ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1873-1896, doi:10.1175/JPO-D-16-0264.1.
    Description: Midocean ridge fracture zones channel bottom waters in the eastern Brazil Basin in regions of intensified deep mixing. The mechanisms responsible for the deep turbulent mixing inside the numerous midocean fracture zones, whether affected by the local or the nonlocal canyon topography, are still subject to debate. To discriminate those mechanisms and to discern the canyon mean flow, two moorings sampled a deep canyon over and away from a sill/contraction. A 2-layer exchange flow, accelerated at the sill, transports 0.04–0.10-Sv (1 Sv ≡ 106 m3 s−1) up canyon in the deep layer. At the sill, the dissipation rate of turbulent kinetic energy ε increases as measured from microstructure profilers and as inferred from a parameterization of vertical kinetic energy. Cross-sill density and microstructure transects reveal an overflow potentially hydraulically controlled and modulated by fortnightly tides. During spring to neap tides, ε varies from O(10−9) to O(10−10) W kg−1 below 3500 m around the 2-layer interface. The detection of temperature overturns during tidal flow reversal, which almost fully opposes the deep up-canyon mean flow, confirms the canyon middepth enhancement of ε. The internal tide energy flux, particularly enhanced at the sill, compares with the lower-layer energy loss across the sill. Throughout the canyon away from the sill, near-inertial waves with downward-propagating energy dominate the internal wave field. The present study underlines the intricate pattern of the deep turbulent mixing affected by the mean flow, internal tides, and near-inertial waves.
    Description: The DoMORE project was supported by NSF under the Grant OCE-1235094.
    Description: 2018-01-13
    Keywords: Abyssal circulation ; Bottom currents/bottom water ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2018-03-10
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-13
    Description: Midocean ridge fracture zones channel bottom waters in the eastern Brazil Basin in regions of intensified deep mixing. The mechanisms responsible for the deep turbulent mixing inside the numerous midocean fracture zones, whether affected by the local or the nonlocal canyon topography, are still subject to debate. To discriminate those mechanisms and to discern the canyon mean flow, two moorings sampled a deep canyon over and away from a sill/contraction. A 2-layer exchange flow, accelerated at the sill, transports 0.04–0.10-Sv (1 Sv ≡ 106 m3 s−1) up canyon in the deep layer. At the sill, the dissipation rate of turbulent kinetic energy ε increases as measured from microstructure profilers and as inferred from a parameterization of vertical kinetic energy. Cross-sill density and microstructure transects reveal an overflow potentially hydraulically controlled and modulated by fortnightly tides. During spring to neap tides, ε varies from O(10−9) to O(10−10) W kg−1 below 3500 m around the 2-layer interface. The detection of temperature overturns during tidal flow reversal, which almost fully opposes the deep up-canyon mean flow, confirms the canyon middepth enhancement of ε. The internal tide energy flux, particularly enhanced at the sill, compares with the lower-layer energy loss across the sill. Throughout the canyon away from the sill, near-inertial waves with downward-propagating energy dominate the internal wave field. The present study underlines the intricate pattern of the deep turbulent mixing affected by the mean flow, internal tides, and near-inertial waves.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-01-16
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-17
    Description: Over 90% of the build up of additional heat in the earth system over recent decades is contained in the ocean. Since 2006 new observational programs have revealed heterogeneous patterns of ocean heat content change. It is unclear how much of this heterogeneity is due to heat being added to and mixed within the ocean leading to material changes in water mass properties or due to changes in circulation which redistribute existing water masses. Here we present a novel diagnosis of the ‘material’ and ‘redistributed’ contributions to regional heat content change between 2006 and 2017 based on a new Minimum Transformation Method informed by both water mass transformation and optimal transportation theory. We show that material warming has large spatial coherence. The material change tends to be smaller than the redistributed change at any geographical location, however it sums globally to the net warming of the ocean, while the redistributed component sums, by design, to zero. Material warming is robust over the time period of this analysis, whereas the redistributed signal only emerges from the variability in a few regions. In the North Atlantic, water mass changes indicate substantial material warming while redistribution cools the subpolar region due to a slowdown in the Meridional Overturning Circulation. Warming in the Southern Ocean is explained by material warming and by anomalous southward heat transport of 118 ± 50 TWdue to redistribution. Our results suggest near termprojections of ocean heat content change and therefore sea level change will hinge on understanding and predicting changes in ocean redistribution.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • All known observations for Area of Particular Environmental Interest 6 presented. • Assess morphology, sediments, nodules, oceanography, biogeochemistry and ecology. • APEI-6 partially representative of nearby exploration areas yet clear differences. • Present scientific synthesis and management implications for Clarion Clipperton Zone. To protect the range of habitats, species, and ecosystem functions in the Clarion Clipperton Zone (CCZ), a region of interest for deep-sea polymetallic nodule mining in the Pacific, nine Areas of Particular Environmental Interest (APEIs) have been designated by the International Seabed Authority (ISA). The APEIs are remote, rarely visited and poorly understood. Here we present and synthesise all available observations made at APEI-6, the most north eastern APEI in the network, and assess its representativity of mining contract areas in the eastern CCZ. The two studied regions of APEI-6 have a variable morphology, typical of the CCZ, with hills, plains and occasional seamounts. The seafloor is predominantly covered by fine-grained sediments, and includes small but abundant polymetallic nodules, as well as exposed bedrock. The oceanographic parameters investigated appear broadly similar across the region although some differences in deep-water mass separation were evident between APEI-6 and some contract areas. Sediment biogeochemistry is broadly similar across the area in the parameters investigated, except for oxygen penetration depth, which reached 〉2 m at the study sites within APEI-6, deeper than that found at UK1 and GSR contract areas. The ecology of study sites in APEI-6 differs from that reported from UK1 and TOML-D contract areas, with differences in community composition of microbes, macrofauna, xenophyophores and metazoan megafauna. Some species were shared between areas although connectivity appears limited. We show that, from the available information, APEI-6 is partially representative of the exploration areas to the south yet is distinctly different in several key characteristics. As a result, additional APEIs may be warranted and caution may need to be taken in relying on the APEI network alone for conservation, with other management activities required to help mitigate the impacts of mining in the CCZ.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-09
    Description: Physical, chemical and biogeochemical measurements derived from CTD-rosette deployments during three visits to site P3 (November to December, 2017) in the South Atlantic. Measurements were made during COMICS cruise DY086 on the RRS Discovery using a trace metal free Titanium Rosette (events 4, 7, 15, 19, 24, 26, 29) and a Stainless Steel Rosette (all other events). Physical parameters include temperature, salinity, density, photosynthetically active radiation and turbulence; chemical parameters include dissolved oxygen, dissolved oxygen saturation, nitrate, phosphate and silicate; biogeochemical parameters include turbidity, beam transmittance, beam attenuation, fluorescence, particulate organic carbon (POC), dissolved organic carbon (DOC), chlorophyll-a, net primary productivity (NPP), ambient leucine assimilation and bacterial cell count. To determine turbulence, a downward facing lowered acoustic doppler current profiler (LADCP, Teledyne Workhorse Monitor 300 kHz ADCP) was attached to the CTD frame. Shear and strain, which are obtained from velocity and density measurements, were used to estimate the dissipation rate of turbulent kinetic energy and the diapycnal eddy diffusivity from a fine-scale parameterisation. Estimates are calculated by parameterising internal wave-wave interactions and assuming that wave breaking modulates turbulent mixing. A detailed description of the method for calculating diffusivity from LADCP and CTD can be found in Kunze et al. (2006). Two datasets with different vertical resolutions were produced: one in which the shear is integrated from 150 to 300 m and the strain over 20-150 m, and one in which the shear is integrated from 70 to 200 m and the strain over 30-200 m. Nutrients (nitrate, phosphate, silicate) were determined via colourimetric analysis (see cruise report, Giering and Sanders, 2019), POC was determined as described in Giering et al. (2023), DOC and DOC flux were determined as described in Lovecchio et al. (2023), NPP was determined as described in Poulton et al. (2019), and ambient leucine assimilation and bacterial cell count were determined as described in Rayne et al. (2024). Bacterial abundance and leucine assimilation were made from bottle samples of six CTD casts of the stainless-steel rosette. Water was collected at six depths (6 m, deep-chlorophyll maximum, mixed layer depth + 10, 100, 250 and 500 m). Acid-cleaned HDPE carboys and tubing were used for sampling. Samples were then stored in the dark and at in-situ temperature prior to on-board laboratory sample preparation or analysis. Flow cytometry was used to measure bacterial abundance. Room temperature paraformaldehyde was used to fix 1.6 ml samples for 30 minutes. Then, using liquid nitrogen, the samples were flash frozen and stored at -80°C. Samples were then defrosted before being stained using SYBR Green I and run through the flow cytometer (BD FACSort™). The method of Hill et al. (2013) was applied to determine prokaryotic leucine assimilation using L-[4,5-³H] leucine which has a specific activity of 89.3 Ci/mmol­. In the mixed and upper layers of the water column, the protocol in Zubkov et al. (2007) was followed. Below the mixed layer, adaptions to the method included reducing the concentration of ³H-Leucine to 0.005, 0.01, 0.025, 0.04 and 0.05 nM; increasing experimental volumes to 30 ml; enhancing incubation times to 30, 60, 90 and 120 min. These adaptions were made to improve accuracy where lower rates of leucine assimilation were expected. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council.
    Keywords: 74EQ20171115; Angular scattering coefficient, 700 nm; Attenuation, optical beam transmission; Bacteria; Barometer, Paroscientific, Digiquartz TC; biological carbon pump; Calculated; Calculated according to UNESCO (1983); Calculation according to Kunze et al. (2006); Carbon, organic, dissolved; Carbon, organic, dissolved, flux; Carbon, organic, particulate; Chlorophyll a; Colorimetric analysis; COMICS; Conductivity sensor, SEA-BIRD SBE 4C; Controls over Ocean Mesopelagic Interior Carbon Storage; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; Discovery (2013); Dissipation rate; Dissolved Oxygen Sensor, Sea-Bird, SBE 43 and SBE 43F; DY086; DY086_CTD002; DY086_CTD003; DY086_CTD004; DY086_CTD005; DY086_CTD006; DY086_CTD007; DY086_CTD008; DY086_CTD009; DY086_CTD010; DY086_CTD015; DY086_CTD016; DY086_CTD017; DY086_CTD018; DY086_CTD019; DY086_CTD020; DY086_CTD021; DY086_CTD022; DY086_CTD023; DY086_CTD024; DY086_CTD026; DY086_CTD027; DY086_CTD028; DY086_CTD029; DY086_CTD030; DY086_CTD031; DY086_CTD032; DY086_CTD033; Eddy diffusivity; Event label; Flow cytometer, Becton Dickinson, FACSort; Fluorometer, Chelsea Instruments, Aquatracka MKIII; fluxes; High Temperature Catalytic Oxidation (Shimadzu TOC-VCPN); LATITUDE; Leucine uptake rate; Liquid scintillation counter, Packard, TRI-CARB 3100TR; LONGITUDE; marine biogeochemistry; Net primary production of carbon; Nitrate; Organic Elemental Analyzer, Thermo Fisher Scientific, Flash 2000; Oxygen; Oxygen saturation; PAR sensor, Biospherical, LI-COR, SN 70510; PAR sensor, Biospherical, LI-COR, SN 70520; Phosphate; Radiation, photosynthetically active; Radioassays, liquid scintillation counting; Salinity; Scattering meter, WET Labs, ECO-BB OBS; Silicate; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, water; Temperature sensor, SEA-BIRD SBE 3Plus; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 171794 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...