ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2021-03-23
    Description: Ongoing climate warming demands a better understanding of whether or how the ectotherms that evolved in response to fluctuating stress regimes may acquire increased heat tolerance. Using blue mussels, Mytilus spp., a globally important and well-studied species, we provide empirical evidence supporting that (i) extremely warm (future) summer conditions may select rare recruits that are more capable of expressing metabolic (feeding and respiration) suppression and recovery in response to daily thermal fluctuations in mild to critical temperature range, (ii) this higher heat tolerance can be mediated by lower baseline metabolic demand, possibly decreasing the risks of heat-induced supply and demand mismatch and its associated stress during thermal fluctuations, and (iii) the capacity to acquire such heat tolerance through acclimation is minor. We discuss our results, methodological limitations and offer a perspective for future research. Further evaluation of mechanistic hypotheses such as the one tested here (based on the role of metabolic demand) is needed to generalize the significance of drivers of fast warm adaptation in ectothermic metazoan populations.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2021-11-10
    Description: Predicting the implications of ongoing ocean climate warming demands a better understanding of how short-term thermal variability impacts marine ectotherms, particularly at beyond-optimal average conditions during summer heatwaves. Using a globally important model species, the blue mussel Mytilus, in a 5-week-long experiment, we (a) assessed growth performance traits under 12 scenarios, consisting of four thermal averages (18.5, 21, 23.5 and 26℃) imposed as constant or daily fluctuating regimes with amplitudes of 2 or 4℃. Additionally, we conducted a short-term assay using different mussel individuals to (b) test for the species capacity for suppression and recovery of metabolic performance traits (feeding and aerobic respiration) when exposed to a 1-day thermal fluctuation regime (16.8–30.5℃). Using this high-resolution data, we (c) generated short-term thermal metabolic performance curves to predict and explain growth responses observed in the long-term experiment. We found that daily high-amplitude thermal cycles (4℃) improved mussel growth when fluctuations were imposed around an extreme average temperature of 26℃, representing end-of-century heatwaves. In contrast, thermal cycles negatively affected mussel growth at a less extreme average temperature of 23.5℃, resembling current peak summer temperature scenarios. These results suggest that fluctuations ameliorate heat stress impacts only at critically high average temperatures. The short-term assay demonstrated that during the warming phase, animals stopped feeding between 24 and 30℃ while gradually suppressing respiration. In the subsequent cooling phase, feeding and respiration partially and fully recovered to pre-heating rates respectively. Furthermore, nonlinear averaging of short-term feeding responses (upscaling) well-predicted longer term growth responses to fluctuations. Our findings suggest that fluctuations can be beneficial to or detrimental for the long-term performance of ectothermic animals, depending on the fluctuations' average and amplitude. Furthermore, the observed effects can be linked to fluctuation-mediated metabolic suppression and recovery. In a general framework, we propose various hypothetical scenarios of fluctuation impacts on ectotherm performance considering inter- or intra-species variability in heat sensitivity. Our research highlights the need for studying metabolic performance in relation to cyclic abiotic fluctuations to advance the understanding of climate change impacts on aquatic systems. A free Plain Language Summary can be found within the Supporting Information of this article
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: This research characterizes the temporal and spatial variability of the seawater carbonate chemistry on the near-shore waters of the northern Persian Gulf and Makran Sea. In general, normalized total alkalinity (nAT) showed a westward decrease along the coasts of Makran Sea and the Persian Gulf. Intertidal seawater was always supersaturated in terms of calcium carbonate minerals during the daytime. Rocky shore waters in the Persian Gulf were sinks for CO2 in the winter during the daytime. The nAT decreased from Larak to Khargu Island by 81 μmol/kg. As expected, the two hypothetical drivers of bio-calcification, i.e., Ω and the [HCO3 −]/[H+] ratio, were significantly related at a narrow range of ambient temperature. However, as data were pooled over seasons and study sites, in contrast to ΩAr, the [HCO3 −]/[H+] ratio showed a slight dependence on temperature, suggesting that the ratio should be investigated as a more reliable factor in future biocalcification researches.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: 1. Predicting the implications of ongoing ocean climate warming demands a better understanding of how short-term thermal variability impacts marine ectotherms, particularly at beyond-optimal average conditions during summer heatwaves. 2. Using a globally important model species, the blue mussel Mytilus, in a 5-week-long experiment, we (a) assessed growth performance traits under 12 scenarios, consisting of four thermal averages (18.5, 21, 23.5 and 26℃) imposed as constant or daily fluctuating regimes with amplitudes of 2 or 4℃. Additionally, we conducted a short-term assay using different mussel individuals to (b) test for the species capacity for suppression and recovery of metabolic performance traits (feeding and aerobic respiration) when exposed to a 1-day thermal fluctuation regime (16.8–30.5℃). Using this high-resolution data, we (c) generated short-term thermal metabolic performance curves to predict and explain growth responses observed in the long-term experiment. 3. We found that daily high-amplitude thermal cycles (4℃) improved mussel growth when fluctuations were imposed around an extreme average temperature of 26℃, representing end-of-century heatwaves. In contrast, thermal cycles negatively affected mussel growth at a less extreme average temperature of 23.5℃, resembling current peak summer temperature scenarios. These results suggest that fluctuations ameliorate heat stress impacts only at critically high average temperatures. The short-term assay demonstrated that during the warming phase, animals stopped feeding between 24 and 30℃ while gradually suppressing respiration. In the subsequent cooling phase, feeding and respiration partially and fully recovered to pre-heating rates respectively. Furthermore, nonlinear averaging of short-term feeding responses (upscaling) well-predicted longer term growth responses to fluctuations. 4. Our findings suggest that fluctuations can be beneficial to or detrimental for the long-term performance of ectothermic animals, depending on the fluctuations' average and amplitude. Furthermore, the observed effects can be linked to fluctuation-mediated metabolic suppression and recovery. In a general framework, we propose various hypothetical scenarios of fluctuation impacts on ectotherm performance considering inter- or intra-species variability in heat sensitivity. Our research highlights the need for studying metabolic performance in relation to cyclic abiotic fluctuations to advance the understanding of climate change impacts on aquatic systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: To predict global warming impacts on parasitism, we should describe the thermal tolerance of all players in host–parasite systems. Complex life-cycle parasites such as trematodes are of particular interest since they can drive complex ecological changes. This study evaluates the net response to temperature of the infective larval stage of Himasthla elongata, a parasite inhabiting the southwestern Baltic Sea. The thermal sensitivity of (i) the infected and uninfected first intermediate host (Littorina littorea) and (ii) the cercarial emergence, survival, self-propelling, encystment, and infection capacity to the second intermediate host (Mytilus edulis sensu lato) were examined. We found that infection by the trematode rendered the gastropod more susceptible to elevated temperatures representing warm summer events in the region. At 22 °C, cercarial emergence and infectivity were at their optimum while cercarial survival was shortened, narrowing the time window for successful mussel infection. Faster out-of-host encystment occurred at increasing temperatures. After correcting the cercarial emergence and infectivity for the temperature-specific gastropod survival, we found that warming induces net adverse effects on the trematode transmission to the bivalve host. The findings suggest that gastropod and cercariae mortality, as a tradeoff for the emergence and infectivity, will hamper the possibility for trematodes to flourish in a warming ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The blue mussel (Mytilus species complex) is an important ecosystem engineer, and salinity can be a major abiotic driver of mussel functioning in coastal ecosystems. However, little is known about the interactive effects of abiotic drivers and trematode infection. This study investigated the combined effects of salinity and Himasthla elongata and Renicola roscovita metacercarial infections on the filtration capacity, growth, and condition of M. edulis from the Baltic Sea. In a laboratory experiment, groups of infected and uninfected mussels were exposed to a wide range of salinities (6−30, in steps of 3) for 1 mo. Shell growth was found to be positively correlated with salinity and optimal at 18−24 at the end of the experiment, imposed by constraints in shell calcification under lower salinities. Mussel shell growth was not affected by H. elongata infection. While salinity had only a minor effect on tissue dry weight, infected mussels had a significantly lower tissue dry weight than uninfected mussels. Most interestingly, the combination of salinity and trematode infections negatively affected the mussels’ condition indices at lower salinity levels (6 and 9), suggesting that trematode infections are more detrimental to mussels when combined with freshening. A significant positive effect of salinity on mussel filtration was found, with an initial optimum at salinity 18 shifting to 18−24 by the end of the experiment. These findings indicate that salinity and parasite infections act as synergistic stressors for mussels, and enhance the understanding of potential future ecosystem shifts under climate change-induced freshening in coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Climate change increases the frequency and intensifies the magnitude and duration of extreme events in the sea, particularly so in coastal habitats. However, the interplay of multiple extremes and the consequences for species and ecosystems remain unknown. We experimentally tested the impacts of summer heatwaves of differing intensities and durations, and a subsequent upwelling event on a temperate keystone predator, the starfish Asterias rubens. We recorded mussel consumption throughout the experiment and assessed activity and growth at strategically chosen time points. The upwelling event overall impaired starfish feeding and activity, likely driven by the acidification and low oxygen concentrations in the upwelled seawater. Prior exposure to a present-day heatwave (+5°C above climatology) alleviated upwelling-induced stress, indicating cross-stress tolerance. Heatwaves of present-day intensity decreased starfish feeding and growth. While the imposed heatwaves of limited duration (9 days) caused slight impacts but allowed for recovery, the prolonged (13 days) heatwave impaired overall growth. Projected future heatwaves (+8°C above climatology) caused 100% mortality of starfish. Our findings indicate a positive ecological memory imposed by successive stress events. Yet, starfish populations may still suffer extensive mortality during intensified end-of-century heatwave conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Global warming may alter the dynamics of infectious diseases by affecting important steps in the transmission of pathogens and parasites. In trematode parasites, the emergence of cercarial stages from their hosts is temperature-dependent, being highest around a thermal optimum. If environmental temperatures exceed this optimum as a consequence of global warming, this may affect cercarial transmission. However, our knowledge of cercarial emergence patterns of species from high temperature environments is currently very limited. Here, we investigated the effect of temperature on the emergence of two common trematode species from an abundant mud snail Pirenella cingulata in the Persian Gulf, the warmest sea on Earth. Infected snails were incubated in the laboratory at 6 temperatures from 10 to 40°C for 3 days. We found an optimal temperature for cercarial emergence of 32.0°C and 33.5°C for Acanthotrema tridactyla and Cyathocotylidae gen. sp., respectively, which are the warmest recorded thermal optima for any aquatic trematode species. Emergence of both species dropped at 40°C, suggesting upper thermal limits to emergence. Overall, Persian Gulf trematodes may be among the most heat-tolerant marine trematode species, indicating a potential for dispersing to regions that will continue to warm in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Ongoing climate warming demands a better understanding of whether or how the ectotherms that evolved in response to fluctuating stress regimes may acquire increased heat tolerance. Using blue mussels, Mytilus spp., a globally important and well-studied species, we provide empirical evidence supporting that (i) extremely warm (future) summer conditions may select rare recruits that are more capable of expressing metabolic (feeding and respiration) suppression and recovery in response to daily thermal fluctuations in mild to critical temperature range, (ii) this higher heat tolerance can be mediated by lower baseline metabolic demand, possibly decreasing the risks of heat-induced supply and demand mismatch and its associated stress during thermal fluctuations, and (iii) the capacity to acquire such heat tolerance through acclimation is minor. We discuss our results, methodological limitations and offer a perspective for future research. Further evaluation of mechanistic hypotheses such as the one tested here (based on the role of metabolic demand) is needed to generalize the significance of drivers of fast warm adaptation in ectothermic metazoan populations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...