (SI) requires the sinking of one plate beneath another and this exerts extensional stress on the overlying plate. How broad a region is affected by SI-related extension is unclear because most of the clearest SI examples– such as Izu-Bonin-Mariana arc– are deep under the ocean. A major SI event is recorded in the Late Cretaceous forearc ophiolites of Iran, related to the subduction of Neotethyan oceanic lithosphere beneath Eurasia. This caused extreme extension of the Iranian plate, up to ~1000 km away from the proto-trench and generated a series of back-arc oceanic basins, sedimentary basins, and core complexes and exhumed high-P rocks. The Late Cretaceous Iran example shows that SI can cause strong extension over a much wider region of the overriding plate than heretofore imagined and offers an accessible natural laboratory for studying SI processes. This understanding also provides an attractive new explanation for the origin of the South Caspian Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2024-02-07
    Description: Climate forcing is impacting polar marine ecosystems through increased variability of winter sea-ice dynamics, which likely influences the distribution, abundance and structure of zooplankton assemblages, and thereby trophodynamics of marine food webs. Due to the challenges of working in polar marine ecosystems, most knowledge on polar zooplankton community structure is derived from summer surveys. Here we examine the spatial distribution, abundance and community structure of macrozooplankton in relation to sea-ice and ocean-climate dynamics within the Antarctic Peninsula marine ecosystem over five consecutive winters. We compare the patterns revealed during winter with historical data collected in the same region during austral summer. Hydrographic and macrozooplankton data were collected from 〉100 standard stations off the northern Antarctic Peninsula during summer (2003–2011) and winter (2012–2016). Using multivariate methods, the environmental drivers and geographic structuring of the macrozooplankton community during winter and summer were investigated. Eight taxa made up 90% of total macrozooplankton abundance in winter including Metridia species, post-larval and larval Euphausia superba, post-larval Thysanoessa macrura, Limacina helicina, Chaetognatha, Ostracoda and Radiozoa. Eight slightly different taxa including Calanoides acutus, Salpa thompsoni, T. macrura (post-larvae and larvae), Metridia spp., E. superba larvae, Chaetognatha, and Rhincalanus spp. made up 87% of the total abundance in summer. Macrozooplankton clustered into five groups in winter and seven groups in summer. Winter macrozooplankton structure was more spatially consistent among years compared to summer regardless of sea-ice conditions. Salinity, chlorophyll a biomass, upper mixed layer depth and time of day were most strongly correlated with the multivariate ordination in winter whereas salinity, phaeopigment biomass and year had the highest correlations for summer, indicating the importance of similar physical features in both seasons. However, the importance of time scales differed among seasons. Although environmental determinants of summer and winter macrozooplankton community structure indicate that community structure and occurrence were strongly tied to regional variability of salinity and primary productivity gradients, macrozooplankton community structure is likely much more complex than only a few hydrographic variables can explain. Cluster boundaries are likely driven by dynamic locations of currents, fronts and localized eddies in any given season or year.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-02-07
    Description: Highlights • ~561 Ma old alkaline magmatism in the Damara Belt was caused by extensional tectonics. • Radiogenic isotopes constrain sources and AFC processes. • The alkaline rocks were generated by melting of enriched lithospheric mantle domains. • The lithospheric mantle was modified by ancient subduction zone processes. The 560.8 ± 2.4 Ma old Okamutambo Pluton is the easternmost intrusion of the syn-collisional Otjimbingwe Alkaline Complex (OAC; Damara Belt, Namibia) and consists of mafic to intermediate alkaline rocks that belong to the monzodiorite-syenite series. The studied samples are potassic (K2O/Na2O 〉 1) and have moderately high magnesium (MgO: 5.7–2.6 wt%), nickel (Ni: 66–26 ppm), and chromium (Cr: 223–62 ppm) concentrations. LILE (Ba: 2425–1243 ppm; Sr: 1359–941 ppm) and HFSE (Zr: 447–202 ppm, Nb: 32.8–16.4 ppm, Hf: 4.7–9.4 ppm, Ta: 1.2–2.0 ppm) contents are also high. Strontium and Nd isotope data reveal the existence of two magmatic suites indicating a multi-source origin. Group 1 monzonites-quartz monzonites have moderately evolved Sr and Nd isotopic compositions (initial 87Sr/86Sr: 0.7066 to 0.7073; initial εNd: −3.5 to −5.0) and radiogenic Pb isotope ratios (206Pb/204Pb: 17.65–18.02; 207Pb/204Pb: 15.62–15.67; 208Pb/204Pb: 38.19–38.32). In contrast, group 2 monzodiorites-syenites display more evolved Sr and Nd isotopic compositions (initial 87Sr/86Sr: 0.7088 to 0.7090; initial εNd: −6.7 to −7.1) but similar Pb isotope ratios (206Pb/204Pb: 17.63–17.82; 207Pb/204Pb: 15.64–15.66; 208Pb/204Pb: 38.21–38.37). Differentiation involved AFC processes in group 1 monzonites-quartz monzonites whereas group 2 monzodiorites-syenites were modified by fractional crystallization. Although second-order processes were operative, high total alkali contents, incompatible trace element concentrations in excess of bulk crustal values, and evolved isotopic compositions of the most primitive samples are source-controlled and provide insight into the origin of the parental magmas. With reference to experimental data from the literature, it is inferred that the Okamutambo alkaline rocks represent evolved melts that were generated through melting of enriched lithospheric mantle (phlogopite-lherzolite). The observed negative Nb-Ta and Ti anomalies and positive Pb anomalies in primitive mantle-normalized trace element patterns are in line with a mantle source that contains a recycled crustal component. Isotopic compositions indicate that mantle enrichment is an ancient feature that might be linked to Proterozoic subduction. At 561 Ma, the geodynamic regime in the Damara Orogen was mainly characterized by compression during convergence and continental collision between the Congo and Kalahari cratons which is difficult to reconcile with the generation of the OAC as alkaline magmatism is commonly associated with extensional tectonic regimes. The OAC is, however, associated with a major suture zone that may have been involved in localized transtensional tectonics during oblique flat subduction and thus enabled the generation and ascent of mantle-derived alkaline melts.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-02-07
    Description: Highlights • The crustal thickness of the Zhongsha Block ranging from ~6 to ~25 km. • Rapid transition from the Zhongsha Block to the adjacent oceanic basins was revealed. • Different oceanic structures were observed in the adjacent oceanic basins. • The pre-rift lithospheric configuration may affect the process of rifting and seafloor spreading. Abstract Continental rifting, break-up, and onset of seafloor spreading are inherently controlled by the segmentation and structure of the continental domain suffering from extension. Today, the Zhongsha Atoll (ZS) is wedged between the Northwest Sub-basin (NWSB) and the Southwest Sub-basin (SWSB), two oceanic abyssal basins of the South China Sea (SCS). The nature of the crust and the structure of the transition from continental to oceanic domain are key to revealing the processes and dynamics during the rifting and break-up of the Zhongsha block. In this paper, we present a P-wave velocity model obtained from both forward modeling and tomographic inversion of wide-angle seismic line OBS2017-2. The results support the continental nature of the Zhongsha Block with a thickness of up to ~25 km. However, the transition from the thick continental domain of the ZS into both adjacent abyssal basins shows clear differences. To the north, a ~120 km wide domain of extended continental crust was observed. Farther north, the NWSB is characterized as a narrow basin with typical oceanic crust. The transitional domain between the continental and oceanic crust shows a ~30–40 km wide region with a high-velocity lower crust reflecting excessive magmatism. In contrast, the SWSB is characterized by a sharp transition from the thick continental crust of the ZS to thin oceanic crust which is probably underlain by serpentinized mantle. The strong rheological properties of the pre-rift crust in the western part of the SCS margin may be the reason that rifting concentrated on narrow rifts and thinning focused on necking domains, while the ZS avoided any intense extension. The configuration of rigid blocks thereafter affected the break-up position and the style of oceanic crust.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2024-02-07
    Description: Single-crystal (U-Th)/He dating of 32 apatite and zircon crystals from an impact breccia yielded a weighted mean age of 663 ± 28 ka (n = 3; 4.2 % 2σ uncertainties) for the Monturaqui impact structure, Chile. This ∼350 m diameter simple crater preserves a small volume of impactite consisting of polymict breccias that are dominated by reworked target rock clasts. The small size, young age and limited availability of melt material for traditional geochronological techniques made Monturaqui a good test to define the lower limits of the (U-Th)/He system to successfully date impact events. Numerical modelling of 4He loss in apatite and zircon crystals shows that, for even small craters such as Monturaqui, the short-lived compressional stage and shock metamorphic stage can account for the observed partial to full resetting of (U-Th)/He ages in accessory minerals. Despite the distinctly different 4He diffusion parameters of apatite and zircon, the 2σ-overlapping youngest ages are recorded in both populations of minerals, which supports the inference that the weighted mean of the youngest (U-Th)/He population is the age of formation of this impact structure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-02-07
    Description: Gas hydrates have gained increasing attention in energy and environmental fields and have potential applications in gas storage and transport, carbon dioxide sequestration, and flow assurance. Nevertheless, the kinetics of hydrate formation are still not well understood. In situ high-resolution X-ray computed tomography measurements were performed to monitor xenon hydrate formation on water droplets and ice spheres. For the first time, three-dimensional thickness meshes were used to quantify and visualize the kinetics of hydrate formation. The evolution of the hydrate morphology was investigated, and the time-dependent kinetic parameters were obtained, including the hydrate shell thickness and inner and outer diameters and the effective volume fraction of hydrate particles. The results indicate that the formation of gas hydrates undergoes an initial reaction-controlled stage followed by a mass-transfer-limited growth stage. For hydrate formation from a water droplet with an initial diameter of 1.66 mm, the hydrate shell thickness was approximately 30 μm and the effective volume fraction of hydrate particles was approximately 11% at 12 h after hydrate formation began. The standard deviation of the shell thickness, which indicates the surface roughness of the hydrate shell, increased with time for hydrate formation from water droplets. The results presented in this study renew our knowledge on the kinetics of hydrate formation, which is essential for their use in flow assurance and other hydrate-related technologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-02-07
    Description: Highlights • Regardless of eruptive style, Masaya magmas are compositionally similar. • Volatile contents are higher in Plinian samples, but low compared to CAVA magmas. • All Masaya magmas undergo extensive pre-eruptive degassing at low pressure. • Initial volatiles are higher than observed, but do not control eruptive style. • The state of the volcano's conduit modulates eruptive style in a top–down manner. Abstract Highly explosive Plinian eruptions of basaltic magma are enigmatic because low melt viscosities should inhibit such eruptive style. Masaya volcano, Nicaragua, is a persistently active basaltic system capable of a wide range of eruptive styles, from open-conduit lava lake activity to voluminous Plinian eruptions; it is thus an ideal natural laboratory to constrain potential controls on basaltic eruption style. Here we report the major, trace, and volatile (CO2, H2O, S, Cl, F) element composition of olivine-, plagioclase- and clinopyroxene-hosted melt inclusions as well as matrix glasses from lava lake ejecta and two Plinian tephra deposits—the 2.1 ka Masaya Triple Layer and the 1.8 ka Ticuantepe Lapilli—to test whether pre-eruptive volatile contents and degassing history may be linked to eruptive style. All samples display a relatively narrow and largely overlapping basaltic–basaltic andesitic compositional range ( wt.% SiO2, wt.% MgO) with similar trace element signatures (e.g., , ). However, lava lake and Plinian samples show systematic differences in pre-eruptive volatile contents, forming distinct groups with mean H2O contents of wt.% (lava lake), wt.% (Masaya Triple Layer), and wt.% (Ticuantepe Lapilli). Together, these groups generate broad positive correlations between S, Cl and H2O concentrations, with maximum values reaching 920 ppm, 1300 ppm and 2.3 wt.%, respectively, which are low compared to typical Central American arc magmas. Magma temperature estimates overlap and average at 30°C, while volatile saturation pressures are low, mainly 〈100 MPa, although only lava lake samples record pressures 〈31 MPa. These observations reiterate the compositionally buffered state of the volcano's magmatic system highlighted by previous work and demonstrate that — regardless of eruption style — all Masaya magmas undergo variable, but extensive, pre-eruptive degassing at low pressure. Geohygrometry, gas emissions, and H2O/Ce–Ba/La systematics suggest initial, undegassed H2O contents on the order of 3.9–5.5 wt.%. Our results imply that pre-eruptive volatile contents are not the culprit for Plinian events at Masaya. Instead, we propose that the volcano's vigorous magma supply is modulated in a top–down manner to produce a wide range of eruptive styles, whereby temporary sealing of the conduit may instigate a transition to explosive behavior. In this model, rapid magma ascent is triggered when the seal eventually breaks from degassing-induced pressurization, yielding high degrees of undercooling, rapid microlite growth, and a dramatic increase in magma viscosity and explosive eruption potential. There may thus be a thin line between open-conduit conditions and Plinian eruptions at Masaya.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-02-07
    Description: Highlights • Unprecedented dense coverage of ocean-bottom seismometer data reveals seismic velocity variations within a vertical fluid pathway. • There are zones of both positive (faster) and negative (slower) velocity within the fluid pathway compared to the background formation velocities. • Velocity reductions are related to free gas in the fluid pathway, while the reason for velocity increases is unclear but potentially caused by cementation. Abstract Subsurface CO2 storage is a key strategy to reduce greenhouse gas emission, but leakage of CO2 along natural fluid pathways may affect storage formation integrity. However, the internal structure and the physical properties of these focused fluid conduits are poorly understood. Here, we present a three-dimensional seismic velocity model of an active fluid conduit beneath the Scanner Pockmark in the Central North Sea, derived from ocean-bottom seismometer data. We show that the conduit, which manifests as a pipe structure in seismic data, is separated into two parts. The upper part, extending to 260 m depth, i.e. 110 m below the seafloor, is characterised by seismic velocities up to 100 m/s slower than the surrounding strata. The deeper part is characterized by a 50 m/s seismic velocity increase compared to background velocity. We suggest that the upper part of the pipe structure represents a network of open fractures, partly filled with free gas, while the reason for the velocity increase in the lower part remains speculative. These observations suggest that active pipes can be internally heterogeneous with some intervals probably being open fluid pathways and other intervals being closed. This study highlights the complexity in evaluating focused fluid conduits and the necessity of their detailed assessment when selecting CO2 storage sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-02-07
    Description: Highlights: • Effects of widespread NIS on ecosystem features and properties were quantified. • Most impactful NIS, processes underlying the changes and sources of uncertainty were identified. • Among communities, fish have been impacted the most while the pelagic realm is more affected than the benthic. • Significant effects were evident on the entire food web. • The effect size method offers a robust approach for general applications on quantification of the effects of NIS. Abstract: The introduction of non-indigenous species (NIS) is a major driver for global change in species biogeography, often associated with significant consequences for recipient ecosystems and services they provide for humans. Despite mandated by several high-level international legislative instruments, comprehensive quantitative evaluation on ecosystem impacts of marine NIS is scarce and lack a robust and data-driven assessment framework. The current study is aiming at fulfilling this gap, through quantitative assessment on the effects of the widespread NIS of the Baltic Sea on multiple ecosystem features and components including direct food-web effects. The outcomes of this study allowed identifying the most impacting widespread NIS, together with defining the processes underlying the most significant changes and outlined major sources of uncertainty. Lack and/or bias in the availability of evidence of impacts was recorded for several (both recent and early) introductions. Realizing a sophisticated, data and information-hungry framework for the evaluation of ecosystem impacts of NIS is not pragmatic for management purposes in the foreseeable future. Instead, simple approaches, such as application of common statistical parameters like absolute effect size, are more likely to result in tangible outcomes. As bearing no unit, effect sizes can be later easily aggregated across taxa, affected ecosystem features or spatial scales. The proposed approach enables performing systematic comparisons on the severity of impacts of different NIS along different study disciplines and ecosystems.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2024-02-07
    Description: Fluid-escape structures within sedimentary basins permit pressure-driven focused fluid flow through inter-connected faults, fractures and sediment. Seismically-imaged chimneys are recognised as fluid migration pathways which cross-cut overburden stratigraphy, hydraulically connecting deeper strata with the seafloor. However, the geological processes in the sedimentary overburden which control the mechanisms of genesis and temporal evolution require improved understanding. We integrate high resolution 2D and 3D seismic reflection data with sediment core data to characterise a natural, active site of seafloor methane venting in the UK North Sea and Witch Ground Basin, the Scanner pockmark complex. A regional assessment of shallow gas distribution presents direct evidence of active and palaeo-fluid migration pathways which terminate at the seabed pockmarks. We show that these pockmarks are fed from a methane gas reservoir located at 70 metres below the seafloor. We find that the shallow reservoir is a glacial outwash fan, that is laterally sealed by glacial tunnel valleys. Overpressure generation leading to chimney and pockmark genesis is directly controlled by the shallow geological and glaciogenic setting. Once formed, pockmarks act as drainage cells for the underlying gas accumulations. Fluid flow occurs through gas chimneys, comprised of a sub-vertical gas-filled fracture zone. Our findings provide an improved understanding of focused fluid flow and pockmark formation within the sediment overburden, which can be applied to subsurface geohazard assessment and geological storage of CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2024-02-07
    Description: Elevated organic matter (OM) export flux promotes marine anoxia, thus increasing carbon sequestration efficiency and decreasing atmospheric carbon dioxide levels. However, the mechanisms that trigger and sustain anoxic events-particularly those associated with nutrient-poor, oligotrophic surface waters-remain poorly constrained. Mediterranean Sea sapropels are well-preserved sediments deposited during episodic anoxic events throughout the Plio-Pleistocene; as such, they may provide unique insight into the biogeochemical and ecological drivers of-and responses to-marine anoxia. Using biomarker distributions, we demonstrate that anaerobic ammonium oxidizing (anammox) bacteria and diazotrophic endosymbionts of mat- and/or raft-forming diatoms were both abundant during sapropel events, particularly in the Ionian and Libyan seas. In these sapropels, the carbon isotope compositions of anammox biomarkers directly capture progressive C-13-depletion in deep-water dissolved inorganic carbon, indicating sustained carbon sequestration. To explain these observations, we propose a reinforcing feedback whereby initial nutrient and/or circulation perturbations promote fixed nitrogen loss via intensified anammox and heterotrophic denitrification, which in turn favors proliferation of rapidly sinking diatom-diazotroph symbiotic consortia, increases OM burial flux, and sustains anoxia. This mechanism resolves the long-standing conundrum that small and buoyant diazotrophs are apparently associated with high OM export during periods of marine anoxia and oligotrophy.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-02-07
    Description: Highlights: • Sea urchin food consumption and gonad index followed thermal performance curves. • Body size and sex interacted with temperature and influenced food consumption rates. • Only body size, not sex, in addition to temperature influenced gonad indices. • Larger sea urchins were impacted to a greater extent by warmer temperatures. Rising sea surface temperatures affect the feeding behaviour and reproductive success of many coastal benthic invertebrates. This experimental study investigated the effects of ocean warming on macroalgal food consumption rates in the sea urchins Arbacia lixula and Paracentrotus lividus from Madeira Island to assess how the feeding pressure they exert may change under warmer ocean conditions. Additionally, in A. lixula, the relationship between temperature and the gonad index was examined to estimate potential future reproductive output. Over the course of 25 days, 180 individuals of each species were exposed to temperatures between 22 degrees C and 31 degrees C. After 20 days, consumption rates were assessed in 48-h feeding trials. Gonad indices of A. lixula were determined on the last day of the experiment. In the thermal range investigated, both traits were found to be unimodal functions of temperature. In addition to temperature, consumption rates in both species and the gonad indices in A. lixula were influenced by body size, while feeding in A. lixula also varied between sexes. Maximum food consumption rates (A. lixula and P. lividus) as well as maximum gonad indices (only A. lixula) were observed between 25 degrees C and 26 degrees C. These values are at the upper end of the temperature range that currently prevails around Madeira, and may become average summer temperatures by the year 2100. Consequently, both sea urchin species may thrive during future warm summers and may enhance their top-down control on local macroalgal populations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-02-07
    Description: Highlights: • Unique 30-years data of currents and temperature below 1000 m in the Madeira Basin. • Inter-decadal and long term changes were examined between 1000 m and the bottom. • Temperature increase by 0.03 ± 0.01 °C/year (1000 m) and 0.02 ± 0.02 °C/year at 1600 m. • No significant changes at 3000 m and 5000 m at long-term scale. • The currents and kinetic energy increased in the entire water column over 30-years. Abstract: Data from the deep-sea mooring Kiel 276 (33 N, 22W), 5300 m water depth in the northeast Atlantic, was used to investigate the temporal variability of temperature and currents below the main thermocline (1000 m, 1600 m, 3000 m, 5000 m) in the 30-year period (between 1980 and 2009). Daily averages were the basis to assess the temperature and currents changes, as well as kinetic energy, from annual to decadal and long-term scales. Below the main thermocline, no seasonal signal was identified for both, temperature and currents, during the 30 years. The record-length linear temperature trends at 1000 m and 1600 m are 0.03 ± 0.01 °C year−1 and 0.02 ± 0.02 °C year−1, respectively. The mean currents also intensified within the decades in the entire water column, and as a consequence, the mean kinetic energy increased. The fluctuating kinetic energy increased on a decadal scale only at 1000 m, as a possible consequence of the increase in the strength of Mediterranean Water lenses (MEDDIES) that crossed the mooring site. During the period 2001–2009, six MEDDIES crossed the Kiel 276 site, in addition to the 10 MEDDIES identified earlier during the previous 20 years, between 1980 and 2000 (Siedler et al., 2005). The integral time scales are of the same order in all depths (between 30 to 40 days), indicating that events occur on similar time scales, with mesoscale signals dominating and being present within the entire water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-02-07
    Description: Dissolved lignin phenols, chromophoric dissolved organic matter (DOM), and in situ fluorescence were determined in waters of the Laptev Sea and major Arctic basins, and they were compared with dissolved iron (dFe) distributions to elucidate the sources, molecular characteristics and distributions of iron-binding ligands in the Arctic Ocean. In the Transpolar Drift region (TPD), concentrations of dFe were positively correlated with concentrations of lignin phenols and multiple optical proxies of DOM composition and source. Strong relationships between dFe and visible and ultraviolet wavelength fluorescent DOM indicated that vascular plant and algal-derived DOM contributed to the dFe-ligand pool. These observations are consistent with previous studies suggesting the association of dFe with humic terrigenous and marine organic ligands. The primary sources of iron-binding ligands appear to be the riverine discharge of terrigenous DOM, marine organic matter produced on the shelves, and degradation products of plankton-derived organic matter in the shelf sediments. A stronger relationship between dFe and visible wavelength CDOM fluorescence than with lignin phenols suggested the presence of multiple terrigenous ligands, such as aromatic tannins. The aromatic nature of these terrigenous ligands was indicated by a strong relationship between dFe and the absorption coefficient at 254 nm. A strong negative correlation between the p-hydroxyl to vanillyl lignin phenols ratio and dissolved iron concentrations indicated recently-discharged terrigenous DOM (tDOM) was an important source of iron-binding ligands. Given the strong relationships of marine and terrigenous DOM with dissolved iron, iron-binding functional groups appear to occur in diverse molecules of multiple sources. Examples of such iron-binding functional groups included catechols and carboxylates found in lignins and tannins of terrigenous origins and carboxyl-rich alicyclic molecules (CRAM) of terrigenous and marine origins. The observed dFe distributions in the Arctic Ocean could not be explained by the presence of a single ligand type, but rather by a potpourri of ligand molecules of varying concentrations and binding strengths. This molecular diversity of ligands and associated binding strengths ultimately controls the distribution and transport of dFe in the Arctic Ocean and beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-02-07
    Description: Highlights ● We developed a pH eddy covariance system to detect a sub-seafloor CO2 release. ● It detected CO2 emission to the water column at injection rates of 5.7–143 kg d − 1. ● It was also sensitive enough to quantify benthic biological CO2 production. ● Close to bubble streams, the kinetics of aqueous CO2 equilibration are important. ● This system can be used to detect, attribute, and quantify seafloor sources of CO2. We detected a controlled release of CO2 (g) with pH eddy covariance. We quantified CO2 emission using measurements of water velocity and pH in the plume of aqueous CO2 generated by the bubble streams, and using model predictions of vertical CO2 dissolution and its dispersion downstream. CO2 (g) was injected 3 m below the floor of the North Sea at rates of 5.7–143 kg d − 1. Instruments were 2.6 m from the center of the bubble streams. In the absence of injected CO2, pH eddy covariance quantified the proton flux due to naturally-occurring benthic organic matter mineralization (equivalent to a dissolved inorganic carbon flux of 7.6 ± 3.3 mmol m − 2 d − 1, s.e., n = 33). At the lowest injection rate, the proton flux due to CO2 dissolution was 20-fold greater than this. To accurately quantify emission, the kinetics of the carbonate system had to be accounted for. At the peak injection rate, 73 ± 13% (s.d.) of the injected CO2 was emitted, but when kinetics were neglected, the calculated CO2 emission was one-fifth of this. Our results demonstrate that geochemical techniques can detect and quantify very small seafloor sources of CO2 and attribute them to natural or abiotic origins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-02-07
    Description: Highlights: • From 1960 to 2020 reported costs of US biological invasions were at least $1.22 tril. • Annual invasion costs increased from $2 bil in 1960–69 to $21 bil in 2010–20. • Most costs were damages ($896 bil), with lower management investments ($47 bil). • Agriculture sector ($510 bil) and terrestrial habitat ($644 bil) were impacted most. • Knowledge gaps in reporting make these monetary costs severely underestimated. Abstract: The United States has thousands of invasive species, representing a sizable, but unknown burden to the national economy. Given the potential economic repercussions of invasive species, quantifying these costs is of paramount importance both for national economies and invasion management. Here, we used a novel global database of invasion costs (InvaCost) to quantify the overall costs of invasive species in the United States across spatiotemporal, taxonomic, and socioeconomic scales. From 1960 to 2020, reported invasion costs totaled $4.52 trillion (USD 2017). Considering only observed, highly reliable costs, this total cost reached $1.22 trillion with an average annual cost of $19.94 billion/year. These costs increased from $2.00 billion annually between 1960 and 1969 to $21.08 billion annually between 2010 and 2020. Most costs (73%) were related to resource damages and losses ($896.22 billion), as opposed to management expenditures ($46.54 billion). Moreover, the majority of costs were reported from invaders from terrestrial habitats ($643.51 billion, 53%) and agriculture was the most impacted sector ($509.55 billion). From a taxonomic perspective, mammals ($234.71 billion) and insects ($126.42 billion) were the taxonomic groups responsible for the greatest costs. Considering the apparent rising costs of invasions, coupled with increasing numbers of invasive species and the current lack of cost information for most known invaders, our findings provide critical information for policymakers and managers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-07
    Description: Earth's mantle is more than 2800 km deep, compositionally heterogenous, and potentially stratified. However, understanding of its heterogeneities and stratification is limited. Recently, plume-like anomalies were detected to exhibit different types of anomalous behavior at ∼1000 km depth, where they laterally pond, neck or broadly penetrate to the upper mantle, suggesting that their behavior may be influenced by possible viscosity or density stratification near this depth. However, the specific key reasons are unclear. Here, we use 2D thermal-mechanical-chemical modeling to constrain the key factors causing these large-scale plume-related anomalies. Upward mantle plume penetration at ∼1000 km depth is mainly caused by large source volume and excess temperature, whereas its necking and lateral extension at this depth can only be caused by viscosity and composition-related density stratification, respectively. Considering the various plume behaviors at this proposed boundary, we show that Earth's mantle is likely heterogeneously stratified at ∼1000 km depth, with regional viscosity and/or density changes of different lateral scales and vertical gradients. We speculate that this boundary separates the upper depleted mantle from the primordial mantle domain below. This fundamental boundary has been progressively evolving during stratification of Earth's mantle through melt extraction and mantle stirring throughout Earth history. Highlights • Different plume behaviors suggest regional mantle layering at ∼1000 km depth. • The viscosity layering can lead to plume necking at ∼1000 km depth without ponding. • A composition-induced density stratification can explain the ponding phenomenon. • The regional mantle layering is related to density and/or viscosity stratification. • This likely indicate the boundary between depleted mantle and primordial mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-07
    Description: Highlights • All known observations for Area of Particular Environmental Interest 6 presented. • Assess morphology, sediments, nodules, oceanography, biogeochemistry and ecology. • APEI-6 partially representative of nearby exploration areas yet clear differences. • Present scientific synthesis and management implications for Clarion Clipperton Zone. To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached 〉2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-02-07
    Description: Highlights • AUV geophysical mapping reveals complex patterns of Mn nodule distribution. • Geophysical and image-based data suggest that Mn nodule occurence relates to sediment thickness. • The role of sediment thickness in nodule development requires detailed geochemical investigation. Abstract The relationship between polymetallic nodules (Mn nodules) and deep-sea stratigraphy is relatively poorly studied and the role of sediment thickness in determining nodule occurrence is an active field of research. This study utilizes geophysical observations from three types of autonomous underwater vehicle (AUV) data (multi-beam bathymetry, sub-bottom profiles and underwater photography) in order to assess this relationship. Multi-beam bathymetry was processed with a pattern recognition approach for producing objective geomorphometric classes of the seafloor for examining their relation to sediment thickness and nodule occurence. Sub-bottom profiles were used for extracting sediment thickness along a dense network of tracklines. Close-range AUV-photography data was used for automated counting of polymetallic nodules and their geometric features and it served as ground truth data. It was observed that higher nodule occurence were related to layers with increased sediment thickness. This evidence reveals the role of local seafloor heterogeneity in nodule formation and suggests that unique patterns of local stratigraphy may affect geochemical processes that promote polymetallic nodule development at local scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-07
    Description: Highlights • Cu speciation was investigated for the first time in the South-East Atlantic using CLE-AdCSV. • [Cu2+] were mostly below the putative biolimiting threshold of various marine microorganisms. • Cu speciation parameters showed a poor correlation with assessed biogeochemical parameters. • Spatial differences in Cu speciation parameters suggest that biogeochemical processes and sources strongly influence Cu speciation. Organic ligands play a key role in the marine biogeochemical cycle of copper (Cu), a bio-essential element, regulating its solubility and bioavailability. However, the sources, abundance, and distribution of these ligands are still poorly understood. In this study, we examined vertical Cu speciation profiles from the South-East Atlantic (GEOTRACES section GA08). Profiles were collected from a range of ocean conditions, including the Benguela upwelling region, the oligotrophic South Atlantic Gyre, and the Congo River outflow. In general, the lack of a significant correlation between most of the parameters assessed here with Cu speciation data obscures the provenance of Cu-binding ligands, suggesting that Cu speciation in the South-East Atlantic is influenced by a complex interplay between biotic and abiotic processes. Nevertheless, the total dissolved Cu (CuT) illustrated an allochthonous origin in the working area, while Cu-binding ligands showed both an allochthonous and a biogenic, autochthonous origin. Pigment concentrations showed that the phylogeography of different microorganisms influenced the spatial features of the Cu-binding ligand pool in the South-East Atlantic. Allochthonous Cu-binding ligand sources in the upper water column are likely associated with dissolved organic matter which originated from the Congo River and the Benguela upwelling system. Deep water ligand sources could include refractory dissolved organic carbon (DOC), resuspended benthic inputs, and lateral advected inputs from the shelf margin. The degradation of L1-type ligands and/or siderophores in low oxygen conditions may also be a source of L2-type ligands in the deep. Free Cu ion levels (1.7 to 156 fM), the biologically available form of CuT, were below the putative biolimiting threshold of many marine organisms. Two classes of ligands were found in this study with total ligand concentrations ([LT]) ranging from 2.5 to 283.0 nM and conditional stability constants (logKCuL, Cu2+cond) ranging from 10.7 to 14.6. The Cu speciation values were spatially variable across the three subregions, suggesting that biogeochemical processes and sources strongly influence Cu speciation. Highlights • Cu speciation was investigated for the first time in the South-East Atlantic using CLE-AdCSV. • [Cu2+] were mostly below the putative biolimiting threshold of various marine microorganisms. • Cu speciation parameters showed a poor correlation with assessed biogeochemical parameters. • Spatial differences in Cu speciation parameters suggest that biogeochemical processes and sources strongly influence Cu speciation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-02-07
    Description: PUBLIC SUMMARY: Endothermy has evolved multiple times not only in mammals and birds but also in fishes (teleosts and chondrichthyans) A chromosome-level genome sequence of the whole-body endothermic opah was generated, explaining genetic changes in heat production, sensory, and adaptive immune system Convergent evolution in endothermic vertebrate lineages was investigated, and genes essential for heart function and metabolic heat production were screened Analyses of the unique pectoral muscle of opah revealed that numerous proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation ABSTRACT: Few fishes have evolved elevated body temperatures compared to ambient temperatures and only in opah (Lampris spp) is the entire body affected. To understand the molecular basis of endothermy, we analyzed the opah genome and identified 23 genes with convergent amino acid substitutions across fish, birds, and mammals, including slc8b1, which encodes the mitochondrial Na+/Ca2+ exchanger and is essential for heart function and metabolic heat production. Among endothermic fishes, 44 convergent genes with suggestive metabolic functions were identified, such as glrx3, encoding a crucial protein for hemoglobin maturation. Numerous genes involved in the production and retention of metabolic heat were also found to be under positive selection. Analyses of opah’s unique inner heat-producing pectoral muscle layer, an evolutionary key-innovation, revealed that many proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation. Thus, the opah genome provides valuable resources and opportunities to uncover the genetic basis of thermal adaptations in fish.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-07
    Description: Manganese nodules are a potential source of critical metals such as Cu, Ni, and Co and are widely distributed on the abyssal plains of the global oceans. A polymetallic nodule metallogenic belt with a heterogeneous and spatially clustered nodule distribution was recently discovered in NW Pacific inter-seamount basin (NPIB) areas. However, the geological processes that regulate the nodule occurrence in that region are unresolved. Here, we report on the characteristics of a high-density field of manganese nodules in the abyssal plain north of Suda Seamount. Ship-borne multibeam bathymetric data reveal a typical seamount sector-collapse topography characterized by radial lineaments of debris channels and ridges formed by rapid debris-avalanche flow. Backscatter data linked with underwater observation indicate that manganese nodules are more concentrated (50%–80% areal coverage) along the main body of the debris apron compared to adjacent neighboring areas (〈30%). The extremely high concentrations (~80% areal coverage) characterized by overlapping nodules are apparently associated with downslope movement, possibly triggered by block movement along the fault slip plane or by gravity processes. Our results indicate that seamount sector collapse may have provided sufficient nucleus material for nodule growth and contributed to high nodule concentrations locally. The destruction of submarine volcanic edifices is universal, and the debris aprons and plains around such seamounts are potential prospecting areas for manganese nodule resources throughout the NPIB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-07
    Description: Highlights: • First study to compare microplastic effects over a wide biogeographical range • Comparison between natural inorganic microparticles and plastic microparticles • Significant effects on byssus production, respiration and clearance rates, but small effect sizes • No ecologically relevant difference between impact of plastic and natural inorganic microparticles on Mytilidae Abstract: Microplastics are ubiquitous in the marine environment and studies on their effects on benthic filter feeders at least partly revealed a negative influence. However, it is still unclear whether the effects of microplastics differ from those of natural suspended microparticles, which constitute a common stressor in many coastal environments. We present a series of experiments that compared the effects of six-week exposures of marine mussels to two types of natural particles (red clay and diatom shells) to two types of plastic particles (Polymethyl Methacrylate and Polyvinyl Chloride). Mussels of the family Mytilidae from temperate regions (Japan, Chile, Tasmania) through subtropical (Israel) to tropical environments (Cabo Verde) were exposed to concentrations of 1.5 mg/L, 15 mg/L and 150 mg/L of the respective microparticles. At the end of this period, we found significant effects of suspended particles on respiration rate, byssus production and condition index of the animals. There was no significant effect on clearance rate and survival. Surprisingly, we observed only small differences between the effects of the different types of particles, which suggests that the mussels were generally equally robust towards exposure to variable concentrations of suspended solids regardless of whether they were natural or plastic. We conclude, that microplastics and suspended solids elicit similar effects on the tested response variables, and that both types of microparticles mainly cause acute responses rather than more persistent carry-over effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2024-02-07
    Description: Ocean acidification (OA) is one of the most critical anthropogenic threats to marine ecosystems. While significant ecological responses of plankton communities to OA have been revealed mainly by small-scale laboratory approaches, the interactive effect of OA-related changes on zooplankton metabolism and their biogeochemical implications in the natural environment still remains less well understood. Here, we explore the responses of zooplankton respiration and ammonium excretion, two key processes in the nutrient cycling, to high pCO2 levels in a 9-week in situ mesocosm experiment conducted during the autumn oligotrophic season in the subtropical northeast Atlantic. By simulating an upwelling event halfway through the study, we further evaluated the combined effects of OA and nutrient availability on the physiology of micro-and mesozooplankton. OA conditions generally resulted in a reduction in the biomass-specific metabolic and enzymatic rates, particularly in the mesozooplankton community. The situation reversed after the nutrient-rich deep-water addition, which initially promoted a diatom bloom and increased heterotrophic activities in all mesocosms. Under high pCO2 conditions (〉800 μatm), however, the nutrient fertilization triggered the proliferation of the harmful alga Vicicitus globosus, with important consequences for the metabolic performance of the two zooplankton size classes. Here, the zooplankton contribution to the remineralization of organic matter and nitrogen regeneration dropped by 30% and 24%, respectively, during the oligotrophic period, and by 40% and 70% during simulated upwelling. Overall, our results indicate a potential reduction in the biogeochemical role of zooplankton under future ocean conditions, with more evident effects on the large mesozooplankton and during high productivity events
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-02-07
    Description: Rivers are an important transport route of anthropogenic litter from inland sources toward the sea. A collaborative (i.e. citizen science) approach was used to evaluate the litter pollution of rivers in Germany: schoolchildren within the project “Plastic Pirates” investigated rivers across the entire country during the years 2016 and 2017 by surveying floating macrolitter at 282 sites and taking 164 meso−/microplastic samples (i.e. particles 24.99–5 mm, and 4.99–1 mm, respectively). Floating macrolitter was sighted at 54% of sampling sites and floating macrolitter quantities ranged from 0 to 8.25 items m−1 h−1 (average of 0.34 ± 0.89 litter items m−1 h−1). Floating meso−/microplastics were present at 57% of the sampling sites, and floating meso−/microplastic quantities ranged from 0 to 220 particles h−1 (average of 6.86 ± 24.11 items h−1). As only particles 〉1 mm were sampled and analyzed, the pollution of rivers in Germany by microplastics could be a much more prevalent problem, regardless of the size of the river. We identified six plastic pollution hotspots where 60% of all meso−/microplastics collected in the present study were found. These hotspots were located close to a plastic-producing industry site, a wastewater treatment plant, at and below weirs, or in residential areas. The composition of the particles at these hotspots indicates plastic producers and possibly the construction industry and wastewater treatment plants as point sources. An identification of litter hotspots would enable specific mitigation measures, adjusted to the respective source, and thereby could prevent the release of large quantities of small plastic particles in rivers. The adopted large-scale citizen science approach was especially suitable to detect pollution hotspots by sampling a variety of rivers, large and small, and enabled a national overview of litter pollution in German rivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-02-07
    Description: Highlights: • Characterization of enzymes from bone-degrading marine microbiomes. • Enzymes degrade sialo/glyco-proteins at multiple conditions of pH and temperatures. • Enzyme cocktails are useful for valorising bone residues in biorefinery industry. Abstract: Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm Osedax mucofloris, and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.6%) encoding such enzymes were retrieved. The taxonomic assignation and the median identity of 72.2% to homologous proteins reflect microbial and functional novelty associated to a specialized bone-degrading marine community. Binning suggests that only one generalist hosting all ten targeted activities, working in synergy with multiple specialists hosting a few or individual activities. Collagenases were the most abundant enzyme class, representing 48% of the total hits. A total of 47 diverse enzymes, representing 8 hydrolytic activities, were produced in Escherichia coli, whereof 13 were soluble and active. The biochemical analyses revealed a wide range of optimal pH (4.0–7.0), optimal temperature (5–65 °C), and of accepted substrates, specific to each microbial enzyme. This versatility may contribute to a high environmental plasticity of bone-degrading marine consortia that can be confronted to diverse habitats and bone materials. Through bone-meal degradation tests, we further demonstrated that some of these enzymes, particularly those from Flavobacteriaceae and Marinifilaceae, may be an asset for development of new value chains in the biorefinery industry.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-02-07
    Description: Highlights • Hydrography and convection reconstructed in the Nordic Seas during MIS 11. • Active convection in the Nordic Seas occurred during prolonged freshwater input. • Freshwater input does not always impede convection on interglacial timescales. • Onset of polar convection may have helped to sustain interglacial conditions. Abstract The Atlantic meridional overturning circulation (AMOC) is a critical element of Earth's climate system and it is currently weakening. While this weakening is frequently explained by freshwater-driven disruptions to deep-water formation, uncertainties about the impacts of prolonged freshening limit our capacity to predict its future state. For example, during the warm and unusually long marine isotope stage (MIS) 11 interglacial, ∼424 to 374 ka, several lines of evidence suggest that a strong AMOC persisted concomitant with fresher-than-present conditions in the Nordic Seas, challenging our current understanding of deep-water formation. Here, we present new foraminifer-bound nitrogen isotope data along with multiple additional geochemical reconstructions of upper-ocean hydrography in the Nordic Seas during this anomalous interval. Our data suggest that a weak summer stratification was driven by the prolonged upper-ocean accumulation of freshwater beginning at the onset of the climatic optimum, ∼410 to 407 ka, which could have helped precondition the region for deep-water formation. A box model constrained by paleo-proxy data additionally suggests that the density gradient between the subpolar North Atlantic and Nordic Seas was favorable for the onset of deep-water formation in the Nordic Seas during the climatic optimum. It is thus likely that the Nordic Seas became a locus of deep-water formation around this time. Enhanced northern-hemisphere heating driven by deep-water formation in the Nordic Seas may have been important for delaying glacial conditions, thereby driving the extended warming characteristic of MIS 11. Such findings may also be relevant for near-future changes under a relatively fresher high-latitude North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-02-07
    Description: A large-volume mesocosm-based nutrient perturbation experiment was conducted off the island of Hawai‘I, USA, to investigate the response of surface ocean phytoplankton communities to nutrient addition of macronutrients, trace metals, and vitamins and to assess the feasibility of using mesocosms in the open ocean. Three free-drifting mesocosms (~60 m3) were deployed: one mesocosm served as a control (no nutrient amendments), a second (termed +P) was amended with nitrate (N), silicate (Si), phosphate (P) and a trace metal + vitamin mixture, and a third (termed -P) was amended with N, Si, and a trace metal + vitamin mixture but no P. These mesocosms were unreplicated due to logistical constraints and hence differences between treatments are qualitative. After 6 d, the largest response of the phytoplankton community was observed in the +P mesocosm where chlorophyll a (chl a) and 14C-based primary production were 2–3× greater than the -P mesocosm and 4–6× greater than the control. Comparison between mesocosm and ‘microcosm’ incubations (20 l) revealed differences in the magnitude and timing of production and marked differences in community structure with a reduced response of diatoms in microcosm treatments. Notably, we also observed pronounced declines in Prochlorococcus populations in all treatments: although these were greater in microcosms (up to 99%). Overall, this study confirmed the feasibility of deploying free-drifting mesocosms in the open ocean as a potentially powerful tool to investigate ecological impacts of nutrient perturbations and constitutes a valuable first step towards scaling plankton manipulation experiments.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-02-07
    Description: It is widely accepted that iron (Fe)-binding organic ligands play a crucial role in Fe distribution in the marine environment and thus in Fe biogeochemistry. Although Competitive Ligand Equilibration – Adsorptive Cathodic Stripping Voltammetry (CLE-AdCSV) is a well-established technique to investigate Fe chemical speciation in marine samples, several impediments still need to be addressed. These include the extrapolation of laboratory measurements to in-situ conditions, the harmonization of the analytical procedures used, and the applicability of the methods over salinity ranges wider than seawater (e.g., sea ice). This work focusses on the calibration of 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-naphthol (NN), along the salinity range 1–90, and titration of natural samples at two different temperatures (4 °C and 20 °C). The artificial ligand concentration was 10 μM for TAC and 5 μM for SA and NN. Calibrations showed that increasing salinity caused a decrease in the conditional stability constants (logK'Fe’AL) for NN and SA (although different behaviours were noted for the two species FeSA and FeSA2). Less accuracy was noted using TAC, which behaved inconsistently outside the 21 〈 S 〈 35 range, and its use is therefore discouraged in fresh and highly saline waters. Titrations of natural samples showed that only SA covered the salinity range selected, up to 78, and its use is therefore recommended in sea-ice studies. The side reaction coefficient (logα'Fe’AL) of each artificial ligand was found to be influenced by temperature differently: logα'Fe’SA was higher at lower temperature (4 °C), whereas logα'Fe’SA2 and logα'Fe’NN3 increased with increasing temperature (to 20 °C). Although titrations performed at 4 °C highlighted that the uncomplexed Fe fraction was 14% lower than at 20 °C, with potential consequences on primary productivity, the percentage of natural Fe complexed was 〉99%. Future investigations should consider the analysis of the samples at a temperature as close as possible to in-situ conditions to reduce the potential temperature effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-02-07
    Description: Serpentinization and carbonation of ultramafic formations is a ubiquitous phenomenon, which deeply influences the biogeochemical cycles of water, hydrogen, carbon…while supporting the particular biosphere around the oceanic hydrothermal vents. Carbonation of peridotites and other mafic and ultramafic rocks is also a hot topic in the current energy landscape as the engineered sequestration of mineral CO2 in these formations could help reduce the atmospheric emissions and cope with climate change. In this study, we present two reactive percolation experiments performed on a natural serpentinite dredged from the ultraslow South-West Indian Oceanic Ridge. The serpentinite cores (length 3–4 cm and dia. 5.6 mm) were subjected for about 10 days to the continuous injection of a NaHCO3-saturated brine at respectively 160 °C and 280 °C. Petrographic and petrophysical results as well as outlet fluid compositions were compared to numerical batch simulations performed with the PHREEQC open software allowing to reconstruct the mineralogical evolution of both cores. The most striking observation is the fast and dramatic decrease of the permeability for both experiments principally due to the precipitation of carbonates. On the contrary, serpentine was found to be less impacting as it precipitates in low-flow zones, out of the main percolation paths. In total, about 5.6% of the total injected CO2 was retained in the core, at 280 °C. In the same time, hydrogen was consistently produced with a total recovered H2 corresponding to 0.8% of the maximum H2 possible. The global behavior of the cores is interpreted as the result from an interplay between interacting spatio-temporal lengthscales controlled by the Damköhler number.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-02-07
    Description: Highlights: • Research interest and economic impacts of biological invasions are globally increasing. • Invasive alien species costs grew faster than reports of costs. • Invasive alien species cost trends differ across geographic regions. • Different taxonomic groups drive global and regional trends differently. Abstract: Invasive alien species (IAS) are a growing global ecological problem. Reports on the socio-economic impacts of biological invasions are accumulating, but our understanding of temporal trends across regions and taxa remains scarce. Accordingly, we investigated temporal trends in the economic cost of IAS and cost-reporting literature using the InvaCost database and meta-regression modelling approaches. Overall, we found that both the cost reporting literature and monetary costs increased significantly over time at the global scale, but costs increased faster than reports. Differences in global trends suggest that cost literature has accumulated most rapidly in North America and Oceania, while monetary costs have exhibited the steepest increase in Oceania, followed by Europe, Africa and North America. Moreover, the costs for certain taxonomic groups were more prominent than others and the distribution also differed spatially, reflecting a potential lack of generality in cost-causing taxa and disparate patterns of cost reporting. With regard to global trends within the Animalia and Plantae kingdoms, costs for flatworms, mammals, flowering and vascular plants significantly increased. Our results highlight significantly increasing research interest and monetary impacts of biological invasions globally, but uncover key regional differences driven by variability in reporting of costs across countries and taxa. Our findings also suggest that regions which previously had lower research effort (e.g., Africa) exhibit rapidly increasing costs, comparable to regions historically at the forefront of invasion research. While these increases may be driven by specific countries within regions, we illustrate that even after accounting for research effort (cost reporting), costs of biological invasions are rising.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-02-07
    Description: Highlights: • First time hybridization is detected in deep-water sponges (Phakellia) using SNPs. • Hybridization corroborated by morphological and microbial analyses. • Connectivity between shallow populations of Phakellia robusta spanning ca. 2,000 km. • Molecular connectivity explained by prevalent oceanographic currents. Abstract: Deep-sea North Atlantic sponge grounds are crucial components of the marine fauna providing a key role in ecosystem functioning. To properly develop effective conservation and management plans, it is crucial to understand the genetic diversity, molecular connectivity patterns and turnover at the population level of the species involved. Here we present the study of two congeneric sponges, Phakellia robusta and Phakellia hirondellei, using multiple sources of evidence. Our phylogenetic study using a fragment of COI placed these two species as sister. Haplotype network analysis using COI revealed no genetic structure for P. hirondellei in samples from the Cantabrian Sea (〈100 km). Contrastingly, P. robusta showed a clear genetic structure separating deep-water samples from the Cantabrian Sea and the Hatton-Rockall Basin, from samples from shallower waters from Kerry Head Reefs, NW of Orkney, and Norway. ddRADSeq-derived SNPs for P. robusta also segregated samples by bathymetry rather than by geographical distances, and detected a predominant northwards migration for shallow-water specimens connecting sites separated ca. 2,000 km, probably thanks to prevalent oceanographic currents. Importantly, our analysis using SNPs combining the datasets of the two species revealed the presence of potential hybrids, which was corroborated by morphological (spicule) and microbial (16S amplicon sequencing) analyses. Our data suggest that hybridization between these two species occurred at least two times in the past. We discuss the importance of using next-generation techniques to unveil hybridization and the implications of our results for conservation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-02-07
    Description: Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-02-07
    Description: Seismic interpretation of mobile shales is challenging, mostly because of their unclear seismic expression. Imaging of mobile shales is difficult because of their low seismic-impedance contrast with many sedimentary rocks, spatial variation of their seismic properties, complex geometries of mobile-shales structures, and their complex internal structures. Furthermore, their seismic properties depend strongly on both overpressure and fluid content, which are difficult to predict. To unravel this problem, we reviewed the physical properties of shales, merging data from in situ determinations of density and sonic velocities with experimental data and modeling results. We analyzed how diagenetic transformations during shale burial modify their physical properties and seismic characteristics. We reviewed conditions for smectite-illite transformation and gas generation (mostly methane) by oil cracking to evaluate how thermal gradient, shale composition, and hydrocarbon content modify the densities, sonic velocities, and seismic expressions of mobile shales. We then incorporated the amount and type of fluids released in shales during diagenesis into a study of seismic reflectivity of mobile shales. Results derived theoretically for various types of mobile-shale contacts are compared with high-quality seismic examples, including mud volcanoes and a variety of complex shale diapirs. Observed reflectivity and seismic fabrics are discussed to infer clay composition, fluid content and type, and temperature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-02-07
    Description: Highlights • Chlorine isotopes were measured in melt inclusions along CAVA. • Melt inclusions have on average higher Cl than bulk rocks. • Aqueous fluids, melt-like component and metasomatized mantle form three distinct signatures. • The high Cl of the metasomatized mantle wedge suggests the presence of amphibole. • The amphibole signature in bulk rocks is diluted by late-stage processes. The isotopic composition of Cl, a highly hydrophilic and incompatible element, can provide new insights into the processes of element recycling in subduction zone settings. Samples from 13 localities in Guatemala, El Salvador, Nicaragua and Costa Rica, representing a ca. 1000 km long NW-SE segment along the Central American Volcanic Arc (CAVA), were selected. Ninety-seven melt inclusions, hosted by olivine Fo90−70, were measured for Cl isotope ratios and trace element concentrations. Melt inclusions from samples from Guatemala to northwest Nicaragua have a restricted range of Cl values (range 〈 1‰ within a sample) with values decreasing from Santa Maria (Guatemala) to San Miguel (El Salvador), whereas melt inclusions from Nicaragua and Costa Rica display larger variation within a sample (Cl value range 〉1‰, up to 3.8‰) and do not show any systematic variation along the arc. For some samples, the Cl in the melt inclusions is shifted by up to 2‰ to higher values compared to bulk rock data from the same volcanic center, for which the extent of Cl degassing is not known. The combination of Cl values in melt inclusions with trace elements and the existing knowledge about the slab contributions along the arc allows us to elucidate the Cl isotope composition of different endmembers in this subduction zone. From Guatemala to northwest Nicaragua, a fluid component, originating from serpentinite, has a Cl value close to +0.6‰. This value, similar to lithospheric serpentinites, confirms that despite the aqueous fluid migration through the entire slab, Cl isotopes do not fractionate significantly during transport. A melt-like component, present in the southern part of the arc, has negative Cl, possibly down to −2.5‰. This component has lower Cl than values of the oceanic crust but similar to sediments currently subducting beneath CAVA. Finally, a common component, most likely amphibole-bearing metasomatized mantle, is identified in samples with the highest Cl values (up to +3.0‰). The melting of amphibole, a mineral concentrating 37Cl over 35Cl, could explain the high Cl values. The difference between melt inclusions and bulk rock Cl in some volcanic centers probably results from late-stage processes such as mixing of different batches of magma at shallower levels after melt inclusions entrapment. Melt inclusions thus give a more comprehensive picture of Cl isotope systematics along the CAVA and in primitive subduction-related magmas.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-02-07
    Description: Highlights • Ocean current plays an essential role in shaping ocean floor. • Observed Kuroshio Current in the Kenting Plateau is up to 1.8 m/s. • Intense Kuroshio Current shaped the Kuroshio Knoll into flat topped elevated surface. • The parent rocks of the gravels were buried 2 to 4 km below the seafloor. • Decrease in grain size and sand content away from the Plateau indicates the Plateau acts as source for the sand. The Kenting Plateau is characterized by unusual low relief surfaces that straddle the topographic crest of the northern Manila accretionary prism off southern Taiwan at 400–700 m water depth. Multibeam bathymetric data, reflection seismic data, Acoustic Doppler Current Profiler (ADCP) data, surface grab samples, and sediment cores were collected in and around the Plateau to identify evidence of erosion in the Kenting Plateau and understand how the morphological evolution has been influenced by submarine erosion over geological time scales. The most distinctive feature on the Kenting Plateau is a 3 km × 7 km bean-shaped flat elevated platform (Kuroshio Knoll) revealed by multibeam bathymetry. Seismic data show almost no reflections beneath the seafloor and erosional truncations at the seafloor, especially in the Plateau's eastern half, evidencing widespread erosion. The P-wave velocity of the gravels recovered from the top of the Plateau ranges from 2.2 to 4 km/s. After comparing the velocity with the borehole data from nearby basin the burial depth of the parent rocks was found to be around 2 to 4 km below the seafloor, indicating that the parent rocks have been uplifted and gravels were formed due to erosion of the Plateau. The truncation of the seafloor shown on seismic sections suggests significant erosion on the Plateau. Sand content of the sediment cores decreases away from the Plateau, suggesting that sediment transport is effective in this area with high energy deposition, thereby accumulating coarse sediments on the Plateau and removing fine particles away from it. The presence of a dune field migrating northward of the Plateau, parallel to the Kuroshio Current also evidences active sediment transport in the area. Flow velocity of the Kuroshio Current observed from the ADCP data is very high, reaching up to 1.8 m/s on top of the Kuroshio Knoll (SE domain). We thus interpret that the observed intense erosion is caused by the Kuroshio Current, while the uplift of the Kenting Plateau is partially due to isostatic rebound caused by sediment removal through erosion and compression of the accretionary wedge. The higher sedimentation rate and coarser in grain size during sea level lowstand (20,000–12,000 yrs. BP) suggests that the erosion was more intense during the glacial period compared to that of deglacial period (〈 12,000 yrs. BP) as seen from the MD97–2145 core. Submarine erosion is predominant throughout the Plateau, and it controls the geomorphology of the Plateau, especially the Kuroshio Knoll.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-02-07
    Description: Highlights • Tunisian Coral Mounds: first known to develop during the last glacial in the Mediterranean. • High surface productivity and adequate AW-LIW interface depth forced mound formation. • Distance from mounds to AW-LIW interface key in defining their formation pace. Cold-water corals are key species of benthic ecosystems, sensitive to changes in climate and capable of recording them in the chemical composition of their skeletons. The study of cold-water coral mound development in relation to palaeoceanographic variations during the Pleistocene and Holocene stages in the Mediterranean Sea has mainly been focussed in the Alboran Sea (Western Mediterranean). The present study describes the coral deposits and corresponding ages of 3 gravity cores, acquired from the newly discovered Tunisian Coral Mound Province (Central Mediterranean), which comprises several ridge-like mounds. All the cores acquired displayed dense coral deposits, dominated by Desmophyllum pertusum fragments embedded within a muddy sediment matrix. Overall, 64 coral samples have been dated with the Usingle bondTh laser ablation MC-ICP-MS method, revealing corals of mostly Pleistocene age ranging from ~MIS 11 to 8.4 ka BP. Although coral mound formation was reduced for most of the last 400 kyr, a main stage of pronounced mound formation occurred during the last glacial period, which contrasts to the findings previously published for coral mounds in other regions of the Mediterranean Sea. Coral mound formation during the last glacial was most likely associated with a colder seawater temperature than the one observed in the present-day, an increased surface productivity and an appropriate depth of the interface between Atlantic Waters and Levantine Intermediate Waters. The combination of the data acquired here with that of previous mound formation studies from the Alboran Sea also suggests that cold-water coral mounds located at greater depths develop at slower rates than those found in shallower settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-02-07
    Description: Highlights: • Overview on oxidative treatment processes for different industrial applications • Compilation of disinfection by-product types/concentrations in marine water uses • Estimation of global DBP inputs into marine water from different industries • Comparison of anthropogenic bromoform production to emissions from natural sources Abstract: Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470 – 800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5 – 21.8 × 106 kg/a (kg per year) with contributions of 11.8 – 20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2 – 6 % of the natural bromoform emissions from marine water, which is estimated to be 385 – 870 × 106 kg/a.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-02-07
    Description: Highlights: • Climate model sensitivity experiments are performed using state-of-the-art ice sheet and freshwater reconstructions • Declining Northern Hemisphere ice sheets increase the sensitivity of the AMOC to North Atlantic meltwater discharge • Deglacial rise in atmospheric CO2 concentration decreases the sensitivity of the AMOC to North Atlantic meltwater discharge • Both effects provide a complementary perspective to existing explanations for abrupt AMOC transitions Abstract: The last deglaciation was characterized by a sequence of abrupt climate events thought to be linked to rapid changes in Atlantic meridional overturning circulation (AMOC). The sequence includes a weakening of the AMOC after the Last Glacial Maximum (LGM) during Heinrich Stadial 1 (HS1), which ends with an abrupt AMOC amplification at the transition to the Bølling/Allerød (B/A). This transition occurs despite persistent deglacial meltwater fluxes that counteract vigorous North Atlantic deep-water formation. Using the Earth system model COSMOS with a range of deglacial boundary conditions and reconstructed deglacial meltwater fluxes, we show that deglacial CO2 rise and ice sheet decline modulate the sensitivity of the AMOC to these fluxes. While declining ice sheets increase the sensitivity, increasing atmospheric CO2 levels tend to counteract this effect. Therefore, the occurrence of a weaker HS1 AMOC and an abrupt AMOC increase in the presence of meltwater, might be explained by these effects, as an alternative to or in combination with changes in the magnitude or routing of meltwater discharge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-02-07
    Description: Deep-sea mining may be just a few years away and yet society is struggling to assess the positive aspects, such as increasing the supply of metals for battery production to fuel the green revolution, versus the potentially large environmental impacts. Mining of polymetallic (manganese) nodules from the deep ocean is likely to be the first mineral resource targeted and will involve direct impacts to hundreds of km2 of seabed per mine per year. However, the mining activity will also cause the generation of large sediment plumes that will spread away from the mine site and have both immediate and long-term effects over much wider areas. We discuss what the impacts of plumes generated near the seabed by mining vehicles may be and how they might be measured in such challenging environments. Several different mining vehicles are under development around the world and depending on their design some may create larger plumes than others. We discuss how these vehicles could be compared so that better engineering designs could be selected and to encourage innovation in dealing with plume generation and spread. These considerations will aid the International Seabed Authority (ISA) that has the task of regulating mining activities in much of the deep sea in its commitment to promote the Best Available Technology (BAT) and Best Environmental Practice (BEP).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-02-07
    Description: Highlights • Photogrammetry is used to construct a 3D-model of the collapsed ‘Azure Window’ coastal arch. • The 3D-model enables reconstruction and understanding of the dynamics of the collapse event. • The collapse entailed erosion at the base of the pillar, collapsing in the southwest direction. • The bridge collapsed vertically upon loss of support from the pillar. • Breakup occurred along the lithological boundary and existing joints. Abstract The Azure Window was a natural arch situated in the west coast of Gozo (Maltese Archipelago) that collapsed in March 2017. We employ a Diver Propulsion Vehicle-mounted camera system to capture data for the 3D-modeling of this collapsed arch via photogrammetry. We demonstrate use of this method to document complex underwater geomorphology spread across a large area, and draw up a geomorphic assessment of the site and collapse event on the basis of this 3D-model. The methodology enables a reconstruction and understanding of the collapse event. On account of the high-resolution attained, we are able to cross-match the principal submerged components with their pre-collapse location; this enables an understanding of the dynamics of the collapse, confirmation of rock break-up along existing joints, and mapping the distribution of the rock and debris from the collapse event. We conclude that the key stages in the collapse of the Azure Window entailed erosion at the base of the pillar, leading to the latter's collapse in the southwest direction, breaking into two main sections that separated along the lithological boundary. We also find clear evidence that separation of some sections of the pillar followed pre-existing joints. The bridge collapsed vertically upon loss of support from the pillar, breaking into two main components and many other fragments. We also document further changes at the site post-collapse. We show that this approach can be utilised to understand and characterise such events even when significant time has elapsed since collapse, and rocks have already undergone erosion and significant marine growth.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-02-07
    Description: We used a combined ion pairing - organic matter speciation model (NICA-Donnan) to predict the organic complexation of iron (Fe) at ambient pH and temperature in the Celtic Sea. We optimized our model by direct comparison with Fe speciation determined by Adsorptive Cathodic Stripping Voltammetry using the added Fe-binding ligand 1-nitroso-2-naphthol (HNN) in the presence and absence of natural organic matter. We compared determined Fe speciation with simulated titrations obtained via application of the NICA-Donnan model with four different NICA parameter sets representing a range of binding site strengths and heterogeneities. We tested the assumption that binding sites scale to dissolved organic carbon (DOC) concentrations in marine waters. We found that a constant low DOC concentration resulted in an improved fit of our titration data to the simulated titrations, suggesting that inputs of autochthonous marine DOM may not increase the heterogeneity or concentrations of Fe binding sites. Using the optimal parameter set, we calculated pFe(III)´ (−log(∑Fe(OH)i3−i)) and apparent Fe(III) solubility (SFe(III)app) at ambient pH and temperature in the water column of the Celtic Sea. SFe(III)app was defined as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM formed at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). SFe(III)app was within range of the determined dissolved Fe concentrations observed after winter mixing on the shelf and in waters 〉1500 m depth at our most offshore stations. Our study supports the hypothesis that the ocean dissolved Fe inventory is controlled by the interplay between Fe solubility and Fe binding by organic matter, although the overall number of metal binding sites in the marine environment may not be directly scalable to DOC concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-02-07
    Description: Coastal ecosystems globally are exposed to the most pervasive anthropogenic activities, caused by a suite of human infrastructure and enterprises such as shipping ports, aquaculture facilities, fishing, and tourism. These anthropogenic activities may lead to changes in ecosystem biodiversity, followed by loss of ecosystem functioning and services. Shipping industry and aquaculture have also been recognized as the main vectors for introduction of marine non-indigenous species (NIS) worldwide. In this study, we used DNA metabarcoding-based methods to investigate plankton biodiversity under varying anthropogenic pressures (shipping and bivalve aquaculture) along the eastern Adriatic coast (the northernmost part of the Mediterranean Sea). Our comparative assessment revealed similar community structures among investigated coastal locations (Northern, Central and Southern Adriatic). When the whole plankton communities were considered, they did not differ significantly between port and aquaculture sites. However, the proportion of the unique zOTUs in the port samples was remarkably higher than that in aquaculture sites (40.5% vs 8.2%), indicating that port areas may receive higher abundance and species richness of NIS than aquaculture sites. Further important difference between the two types of anthropogenically impacted habitats was a high abundance of three notorious invaders – M. leidyi, M. gigas, and H. elegans in late summer at the aquaculture site in Northern Adriatic. Therefore, the plankton community of the area is under pressure not only from aquaculture activities, but also establishment of NIS. Port areas are probably under greater introduction pressure from NIS, but aquaculture sites may experience greater community changes due to their establishment
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-02-07
    Description: Highlights • full constitutive model parameter set of marine soil for MCC. • workflow for studies of potential trigger mechanisms exemplified by marine gas occurrence. • quantitative estimation of slope stability (by FOS) on the Balearic Promontory. • Gassy soil can be considered a preconditioning factor, not a trigger mechanism. Abstract The destructive potential of submarine landslides for populated coastal areas and maritime infrastructure has been described many times. However, the geological processes that can trigger such landslide events have not yet been fully established. In order to be able to conclusively assess the trigger potential of these processes, a quantification of the slope stability is indispensable. This requires a precise knowledge of the geotechnical and geological boundary conditions before and after the investigated landslide event, as well as the change in these boundary conditions caused by the alleged trigger mechanism. In order to make these described preconditions and the work process generally applicable, a universally adaptable methodology for the identification of trigger mechanisms was developed. Here it is successfully applied to marine gas occurrence, which has recently been considered as a trigger mechanism due to the negative influence of enclosed gas bubbles on the shear strength of fine-grained soils. The constitutive model by Sultan and Garziglia (2014) is applied to simulate the gas-influenced undrained shear strength of a marine soil from a sediment starved margin on the Balearic Promontory and a range of Finite Element Limit Analyses (FELA) are conducted to determine the resulting loss of stability of different slope geometries. Within the scope of these calculations, the first set of Modified Cam Clay model parameters for a soil from the western Mediterranean is introduced. Based on the simulations, it can be concluded that marine gas occurrence decreases the overall stability of a slope compared to the saturated state. However, it also becomes obvious that the prevailing slope geometries with low inclinations are stable with a substantial capacity reserve for all simulated scenarios. Conclusively, gassy soil can be designated as a preconditioning factor decreasing the slope stability, as the state of failure can only be reached if the slope was in a precarious state before, or in combination with other impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-02-07
    Description: Highlights: • Allorecognition assessment of fish with (N. ophidion) and without (S. typhle) MHCII. • Using fin-transplantations of self and non-self tissue with transcriptomics. • Upregulated gene expression of cytotoxic T-cell/MHCI activity in S. typhle. • Indications of cytotoxic/MHCI gene upregulation in S. typhle allografts. • MHCI downregulation in N. ophidion autografts, suggests immunological tolerance. Abstract: Natural occurrences of immunodeficiency by definition should lead to compromised immune function. The major histocompatibility complexes (MHC) are key components of the vertebrate adaptive immune system, charged with mediating allorecognition and antigen presentation functions. To this end, the genomic loss of the MHC II pathway in Syngnathus pipefishes raises questions regarding their immunological vigilance and allorecognition capabilities. Utilising allograft and autograft fin-transplants, we compared the allorecognition immune responses of two pipefish species, with (Nerophis ophidion) and without (Syngnathus typhle) a functional MHC II. Transcriptome-wide assessments explored the immunological tolerance and potential compensatory measures occupying the role of the absent MHC II. Visual observations suggested a more acute rejection response in N. ophidion allografts compared with S. typhle allografts. Differentially expressed genes involved in innate immunity, angiogenesis and tissue recovery were identified among transplantees. The intriguing upregulation of the cytotoxic T-cell implicated gzma in S. typhle allografts, suggests a prominent MHC I related response, which may compensate for the MHC II and CD4 loss. MHC I related downregulation in N. ophidion autografts hints at an immunological tolerance related reaction. These findings may indicate alternative measures evolved to cope with the MHC II genomic loss enabling the maintenance of appropriate tolerance levels. This study provides intriguing insights into the immune and tissue recovery mechanisms associated with syngnathid transplantation, and can be a useful reference for future studies focusing on transplantation transcriptomics in non-model systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-02-07
    Description: Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-02-07
    Description: Highlights: • A first standardized and publicly available Holocene relative sea-level database for the Baltic Sea is presented. • The database holds 1099 revised data points with an estimation of vertical and chronological uncertainties. • Negative RSL tendencies prevail over the positive and complex tendencies in the Baltic Sea Basin. • Mid-Holocene RSL highstand occurred around 7.5–6.5 ka BP being consistent with the end of the final melting of the LIS. • The contribution of ice loading in the eastern Baltic Sea Basin is likely overestimated in the ICE-5G and ICE-6G_C models. Abstract: We present a compilation and analysis of 1099 Holocene relative shore-level (RSL) indicators located around the Baltic Sea including 867 relative sea-level data points and 232 data points from the Ancylus Lake and the following transitional phase. The spatial distribution covers the Baltic Sea and near-coastal areas fairly well, but some gaps remain mainly in Sweden. RSL data follow the standardized HOLSEA format and, thus, are ready for spatially comprehensive applications in, e.g., glacial isostatic adjustment (GIA) modelling. We apply a SQL database system to store the nationally provided data sets in their individual form and to map the different input into the HOLSEA format as the information content of the individual data sets from the Baltic Sea area differs. About 80% of the RSL data is related to the last marine stage in Baltic Sea history after 8.5 ka BP (thousand years before present). These samples are grouped according to their dominant RSL tendencies into three clusters: regions with negative, positive and complex (transitional) RSL tendencies. Overall, regions with isostatic uplift driven negative tendencies dominate and show regression in the Baltic Sea basin during the last marine stage. Shifts from positive to negative tendencies in RSL data from transitional regions show a mid-Holocene highstand around 7.5–6.5 ka BP which is consistent with the end of the final melting of the Laurentide Ice Sheet. Comparisons of RSL data with GIA predictions including global ICE-5G and ICE-6G_C ice histories show good fit with RSL data from the regions with negative tendencies, whereas in the transitional areas in the eastern Baltic, predictions for the mid-Holocene clearly overestimate the RSL and fail to recover the mid-Holocene RSL highstand derived from the proxy reconstructions. These results motivate improvements of ice-sheet and Earth-structure models and show the potential and benefits of the new compilation for future studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-02-07
    Description: Highlights: • Pelvic brooding induces tissue-specific changes in gene expression • Inflammatory signaling characterizes transcriptome of the egg-anchoring plug • Similar to embryo implantation, the plug likely evolved from an inflammatory response • Mammalian placenta genes were independently co-opted into the plug Summary: The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel “plug” tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-02-07
    Description: Highlights • Offshore CCS research & development making good progress in Scotland and wider UK. • Yet differing views between oil and gas developers and civil society on CCS. • Survey and interview research explores differences between stakeholders. • Respondents more familiar with CCS tend to see it as more necessary for mitigation. • CCS most likely to find stakeholder support for specific and/or localised uses. Although Scotland and the wider UK is making good progress with research and development towards deployment of offshore carbon capture and storage, there is increasing divergence in opinion on the necessity of CCS for meeting climate change targets. Oil and gas operators appear optimistic about the technical feasibility of CCS; whereas civil society and NGOs are increasingly vocal in their scepticism towards the necessity of CCS in a net-zero society. Given that operators’ expertise may be required to support offshore CO2 storage given their subsea experience, and that civil society is important in shaping government and public opinion, this divergence may be a challenge to offshore CCS deployment in the UK and elsewhere. The purpose of this paper is to evaluate the grounds on which oil and gas operators’ views on CCS differ from a wider range of stakeholders, through a survey and in-depth interviews. Our results show that people with more knowledge of CCS are more likely to support its deployment, and that strong belief in anthropogenic climate change is lower – albeit rising – among oil and gas respondents. Our results also show concern that the net-zero transition may have negative effects for carbon-intensive regions, and that storage expertise is the UK’s strongest skill set for CCS deployment. We suggest that across a range of stakeholders, the value of CCS is thus most likely to lie in specific applications (e.g. hydrogen) and/or very specific localities (e.g. places with existing subsurface knowledge and skills), rather than widespread deployment as a mitigation technology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-07
    Description: Highlights: • Linking sightings of Mola mola to physical processes • Novel approach for classification of environmental conditions • Occurrence of Mola mola linked to inflows conditions • Main occurrence of warm water species Mola mola during autumn and winter Abstract: The Baltic Sea is one of the largest brackish water bodies in the world with salinity levels ranging from fresh water conditions in the northeast to full strength saline waters at its transition zone to the North Sea in the west. Most of the water exchange happens in the SW Baltic Sea, the Belt Sea and The Sound where less saline water exits the Baltic Sea at the surface, while higher saline water is entering the Baltic at depth. Thus, the species composition in the Baltic Sea is heavily influenced by the strong salinity gradient, and here several species occur at their limit of their physiological tolerance and preference. In this study, we focused on sightings of the ocean sunfish Mola mola recorded in the western Baltic Sea between 1978 and 2020. This species is regarded as vagrant in the Baltic Sea, i.e., it does not belong to the common species assemblage in this area. Hydrographic conditions, such as water temperature and salinity, were obtained from a highly spatio-temporally resolved hydrodynamic Baltic Sea model, covering a daily resolved 71-year time series. We investigated if the occurrence of M. mola correlates with the dynamics of water mass exchange between the Kattegat/Skagerrak and the SW Baltic Sea. Our analyses show that these occurrences could be related to the presence of anomalously high saline water masses. However, in autumn and winter water temperatures of the western Baltic Sea usually drop below 8 °C with further cooling in January and February to 4–5 °C and during strong winters even down to 〈2 °C. If M. mola will follow the same strategy as in the North Sea, i.e. migrating southward to avoid lethal temperatures, they will not be successful by entering the Baltic Sea, because during winter months temperature everywhere falls far below their thermal tolerance. As a consequence, southward transport or active migration of M. mola into the Baltic Sea will expose the respective specimens to adverse environmental conditions finally precluding survival.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-07
    Description: Contamination by hazardous substances is one of the main environmental problems in the eastern Gulf of Finland, Baltic Sea. A trilateral effort to sample and analyse heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs), and organotins from bottom sediments in 2019–2020 were conducted along with harvesting historical data in Russian, Estonian and Finnish waters. We suggest that the input of organotins still occurs along the ship traffic routes. The tributyltin content exceeded the established quality criteria up to more than 300 times. High contamination by PAHs found near the ports, most likely originate from incomplete fuel incineration processes. The Neva River Estuary and Luga Bay might potentially suffer from severe cadmium contamination. The high ecological risk attributed to the HMs was detected at deep offshore areas. The simulated accumulation pattern qualitatively agrees with field observations of HMs in sediments, demonstrating the potential of numerical tools to tackle the hazardous substances problems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-07
    Description: Dust storms are an important component of the global climate system. At the same time, they also bear a risk for human health by causing pulmonary diseases. Today, East Asian dust storms account for as much as half of the global dust emissions and temporarily affect highly populated areas. Therefore, understanding their mechanisms and predicting their evolution under warmer near-future climate conditions is of major interest. The mid-Pliocene Warm Period (mPWP; 3.264–3.025 Ma) is considered one of the best analogues from the past for anthropogenic climate change. Consequently, understanding the climate dynamics and associated environmental change during the mPWP can help with predicting the environmental effects of warmer-than-present climates. In order to reconstruct Asian dust storm evolution during the mPWP we have analyzed a sediment core from the northern South China Sea (SCS) for its elemental composition, grain-size variations and radiogenic isotope signature for the interval spanning from 3.69 to 2.96 Ma. We show that shortly after the first strong northern hemisphere glaciation (Marine Isotope Stage [MIS] M2; 3.25 Ma) atmospherically transported dust appeared in the northern SCS and this dust deposition prevailed throughout the mPWP. Atmospheric dust input further intensified with the onset of the MIS KM2 glaciation at 3.15 Ma, with distinct and strong dust storms occurring periodically from that time onwards. The increase in atmospherically transported dust can be attributed to the cooling and drying of interior Asia over the course of the mPWP along with an intensification of the East Asian Winter Monsoon and a potential southward shift of the westerlies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-02-07
    Description: Highlights • A HIMU-like volcanism belt along the southwest Africa. • The HIMU-like volcanic complexes form age-progressive volcanic tracks. • EMI and HIMU mantle plumes are from different domains in the lower mantle. Abstract The origin of carbonatitic and highly silica-undersaturated volcanism, common along the SW coast of Africa extending from Angola through Namibia to the tip of South Africa, is still poorly understood. Here we present new geochemical data (major and trace element and Sr-Nd-Pb-Hf-O-C isotopes) from the Agate Mountain calcio- to magnesio‑carbonatites (∼83 Ma), Dicker Willem calcio‑carbonatites (49 Ma) and Swakopmund basanitic plugs (76–72 Ma) along the coast of Namibia that were emplaced after the EMI (enriched mantle one) type Etendeka flood basalts. The trace element and isotopic composition of Agate Mountain carbonatites and Swakopmund basanites indicate that they were derived from a HIMU-type (high time-integrated 238U/204Pb with radiogenic Pb isotope ratios) magma source, similar to the St. Helena global HIMU endmember in the South Atlantic. The Agate Mountain carbonatites form part of the late-stage Walvis Ridge HIMU hotspot track overlying the EM1-type Walvis Ridge basement forming part of the Tristan-Gough hotspot track. The Dicker Willem carbonatites, however, extend to higher 206Pb/204Pb than St. Helena, but have similar 206Pb/204Pb to Mangaia HIMU lavas in the Pacific. Compared to Mangaia HIMU, the Dicker Willem carbonatites with mantle-type O and C isotopes have higher 207Pb/204Pb and 87Sr/86Sr but lower 143Nd/144Nd, suggesting it may represent a new HIMU endmember flavor. The HIMU carbonatitic and silica-undersaturated rocks form a belt of age-progressive volcanic tracks, including: 1) from the Walvis Ridge, through NW Namibia to central Angola, 2) from the Vema Seamount via Dicker Willem carbonatite to Gibeon kimberlites and carbonatites, 3) from the Namaqualand to Bushmanland and to Warmbad volcanic centers in northwestern South Africa, and 4) along the older end of the Shona EMI-type volcanic track extending into South Africa. Geochemical and seismic tomographic data suggest that the EMI and HIMU mantle plumes are generated from different geochemical domains at the base of the lower mantle. The Tristan-Gough, Discovery and Shona EM1 volcanic tracks are derived from a common low-velocity anomaly (superplume-like structure with three branching arms) ascending from the outer margin, possibly lower primoridal layer, of the African large low-shear-velocity province (LLSVP). Seismic low-velocity anomalies can be traced from beneath the belt of HIMU volcanism to an internal and shallower part of the LLSVP, located ∼900–1200 km east of the outer LLSVP margin and suggest that HIMU-type (possibly subducted oceanic lithospheric) material overlies EMI-type (possibly primordial) material in the internal part of the LLSVP.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-02-07
    Description: Highlights: • Since 1960, management for biological invasions totalled at least $95.3 billion. • Damage costs from invasions were substantially higher ($1130.6 billion). • Pre-invasion management spending is 25-times lower than post-invasion. • Management and damage costs are increasing rapidly over time. • Proactive management substantially reduces future costs at the trillion-$ scale. Abstract: The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs — 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1–2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management — particularly pre-invasion — and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-02-07
    Description: Highlights: • Gelatinous zooplankton (GZ) is common in Eastern Tropical North Atlantic (ETNA). • Weak negative correlation between oxygen and key GZ groups with higher densities at lower oxygen conditions. • High GZ biomass also found at lowest oxygen concentration depths. • Strong positive correlation between temperature and key GZ group abundance. • GZ important component of oceanic ecosystems including low oxygenated waters. Physical and topographic characteristics can structure pelagic habitats and affect the plankton community composition. For example, oxygen minimum zones (OMZs) are expected to lead to a habitat compression for species with a high oxygen demand, while upwelling of nutrient-rich deep water at seamounts can locally increase productivity, especially in oligotrophic oceanic waters. Here we investigate the response of the gelatinous zooplankton (GZ) assemblage and biomass to differing oxygen conditions and to a seamount in the Eastern Tropical North Atlantic (ETNA) around the Cape Verde archipelago. A total of 16 GZ taxa (〉1100 specimens) were found in the upper 1000 m with distinct species-specific differences, such as the absence of deep-living species Atolla wyvillei and Periphylla periphylla above the shallow seamount summit. Statistical analyses considering the most prominent groups, present at all stations, namely Beroe spp., hydromedusae (including Zygocanna vagans, Halicreas minimum, Colobonema sericeum, Solmissus spp.) and total GZ, showed a strong positive correlation of abundance with temperature for all groups, whereas oxygen had a weak negative correlation only with abundances of Beroe spp. and hydromedusae. To account for size differences between species, we established length-weight regressions and investigated total GZ biomass changes in relation to physical (OMZ) and topographic characteristics. The highest GZ biomass was observed at depths of lowest oxygen concentrations and deepest depth strata at the southeastern flank of the seamount and at two stations south of the Cape Verde archipelago. Our data suggest that, irrespective of their patchy distribution, GZ organisms are ubiquitous food web members of the ETNA, and their habitat includes waters of low oxygen content.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-07
    Description: The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This study investigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarial infections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6−30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18−24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18−24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-02-07
    Description: Picoeukaryotic communities respond rapidly to global climate change and play an important role in marine biological food webs and ecosystems. The formation of oxygen minimum zones (OMZ) is facilitated by the stratification of seawater and higher primary production in the surface layer, and the marine picoeukaryotic community this low-oxygen environment is topic of interest. To better understand the picoeukaryotic community assembly mechanisms in an OMZ, we collected samples from the Bay of Bengal (BOB) in October and November 2020 and used 18S rDNA to study the picoeukaryotic communities and their community assembly mechanisms that they are controlled by in deep-sea and hypoxic zones. The results show that deterministic and stochastic processes combine to shape picoeukaryotic communities in the BOB. We divided the water column into three vertical layers: the upper oxycline (UO), the OMZ, and the lower oxycline (LO), based on dissolved oxygen concentrations (dissolved oxygen: UO 〉 LO 〉 OMZ) at vertical depths (from 5 m to 2000 m). Deterministic processes controlled the picoeukaryotic community in the UO, while the picoeukaryotic communities in the OMZ and LO were dominated by stochastic processes. The OMZ had a stronger diffusional limitation and the habitat niche breadth in the UO was wider than that in OMZ and LO. We classified the picoeukaryotic community into three functional composition types (phototrophic, mixotrophic, and heterotrophic); heterotrophs were most abundant in the surveyed area, and the proportion of decreased significantly with increasing depth and decreasing dissolved oxygen. The picoeukaryotes in the investigated area also correlated with temperature, salinity, and nutrients (phosphate, silicate, nitrate, nitrite, and ammonium). These findings contribute to a better understanding of picoeukaryotic communities in deep-sea and low-oxygen environments, their functional structuring, as well as the effects of environmental changes on their community structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-02-07
    Description: This literature review presents major environmental indicators and their optimum variation ranges for the prevalence of Vibrio parahaemolyticus in the marine environment by critically reviewing and statistically analyzing more than one hundred studies from countries around the world. Results of this review indicated that the prevalence of Vibrio parahaemolyticus in the marine environment is primarily responsive to favorable environmental conditions that are described with environmental indicators. The importance of environmental indicators to the prevalence of Vibrio parahaemolyticus can be ranked from the highest to lowest as Sea Surface Temperature (SST), salinity, pH, chlorophyll a, and turbidity, respectively. It was also found in this study that each environmental indicator has an optimum variation range favoring the prevalence of Vibrio parahaemolyticus. Specifically, the SST range of 25.67 ± 2 °C, salinity range of 27.87 ± 3 ppt, and pH range of 7.96 ± 0.1 were found to be the optimum conditions for the prevalence of Vibrio parahaemolyticus. High vibrio concentrations were also observed in water samples with the chlorophyll a range of 16–25 μg/L. The findings provide new insights into the importance of environmental indicators and their optimum ranges, explaining not only the existence of both positive and negative associations reported in the literature but also the dynamic associations between the Vibrio presence and its environmental drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-02-07
    Description: Artificial light at night (ALAN) has the potential to change the day-night activity of marine benthic grazers, and can therefore alter the top-down control they exert on macroalgal communities. In laboratory experiments, we investigated the influence of three realistic ALAN regimes on food consumption and feeding rhythmicity in the sea urchins Arbacia lixula and Paracentrotus lividus as well as in the snail Cerithium spp. from the Adriatic Sea. Food consumption was assessed in assays with algal pellets, while feeding rhythms were documented with 24 h time-lapse photography. Both was done in ALAN-acclimated and in non-acclimated animals. We observed temporary and potential long-term changes in the feeding rhythms of Cerithium spp. and Paracentrotus lividus, respectively, but found no lasting influence of ALAN on consumption rates. Effects were weaker when ALAN was applied only part-night, which suggests a possible mitigation measure to reduce the impact of nighttime lighting on coastal ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-02-07
    Description: Geochemical heterogeneities observed in the mantle are usually attributed to recycling of oceanic lithosphere through subduction. However, it remains hotly debated where recycled material stagnates, and how quickly it can be liberated back to surface. This knowledge gap hinders our understanding of mantle circulation and the chemical evolution of the Earth. Here we address these questions using a combination of geochronology and geochemistry from South China Sea (SCS) seamounts. The Shixingbei seamount lavas formed during active seafloor spreading at c. 19.1 Ma show limited geochemical variability, whereas the Zhenbei-Huangyan seamount chain formed during the post-spreading stage at c. 7.8 Ma and displays a wide range of compositions. However, melt inclusions in olivine and plagioclase from the Zhenbei-Huangyan basalts show considerably greater isotopic variability than seen in the whole rock compositions of both the SCS syn- and post-spreading lavas. A previously unidentified third mantle source component (FOZO) revealed by olivine-hosted melt inclusions along with both depleted (DMM) and enriched (EMII) mantle components is required in the source region to explain the observed isotopic and chemical variability. On the basis of our results, the age of the recycled ocean crust and sediments in this region are estimated to be c. 120 – 350 Ma. We infer that these enriched components in the SCS lavas come from the mantle transition zone. Variations in mantle source heterogeneity coupled with melting process control spatial–temporal (spreading vs. post-spreading stage) geochemical variations of lavas from the SCS and surrounding areas. Together with the results from published studies, we propose that marginal basins are one of the major locations on Earth where oceanic and/or continental lithosphere is transferred into the upper mantle and transition zone, representing an important source of upper mantle heterogeneity. We provide a simple conceptual model linking plate subduction and upper mantle heterogeneity and the volcanism in the SCS and surrounding areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-02-07
    Description: The present worldwide study of 31 off-shore back-arc basins and subbasins (BABs) identifies their principal characteristics based on a broad spectrum of geophysical and subduction-related parameters. This synthesis is next used to identify trends in evolution of the back-arc basins for improving our understanding of subduction systems in general. The analysis, based on the present plate configuration, demonstrates that geophysical characteristics and fate of the back-arc basins are essentially controlled by the nature of the overriding plate, which controls lithosphere thermo-compositional structure and rheology. The plate nature governs the length of the extensional zone in back-arc settings along the trench, the efficiency of lithosphere stretching, BAB crustal structure, its buoyancy and bathymetry. Subduction dip angle apparently controls the location of slab melting zone and the efficiency of slab roll-back with feedback link to other parameters. By tectonic nature of the overriding plate (the downgoing plate is always oceanic) the back-arc basins are split into active BABs formed by ocean-ocean, arc-ocean, and continent-ocean convergence, and extinct back-arc basins. By geophysical characteristics, BABs formed on continental plates are subdivided into active BABs with and without seafloor spreading, and extinct BABs are subdivided to Pacific, possibly formed on oceanic plates, and non-Pacific with reworked continental or arc fragments. Six types of BABs are distinctly different. Extension of the overriding oceanic plate above a steeply dipping old oceanic plate, preferentially subducting nearly westwards, forms large deep back-arc basins with a thin oceanic-type crust. In contrast, BABs on the overriding continental or arc plates form at small opening rates and often by shallow subduction of younger oceanic plates with random subduction orientation; these BABs have small size, shallow bathymetry, and hyperextended or transitional ~20 km thick arc- or continental-type crust typical of passive margins. The presence of a 2–5 km thick high-Vp lowermost crustal layer, characteristic of BABs in all settings, indicates the importance of magmatic underplating in their crustal growth. Conditions required for the initiation of a back-arc basin and transition from stretching to seafloor opening depend on the nature of the overriding plate. BABs formed on oceanic plates always evolve to seafloor spreading. BABs formed on continental or arc plates require a long spreading duration with large (〉8 cm/y) opening rates and crustal thinning factor 2.8–5.0 to progress from crustal extension to seafloor spreading; such transition does not happen in back-arc basins formed behind a shallow subduction (〈45o) of a young (〈40 My) oceanic plate. The nature of the overriding plate also determines the fate of back-arc basins after termination of lithosphere extension: extinct Pacific back-arc basins with oceanic-type crust evolve towards deep old “normal” oceans, while shallow non-Pacific BABs with low heat flow and thick crust are likely to preserve their continental or arc affinity. BABs do not follow oceanic cooling plate model predictions. Distinctly different geophysical signatures for spreading at mid-ocean ridges and for back-arc seafloor spreading are caused by a principally different nature of their dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-02-07
    Description: Highlights • The hydrothermal fluids were sampled from a neovolcanic ridge within a non-transform offset. • Serpentinization has been involved on the pathway of hydrothermal circulation • The fluids are strongly affected by phase separation with extremely high Cl content in brine phase • A hybrid model of hydrothermal circulation controlled by tectonic and magmatic activities simultaneously was proposed. The Daxi Vent Field (DVF) is located on a neovolcanic ridge within a non-transform offset at water depths of ∼3500 m, on the Carlsberg Ridge, northwest Indian Ocean. In 2017, we investigated this site using the submersible Jiaolong and collected two fluid samples from orifices of chimneys named “Buddha's Hands” and “A1”, about 37 m apart. Their in-situ measured temperatures are 273 °C and 272 °C, respectively. The Buddha's Hands fluid is highly Cl-enriched (928 mM), while the A1 fluid is Cl-depleted (303 mM). This indicates that they have undergone phase separation. The segregated phases must have remixed during the ascent because the vapor and brine phases sampled cannot be produced by the same phase separation history without other processes. Olivine-rich and/or ultramafic mantle rocks must have been involved during the hydrothermal circulation as evidenced by high dissolved H2 (7.07 mM) and methane (0.884 mM) concentrations, a depletion in B relative to seawater, high Ca and low K, and large positive Eu anomalies. The Fe content in Buddha's Hands fluid is extremely high (11,900 μM) as a result of phase separation, while the Cu concentrations in both fluids are relatively low due to entrainment of seawater which results in precipitation of Cu-rich sulfides in the subseafloor. The concentrations of Zn, Ag, Ga, Sn, Sb, and Cd in A1 vent fluid are significantly elevated due to generation of acidity and remobilization of these elements as Cu-rich sulfides are deposited. The subseafloor processes and associated geochemistry of hydrothermal fluids at the DVF are distinct from other mid-ocean ridge hydrothermal systems due to the specific geologic setting. Hence a hybrid model of hydrothermal circulation is proposed. This study broadens our understanding of the hydrothermal processes occurring in areas of NTO setting and provides more information on mass fluxes discharging from hydrothermal systems and the formation of sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-02-07
    Description: Since the 1980s, the Common Fisheries Policy (CFP) has shaped European fisheries. It has often been criticised for being too prescriptive and, above all, for failing to protect either fishermen or ecosystems. The last reform dates back to the early 2010 s and has led to a slight but slow improvement in the state of ecosystems. Given that the CFP is in the process of evaluation, a group of French fishery scientists set up an initiative to add to the debate on what should be retained, reinforced or added to a possible new reform. This initiative came 10 years after a previous manifesto that presented their vision for fisheries in Europe. Four major issues emerged from the current initiative: (1) a need for transparency and simplification in fisheries management, (2) a need for more consultation and dialogue between stakeholders, (3) the urgency of the situation in the Mediterranean Sea, and (4) the necessity of putting into practice all research developments for an ecosystem approach to fisheries. Compared to 10 years ago, the response of scientists shows that the focus is no longer on achieving the maximum sustainable yield, but rather on the following steps to protect ecosystems and fisheries. An ecosystem approach to fisheries remains indispensable for both ecosystems and fishing activities. To this end, scientists put forward numerous proposals to improve the CFP, acknowledging that the final solutions should emerge from consultation with stakeholders. Climate change, an issue raised much more than in the manifest, reinforces the need to act.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2024-02-07
    Description: Highlights: • Trematodes can affect gastropods' biochemical condition and grazing rates • L. littorea fed more on invasive G. vermiculophylla than on native F. vesiculosus • Trematode-infected snails fed on average 18 % more than uninfected snails • An increase in temperature induced the mobilization of energy reserves • Trematode-induced glycogen decrease might reduce gastropod heat stress tolerance Abstract: Marine bioinvasions are of increasing attention due to their potential of causing ecological and economic loss. The seaweed Gracilaria vermiculophylla has recently invaded the Baltic Sea, where, under certain conditions, it was found to outcompete the native alga Fucus vesiculosus. Parasites of grazers and temperature are among the potential factors which might indirectly modulate the interactions between these co-occurring algae through their single and combined effects on grazing rates. We tested the temperature and parasitism effects on the feeding of the gastropod Littorina littorea on F. vesiculosus vs. G. vermiculophylla. Uninfected and trematode-infected gastropods were exposed to 10, 16, 22, and 28 center dot C for 4 days while fed with either algae. Faeces production was determined as a proxy for grazing rate, and HSP70 expression, glycogen and lipid concentrations were used to assess the gastropod's biochemical condition. Gracilaria vermiculophylla was grazed more than F. vesiculosus. Trematode infection significantly enhanced faeces production, decreased glycogen concentrations, and increased lipid concentrations in the gastropod. Warming significantly affected glycogen and lipid concentrations, with glycogen peaking at 16 center dot C and lipids at 22 center dot C. Although not significant, warming and trematode infection increased HSP70 levels. Increased faeces production in infected snails and higher faeces production by L. littorea fed with G. vermiculophylla compared to those which fed on F. vesiculosus, suggest parasitism as an important indirect modulator of the interaction between these algae. The changes in the gastropod's biochemical condition indicate that thermal stress induced the mobilization of energy reserves, suggesting a possible onset of compensatory metabolism. Finally, glycogen decrease in infected snails compared to uninfected ones might make them more susceptible to thermal stress.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2024-02-07
    Description: As the largest renewable electricity source, hydropower represents an alternative to fossil fuels to achieve a low-carbon future. However, increasing evidence suggests that hydropower reservoirs are an important source of biogenic greenhouse gases (GHGs), albeit with large uncertainties. Combining spatially resolved assessments of GHG fluxes and hydroelectric capacity databases, we assessed that global GHG emissions from reservoirs is 0.38 Pg CO2 eq.yr−1, accounting for 1.0% of global anthropogenic emissions. The median carbon intensity for hydropower is ∼63.0 kg CO2eq. MWh−1, which is lower than that for fossil fuels, but higher than that for other renewable energy sources. High carbon intensity is mostly linked to shallow (water storage depth 〈20 m) and eutrophic reservoirs. Furthermore, we found that the reservoir carbon intensity (CI) value would be markedly increased to 131.5 kg CO2eq. MWh−1 when considering the dams under construction and planning. A low-carbon future will benefit from optimal dam planning and management measures, i.e., applying sludge removal treatments, thereby reducing the proportion of shallow reservoirs and anthropogenic pollution.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2024-02-07
    Description: Highlights: • Higher representation of picophytoplankton in land-terminating glacier fjord. • Smaller phytoplankton cells associated with glacial retreat. • Intermediate baroclinic circulation influences phytoplankton distribution. • Glacial retreat likely to have major implications for summer productivity. Abstract: Along Greenland's coastline, the magnitude and timing of primary production in fjords is influenced by meltwater release from marine-terminating glaciers. How local ecosystems will adapt as these glaciers retreat onto land, forcing fundamental changes in hydrography, remains an open question. To further our understanding of this transition, we examine how marine- and land-terminating glaciers respectively influence fjord bloom phenology. Between spring and autumn 2019, we conducted along-fjord transects of hydrographic variables, biogeochemical properties and pico- and nanophytoplankton counts to illustrate the contrasting seasonal bloom dynamics in the fjords Nuup Kangerlua and Ameralik. These fjords are in the same climatic region of west Greenland but influenced by different glacial structures. Nuup Kangerlua, a predominantly marine-terminating system, was differentiated by its sustained second summer bloom and high Chl a fluorescence in summer and autumn. In Ameralik, influenced by a land-terminating glacier, we found higher abundances of pico- and nanophytoplankton, and high cyanobacteria growth in autumn. The summer bloom in Nuup Kangerlua is known to be coincident with subglacial freshwater discharge sustaining renewed nutrient supply to the fjord. We observe here that the intermediate baroclinic circulation, which creates an inflow at subsurface depths, also plays an important role in increasing nutrient availability at shallower depths and potentially explains the distribution of primary producers. Our observations suggest that the retreat of marine-terminating glaciers onto land, with consequent increases in surface water temperature and stratification, and reduced light availability, may alter the magnitude, composition, and distribution of summer productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2024-02-07
    Description: Maritime activities in the subarctic and Arctic Ocean are predicted to substantially increase in the future due to climate change and declining sea ice cover. Inevitably, the consequences will be seen in impacts on marine ecosystems in this region at many different levels, such as increased pollution load due to antifouling biocides, polycyclic aromatic hydrocarbons, metals and pharmaceuticals. Here we discuss the current situation and evaluate the effect of increased shipping on the environmental status of subarctic and Arctic waters, in relation to elevated loads of both legacy and emerging pollutants in the region. It is of high importance to evaluate the current levels of selected pollutants, which will most likely rise in near future. Furthermore, it is important to improve our understanding of the effects of these pollutants on marine organisms at high latitudes, as the pollutants may behave differently in cold environments compared to organisms at lower latitudes, due to dissimilar physiological responses and adaptations of the cold-water organisms. Integrative studies are needed to better understand the impact of pollutants on the marine fauna while monitoring programmes and research should be continued, with an increased capacity for emerging pollutants of concern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...