ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (20)
  • Climate change  (19)
  • American Geophysical Union  (37)
  • Molecular Diversity Preservation International
  • Periodicals Archive Online (PAO)
Collection
  • 1
    Publication Date: 2023-02-17
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL095088, https://doi.org/10.1029/2021GL095088.
    Description: The physical circulation of the Southern Ocean sets the surface concentration and thus air-sea exchange of CO2. However, we have a limited understanding of the three-dimensional circulation that brings deep carbon-rich waters to the surface. Here, we introduce and analyze a novel high-resolution ocean model simulation with active biogeochemistry and online Lagrangian particle tracking. We focus our attention on a subset of particles with high dissolved inorganic carbon (DIC) that originate below 1,000 m and eventually upwell into the near-surface layer (upper 200 m). We find that 71% of the DIC-enriched water upwelling across 1,000 m is concentrated near topographic features, which occupy just 33% of the Antarctic Circumpolar Current. Once particles upwell to the near-surface layer, they exhibit relatively uniform pCO2 levels and DIC decorrelation timescales, regardless of their origin. Our results show that Southern Ocean bathymetry plays a key role in delivering carbon-rich waters to the surface.
    Description: Riley X. Brady was supported by the Department of Energy's Computational Science Graduate Fellowship (DE-FG02-97ER25308), and particularly benefited from the fellowship's summer practicum at Los Alamos National Lab. Nicole S. Lovenduski and Riley X. Brady were further supported by the U.S. Department of Energy Biological and Environmental Research program (DE-SC0022243) and by the National Science Foundation (NSF-PLR 1543457; NSF-OCE 1924636; NSF-OCE 1752724; NSF-OCE 1558225). Mathew E. Maltrud and Phillip J. Wolfram were supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001.
    Keywords: Southern Ocean ; Carbon cycle ; Upwelling ; Lagrangian modeling ; Ocean biogeochemistry ; Climate modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(1), (2022): e2021GB007113, https://doi.org/10.1029/2021GB007113.
    Description: Stordalen Mire is a peatland in the discontinuous permafrost zone in arctic Sweden that exhibits a habitat gradient from permafrost palsa, to Sphagnum bog underlain by permafrost, to Eriophorum-dominated fully thawed fen. We used three independent approaches to evaluate the annual, multi-decadal, and millennial apparent carbon accumulation rates (aCAR) across this gradient: seven years of direct semi-continuous measurement of CO2 and CH4 exchange, and 21 core profiles for 210Pb and 14C peat dating. Year-round chamber measurements indicated net carbon balance of −13 ± 8, −49 ± 15, and −91 ± 43 g C m−2 y−1 for the years 2012–2018 in palsa, bog, and fen, respectively. Methane emission offset 2%, 7%, and 17% of the CO2 uptake rate across this gradient. Recent aCAR indicates higher C accumulation rates in surface peats in the palsa and bog compared to current CO2 fluxes, but these assessments are more similar in the fen. aCAR increased from low millennial-scale levels (17–29 g C m−2 y−1) to moderate aCAR of the past century (72–81 g C m−2 y−1) to higher recent aCAR of 90–147 g C m−2 y−1. Recent permafrost collapse, greater inundation and vegetation response has made the landscape a stronger CO2 sink, but this CO2 sink is increasingly offset by rising CH4 emissions, dominated by modern carbon as determined by 14C. The higher CH4 emissions result in higher net CO2-equivalent emissions, indicating that radiative forcing of this mire and similar permafrost ecosystems will exert a warming influence on future climate.
    Description: We would like to acknowledge the following funding in support of this project: Swedish Research Council (Vetenskapsrådet, VR) grants (NT 2007-4547 and NT 2013-5562 to P. Crill), U.S. Department of Energy grants (DE-SC0004632 and DE-SC0010580 to V. Rich and S. Saleska), and U.S. National Science Foundation MacroSystems Biology grant (NSF EF #1241037, PI Varner). This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under the Genomic Science program. We also acknowledge funding from the National Science Foundation for the EMERGE Biology Integration Institute, NSF Award #2022070.
    Description: 2022-07-03
    Keywords: Peat ; Carbon cycling ; Permafrost ; Carbon-14 ; Lead-210 ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(1), (2022): e2021JC017424, https://doi.org/10.1029/2021JC017424.
    Description: By compiling boreal summer (June to October) CO2 measurements from 1989 to 2019 on the Bering and eastern Chukchi Sea shelves, we find that the study areas act as a CO2 sink except when impacted by river runoff and wind-driven upwelling. The CO2 system in this area is seasonally dominated by the biological pump especially in the northern Bering Sea and near Hanna Shoal, while wind-driven upwelling of CO2-rich bottom water can cause episodic outgassing. Seasonal surface ΔfCO2 (oceanic fCO2 – air fCO2) is dominantly driven by temperature only during periods of weak CO2 outgassing in shallow nearshore areas. However, after comparing the mean summer ΔfCO2 during the periods of 1989–2013 and 2014–2019, we suggest that temperature does drive long-term, multi-decadal patterns in ΔfCO2. In the northern Chukchi Sea, rapid warming concurrent with reduced seasonal sea-ice persistence caused the regional summer CO2 sink to decrease. By contrast, increasing primary productivity caused the regional summer CO2 sink on the Bering Sea shelf to increase over time. While additional time series are needed to confirm the seasonal and annual trajectory of CO2 changes and ocean acidification in these dynamic and spatially complex ecosystems, this study provides a meaningful mechanistic analysis of recent changes in inorganic carbonate chemistry. As high-resolution time series of inorganic carbonate parameters lengthen and short-term variations are better constrained in the coming decades, we will have stronger confidence in assessing the mechanisms contributing to long-term changes in the source/sink status of regional sub-Arctic seas.
    Description: We gratefully acknowledge the support of the funding agencies that supported this analysis, including the New Sustained Observations for Arctic Research project and the DBO-NCIS project (NA14OAR4320158, NA19OAR4320074) from the NOAA Arctic Research Program.
    Description: 2022-06-17
    Keywords: Pacific Arctic region ; Sea-air CO2 flux ; Ocean acidification ; Climate change ; Sea-ice loss ; Surface ocean CO2 Atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-23
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 49(12), (2022): e2021GL097598, https://doi.org/10.1029/2021GL097598.
    Description: The ocean is inhomogeneous in hydrographic properties with diverse water masses. Yet, how this inhomogeneity has evolved in a rapidly changing climate has not been investigated. Using multiple observational and reanalysis datasets, we show that the spatial standard deviation (SSD) of the global ocean has increased by 1.4 ± 0.1% in temperature and 1.5 ± 0.1% in salinity since 1960. A newly defined thermohaline inhomogeneity index, a holistic measure of both temperature and salinity changes, has increased by 2.4 ± 0.1%. Climate model simulations suggest that the observed ocean inhomogeneity increase is dominated by anthropogenic forcing and projected to accelerate by 200%–300% during 2015–2100. Geographically, the rapid upper-ocean warming at mid-to-low latitudes dominates the temperature inhomogeneity increase, while the increasing salinity inhomogeneity is mainly due to the amplified salinity contrast between the subtropical and subpolar latitudes.
    Description: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (grant XDB42000000 and XDB40000000), the National Key R&D Program of China (2017YFA0603200), and the Shandong Provincial Natural Science Foundation (ZR2020JQ17), and the U.S. National Science Foundation Physical Oceanography Program (OCE- 2048336).
    Description: 2022-12-23
    Keywords: Global ocean ; Temperature ; Salinity ; Spatial inhomogeneity ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-06
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 36(5), (2022): e2022GB007388, https://doi.org/10.1029/2022gb007388.
    Description: The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3 sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid-phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3 dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid-phase CaCO3 flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.
    Description: This work was funded by NSF OCE-1220301 to W.B., NSF OCE-1220600 to J.F.A., and startup funding for A.V.S.
    Description: 2022-11-06
    Keywords: Calcium carbonate ; Dissolution ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.
    Description: Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small short‐term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Mid‐Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4‐derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 ± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A first‐order approximation of the input rate of ancient‐derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Mid‐Atlantic Bight further suggests that oxidation of ancient CH4‐derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.
    Description: This study was sponsored by U.S. Department of Energy (DE‐FE0028980, awarded to J. D. K; DE‐FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.
    Description: 2021-06-23
    Keywords: Radiocarbon ; Methane ; DIC ; Ocean acidification ; Climate change ; U.S Mid-Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(7), (2021): e2020WR028727, https://doi.org/10.1029/2020WR028727.
    Description: Numerous wetlands in the prairies of Canada provide important ecosystem services, yet are threatened by climate and land-use changes. Understanding the impacts of climate change on prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland model with surface water balance and ecoregions to project future distribution of wetlands. The climatic conditions downscaled from the Weather Research and Forecasting model were used to drive the Noah-MP land surface model to obtain surface water balance. The climate change perturbation is derived from an ensemble of general circulation models using the pseudo global warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter climate in the western Prairies will favor increased wetland abundance in both spring and summer. In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas will increase in spring but experience enhanced declines in summer due to strong evapotranspiration. When these effects of climate change are considered in light of historical drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of this study will be useful to conservation agencies to ensure that current investments will continue to provide good conservation returns in the future.
    Description: Z. Zhang was funded by a Mitacs Accelerate Fellowship funded by Ducks Unlimited Canada's Institute for Wetland and Waterfowl Research. Z. Zhang, Z. Li, and Y. Li acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, and Global Water Futures Program, Canada First Research Excellence Fund. This project was supported by grants from Wildlife Habitat Canada, Bass Pro Shops Cabela’s Outdoor Fund, and the Alberta NAWMP Partnership.
    Description: 2021-12-21
    Keywords: Wetland ; Hydrology ; Climate change ; Prairie Pothole Region ; Waterfowl ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2021GL093178, https://doi.org/10.1029/2021GL093178.
    Description: The effects of heterogeneous reactions between river-borne particles and the carbonate system were studied in the plumes of the Mississippi and Brazos rivers. Measurements within these plumes revealed significant removal of dissolved inorganic carbon (DIC) and total alkalinity (TA). After accounting for all known DIC and TA sinks and sources, heterogeneous reactions (i.e., heterogeneous CaCO3 precipitation and cation exchange between adsorbed and dissolved ions) were found to be responsible for a significant fraction of DIC and TA removal, exceeding 10% and 90%, respectively, in the Mississippi and Brazos plume waters. This finding was corroborated by laboratory experiments, in which the seeding of seawater with the riverine particles induced the removal of the DIC and TA. The combined results demonstrate that heterogeneous reactions may represent an important controlling mechanism of the seawater carbonate system in particle-rich coastal areas and may significantly impact the coastal carbon cycle.
    Description: This research was funded by the National Science Foundation (NSF) and the Bi-National Science Foundation U.S-Israel award number OCE-BSF 1635388.
    Description: 2021-11-20
    Keywords: Calcium carbonate ; Carbon cycle ; Carbonate chemistry ; Heterogeneous reactions ; Mississippi ; River mouths
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hayes, C. T., Costa, K. M., Anderson, R. F., Calvo, E., Chase, Z., Demina, L. L., Dutay, J., German, C. R., Heimburger-Boavida, L., Jaccard, S. L., Jacobel, A., Kohfeld, K. E., Kravchishina, M. D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F. J., Paytan, A., Pedrosa-Pamies, R., Petrova, M., V., Rahman, S., Robinson, L. F., Roy-Barman, M., Sanchez-Vidal, A., Shiller, A., Tagliabue, A., Tessin, A. C., van Hulten, M., & Zhang, J. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochemical Cycles, 35(4), (2021): e2020GB006769, https://doi.org/10.1029/2020GB006769.
    Description: Quantitative knowledge about the burial of sedimentary components at the seafloor has wide-ranging implications in ocean science, from global climate to continental weathering. The use of 230Th-normalized fluxes reduces uncertainties that many prior studies faced by accounting for the effects of sediment redistribution by bottom currents and minimizing the impact of age model uncertainty. Here we employ a recently compiled global data set of 230Th-normalized fluxes with an updated database of seafloor surface sediment composition to derive atlases of the deep-sea burial flux of calcium carbonate, biogenic opal, total organic carbon (TOC), nonbiogenic material, iron, mercury, and excess barium (Baxs). The spatial patterns of major component burial are mainly consistent with prior work, but the new quantitative estimates allow evaluations of deep-sea budgets. Our integrated deep-sea burial fluxes are 136 Tg C/yr CaCO3, 153 Tg Si/yr opal, 20Tg C/yr TOC, 220 Mg Hg/yr, and 2.6 Tg Baxs/yr. This opal flux is roughly a factor of 2 increase over previous estimates, with important implications for the global Si cycle. Sedimentary Fe fluxes reflect a mixture of sources including lithogenic material, hydrothermal inputs and authigenic phases. The fluxes of some commonly used paleo-productivity proxies (TOC, biogenic opal, and Baxs) are not well-correlated geographically with satellite-based productivity estimates. Our new compilation of sedimentary fluxes provides detailed regional and global information, which will help refine the understanding of sediment preservation.
    Description: This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US-NSF. The work grew out of a 2018 workshop in Aix-Marseille, France, funded by PAGES, GEOTRACES, SCOR, US-NSF, Aix Marseille Université, and John Cantle Scientific, and the authors would like to acknowledge all attendees of this meeting. The authors acknowledge the participants of the 68th cruise of RV Akademik Mstislav Keldysh for helping acquire samples. Christopher T. Hayes acknowledges support from US-NSF awards 1658445 and 1737023. Some data compilation on Arctic shelf seas was supported by the Russian Science Foundation, grant number 20-17-00157. This work was also supported through project CRESCENDO (grant no. 641816, European Commission). Zanna Chase acknowledges support from the Australian Research Council’s Discovery Projects funding scheme (project DP180102357). Christopher R. German acknowledges US-NSF awards 1235248 and 1234827. Some colorbars used in the figures were designed by Kristen Thyng et al. (2016) and Patrick Rafter.
    Keywords: Barium ; Carbon cycle ; Marine atlas ; Mercury ; Opal ; Sediment burial
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(10), (2021): e2021GL092904, https://doi.org/10.1029/2021GL092904.
    Description: We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C values in seawater collected from the Southern Ocean and eastern Pacific GOSHIP cruise P18 in 2016/2017. The aging of 14C in DOC in circumpolar deep water northward from 69°S to 20°N was similar to that measured in dissolved inorganic carbon in the same samples, indicating that the transport of deep waters northward is the primary control of 14C in DIC and DOC. Low DOC ∆14C and δ13C measurements between 1,200 and 3,400 m depth may be evidence of a source of DOC produced in nearby hydrothermal ridge systems (East Pacific Rise).
    Description: This work was supported by NSF (OCE-1458941 and OCE-1951073 to Ellen R. M. Druffel), Fred Kavli Foundation, Keck Carbon Cycle AMS Laboratory, NSF/NOAA funded GO-SHIP Program, Canada Research Chairs program (to Brett D. Walker) and American Chemical Society Petroleum Research Fund New Directions (55,430-ND2 to Ellen R. M. Druffel and Brett D. Walker).
    Description: 2021-11-24
    Keywords: 13C ; Carbon cycle ; Circumpolar deep water ; Dissolved inorganic carbon ; Dissolved organic carbon ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M-L., Williams, W. J., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S-H., Cho, K-H., Tateyama, K., & Zhao, J. Analysis of the Beaufort Gyre freshwater content in 2003-2018. Journal of Geophysical Research-Oceans, 124(12), (2019): 9658-9689, doi:10.1029/2019JC015281.
    Description: Hydrographic data collected from research cruises, bottom‐anchored moorings, drifting Ice‐Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km3 of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997–2018) accompanied by sea ice melt, a wind‐forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice‐Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year‐to‐year variability, or the more subtle interannual variations.
    Description: National Science Foundation. Grant Numbers: PLR‐1302884,OPP‐1719280, and OPP‐1845877, PLR‐1303644 and OPP‐1756100, OPP‐1756100, PLR‐1303644, OPP‐1845877, OPP‐1719280, PLR‐1302884 Key Program of National Natural Science Foundation of China. Grant Number: 41330960 Global Change Research Program of China. Grant Number: 2015CB953900 Ministry of Education, Korea Japan Aerospace Exploration Agency (JAXA) /Earth Observation Research Center (EORC) Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) Stanback Postdoctoral Fellowship Russian Foundation for Basic Research. Grant Number: 17‐05‐00382 Presidium of Russian Academy of Sciences HYCOM NOPP. Grant Number: N00014‐15‐1‐2594 DOE. Grant Number: DE‐SC0014378 National Aeronautics and Space Administration Tokyo University of Marine Science and Technology Department of Fisheries and Oceans Canada Woods Hole Oceanographic Institution
    Keywords: Beaufort Gyre ; Arctic Ocean ; Freshwater balance ; Circulation ; Modeling ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Description: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Description: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Description: 2020-02-22
    Keywords: Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 124(8), (2019): 2582-2594, doi: 10.1029/2019JG005107.
    Description: To assess the influences of carbon sources and transport processes on the 14C age of organic matter (OM) in continental margin sediments, we examined a suite of samples collected along a river‐shelf‐deep ocean transect in the East China Sea (ECS). Ramped pyrolysis‐oxidiation was conducted on suspended particulate matter in the Yangtze River and on surface sediments from the ECS shelf and northern Okinawa Trough. 14C ages were determined on OM decomposition products within different temperature windows. These measurements suggest that extensive amounts of pre‐old (i.e., millennial age) organic carbon (OC) are subject to degradation within and beyond the Yangtze River Delta, and this process is accompanied by an exchange of terrestrial and marine OM. These results, combined with fatty acid concentration data, suggest that both the nature and extent of OM preservation/degradation as well as the modes of transport influence the 14C ages of sedimentary OM. Additionally, we find that the age of (thermally) refractory OC increases during across‐shelf transport and that the age offset between the lowest and highest temperature OC decomposition fractions also increases along the shelf‐to‐trough transect. Amplified interfraction spread or 14C heterogeneity is the greatest in the Okinawa Trough. Aged sedimentary OM across the transect may be a consequence of several reasons including fossil OC input, selective degradation of younger OC, hydrodynamic sorting processes, and aging during lateral transport. Consequently, each of them should be considered in assessing the 14C results of sedimentary OM and its implications for the carbon cycle and interpretation of sedimentary records.
    Description: This study was supported by Doc. Mobility Fellowship (P1EZP2_159064; R. B.) from the Swiss National Science Foundation (SNSF). This study was also supported by SNF “CAPS‐LOCK” project 200021_140850 (T. I. E.), by the National Natural Science Foundation of China (NSFC; grants 41520104009 and 41630966, M. Z.), and by the “111” project (B13030). We are grateful for support of the NOSAMS staff in the execution of this project. We also appreciate the assistance from Yushuang Zhang (Ocean University of China) at NOSAMS and members of the Laboratory for Ion Beam Physics at ETH Zurich for AMS measurements. We acknowledge Lei Xing, Haidong Zhang, Guodong Song, Meng Yu, Yonghao Jia, and Shanshan Duan (Ocean University of China) for sampling assistance on the cruises. Assistance at sea by the crews of R/V Dongfanghong II and R/V Hakuhu Maru is also acknowledged. Readers can access or find the data from figures and tables in the supporting information.
    Keywords: Radiocarbon ; Carbon cycle ; Sediments ; Organic carbon ; Hydrodynamic processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in DeGrandpre, M. D., Lai, C., Timmermans, M., Krishfield, R. A., Proshutinsky, A., & Torres, D. Inorganic carbon and pCO(2) variability during ice formation in the Beaufort Gyre of the Canada Basin. Journal of Geophysical Research-Oceans, 124(6), (2019): 4017-4028, doi:10.1029/2019JC015109.
    Description: Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC and AT to deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 year pCO2 mooring time series where a ~35‐μatm increase in pCO2 was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resulting pCO2 is sensitive to the ratio of AT and DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derived AT and DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing the pCO2 at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC and pCO2 in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
    Description: Research Associate Cory Beatty (University of Montana) prepared the CO2 instruments and helped with the mooring deployments and data processing. Pierce Fix (undergraduate intern, University of Montana) helped with the mass balance modeling. The moorings were designed and deployed by personnel at Woods Hole Oceanographic Institution. Michiyo Yamamoto‐Kawai (University of Tokyo) and Marty Davelaar (Institute of Ocean Sciences; IOS) provided the alkalinity and dissolved inorganic carbon data. We thank the captain, officers, crew, and chief scientists (Bill Williams and Sarah Zimmerman, IOS) of the CCGS Louis S. St. Laurent. The data used in this study are available through the U.S. National Science Foundation (NSF) Arctic Data Center (https://arcticdata.io). This research was made possible by grants from the NSF Arctic Observing Network program (ARC‐1107346, PLR‐1302884, PLR‐1504410, and PLR‐1723308).
    Keywords: Sea ice ; Dissolved inorganic carbon ; Carbon cycle ; Solute exclusion ; Partial pressure of CO2 ; Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46 (2019): 10484–10494, doi:10.1029/2019GL083719.
    Description: Tropical cyclones (hurricanes) generate intense surface ocean cooling and vertical mixing resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean remains unknown. Here we present evidence that hurricanes also impact the ocean's biological pump by enhancing export of labile organic material to the deep ocean. In October 2016, Category 3 Hurricane Nicole passed over the Bermuda Time Series site in the oligotrophic NW Atlantic Ocean. Following Nicole's passage, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30–300% at 1,500 m depth and 30–800% at 3,200 m depth. Mesopelagic suspended particles following Nicole were also enriched in phytodetrital material and in zooplankton and bacteria lipids, indicating particle disaggregation and a deepwater ecosystem response. Predicted climate‐induced increases in hurricane frequency and/or intensity may significantly alter ocean biogeochemical cycles by increasing the strength of the biological pump.
    Description: This work and the Oceanic Flux Program time series were supported by the National Science Foundation Chemical Oceanography Program Grant OCE 1536644. The Bermuda Atlantic Time Series and Hydrostation S time series were supported by NSF Grants OCE 1756105 and OCE 1633125, respectively. We acknowledge the contributions of BATS technicians with CTD and pigment analyses. We sincerely thank the officers and crew of R/V Atlantic Explorer (Bermuda Institute of Ocean Sciences) for their expert assistance on the cruises. The data used in this study are listed in the figures, tables, and references, and are also available in the NSF's Biological and Chemical Oceanography Data Management Office (BCO‐DMO, https://doi.org/10.1575/1912/bco‐dmo.775902.1).
    Description: 2020-02-16
    Keywords: Hurricanes ; Carbon cycle ; North Atlantic Ocean ; Deep ocean ; Particle fluxes ; Lipid biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geophysical Research Letters 39 (2012): L15501, doi:10.1029/2012GL052222.
    Description: Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (〉2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along 〈5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.
    Description: This research was sponsored by DOE-USGS Interagency Agreement DE-FE0002911. L.B. was supported by a DOE NETL/NRC Methane Hydrate Fellowship under DE-FC26-05NT42248.
    Keywords: Beaufort Sea ; Climate change ; Methane hydrates ; Refraction ; Sea level ; Subsea permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L19703, doi:10.1029/2012GL052883.
    Description: Carbon cycling studies focusing on transport and transformation of terrigenous carbon sources toward marine sedimentary sinks necessitate separation of particulate organic carbon (OC) derived from many different sources and integrated by river systems. Much progress has been made on isolating and characterizing young biologically-formed OC that is still chemically intact, however quantification and characterization of old, refractory rock-bound OC has remained troublesome. Quantification of both endmembers of riverine OC is important to constrain exchanges linking biologic and geologic carbon cycles and regulating atmospheric CO2 and O2. Here, we constrain petrogenic OC proportions in suspended sediment from the headwaters of the Ganges River in Nepal through direct measurement using ramped pyrolysis radiocarbon analysis. The unique results apportion the biospheric and petrogenic fractions of bulk particulate OC and characterize biospheric OC residence time. Compared to the same treatment of POC from the lower Mississippi-Atchafalaya River system, contrast in age spectra of the Ganges tributary samples illustrates the difference between small mountainous river systems and large integrative ones in terms of the global carbon cycle.
    Description: This work was partially supported by U.S. National Science Foundation (NSF) Cooperative Agreement OCE-228996 to NOSAMS and NSF grants OCE-0851015 & OCE-0928582 to VG.
    Description: 2013-04-03
    Keywords: Ganges ; Himalaya ; Mississippi ; POC ; Carbon cycle ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L09804, doi:10.1029/2011GL047238.
    Description: Atmospheric mixing ratios of CO2 are strongly seasonal in the Arctic due to mid-latitude transport. Here we analyze the seasonal influence of moist synoptic storms by diagnosing CO2 transport from a global model on moist isentropes (to represent parcel trajectories through stormtracks) and parsing transport into eddy and mean components. During winter when northern plants respire, warm moist air, high in CO2, is swept poleward into the polar vortex, while cold dry air, low in CO2, that had been transported into the polar vortex earlier in the year is swept equatorward. Eddies reduce seasonality in mid-latitudes by ∼50% of NEE (∼100% of fossil fuel) while amplifying seasonality at high latitudes. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellites. We recommend that (1) regional inversions carefully account for meridional transport and (2) inversion models represent moist and frontal processes with high fidelity.
    Description: This research is supported by the National Aeronautics and Space Administration contracts NNX08AT77G, NNX06AC75G, and NNX08AM56G.
    Keywords: Atmospheric transport ; Carbon cycle ; Inversion ; Isentropic coordinates ; Synoptic weather ; Tracer modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3018, doi:10.1029/2010GB003813.
    Description: Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yr−1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.
    Description: This study was supported through grants provided as part of the Arctic System Science Program (NSF OPP‐ 0531047), the North American Carbon Program (NASA NNG05GD25G), and the Bonanza Creek Long‐Term Ecological Program (funded jointly by NSF grant DEB‐0423442 and USDA Forest Service, Pacific Northwest Research Station grant PNW01‐JV11261952‐231).
    Keywords: Carbon cycle ; High-latitude ecosystems ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3022, doi:10.1029/2010GB003892.
    Description: The North Atlantic Ocean accounts for about 25% of the global oceanic anthropogenic carbon sink. This basin experiences significant interannual variability primarily driven by the North Atlantic Oscillation (NAO). A suite of biogeochemical model simulations is used to analyze the impact of interannual variability on the uptake and storage of contemporary and anthropogenic carbon (Canthro) in the North Atlantic Ocean. Greater winter mixing during positive NAO years results in increased mode water formation and subsequent increases in subtropical and subpolar Canthro inventories. Our analysis suggests that changes in mode water Canthro inventories are primarily due to changes in water mass volumes driven by variations in water mass transformation rates rather than local air-sea CO2 exchange. This suggests that a significant portion of anthropogenic carbon found in the ocean interior may be derived from surface waters advected into water formation regions rather than from local gas exchange. Therefore, changes in climate modes, such as the NAO, may alter the residence time of anthropogenic carbon in the ocean by altering the rate of water mass transformation. In addition, interannual variability in Canthro storage increases the difficulty of Canthro detection and attribution through hydrographic observations, which are limited by sparse sampling of subsurface waters in time and space.
    Description: We would like to acknowledge funding from the NOAA Climate Program under the Office of Climate Observations and Global Carbon Cycle Program (NOAA‐NA07OAR4310098), NSF (OCE‐0623034), NCAR, the WHOI Ocean Climate Institute, a National Defense Science and Engineering Graduate Fellowship and an Environmental Protection Agency STAR graduate fellowship. NCAR is sponsored by the National Science Foundation.
    Keywords: North Atlantic Oscillation ; Anthropogenic carbon ; Carbon cycle ; Climate change ; Global climate model ; Mode waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C11019, doi:10.1029/2010JC006509.
    Description: The advance and retreat of sea ice produces seasonal convection and stratification, dampens surface waves and creates a separation between the ocean and atmosphere. These are all phenomena that can affect the air-sea gas transfer velocity (k660), and therefore it is not straightforward to determine how sea ice cover modulates air-sea flux. In this study we use field estimates k660 to examine how sea ice affects the net gas flux between the ocean and atmosphere. An inventory of salinity, 3He, and CFC-11 in the mixed layer is used to infer k660 during the drift of Ice Station Weddell in 1992. The average of k660 is 0.11 m d−1 across nearly 100% ice cover. In comparison, the only prior field estimates of k660 are disproportionately larger, with average values of 2.4 m d−1 across 90% sea ice cover, and 3.2 m d−1 across approximately 70% sea ice cover. We use these values to formulate two scenarios for the modulation of k660 by the fraction of sea ice cover in a 1-D transport model for the Southern Ocean seasonal ice zone. Results show the net CO2 flux through sea ice cover represents 14–46% of the net annual air-sea flux, depending on the relationship between sea ice cover and k660. The model also indicates that as much as 68% of net annual CO2 flux in the sea ice zone occurs in the springtime marginal ice zone, which demonstrates the need for accurate parameterizations of gas flux and primary productivity under partially ice-covered conditions.
    Description: Support for this work was provided by the Climate Center at the Lamont‐Doherty Earth Observatory, an NSF IGERT Fellowship and a NOAA Climate and Global Change Postdoctoral Fellowship to BL, and NSF grant OPP 01‐25523/ANT 04‐40825 (PS).
    Description: 2012-05-15
    Keywords: CO2 ; Southern Ocean ; Carbon cycle ; Gas exchange ; Sea ice
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L06602, doi:10.1029/2010GL046573.
    Description: Iron is an essential micronutrient that limits primary productivity in much of the ocean, including the Gulf of Alaska (GoA). However, the processes that transport iron to the ocean surface are poorly quantified. We combine satellite and meteorological data to provide the first description of widespread dust transport from coastal Alaska into the GoA. Dust is frequently transported from glacially-derived sediment at the mouths of several rivers, the most prominent of which is the Copper River. These dust events occur most frequently in autumn, when coastal river levels are low and riverbed sediments are exposed. The dust plumes are transported several hundred kilometers beyond the continental shelf into iron-limited waters. We estimate the mass of dust transported from the Copper River valley during one 2006 dust event to be between 25–80 ktons. Based on conservative estimates, this equates to a soluble iron loading of 30–200 tons. We suggest the soluble Fe flux from dust originating in glaciofluvial sediment deposits from the entire GoA coastline is two to three times larger, and is comparable to the annual Fe flux to GoA surface waters from eddies of coastal origin. Given that glaciers are retreating in the coastal GoA region and in other locations, it is important to examine whether fluxes of dust are increasing from glacierized landscapes to the ocean, and to assess the impact of associated Fe on marine ecosystems.
    Description: We appreciate support from the USGS CMGP, NCCWSC, the Mendenhall postdoc program, the Woods Hole PEP intern program, and from NASA‐IDS.
    Keywords: Dust ; Glacier ; Iron ; Aerosol ; Climate change ; Micronutrient
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: image/jpeg
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C03026, doi:10.1029/2010JC006670.
    Description: A regional coupled model is used for a dynamic downscaling over the tropical Atlantic based on a global warming simulation carried out with the Geophysical Fluid Dynamics Laboratory CM2.1. The regional coupled model features a realistic representation of equatorial ocean dynamical processes such as the tropical instability waves (TIWs) that are not adequately simulated in many global coupled climate models. The coupled downscaling hence provides a unique opportunity to assess their response and impact in a changing climate. Under global warming, both global and regional models exhibit an increased (decreased) rainfall in the tropical northeast (South) Atlantic. Given this asymmetric change in mean state, the regional model produces the intensified near-surface cross-equatorial southerly wind and zonal currents. The equatorial cold tongue exhibits a reduced surface warming due to the enhanced upwelling. It is mainly associated with the increased vertical velocities driven by cross-equatorial wind, in contrast to the equatorial Pacific, where thermal stratification is suggested to be more important under global warming. The strengthened upwelling and zonal currents in turn amplify the dynamic instability of the equatorial ocean, thereby intensifying TIWs. The increased eddy heat flux significantly warms the equator and counters the effect of enhanced upwelling. Zonal eddy heat flux makes the largest contribution, suggesting a need for sustained monitoring of TIWs with spatially denser observational arrays in the equatorial oceans. Overall, results suggest that eddy heat flux is an important factor that may impact the mean state warming of equatorial oceans, as it does in the current climate.
    Description: H.S. acknowledges the support from the NOAA Climate and Global Change Postdoctoral Fellowship Program and the Penzance Endowed Fund in Support of Assistant Scientists at WHOI. H.S. and S.‐P.X. are thankful for support from NOAA, NSF, and the Japan Agency for Marine‐Earth Science and Technology.
    Keywords: Climate change ; Ocean mesoscale eddy ; Equatorial Atlantic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03019, doi:10.1029/2007JC004153.
    Description: Estimates of temporal trends in oceanic anthropogenic carbon dioxide (CO2) rely on the ability of empirical methods to remove the large natural variability of the ocean carbon system. A coupled carbon-climate model is used to evaluate these empirical methods. Both the ΔC* and multiple linear regression (MLR) techniques reproduce the predicted increase in dissolved inorganic carbon for the majority of the ocean and have similar average percent errors for decadal differences (24.1% and 25.5%, respectively). However, this study identifies several regions where these methods may introduce errors. Of particular note are mode and deep water formation regions, where changes in air-sea disequilibrium and structure in the MLR residuals introduce errors. These results have significant implications for decadal repeat hydrography programs, indicating the need for subannual sampling in certain regions of the oceans in order to better constrain the natural variability in the system and to robustly estimate the intrusion of anthropogenic CO2.
    Description: We would like to acknowledge funding from NSF (OCE02-23869), NCAR, the WHOI Ocean Climate Institute, a Linden Earth Systems Graduate Fellowship (MIT), and a National Defense Science and Engineering Graduate Fellowship. NCAR is sponsored by the National Science Foundation. R.W. is supported by the Office of Oceanic and Atmospheric Research at NOAA.
    Keywords: Carbon dioxide ; Ocean carbon sink ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 23 (2009): GB4028, doi:10.1029/2009GB003519.
    Description: Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.
    Description: We also acknowledge the financial support of the National Aeronautics and Space Administration Land Cover and Land Use Change Program (NNX08AK75G).
    Keywords: Nitrogen cycle ; Carbon cycle ; ISAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G02026, doi:10.1029/2007JG000470.
    Description: Permafrost is a defining characteristic of the Arctic environment. However, climate warming is thawing permafrost in many areas leading to failures in soil structure called thermokarst. An extensive survey of a 600 km2 area in and around the Toolik Lake Natural Research Area (TLNRA) revealed at least 34 thermokarst features, two thirds of which were new since ∼1980 when a high resolution aerial survey of the area was done. Most of these thermokarst features were associated with headwater streams or lakes. We have measured significantly increased sediment and nutrient loading from thermokarst features to streams in two well-studied locations near the TLNRA. One small thermokarst gully that formed in 2003 on the Toolik River in a 0.9 km2 subcatchment delivered more sediment to the river than is normally delivered in 18 years from 132 km2 in the adjacent upper Kuparuk River basin (a long-term monitoring reference site). Ammonium, nitrate, and phosphate concentrations downstream from a thermokarst feature on Imnavait Creek increased significantly compared to upstream reference concentrations and the increased concentrations persisted over the period of sampling (1999–2005). The downstream concentrations were similar to those we have used in a long-term experimental manipulation of the Kuparuk River and that have significantly altered the structure and function of that river. A subsampling of other thermokarst features from the extensive regional survey showed that concentrations of ammonium, nitrate, and phosphate were always higher downstream of the thermokarst features. Our previous research has shown that even minor increases in nutrient loading stimulate primary and secondary production. However, increased sediment loading could interfere with benthic communities and change the responses to increased nutrient delivery. Although the terrestrial area impacted by thermokarsts is limited, the aquatic habitat altered by these failures can be extensive. If warming in the Arctic foothills accelerates thermokarst formation, there may be substantial and wide-spread impacts on arctic stream ecosystems that are currently poorly understood.
    Description: The results presented in this report are based upon work supported by the U.S. National Science Foundation under grants to the Arctic Hyporheic project (OPP- 0327440) and the Arctic Long-Term Ecological Research Program (DEB- 9810222).
    Keywords: Arctic ; Climate change ; Streams ; Ecosystem dynamics ; Sediment ; Thermokarst ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 108, C12 (2003): 3384, doi:10.1029/2002JC001347.
    Description: The decade of the 1990s was the warmest decade of the last century, while the year 1998 was the warmest year ever observed by modern techniques, with 9 out of 12 months of the year being the warmest months. Satellite ice cover and surface temperature data, European Centre for Medium-Range Weather Forecasts (wind), and ocean hydrographic data are examined to gain insights into this warming phenomenon. Areas of ice-free water in both western and eastern regions of the Arctic are found to have followed a cyclical pattern with approximately decadal period but with a lag of about 3 years between the eastern and western regions. The pattern was interrupted by unusually large anomalies in 1993 and 1998 in the western region and in 1995 in the eastern region. The area of open water in 1998 was the largest ever observed in the western region and occurred concurrently with large surface temperature anomalies in the area and adjacent regions. This also occurred at a time when the atmospheric circulation changed from predominantly cyclonic in 1996 to anticyclonic in 1997 and 1998. Detailed hydrographic measurements over the same general area in April 1996 and April 1997 indicate a warming and significant freshening in the top layer of the ocean, suggesting increases in ice melt and/or river runoff. Continuous ocean temperature and salinity data from ocean buoys at depths of 8, 45, and 75 m confirm these results and show large interannual changes during the 1996–1998 period. Surface temperature data show a general warming in the region that is highly correlated with observed decline in summer sea ice, while hydrographic data suggest that in 1997 and 1998, the upper part of the ocean was unusually fresh and warm compared to available data between 1956 and 1996.
    Description: Deployments of the IOEB were supported by the Japanese Marine Science and Technology Center (JAMSTEC).
    Keywords: Arctic Sea ice ; Climate change ; Surface temperature ; Wind ; Buoy ; Hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D22S09, doi:10.1029/2007JD008521.
    Description: We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.
    Description: This research is funded by NASA Interdisciplinary Science Program (NNG04GM39C).
    Keywords: Air pollution ; Carbon storage ; China ; Climate change ; Net primary productivity ; Tropospheric ozone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11015, doi:10.1029/2010JC006152.
    Description: The concentration of inert gases and their isotopes in the deep ocean are useful as tracers of air-sea gas exchange during deepwater formation. ΔKr/Ar, ΔN2/Ar, and δ40Ar were measured in deep profiles of samples collected in the northwest Pacific, subtropical North Pacific and tropical Atlantic oceans. For the ocean below 2000 m, we determined a mean ΔKr/Ar composition of −0.96% ± 0.16%, a mean ΔN2/Ar of 1.29% ± 0.21% relative to equilibrium saturation, and for δ40Ar a value of 1.188‰ ± 0.055‰ relative to air. These data are used to constrain high-latitude ventilation processes in the framework of three-box and seven-box ocean models. For the three-box model tracer data, we constrain the appropriate surface area of the high-latitude region in both models to be 3.6% (+2.5%, −1.7%) of ocean surface area and the bubble air injection rate to be 22.7 (+8.8, −7.3) mol air m−2 yr−1. Results for the seven-box model were similar, with a high-latitude area of 3.3% (+2.2%, −1.3%). Our results provide geochemical support for suggestions that the effective area of high-latitude ventilation is much smaller than the region of elevated preformed nutrients and demonstrate that noble gases strongly constrain the ocean solubility pump. Reducing high-latitude surface area weakens the CO2 solubility pump in the box models and limits communication between the atmosphere and deep ocean. These tracers should be useful constraints on high-latitude ventilation and the strength of the solubility pump in more complex ocean general circulation models.
    Description: Funding was provided by NSF‐OCE‐0647979.
    Keywords: Noble gases ; Ventilation ; Carbon cycle ; Solubility pump ; Gas exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): F03033, doi:10.1029/2009JF001486.
    Description: When modeling the large-scale (〉 km) evolution of coastline morphology, the influence of natural forces is not the only consideration; ongoing direct human manipulations can substantially drive geomorphic change. In this paper, we couple a human component to a numerical model of large-scale coastline evolution, incorporating beach “nourishment” (periodically placing sand on the beach, also called “beach replenishment” or “beach fill”). Beach nourishment is the most prevalent means humans employ to alter the natural shoreline system in our case study, the Carolina coastline. Beach nourishment can cause shorelines adjacent to those that are nourished to shift both seaward and landward. When we further consider how changes to storm behaviors could change wave climates, the magnitude of morphological change induced by beach nourishment can rival that expected from sea level rise and affect the coast as far as tens of kilometers away from the nourishment site. In some instances, nonlocal processes governing large-scale cuspate-cape coastline evolution may transmit the human morphological “signal” over surprisingly large (hundreds of kilometer) distances.
    Description: The National Science Foundation (DEB 0507987) and the Duke University Center on Global Change supported this work.
    Keywords: Coastline evolution ; Beach nourishment ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.
    Description: This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.
    Description: While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research.
    Keywords: Carbon cycle ; Preformed nutrient ; Nutrient depletion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.
    Description: Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
    Description: This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation.
    Keywords: Anthropogenic CO2 ; Carbon cycle ; Inverse modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/x-tex
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3025, doi:10.1029/2007GB003082.
    Description: Interannually varying net carbon exchange fluxes from the TransCom 3 Level 2 Atmospheric Inversion Intercomparison Experiment are presented for the 1980 to 2005 time period. The fluxes represent the model mean, net carbon exchange for 11 land and 11 ocean regions after subtraction of fossil fuel CO2 emissions. Both aggregated regional totals and the individual regional estimates are accompanied by a model uncertainty and model spread. We find that interannual variability is larger on the land than the ocean, with total land exchange correlated to the timing of both El Niño/Southern Oscillation (ENSO) as well as the eruption of Mt. Pinatubo. The post-Pinatubo negative flux anomaly is evident across much of the tropical and northern extratropical land regions. In the oceans, the tropics tend to exhibit the greatest level of interannual variability, while on land, the interannual variability is slightly greater in the tropics and northern extratropics. The interannual variation in carbon flux estimates aggregated by land and ocean across latitudinal bands remains consistent across eight different CO2 observing networks. The interannual variation in carbon flux estimates for individual flux regions remains mostly consistent across the individual observing networks. At all scales, there is considerable consistency in the interannual variations among the 13 participating model groups. Finally, consistent with other studies using different techniques, we find a considerable positive net carbon flux anomaly in the tropical land during the period of the large ENSO in 1997/1998 which is evident in the Tropical Asia, Temperate Asia, Northern African, and Southern Africa land regions. Negative anomalies are estimated for the East Pacific Ocean and South Pacific Ocean regions. Earlier ENSO events of the 1980s are most evident in southern land positive flux anomalies.
    Keywords: Carbon cycle ; Atmospheric inversion ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 42 (2006): W03426, doi:10.1029/2005WR004131.
    Description: We assessed the effects of historical (1931-1998) changes in both land-use and climate on the water budget of a rapidly urbanizing watershed, Ipswich River basin (IRB), in northeastern Massachusetts. Water diversions and extremely low flow during summer are major issues in the IRB. Our study centers on a detailed analysis of diversions and a combined empirical/modeling treatment of evapotranspiration (ET) response to changes in climate and land-use. A detailed accounting of diversions showed that net diversions increased due to increases in water withdrawals (primarily ground water pumping) and export of sewage. Net diversions constitute a major component of runoff (20% of streamflow). Using a combination of empirical analysis and physically based modeling we related an increase in precipitation (2.7 mm/yr) and changes in other climate variables to an increase in ET (1.7 mm/yr). Simulations with a physically based water-balance model showed that the increase in ET could be attributed entirely to a change in climate, while the effect of land-use change was negligible. The land-use change effect was different from ET and runoff trends commonly associated with urbanization. We generalized these and other findings to predict future streamflow using climate change scenarios. Our study could serve as a framework for studying suburban watersheds, being the first study of a suburban watershed that addresses long-term effects of changes in both land-use and climate, and accounts for diversions and other unique aspects of suburban hydrology.
    Description: This research was partially supported by NSF grants (DEB-9726862, OCE-9726921 and OCE-0423565).
    Keywords: Water budgets ; Evapotranspiration ; Climate change ; Land-use change ; Urbanization ; Water-balance model ; Ipswich River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...