ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean dynamics  (51)
  • Turbulence  (43)
  • Mesoscale processes  (30)
  • American Meteorological Society  (115)
  • Acoustical Society of America  (1)
  • Inter-Research  (1)
  • Annual Reviews
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2556-2574, doi:10.1175/2008JPO3666.1.
    Description: Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model. These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.
    Description: Salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds.
    Keywords: Eddies ; Ocean dynamics ; Internal waves ; Ocean variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1066–1076, doi:10.1175/JPO3032.1.
    Description: A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.
    Keywords: Arctic ; Ocean dynamics ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 418–431, doi:10.1175/JPO-D-12-087.1.
    Description: The overflow of the dense water mass across the Greenland–Scotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of the dense water above the GSR sill depth in the Nordic Seas, according to previous estimates, is sufficient to supply decades of overflow transport. This large capacity buffers overflow’s responses to atmospheric variations and prevents an abrupt shutdown of the AMOC. In this study, the authors use a numerical and an analytical model to show that the effective reservoir capacity of the Nordic Seas is actually much smaller than what was estimated previously. Basin-scale oceanic circulation is nearly geostrophic and its streamlines are basically the same as the isobaths. The vast majority of the dense water is stored inside closed geostrophic contours in the deep basin and thus is not freely available to the overflow. The positive wind stress curl in the Nordic Seas forces a convergence of the dense water toward the deep basin and makes the interior water even more removed from the overflow-feeding boundary current. Eddies generated by the baroclinic instability help transport the interior water mass to the boundary current. But in absence of a robust renewal of deep water, the boundary current weakens rapidly and the eddy-generating mechanism becomes less effective. This study indicates that the Nordic Seas has a relatively small capacity as a dense water reservoir and thus the overflow transport is sensitive to climate changes.
    Description: This study has been supported by National Science Foundation (OCE0927017,ARC1107412).
    Description: 2013-08-01
    Keywords: Bottom currents ; Drainage flow ; Meridional overturning circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2013. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 488 (2013): 171-185, doi:10.3354/meps10382.
    Description: Investigating settlement responses in the transitory period between planktonic and benthic stages of invertebrates helps shape our understanding of larval dispersal and supply, as well as early adult survival. Turbulence is a physical cue that has been shown to induce sinking and potentially settlement responses in mollusc larvae. In this study, we determined the effect of turbulence on vertical swimming velocity and diving responses in competent eastern oyster larvae Crassostrea virginica. We quantified the behavioural responses of larvae in a moving flow field by measuring and analyzing larval velocities in a relative framework (where local flow is subtracted away, isolating the behavioural component) in contrast to the more common absolute framework (in which behaviour and advection by the flow are conflated). We achieved this separation by simultaneously and separately tracking individuals and measuring the flow field around them using particle image velocimetry in a grid-stirred turbulence tank. Contrary to our expectations, larvae swam upward even in highly turbulent flow, and the dive response became less frequent. These observations suggest that oyster larvae are stronger swimmers than previously expected and provide evidence that turbulence alone may not always be a sufficient cue for settlement out of the water column. Furthermore, at a population level, absolute velocity distributions differed significantly from isolated larval swimming velocities, a result that held over increasing turbulence levels. The absolute velocity distributions indicated a strong downward swimming or sinking response at high turbulence levels, but this observation was in fact due to downwelling mean flows in the tank within the imaging area. Our results suggest that reliable characterization of larval behaviour in turbulent conditions requires the subtraction of local flow at an individual level, imposing the technical constraint of simultaneous flow and behavioural observations.
    Description: This work was supported by NSF grant OCE-0850419, grants from WHOI Coastal Ocean Institute, discretionary WHOI funds to purchase the infrared laser and high-speed camera, and a WHOI Ocean Life Fellowship to L.S.M.
    Keywords: Turbulence ; Crassostrea virginica ; Settlement ; Larval behaviour ; Particle image velocimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1739-1751, doi:10.1175/JCLI-D-16-0200.1.
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Description: This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation, as well as the Ocean Climate Change Institute and the Investment in Science Fund at WHOI.
    Description: 2017-08-15
    Keywords: Indian Ocean ; Ocean dynamics ; Climate variability ; Multidecadal variability ; Pacific decadal oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2251-2265, doi:10.1175/JPO-D-17-0042.1.
    Description: The problem of localized dense water formation over a sloping bottom is considered for the general case in which the topography forms a closed contour. This class of problems is motivated by topography around islands or shallow shoals in which convection resulting from brine rejection or surface heat loss reaches the bottom. The focus of this study is on the large-scale circulation that is forced far from the region of surface forcing. The authors find that a cyclonic current is generated around the topography, in the opposite sense to the propagation of the dense water plume. In physical terms, this current results from the propagation of low sea surface height from the region of dense water formation anticyclonically along the topographic contours back to the formation region. This pressure gradient is then balanced by a cyclonic geostrophic flow. This basic structure is well predicted by a linear quasigeostrophic theory, a primitive equation model, and in rotating tank experiments. For sufficiently strong forcing, the anticyclonic circulation of the dense plume meets this cyclonic circulation to produce a sharp front and offshore advection of dense water at the bottom and buoyant water at the surface. This nonlinear limit is demonstrated in both the primitive equation model and in the tank experiments.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1534618. Support for CC was given by the WHOI Ocean Climate Change Institute Proposal 27071273.
    Description: 2018-03-20
    Keywords: Bottom currents ; Buoyancy ; Ocean dynamics ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.
    Description: A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.
    Description: 2019-01-13
    Keywords: Coastal flows ; Currents ; Dynamics ; Gravity waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1077–1096, doi:10.1175/2008JPO4044.1.
    Description: Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.
    Description: The Office of Naval Research funded this work as a part of CBLAST-Low.
    Keywords: Turbulence ; Boundary layer ; Sea/ocean surface ; Air-sea interaction ; Energy transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1103-1121, doi:10.1175/jpo3041.1.
    Description: The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ocean to coherent north–south shifts of the atmosphere. The oceanic eddy effects are diagnosed by the dynamical decomposition method adapted for nonstationary external forcing. The main effects of the eddies are an enhancement of the oceanic eastward jet separating the subpolar and subtropical gyres and a weakening of the gyres. The flow-enhancing effect is due to nonlinear rectification driven by fluctuations of the eddy forcing. This is a nonlocal process involving generation of the eddies by the flow instabilities in the western boundary current and the upstream part of the eastward jet. The eddies are advected by the mean current to the east, where they backscatter into the rectified enhancement of the eastward jet. The gyre-weakening effect, which is due to the time-mean buoyancy component of the eddy forcing, is a result of the baroclinic instability of the westward return currents. The diagnosed eddy forcing is parameterized in a non-eddy-resolving ocean model, as a nonstationary random process, in which the corresponding parameters are derived from the control coupled simulation. The key parameter of the random process—its variance—is related to the large-scale flow baroclinicity index. It is shown that the coupled model with the non-eddy-resolving ocean component and the parameterized eddies correctly simulates climatology and low-frequency variability of the control eddy-resolving coupled solution.
    Description: Funding for this work came from NSF Grants OCE 02-221066 and OCE 03-44094. Additional funding for PB was provided by the U.K. Royal Society Fellowship and by WHOI Grants 27100056 and 52990035.
    Keywords: Ocean dynamics ; Ocean models ; Eddies ; Jets ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1764-1777, doi:10.1175/jpo3098.1.
    Description: The vertical structure of the dissipation of turbulence kinetic energy was observed in the nearshore region (3.2-m mean water depth) with a tripod of three acoustic Doppler current meters off a sandy ocean beach. Surface and bottom boundary layer dissipation scaling concepts overlap in this region. No depth-limited wave breaking occurred at the tripod, but wind-induced whitecapping wave breaking did occur. Dissipation is maximum near the surface and minimum at middepth, with a secondary maximum near the bed. The observed dissipation does not follow a surfzone scaling, nor does it follow a “log layer” surface or bottom boundary layer scaling. At the upper two current meters, dissipation follows a modified deep-water breaking-wave scaling. Vertical shear in the mean currents is negligible and shear production magnitude is much less than dissipation, implying that the vertical diffusion of turbulence is important. The increased near-bed secondary dissipation maximum results from a decrease in the turbulent length scale.
    Description: Funding was provided by NSF and ONR.
    Keywords: Turbulence ; Kinetic energy ; Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1092–1097, doi:10.1175/JPO3045.1.
    Description: The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Wind stress ; Instability ; Sea surface temperature ; Baroclinic flows ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2185-2198, doi:10.1175/JPO2967.1.
    Description: The time-dependent response of an ocean basin to the imposition of cooling (or heating) is examined in the context of a quasigeostrophic, two-layer model on the beta plane. The focus is on the structure and magnitude of the vertical motion and its response to both a switch-on forcing and a periodic forcing. The model employed is a time-dependent version of an earlier model used to discuss the intensification of sinking in the region of the western boundary current. The height of the interface of the two-layer model serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in terms of a relaxation to a prescribed interface height, an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical motion of the interface itself. The presence of time dependence adds additional dynamical features to the problem, in particular the emergence of low-frequency, weakly damped Rossby basin modes. If the buoyancy forcing is zonally uniform the basin responds to a switch-on of the forcing by coming into steady-state equilibrium after the passage of a single baroclinic Rossby wave. If the forcing is nonuniform in the zonal direction, a sequence of Rossby basin modes is excited and their decay is required before the basin achieves a steady state. For reasonable parameter values the boundary layers, in which both horizontal and vertical circulations are closed, are quasi-steady and respond to the instantaneous state of the interior. As in the steady problem the flow is sensitive to small nonquasigeostrophic mass fluxes across the perimeter of the basin. These fluxes generally excite basin modes as well. The basin modes will also be weakly excited if the beta-plane approximation is relaxed. The response to periodic forcing is also examined, and the sensitivity of the response to the structure of the forcing is similar to the switch-on problem.
    Description: This research was supported in part by NSF Grant OCE-9901654,
    Keywords: Vertical motion ; Ocean dynamics ; Buoyancy ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 343–349, doi:10.1175/JCLI-D-11-00059.1.
    Description: The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.
    Description: KBK gratefully acknowledges the J. Lamar Worzel Assistant Scientist Fund. GCJ is supported by NOAA’s Office of Oceanic and Atmospheric Research. RM gratefully acknowledges the generous support and hospitality of the Divecha Centre for Climate Change and CAOS at IISc, Bangalore, and partial support by NASA PO grants.
    Description: 2012-07-01
    Keywords: Tropics ; Ocean circulation ; Ocean dynamics ; Climate models ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 659–668, doi:10.1175/JPO-D-11-0125.1.
    Description: Ice-tethered profiler (ITP) measurements from the Arctic Ocean’s Canada Basin indicate an ocean surface layer beneath sea ice with significant horizontal density structure on scales of hundreds of kilometers to the order 1 km submesoscale. The observed horizontal gradients in density are dynamically important in that they are associated with restratification of the surface ocean when dense water flows under light water. Such restratification is prevalent in wintertime and competes with convective mixing upon buoyancy forcing (e.g., ice growth and brine rejection) and shear-driven mixing when the ice moves relative to the ocean. Frontal structure and estimates of the balanced Richardson number point to the likelihood of dynamical restratification by isopycnal tilt and submesoscale baroclinic instability. Based on the evidence here, it is likely that submesoscale processes play an important role in setting surface-layer properties and lateral density variability in the Arctic Ocean.
    Description: Funding was provided by the National Science Foundation Office of Polar Programs Arctic Sciences Section under Awards ARC-0519899, ARC-0856479, and ARC-0806306. Support was also provided by the Woods Hole Oceanographic Institution Arctic Research Initiative.
    Description: 2012-10-01
    Keywords: Arctic ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2143–2152, doi:10.1175/JPO-D-12-027.1.
    Description: Direct measurements of turbulence levels in the Drake Passage region of the Southern Ocean show a marked enhancement over the Phoenix Ridge. At this site, the Antarctic Circumpolar Current (ACC) is constricted in its flow between the southern tip of South America and the northern tip of the Antarctic Peninsula. Observed turbulent kinetic energy dissipation rates are enhanced in the regions corresponding to the ACC frontal zones where strong flow reaches the bottom. In these areas, turbulent dissipation levels reach 10−8 W kg−1 at abyssal and middepths. The mixing enhancement in the frontal regions is sufficient to elevate the diapycnal turbulent diffusivity acting in the deep water above the axis of the ridge to 1 × 10−4 m2 s−1. This level is an order of magnitude larger than the mixing levels observed upstream in the ACC above smoother bathymetry. Outside of the frontal regions, dissipation rates are O(10−10) W kg−1, comparable to the background levels of turbulence found throughout most mid- and low-latitude regions of the global ocean.
    Description: This work was supported by the U.S. National Science Foundation and by the Natural Environment Research Council of the United Kingdom.
    Description: 2013-06-01
    Keywords: Southern Ocean ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2405–2416, doi:10.1175/JCLI-D-13-00359.1.
    Description: Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.
    Description: EJDis supported by NSFGrantsOCE-1031971 and OCE-1233282. KBK is supported by NSF Grant OCE-1233282.
    Description: 2014-09-15
    Keywords: Tropics ; Currents ; Ocean dynamics ; Atmosphere-ocean interaction ; Climate variability ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2014): 2015–2025, doi:10.1175/JTECH-D-13-00262.1.
    Description: The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.
    Description: The authors thank the NSF Physical Oceanography program (OCE-1233282) and the WHOI Academic Programs Office for funding.
    Description: 2015-03-01
    Keywords: Pacific Ocean ; Tropics ; Currents ; Ocean dynamics ; Buoy observations ; Sampling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 606–612, doi:10.1175/JPO-D-14-0221.1.
    Description: Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
    Description: Support of this research by the National Science Foundation and National Aeronautics and Space Administration is gratefully acknowledged.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Models and modeling ; Ocean models ; Primitive equations model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 72 (2015): 2786–2805, doi:10.1175/JAS-D-14-0257.1.
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Description: This study was supported by grants of the National Science Foundation (OCE- 0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2016-01-01
    Keywords: Katabatic winds ; Severe storms ; Air-sea interaction ; Mesoscale processes ; Orographic effects ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3139-3154, doi:10.1175/JPO-D-16-0042.1.
    Description: Downfront, or downwelling favorable, winds are commonly found over buoyant coastal plumes. It is known that these winds can result in mixing of the plume with the ambient water and that the winds influence the transport, spatial extent, and stability of the plumes. In the present study, the interaction of the Ekman velocity in the surface layer and baroclinic instability supported by the strong horizontal density gradient of the plume is explored with the objective of understanding the potential vorticity and buoyancy budgets. The approach makes use of an idealized numerical model and scaling theory. It is shown that when winds are present the weak stratification resulting from vertical mixing and the strong baroclinicity of the front results in near-zero average potential vorticity q. For weak to moderate winds, the reduction of q by diapycnal mixing is balanced by the generation of q through the geostrophic stress term in the regions of strong horizontal density gradients and stable stratification. However, for very strong winds the wind stress overwhelms the geostrophic stress and leads to a reduction in q, which is balanced by the vertical mixing term. In the absence of winds, the geostrophic stress dominates mixing and the flow rapidly restratifies. Nonlinearity, extremes of relative vorticity and vertical velocity, and mixing are all enhanced by the presence of a coast. Scaling estimates developed for the eddy buoyancy flux, the surface potential vorticity flux, and the diapycnal mixing rate compare well with results diagnosed from a series of numerical model calculations.
    Description: This study was supported by NSF Grants OCE-1433170 (MAS) and OCE-1459677 (LNT).
    Description: 2017-04-07
    Keywords: Coastal flows ; Ekman pumping/transport ; Mesoscale processes ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 435-453, doi:10.1175/JPO-D-17-0122.1.
    Description: Observations of surface waves, currents, and turbulence at the Columbia River mouth are used to investigate the source and vertical structure of turbulence in the surface boundary layer. Turbulent velocity data collected on board freely drifting Surface Wave Instrument Float with Tracking (SWIFT) buoys are corrected for platform motions to estimate turbulent kinetic energy (TKE) and TKE dissipation rates. Both of these quantities are correlated with wave steepness, which has previously been shown to determine wave breaking within the same dataset. Estimates of the turbulent length scale increase linearly with distance from the free surface, and roughness lengths estimated from velocity statistics scale with significant wave height. The vertical decay of turbulence is consistent with a balance between vertical diffusion and dissipation. Below a critical depth, a power-law scaling commonly applied in the literature works well to fit the data. Above this depth, an exponential scaling fits the data well. These results, which are in a surface-following reference frame, are reconciled with results from the literature in a fixed reference frame. A mapping between free-surface and mean-surface reference coordinates suggests 30% of the TKE is dissipated above the mean sea surface.
    Description: Funding for this project was provided by the Office of Naval Research as part of the RIVET-II DRI, and for the DARLA group.
    Keywords: Ocean ; Estuaries ; Gravity waves ; Turbulence ; Wave breaking ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.
    Description: Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.
    Description: We gratefully acknowledge an AMS graduate fellowship (IALB) and U.S. National Science Foundation Grants OCE-1332667 and 1332834 (IALB and JMT).
    Description: 2018-09-06
    Keywords: Boundary currents ; Meridional overturning circulation ; Mesoscale processes ; Ocean circulation ; Potential vorticity ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4847-4863, doi:10.1175/JCLI-D-17-0802.1.
    Description: The sensitivity of sea ice to the temperature of inflowing Atlantic water across the Greenland–Scotland Ridge is investigated using an eddy-resolving configuration of the Massachusetts Institute of Technology General Circulation Model with idealized topography. During the last glacial period, when climate on Greenland is known to have been extremely unstable, sea ice is thought to have covered the Nordic seas. The dramatic excursions in climate during this period, seen as large abrupt warming events on Greenland and known as Dansgaard–Oeschger (DO) events, are proposed to have been caused by a rapid retreat of Nordic seas sea ice. Here, we show that a full sea ice cover and Arctic-like stratification can exist in the Nordic seas given a sufficiently cold Atlantic inflow and corresponding low transport of heat across the Greenland–Scotland Ridge. Once sea ice is established, continued sea ice formation and melt efficiently freshens the surface ocean and makes the deeper layers more saline. This creates a strong salinity stratification in the Nordic seas, similar to today’s Arctic Ocean, with a cold fresh surface layer protecting the overlying sea ice from the warm Atlantic water below. There is a nonlinear response in Nordic seas sea ice to Atlantic water temperature with simulated large abrupt changes in sea ice given small changes in inflowing temperature. This suggests that the DO events were more likely to have occurred during periods of reduced warm Atlantic water inflow to the Nordic seas.
    Description: The research was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. The research leading to these results is part of the ice2ice project funded by the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 610055.
    Keywords: Ocean ; Arctic ; Sea ice ; Ocean dynamics ; Paleoclimate ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1924-1935, doi:10.1175/JTECH2078.1.
    Description: A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was 〉0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was 〉0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.
    Description: This work was funded by the MWRA and USGS.
    Keywords: Instrumentation ; Sensors ; Ocean dynamics ; Ship observations ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1496-1511, doi:10.1175/jpo3071.1.
    Description: Measurements collected in the York River estuary, Virginia, demonstrate the important impact that tidal and lateral asymmetries in turbulent mixing have on the tidally averaged residual circulation. A reduction in turbulent mixing during the ebb phase of the tide caused by tidal straining of the axial density gradient results in increased vertical velocity shear throughout the water column during the ebb tide. In the absence of significant lateral differences in turbulent mixing, the enhanced ebb-directed transport caused by tidal straining is balanced by a reduction in the net seaward-directed barotropic pressure gradient, resulting in laterally uniform two-layer residual flow. However, the channel–shoal morphology of many drowned river valley estuaries often leads to lateral gradients in turbulent mixing. Tidal straining may then lead to tidal asymmetries in turbulent mixing near the deeper channel while the neighboring shoals remain relatively well mixed. As a result, the largest lateral asymmetries in turbulent mixing occur at the end of the ebb tide when the channel is significantly more stratified than the shoals. The reduced friction at the end of ebb delays the onset of the flood tide, increasing the duration of ebb in the channel. Conversely, over the shoal regions where stratification is more inhibited by tidal mixing, there is greater friction and the transition from ebb to flood occurs more rapidly. The resulting residual circulation is seaward over the channel and landward over the shoal. The shoal–channel segregation of this barotropically induced estuarine residual flow is opposite to that typically associated with baroclinic estuarine circulation over channel–shoal bathymetry.
    Description: Support for this research was provided by the National Science Foundation Division of Ocean Sciences Grant OCE- 9984941.
    Keywords: Tides ; Ocean circulation ; Estuaries ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2363-2386, doi:10.1175/jpo3118.1.
    Description: Intrinsic low-frequency variability is studied in the idealized, quasigeostrophic, midlatitude, wind-driven ocean gyres operating at large Reynolds number. A robust decadal variability mode driven by the transient mesoscale eddies is found and analyzed. The variability is a turbulent phenomenon, which is driven by the competition between the eddy rectification process and the potential vorticity anomalies induced by changes of the intergyre transport
    Description: Funding for Pavel Berloff was provided by NSF Grants OCE-0091836 and OCE- 0344094, by the U.K. Royal Society Fellowship, and by the Newton Trust Award, A. M. Hogg was supported by an Australian Research Council Postdoctoral Fellowship (DP0449851) during this work, and William K. Dewar was supported by NSF Grants OCE-0424227 and OCE-0550139.
    Keywords: Turbulence ; Gyres ; Transport ; Potential vorticity ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 166-185, doi:10.1175/2010JPO4470.1.
    Description: Field observations of turbulent kinetic energy (TKE), dissipation rate ε, and turbulent length scale demonstrate the impact of both density stratification and nonlocal turbulent production on turbulent momentum flux. The data were collected in a highly stratified salt wedge estuary using the Mobile Array for Sensing Turbulence (MAST). Estimates of the dominant length scale of turbulent motions obtained from the vertical velocity spectra provide field confirmation of the theoretical limitation imposed by either the distance to the boundary or the Ozmidov scale, whichever is smaller. Under boundary-limited conditions, anisotropy generally increases with increasing shear and decreased distance to the boundary. Under Ozmidov-limited conditions, anisotropy increases rapidly when the gradient Richardson number exceeds 0.25. Both boundary-limited and Ozmidov-limited conditions demonstrate significant deviations from a local production–dissipation balance that are largely consistent with simple scaling relationships for the vertical divergence in TKE flux. Both the impact of stratification and deviation from equilibrium turbulence observed in the data are largely consistent with commonly used turbulence closure models that employ “nonequilibrium” stability functions. The data compare most favorably with the nonequilibrium version of the L. H. Kantha and C. A. Clayson stability functions. Not only is this approach more consistent with the observed critical gradient Richardson number of 0.25, but it also accounts for the large deviations from equilibrium turbulence in a manner consistent with the observations.
    Description: The funding for this research was obtained from ONR Grant N00014-06-1-0292 and NSF Grants and OCE-08-25226 and OCE-08-24871.
    Keywords: Turbulence ; Estuaries ; Kinetic energy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 855–868, doi:10.1175/JPO-D-10-05010.1.
    Description: Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional processes not accounted for in the traditional tidal straining model: 1) along-channel and 2) lateral advection of horizontal gradients in the vertical salinity gradient and 3) tidal asymmetries in the strength of vertical mixing. As a result, cross-sectionally averaged values of the vertical salinity gradient are shown to increase during the flood tide and decrease during the ebb. Only over a limited portion of the cross section does the observed stratification increase during the ebb and decrease during the flood. These observations highlight the three-dimensional nature of estuarine flows and demonstrate that lateral circulation provides an alternate mechanism that allows for the exchange of materials between surface and bottom waters, even when direct turbulent mixing through the pycnocline is prohibited by strong stratification.
    Description: The funding for this research was obtained from NSF Grant OCE-08-25226.
    Description: 2012-11-01
    Keywords: Mixing ; Ocean circulation ; Shear structure/flows ; Transport ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.
    Description: This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
    Description: SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.
    Description: 2013-08-01
    Keywords: Diapycnal mixing ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2833–2844, doi:10.1175/JCLI-D-12-00181.1.
    Description: The Community Climate System Model, version 4 (CCSM4) is used to assess the climate impact of wind-generated near-inertial waves (NIWs). Even with high-frequency coupling, CCSM4 underestimates the strength of NIWs, so that a parameterization for NIWs is developed and included into CCSM4. Numerous assumptions enter this parameterization, the core of which is that the NIW velocity signal is detected during the model integration, and amplified in the shear computation of the ocean surface boundary layer module. It is found that NIWs deepen the ocean mixed layer by up to 30%, but they contribute little to the ventilation and mixing of the ocean below the thermocline. However, the deepening of the tropical mixed layer by NIWs leads to a change in tropical sea surface temperature and precipitation. Atmospheric teleconnections then change the global sea level pressure fields so that the midlatitude westerlies become weaker. Unfortunately, the magnitude of the real air-sea flux of NIW energy is poorly constrained by observations; this makes the quantitative assessment of their climate impact rather uncertain. Thus, a major result of the present study is that because of its importance for global climate the uncertainty in the observed tropical NIW energy has to be reduced.
    Description: This research was funded as part of the Climate Process Team on internal wave-driven mixing with NSF Grant Nr E0968771 at NCAR.
    Description: 2013-11-01
    Keywords: Fronts ; Inertia-gravity waves ; Mesoscale processes ; Mixing ; Nonlinear dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1028–1041, doi:10.1175/JPO-D-12-0159.1.
    Description: The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656 and OCE-0959381 (MAS), and OCE-0925061 (JP).
    Description: 2013-11-01
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 427–444, doi:10.1175/JPO-D-13-070.1.
    Description: Between 25 September 2007 and 28 September 2009, a heavily instrumented mooring was deployed in the Labrador Sea, offshore of the location where warm-core, anticyclonic Irminger rings are formed. The 2-year time series offers insight into the vertical and horizontal structure of newly formed Irminger rings and their heat and salt transport into the interior basin. In 2 years, 12 Irminger rings passed by the mooring. Of these, 11 had distinct properties, while 1 anticyclone likely passed the mooring twice. Eddy radii (11–35 km) were estimated using the dynamic height signal of the anticyclones (8–18 cm) together with the observed velocities. The anticyclones show a seasonal cycle in core properties when observed (1.9°C in temperature and 0.07 in salinity at middepth) that has not been described before. The temperature and salinity are highest in fall and lowest in spring. Cold, fresh caps, suggested to be an important source of freshwater, were seen in spring but were almost nonexistent in fall. The heat and freshwater contributions by the Irminger rings show a large spread (from 12 to 108 MJ m−2 and from −0.5 to −4.7 cm, respectively) for two reasons. First, the large range of radii leads to large differences in transported volume. Second, the seasonal cycle leads to changes in heat and salt content per unit volume. This implies that estimates of heat and freshwater transport by eddies should take the distribution of eddy properties into account in order to accurately assess their contribution to the restratification.
    Description: This work was supported by the U.S. National Science Foundation and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Anticyclones ; Boundary currents ; Observational techniques and algorithms ; In situ oceanic observations ; Variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1410–1425, doi:10.1175/JPO-D-14-0192.1.
    Description: The west-to-east crossover of boundary currents has been seen in mean circulation schemes from several past models of the Red Sea. This study investigates the mechanisms that produce and control the crossover in an idealized, eddy-resolving numerical model of the Red Sea. The authors also review the observational evidence and derive an analytical estimate for the crossover latitude. The surface buoyancy loss increases northward in the idealized model, and the resultant mean circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In the midbasin, the northward surface flow crosses from the western boundary to the eastern boundary. Numerical experiments with different parameters indicate that the crossover latitude of the boundary currents changes with f0, β, and the meridional gradient of surface buoyancy forcing. In the analytical estimate, which is based on quasigeostrophic, β-plane dynamics, the crossover is predicted to lie at the latitude where the net potential vorticity advection (including an eddy component) is zero. Various terms in the potential vorticity budget can be estimated using a buoyancy budget, a thermal wind balance, and a parameterization of baroclinic instability.
    Description: This work is supported by Award USA 00002, KSA 00011, and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST), by National Science Foundation Grants OCE0927017, OCE1154641, and OCE85464100, and by the Woods Hole Oceanographic Institution Academic Program Office.
    Description: 2015-11-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Buoyancy ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1822–1842, doi:10.1175/JPO-D-14-0147.1.
    Description: Influences of time-dependent precipitation on water mass transformation and heat budgets in an idealized marginal sea are examined using theoretical and numerical models. The equations proposed by Spall in 2012 are extended to cases with time-dependent precipitation whose form is either a step function or a sinusoidal function. The theory predicts the differences in temperature and salinity between the convective water and the boundary current as well as the magnitudes of heat fluxes into the marginal sea and across the sea surface. Moreover, the theory reveals that there are three inherent time scales: relaxation time scales for temperature and salinity and a precipitation time scale. The relaxation time scales are determined by a steady solution of the theoretical model with steady precipitation. The relaxation time scale for temperature is always smaller than that for salinity as a result of not only the difference in the form of fluxes at the surface but also the variation in the eddy transport from the boundary current. These three time scales and the precipitation amplitude determine the strength of the ocean response to changes in precipitation and the phase relation between precipitation, changes in salinity and temperature, and changes in heat fluxes. It is demonstrated that the theoretical predictions agree qualitatively well with results from the eddy-resolving numerical model. This demonstrates the fundamental role of mesoscale eddies in the ocean response to time-dependent forcing and provides a framework with which to assess the extent to which observed variability in marginal sea convection and water mass transformation are consistent with an external forcing by variations in precipitation.
    Description: This work was initiated at the 2013 WHOI Geophysical Fluid Dynamics Summer Program, which was supported by the National Science Foundation and the Office of Naval Research. This work was also supported by Grant-in-Aid for Research Fellow (25·8466) of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan, the Program for Leading Graduate Schools, MEXT, Japan (YY), and by the National Science Foundation Grant OCE-1232389 (MAS).
    Description: 2016-01-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Deep convection ; Eddies ; Ocean dynamics ; Atm/Ocean Structure/ Phenomena ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2806–2819, doi:10.1175/JPO-D-15-0061.1.
    Description: An eastward-flowing current of a homogeneous fluid with velocity U, contained in a channel of width L, impinges on an island of width of O(L), and the resulting interaction and dynamics are studied for values of the supercriticality parameter, b = βL2/U, both larger and smaller than π2. The former case is subcritical with respect to Rossby waves, and the latter is supercritical. The nature of the flow field depends strongly on b, and in particular, the nature of the flow around the island and the proportion of the flow passing to the north or south of the island are sensitive to b and to the position of the island in the channel. The problem is studied analytically in a relatively simple, nonlinear quasigeostrophic and adiabatic framework and numerically with a shallow-water model that allows a qualitative extension of the results to the equator. Although the issues involved are motivated by the interaction of the Equatorial Undercurrent and the Galapagos Islands, the analysis presented here focuses on the fundamental issue of the distinctive nature of the flow as a function of Rossby wave criticality.
    Description: Supported by the National Science Foundation Grant OCE-0959381.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Ocean dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 361–367, doi:10.1175/JPO-D-15-0171.1.
    Description: Idealized laboratory experiments investigate the glacier–ocean boundary dynamics near a vertical glacier in a two-layer stratified fluid. Discharge of meltwater runoff at the base of the glacier (subglacial discharge) enhances submarine melting. In the laboratory, the effect of multiple sources of subglacial discharge is simulated by introducing freshwater at freezing temperature from two point sources at the base of an ice block representing the glacier. The buoyant plumes of cold meltwater and subglacial discharge water entrain warm ambient water, rise vertically, and interact within a layer of depth H2 if the distance between the sources x0 is smaller than H2α/0.35, where α is the entrainment constant. The plume water detaches from the glacier face at the interface between the two layers and/or at the free surface, as confirmed by previous numerical studies and field observations. A plume model is used to explain the observed nonmonotonic dependence of submarine melting on the sources’ separation. The distance between the two sources influences the entrainment of warm water in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Two interacting plumes located very close together are observed to melt approximately half as much as two independent plumes. The inclusion, or parameterization, of the dynamics regulating multiple plumes’ interaction is therefore necessary for a correct estimate of submarine melting. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation.
    Description: Support to C.C. was given by the NSF Project OCE-1130008 and OCE-1434041. V.M.G. received support from the “Gori” Fellowship.
    Description: 2016-07-01
    Keywords: Geographic location/entity ; Glaciers ; Circulation/ Dynamics ; Buoyancy ; Entrainment ; Ocean dynamics ; Small scale processes ; Models and modeling ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 905-923, doi:10.1175/JPO-D-17-0133.1.
    Description: Observations of turbulent kinetic energy, dissipation, and turbulent stress were collected in the middle reaches of Chesapeake Bay and were used to assess second-moment closure predictions of turbulence generated beneath breaking waves. Dissipation scaling indicates that the turbulent flow structure observed during a 10-day wind event was dominated by a three-layer response that consisted of 1) a wave transport layer, 2) a surface log layer, and 3) a tidal, bottom boundary layer limited by stable stratification. Below the wave transport layer, turbulent mixing was limited by stable stratification. Within the wave transport layer, where dissipation was balanced by a divergence in the vertical turbulent kinetic energy flux, the eddy viscosity was significantly underestimated by second-moment turbulence closure models, suggesting that breaking waves homogenized the mixed surface layer to a greater extent than the simple model of TKE diffusing away from a source at the surface. While the turbulent transport of TKE occurred largely downgradient, the intermittent downward sweeps of momentum generated by breaking waves occurred largely independent of the mean shear. The underprediction of stress in the wave transport layer by second-moment closures was likely due to the inability of the eddy viscosity model to capture the nonlocal turbulent transport of the momentum flux beneath breaking waves. Finally, the authors hypothesize that large-scale coherent turbulent eddies played a significant role in transporting momentum generated near the surface to depth.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-10-19
    Keywords: Mixing ; Turbulence ; Waves, oceanic ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 163-174, doi:10.1175/JPO-D-17-0161.1.
    Description: The general problem of exchange from a shallow shelf across sharp topography to the deep ocean forced by narrow, cross-shelf wind jets is studied using quasigeostrophic theory and an idealized primitive equation numerical model. Interest is motivated by katabatic winds that emanate from narrow fjords in southeast Greenland, although similar topographically constrained wind jets are found throughout the world’s oceans. Because there is no net vorticity input by the wind, the circulation is largely confined to the region near the forcing. Circulation over the shelf is limited by bottom friction for weakly stratified flows, but stratification allows for much stronger upper-layer flows that are regulated by weak coupling to the lower layer. Over the sloping topography, the topographic beta effect limits the deep flow, while, for sufficient stratification, the upper-layer flow can cross the topography to connect the shelf to the open ocean. This can be an effective transport mechanism even for short, strong wind events because damping of the upper-layer flow is weak. A variety of transients are generated for an abrupt onset of winds, including short topography Rossby waves, long topographic Rossby waves, and inertial waves. Using parameters representative of southeast Greenland, katabatic wind events will force an offshore transport of O(0.4) Sv (1 Sv ≡ 106 m3 s−1) that, when considered for 2 days, will result in an offshore flux of O(5 × 1010) m3.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1533170.
    Description: 2018-07-18
    Keywords: Coastal flows ; Downslope winds ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1815-1830, doi:10.1175/JPO-D-17-0275.1.
    Description: Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.
    Description: This study was supported by MEXT KAKENHI Grant JP15H05824 and JSPS KAKENHI Grant JP15H02131.
    Description: 2019-02-15
    Keywords: Abyssal circulation ; Mixing ; Subgrid-scale processes ; Turbulence ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018):1941-1950, doi:10.1175/JPO-D-17-0194.1.
    Description: Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.
    Description: This work was supported by the Linné FLOW Centre at KTH and the Academy of Finland Center of Excellence Programme Grant 307331 (author Ezhova) and by VR Swedish Research Council GrantVR2014-5001 (author Brandt). Support to author Cenedese was given by NSF Project OCE-1434041.
    Description: 2019-02-27
    Keywords: Buoyancy ; Entrainment ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1334-1339, doi:10.1175/2007JPO3830.1.
    Description: The first-order effects of nonlinearity on the thickness and frictionally driven flux in the Ekman layer are described for the case of an Ekman layer on a solid, flat plate driven by an overlying geostrophic flow as well as the Ekman layer on a free surface driven by a wind stress in the presence of a deep geostrophic current. In both examples, the fluid is homogeneous. Particular attention is paid to the effect of nonlinearity in determining the thickness of the Ekman layer in both cases. An analytical expression for the Ekman layer thickness as a function of Rossby number is given when the Rossby number is small. The result is obtained by insisting that the perturbation expansion of the Ekman problem in powers of the Rossby number remains uniformly valid. There are two competing physical effects. The relative vorticity of the geostrophic currents tends to reduce the width of the layer, but the vertical velocity induced in the layer can fatten or thin the layer depending on the sign of the vertical velocity. The regularized expansion is shown to give, to lowest order, expressions for the flux in agreement with earlier calculations.
    Description: This research was supported in part by NSF Grant OCE-0451086.
    Keywords: Ekman pumping/transport ; Nonlinear dynamics ; Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 22 (2009): 4066–4082, doi:10.1175/2009JCLI2629.1.
    Description: Small-scale variation in wind stress due to ocean–atmosphere interaction within the atmospheric boundary layer alters the temporal and spatial scale of Ekman pumping driving the double-gyre circulation of the ocean. A high-resolution quasigeostrophic (QG) ocean model, coupled to a dynamic atmospheric mixed layer, is used to demonstrate that, despite the small spatial scale of the Ekman-pumping anomalies, this phenomenon significantly modifies the large-scale ocean circulation. The primary effect is to decrease the strength of the nonlinear component of the gyre circulation by approximately 30%–40%. This result is due to the highest transient Ekman-pumping anomalies destabilizing the flow in a dynamically sensitive region close to the western boundary current separation. The instability of the jet produces a flux of potential vorticity between the two gyres that acts to weaken both gyres.
    Description: AH and WD were supported by an ARC Linkage International Grant (LX0668781). WD was also supported by NSF Grants OCE 0424227 and OCE 0550139. Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. SK was supported by U.S. DOE Grant DE-FG02–02ER63413 and NASA Grant NNG-06- AG66G-1.
    Keywords: Airndashsea interaction ; Coupled models ; Mesoscale processes ; Wind stress ; Ekman pumping/transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2711-2734, doi:10.1175/2009JPO4093.1.
    Description: Multiple alternating zonal jets observed in the ocean are studied with an idealized quasigeostrophic zonal-channel model, with the supercritical, zonal background flow imposed. Both eastward and westward background flows with vertical shear are considered. The underlying nonlinear dynamics is illuminated with analysis of the vertical-mode interactions and time-mean eddy fluxes. Interactions between the vertical modes are systematically studied. The barotropic component of the jets is maintained by both barotropic–barotropic and baroclinic–baroclinic time-mean interactions; thus, the barotropic component of the jets cannot be accurately simulated with a randomly forced barotropic model. The roles of the vertical-mode interactions in driving the baroclinic component of the jets are also characterized. Not only the first but also the second baroclinic mode is found to be important for maintaining the baroclinic component of the jets, whereas the barotropic component of the jets is maintained mostly by the barotropic and first baroclinic modes. The properties of the eddy forcing were systematically studied. It is shown that the baroclinic component of the jets is maintained by Reynolds stress forcing and resisted by form stress forcing only in the eastward background flow. In the westward background flow, the jets are maintained by form stress forcing and resisted by Reynolds stress forcing. The meridional scaling and kinematical properties of the jets are studied as well as the roles of meridional boundaries. The Rhines scaling for meridional spacing of the jets is not generally confirmed, and it is also shown that there are multiple stable equilibria with different numbers of the time-mean jets. It is also found that the jets are associated with alternating weak barriers to the meridional material transport, but the locations of these barriers are not unique and depend on the direction of the background flow and depth. Finally, if the channel is closed with meridional walls, then the jets become more latent but the eddy forcing properties do not change qualitatively.
    Description: Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. Funding for IK was provided by NSF Grants OCE 0346178 and 0749722. Funding for JP was provided by NSF Grant OCE 0451086.
    Keywords: Ocean dynamics ; Jets ; Kinematics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1041–1056, doi:10.1175/2010JPO4313.1.
    Description: Three autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were air deployed one day in advance of the passage of Hurricane Frances (2004) as part of the Coupled Boundary Layer Air–Sea Transfer (CBLAST)-High field experiment. The floats were deliberately deployed at locations on the hurricane track, 55 km to the right of the track, and 110 km to the right of the track. These floats provided profile measurements between 30 and 200 m of in situ temperature, salinity, and horizontal velocity every half hour during the hurricane passage and for several weeks afterward. Some aspects of the observed response were similar at the three locations—the dominance of near-inertial horizontal currents and the phase of these currents—whereas other aspects were different. The largest-amplitude inertial currents were observed at the 55-km site, where SST cooled the most, by about 2.2°C, as the surface mixed layer deepened by about 80 m. Based on the time–depth evolution of the Richardson number and comparisons with a numerical ocean model, it is concluded that SST cooled primarily because of shear-induced vertical mixing that served to bring deeper, cooler water into the surface layer. Surface gravity waves, estimated from the observed high-frequency velocity, reached an estimated 12-m significant wave height at the 55-km site. Along the track, there was lesser amplitude inertial motion and SST cooling, only about 1.2°C, though there was greater upwelling, about 25-m amplitude, and inertial pumping, also about 25-m amplitude. Previously reported numerical simulations of the upper-ocean response are in reasonable agreement with these EM-APEX observations provided that a high wind speed–saturated drag coefficient is used to estimate the wind stress. A direct inference of the drag coefficient CD is drawn from the momentum budget. For wind speeds of 32–47 m s−1, CD ~ 1.4 × 10−3.
    Description: The Office of Naval Research supported the development of the EM-APEX float system through SBIR Contract N00014-03-C-0242 to Webb Research Corporation and with a subcontract to APL-UW. Sanford and J. Girton were supported by the Office of Naval Research through GrantsN00014-04-1-0691 and N00014- 07-1-024, and J. Price was supported through Grant N00014-04-1-0109.
    Keywords: Hurricanes ; Ocean dynamics ; Profilers ; Air-sea interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2223–2241, doi:10.1175/2011JPO4344.1.
    Description: Results are presented from an observational study of stratified, turbulent flow in the bottom boundary layer on the outer southeast Florida shelf. Measurements of momentum and heat fluxes were made using an array of acoustic Doppler velocimeters and fast-response temperature sensors in the bottom 3 m over a rough reef slope. Direct estimates of flux Richardson number Rf confirm previous laboratory, numerical, and observational work, which find mixing efficiency not to be a constant but rather to vary with Frt, Reb, and Rig. These results depart from previous observations in that the highest levels of mixing efficiency occur for Frt 〈 1, suggesting that efficient mixing can also happen in regions of buoyancy-controlled turbulence. Generally, the authors find that turbulence in the reef bottom boundary layer is highly variable in time and modified by near-bed flow, shear, and stratification driven by shoaling internal waves.
    Description: Funding was provided by grants from the National Oceanic and Atmospheric Administration’s National Undersea Research Program, National Science Foundation Grants OCE-0622967 and OCE- 0824972 to SGM, and the Singapore Stanford Program. Kristen Davis was supported by a National Defense Science and Engineering Graduate Fellowship and an ARCS Foundation Fellowship.
    Keywords: Boundary layer ; Turbulence ; Bottom currents ; Mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1611–1626, doi:10.1175/JPO-D-12-0204.1.
    Description: A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.
    Description: JW and AM were supported by NASA (NNX12AD47G) and NSF (OCE 0928617). JLM was supported by the Office of Naval Research and the Office of Science (BER), U.S. Department of Energy under DE-GF0205ER64119. GRF is supported by OCE-0752346 and JHL by NORSEE (Nordic Seas Eddy Exchanges) funded by the Norwegian Research Council.
    Description: 2014-02-01
    Keywords: Eddies ; Ocean dynamics ; Potential vorticity ; Surface pressure ; Surface temperature ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1356–1375, doi:10.1175/JPO-D-13-0259.1.
    Description: Eddy–mean flow interactions along the Kuroshio Extension (KE) jet are investigated using a vorticity budget of a high-resolution ocean model simulation, averaged over a 13-yr period. The simulation explicitly resolves mesoscale eddies in the KE and is forced with air–sea fluxes representing the years 1995–2007. A mean-eddy decomposition in a jet-following coordinate system removes the variability of the jet path from the eddy components of velocity; thus, eddy kinetic energy in the jet reference frame is substantially lower than in geographic coordinates and exhibits a cross-jet asymmetry that is consistent with the baroclinic instability criterion of the long-term mean field. The vorticity budget is computed in both geographic (i.e., Eulerian) and jet reference frames; the jet frame budget reveals several patterns of eddy forcing that are largely attributed to varicose modes of variability. Eddies tend to diffuse the relative vorticity minima/maxima that flank the jet, removing momentum from the fast-moving jet core and reinforcing the quasi-permanent meridional meanders in the mean jet. A pattern associated with the vertical stretching of relative vorticity in eddies indicates a deceleration (acceleration) of the jet coincident with northward (southward) quasi-permanent meanders. Eddy relative vorticity advection outside of the eastward jet core is balanced mostly by vertical stretching of the mean flow, which through baroclinic adjustment helps to drive the flanking recirculation gyres. The jet frame vorticity budget presents a well-defined picture of eddy activity, illustrating along-jet variations in eddy–mean flow interaction that may have implications for the jet’s dynamics and cross-frontal tracer fluxes.
    Description: A. S. Delman (ASD) and J. L. McClean (JLM) were supported by NSF Grant OCE-0850463 and Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-05ER64119. ASD and J. Sprintall were also supported by a NASA Earth and Space Science Fellowship (NESSF), Grant NNX13AM93H. JLM was also supported by U.S. DOE Office of Science grant entitled “Ultra-High Resolution Global Climate Simulation” via a Los Alamos National Laboratory subcontract. S. R. Jayne was supported by NSF Grant OCE-0849808. Computational resources for the model run were provided by NSF Resource Grants TG-OCE110013 and TG-OCE130010.
    Description: 2015-11-01
    Keywords: Geographic location/entity ; North Pacific Ocean ; Circulation/ Dynamics ; Forcing ; Instability ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Jets ; Models and modeling ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1735–1756, doi:10.1175/JPO-D-14-0238.1.
    Description: The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy loss. In this study, hydrographic and current measurements collected from a mooring deployed in the Lofoten basin from July 2010 to September 2012 are used to describe water mass transformation and the mesoscale eddy field. Winter mixed layer depths (MLDs) are observed to reach approximately 400 m, with larger MLDs and denser properties resulting from the colder 2010 winter. A heat budget of the upper water column requires lateral input, which balances the net annual heat loss of ~80 W m−2. The lateral flux is a result of mesoscale eddies, which dominate the velocity variability. Eddy velocities are enhanced in the upper 1000 m, with a barotropic component that reaches the bottom. Detailed examination of two eddies, from April and August 2012, highlights the variability of the eddy field and eddy properties. Temperature and salinity properties of the April eddy suggest that it originated from the slope current but was ventilated by surface fluxes. The properties within the eddy were similar to those of the mode water, indicating that convection within the eddies may make an important contribution to water mass transformation. A rough estimate of eddy flux per unit boundary current length suggests that fluxes in the Lofoten basin are larger than in the Labrador Sea because of the enhanced boundary current–interior density difference.
    Description: The work was supported by NSF OCE 0850416.
    Description: 2015-12-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Boundary currents ; Eddies ; Fluxes ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2381–2406, doi:10.1175/JPO-D-14-0086.1.
    Description: While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.
    Description: “The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED)” supported by MEXT, MIT-Hayashi Seed Fund, ONR (Awards N000140910196 and N000141210101), NSF (Award OCE 0928617, 0928138) for support.
    Description: 2016-03-01
    Keywords: Circulation/ Dynamics ; Frontogenesis/frontolysis ; Fronts ; Internal waves ; Turbulence ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2497–2521, doi:10.1175/JPO-D-14-0128.1.
    Description: Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.
    Description: B.D.M. and S.K.V. gratefully acknowledge the support of the Office of Naval Research under Grants N00014-12-1-0279, N00014-12-1-0282, and N00014-12-1-0938 (Program Manager: Dr. Terri Paluszkiewicz). S.K.V. also acknowledges support of the National Science Foundation under Grant OCE-1151838. L.S.L. acknowledges support for BBTRE by the National Science Foundation by Contract OCE94-15589 and NATRE and IWISE by the Office of Naval Research by Contracts N00014-92-1323 and N00014-10-10315. J.N.M. was supported through Grant 1256620 from the National Science Foundation and the Office of Naval Research (IWISE Project).
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Small scale processes ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Mixing ; Observational techniques and algorithms ; Profilers, oceanic ; Models and modeling ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2621–2639, doi:10.1175/JPO-D-14-0239.1.
    Description: Measurements made as part of a large-scale experiment to examine wind-driven circulation and mixing in Chesapeake Bay demonstrate that circulations consistent with Langmuir circulation play an important role in surface boundary layer dynamics. Under conditions when the turbulent Langmuir number Lat is low (〈0.5), the surface mixed layer is characterized by 1) elevated vertical turbulent kinetic energy; 2) decreased anisotropy; 3) negative vertical velocity skewness indicative of strong/narrow downwelling and weak/broad upwelling; and 4) strong negative correlations between low-frequency vertical velocity and the velocity in the direction of wave propagation. These characteristics appear to be primarily the result of the vortex force associated with the surface wave field, but convection driven by a destabilizing heat flux is observed and appears to contribute significantly to the observed negative vertical velocity skewness. Conditions that favor convection usually also have strong Langmuir forcing, and these two processes probably both contribute to the surface mixed layer turbulence. Conditions in which traditional stress-driven turbulence is important are limited in this dataset. Unlike other shallow coastal systems where full water column Langmuir circulation has been observed, the salinity stratification in Chesapeake Bay is nearly always strong enough to prevent full-depth circulation from developing.
    Description: The funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Convection ; Instability ; Mixing ; Turbulence ; Wave breaking ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3155-3163, doi:10.1175/JPO-D-16-0123.1.
    Description: Idealized laboratory experiments have been conducted in a two-layer stratified fluid to investigate the leading-order dynamics that control submarine melting and meltwater export near a vertical ice–ocean interface as a function of subglacial discharge. In summer, the discharge of surface runoff at the base of a glacier (subglacial discharge) generates strong buoyant plumes that rise along the glacier front entraining ambient water along the way. The entrainment enhances the heat transport toward the glacier front and hence the submarine melt rate increases with the subglacial discharge rate. In the laboratory, the effect of subglacial discharge is simulated by introducing freshwater at freezing temperature from a point source at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous observational and numerical studies. Buoyant plumes rise vertically until they find either their neutrally buoyant level or the free surface. Hence, the meltwater can deposit within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The heat budget in the tank, calculated following a new framework, gives estimates of submarine melt rate that increase with the subglacial discharge and are in agreement with the directly measured submarine melting. This laboratory study provides the first direct measurements of submarine melt rates for different subglacial discharges, and the results are consistent with the predictions of previous theoretical and numerical studies.
    Description: Support to C. C. was given by the NSF project OCE- 1130008 and OCE-1434041. M. G. received support from the ‘‘Gori’’ Fellowship.
    Description: 2017-04-07
    Keywords: Glaciers ; Buoyancy ; Density currents ; Turbulence ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2703-2719, doi:10.1175/JPO-D-17-0245.1.
    Description: A new set of deep float trajectory data collected in the Gulf of Mexico from 2011 to 2015 at 1500- and 2500-m depths is analyzed to describe mesoscale processes, with particular attention paid to the western Gulf. Wavelet analysis is used to identify coherent eddies in the float trajectories, leading to a census of the basinwide coherent eddy population and statistics of the eddies’ kinematic properties. The eddy census reveals a new formation region for anticyclones off the Campeche Escarpment, located northwest of the Yucatan Peninsula. These eddies appear to form locally, with no apparent direct connection to the upper layer. Once formed, the eddies drift westward along the northern edge of the Sigsbee Abyssal Gyre, located in the southwestern Gulf of Mexico over the abyssal plain. The formation mechanism and upstream sources for the Campeche Escarpment eddies are explored: the observational data suggest that eddy formation may be linked to the collision of a Loop Current eddy with the western boundary of the Gulf. Specifically, the disintegration of a deep dipole traveling under the Loop Current eddy Kraken, caused by the interaction with the northwestern continental slope, may lead to the acceleration of the abyssal gyre and the boundary current in the Bay of Campeche region.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M10PC00112 to Leidos, Inc., Raleigh, North Carolina.
    Description: 2019-05-07
    Keywords: Abyssal circulation ; Currents ; Eddies ; Mesoscale processes ; Trajectories ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2381-2400, doi:10.1175/2010JPO4403.1.
    Description: Langmuir circulation (LC) is a turbulent upper-ocean process driven by wind and surface waves that contributes significantly to the transport of momentum, heat, and mass in the oceanic surface layer. The authors have previously performed a direct comparison of large-eddy simulations and observations of the upper-ocean response to a wind event with rapid mixed layer deepening. The evolution of simulated crosswind velocity variance and spatial scales, as well as mixed layer deepening, was only consistent with observations if LC effects are included in the model. Based on an analysis of these validated simulations, in this study the fundamental differences in mixing between purely shear-driven turbulence and turbulence with LC are identified. In the former case, turbulent kinetic energy (TKE) production due to shear instabilities is largest near the surface, gradually decreasing to zero near the base of the mixed layer. This stands in contrast to the LC case in which at middepth range TKE production can be dominated by Stokes drift shear. Furthermore, the Eulerian mean vertical shear peaks near the base of the mixed layer so that TKE production by mean shear flow is elevated there. LC transports horizontal momentum efficiently downward leading to an along-wind velocity jet below LC downwelling regions at the base of the mixed layer. Locally enhanced vertical shear instabilities as a result of this jet efficiently erode the thermocline. In turn, enhanced breaking internal waves inject cold deep water into the mixed layer, where LC currents transport temperature perturbation advectively. Thus, LC and locally generated shear instabilities work intimately together to facilitate strongly the mixed layer deepening process.
    Description: This research was supported by the Office of Naval Research through Grants N00014-09-M-0112 (TK) and N00014-06-1-0178 (AP, JT). Author TK also received support from a Woods Hole Oceanographic Institution Cooperative Institute for Climate and Ocean Research Postdoctoral Scholarship.
    Keywords: Mixed layer ; Shear structure/flows ; Wind effects ; Turbulence ; Thermocline ; Internal waves ; Advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
    Description: The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
    Description: NSF support through Awards OCE-1233832, OCE-1232962, and OCE-1048926 is gratefully acknowledged.
    Description: 2015-04-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Eddies ; Ocean circulation ; Turbulence ; Physical Meteorology and Climatology ; Isopycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1309-1321, doi:10.1175/JPO-D-15-0068.1.
    Description: Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
    Description: This work was supported by grants from the U.S. National Science Foundation.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Mixing ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Fronts ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1769-1783, doi:10.1175/JPO-D-15-0193.1.
    Description: High-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship between Rif and Rig was consistent with a turbulent Prandtl number of 1. Acoustic backscatter imagery revealed coherent braids in the mixing layer during the early ebb and a transition to more homogeneous turbulence in the midebb. A temporal trend in efficiency was also visible, with higher efficiency in the early ebb and lower efficiency in the late ebb when the bottom boundary layer had greater influence on the flow. These findings show that mixing efficiency of turbulence in a continuously forced, energetic, free shear layer can be significantly greater than the broadly cited upper bound from Osborn of 0.15–0.17.
    Description: Holleman was supported by the Devonshire Scholars program. The field study and the coauthors’ contributions were supported by NSF Grant OCE 0926427.
    Description: 2016-11-24
    Keywords: Circulation/ Dynamics ; Mixing ; Shear structure/flows ; Turbulence ; Observational techniques and algorithms ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 873-890, doi:10.1175/JTECH-D-15-0109.1.
    Description: Direct covariance flux (DCF) measurements taken from floating platforms are contaminated by wave-induced platform motions that need to be removed before computation of the turbulent fluxes. Several correction algorithms have been developed and successfully applied in earlier studies from research vessels and, most recently, by the use of moored buoys. The validation of those correction algorithms has so far been limited to short-duration comparisons against other floating platforms. Although these comparisons show in general a good agreement, there is still a lack of a rigorous validation of the method, required to understand the strengths and weaknesses of the existing motion-correction algorithms. This paper attempts to provide such a validation by a comparison of flux estimates from two DCF systems, one mounted on a moored buoy and one on the Air–Sea Interaction Tower (ASIT) at the Martha’s Vineyard Coastal Observatory, Massachusetts. The ASIT was specifically designed to minimize flow distortion over a wide range of wind directions from the open ocean for flux measurements. The flow measurements from the buoy system are corrected for wave-induced platform motions before computation of the turbulent heat and momentum fluxes. Flux estimates and cospectra of the corrected buoy data are found to be in very good agreement with those obtained from the ASIT. The comparison is also used to optimize the filter constants used in the motion-correction algorithm. The quantitative agreement between the buoy data and the ASIT demonstrates that the DCF method is applicable for turbulence measurements from small moving platforms, such as buoys.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamic Experiment (CLIMODE).
    Keywords: Circulation/ Dynamics ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Boundary layer ; Physical Meteorology and Climatology ; Air-sea interaction ; Observational techniques and algorithms ; Buoy observations ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3127-3143, doi: 10.1175/JPO-D-19-0011.1.
    Description: The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ⎯ and potential vorticity Q⎯; a ψ⎯−Q⎯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.
    Description: We thank Frank O. Smith for copy editing and proofreading this manuscript. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brazil—Finance Code 001 and by Projeto REMARSUL (Processo CAPES 88882.158621/2014-01), Projeto VT-Dyn (Processo FAPESP 2015/21729-4) and Projeto SUBMESO (Processo CNPq 442926/2015-4). Rocha was supported by a WHOI Postdoctoral Scholarship.
    Description: 2020-06-06
    Keywords: South Atlantic Ocean ; Instability ; Mesoscale processes ; Intermediate waters ; In situ oceanic observations ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Description: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Description: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Description: 2021-02-17
    Keywords: Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3267–3294, https://doi.org/10.1175/JPO-D-19-0310.1.
    Description: As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
    Description: Support for this research was provided by Office of Naval Research Grants N00014-16-1-2668, N00014-18-1-2406, N00014-15-1-2488, and N00014-15-1-2622. R.C.M. was additionally supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Tropics ; Currents ; Eddies ; ENSO ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3331–3351, https://doi.org/10.1175/JPO-D-20-0035.1.
    Description: This study examines the generation of warm spiral structures (referred to as spiral streamers here) over Gulf Stream warm-core rings. Satellite sea surface temperature imagery shows spiral streamers forming after warmer water from the Gulf Stream or newly formed warm-core rings impinges onto old warm-core rings and then intrudes into the old rings. Field measurements in April 2018 capture the vertical structure of a warm spiral streamer as a shallow lens of low-density water winding over an old ring. Observations also show subduction on both sides of the spiral streamer, which carries surface waters downward. Idealized numerical model simulations initialized with observed water-mass densities reproduce spiral streamers over warm-core rings and reveal that their formation is a nonlinear submesoscale process forced by mesoscale dynamics. The negative density anomaly of the intruding water causes a density front at the interface between the intruding water and surface ring water, which, through thermal wind balance, drives a local anticyclonic flow. The pressure gradient and momentum advection of the local interfacial flow push the intruding water toward the ring center. The large-scale anticyclonic flow of the ring and the radial motion of the intruding water together form the spiral streamer. The observed subduction on both sides of the spiral streamer is part of the secondary cross-streamer circulation resulting from frontogenesis on the stretching streamer edges. The surface divergence of the secondary circulation pushes the side edges of the streamer away from each other, widens the warm spiral on the surface, and thus enhances its surface signal.
    Description: Authors W. G. Zhang and D. J. McGillicuddy are both supported by the National Science Foundation through Grant OCE 1657803.
    Keywords: Buoyancy ; Eddies ; Frontogenesis/frontolysis ; Mesoscale processes ; Transport ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Description: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Description: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Keywords: Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spingys, C. P., Garabato, A. C. N., Legg, S., Polzin, K. L., Abrahamsen, E. P., Buckingham, C. E., Forryan, A., & Frajka-Williams, E. E. Mixing and transformation in a deep western boundary current: a case study. Journal of Physical Oceanography, 51(4), (2021): 1205-1222, https://doi.org/10.1175/JPO-D-20-0132.1
    Description: Water-mass transformation by turbulent mixing is a key part of the deep-ocean overturning, as it drives the upwelling of dense waters formed at high latitudes. Here, we quantify this transformation and its underpinning processes in a small Southern Ocean basin: the Orkney Deep. Observations reveal a focusing of the transport in density space as a deep western boundary current (DWBC) flows through the region, associated with lightening and densification of the current’s denser and lighter layers, respectively. These transformations are driven by vigorous turbulent mixing. Comparing this transformation with measurements of the rate of turbulent kinetic energy dissipation indicates that, within the DWBC, turbulence operates with a high mixing efficiency, characterized by a dissipation ratio of 0.6 to 1 that exceeds the common value of 0.2. This result is corroborated by estimates of the dissipation ratio from microstructure observations. The causes of the transformation are unraveled through a decomposition into contributions dependent on the gradients in density space of the: dianeutral mixing rate, isoneutral area, and stratification. The transformation is found to be primarily driven by strong turbulence acting on an abrupt transition from the weakly stratified bottom boundary layer to well-stratified off-boundary waters. The reduced boundary layer stratification is generated by a downslope Ekman flow associated with the DWBC’s flow along sloping topography, and is further regulated by submesoscale instabilities acting to restratify near-boundary waters. Our results provide observational evidence endorsing the importance of near-boundary mixing processes to deep-ocean overturning, and highlight the role of DWBCs as hot spots of dianeutral upwelling.
    Description: CS, ACNG, AF, and EFW were supported by the U.K. Natural Environment Research Council (NERC) Grant NE/K013181/1. ACNG was supported by the Royal Society and Wolfson Foundation. EPA and CEB were supported by NERC Grant NE/K012843/1. CEB was funded by an MSCA grant (No. 798319) from the European Union’s Horizon 2020 program. EPA was supported by NERC Grant NE/N018095/1. SL and KP were supported by U.S. National Science Foundation Grants OCE-1536453 and OCE-1536779. SL acknowledges support of Award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors, and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce.
    Keywords: Bottom currents ; Diapycnal mixing ; Turbulence ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-09-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(4), (2022): 597–616, https://doi.org/10.1175/jpo-d-21-0121.1.
    Description: We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (m–ω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”
    Description: The authors gratefully acknowledge support from the ONR Grant N00014-17-1-2852. YL gratefully acknowledges support from NSF DMS Award 2009418.
    Description: 2022-09-25
    Keywords: Ocean ; Gravity waves ; Nonlinear dynamics ; Ocean dynamics ; Mixing ; Fluxes ; Isopycnal coordinates ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-08-29
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.
    Description: This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.
    Description: The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation.
    Keywords: Diapycnal mixing ; Eddies ; Fronts ; Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(1),(2022): 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.
    Description: Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
    Description: The OSMOSIS experiment was funded by the U.K. Natural Environment Research Council (NERC) through Grants NE/1019999/1 and NE/101993X/1. ACNG acknowledges the support of the Royal Society and the Wolfson Foundation, and XY that of a China Scholarship Council PhD studentship.
    Keywords: Ageostrophic circulations ; Dynamics ; Eddies ; Energy transport ; Frontogenesis/frontolysis ; Instability ; Mesoscale processes ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Small scale processes ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-09-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1677-1691, https://doi.org/10.1175/jpo-d-21-0269.1.
    Description: Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed.
    Description: This work was generously funded by NSF Grants OCE-1912302, OCE-1912125 (Drushka), and OCE-1912325 (Abernathey) as part of the Ocean Energy and Eddy Transport Climate Process Team.
    Keywords: Eddies ; Energy transport ; Mesoscale processes ; Turbulence ; Oceanic mixed layer ; Altimetry ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2013. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 134 (2013): 40-54, doi:10.1121/1.4807780.
    Description: High-frequency broadband acoustic scattering techniques have enabled the remote, high-resolution imaging and quantification of highly salt-stratified turbulence in an estuary. Turbulent salinity spectra in the stratified shear layer have been measured acoustically and by in situ turbulence sensors. The acoustic frequencies used span 120–600 kHz, which, for the highly stratified and dynamic estuarine environment, correspond to wavenumbers in the viscous-convective subrange (500–2500 m−1). The acoustically measured spectral levels are in close agreement with spectral levels measured with closely co-located micro-conductivity probes. The acoustically measured spectral shapes allow discrimination between scattering dominated by turbulent salinity microstructure and suspended sediments or swim-bladdered fish, the two primary sources of scattering observed in the estuary in addition to turbulent salinity microstructure. The direct comparison of salinity spectra inferred acoustically and by the in situ turbulence sensors provides a test of both the acoustic scattering model and the quantitative skill of acoustical remote sensing of turbulence dissipation in a strongly sheared and salt-stratified estuary.
    Description: This work was supported by NSF grant OCE- 0824871, ONR grant N00014-0810495, and WHOI internal funds.
    Keywords: Acoustic wave scattering ; Flow sensors ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2842–2860, doi:10.1175/JCLI-D-13-00227.1.
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Description: This work was sponsored by the National Science Foundation (Grants OCE-0220161, OCE-0825152, and OCE-0827125).
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Mesoscale processes ; Mesoscale systems ; Ocean dynamics ; Eddies ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 778–791, doi:10.1175/JPO-D-14-0164.1.
    Description: This study examines anisotropic transport properties of the eddying North Atlantic flow, using an idealized model of the double-gyre oceanic circulation and altimetry-derived velocities. The material transport by the time-dependent flow (quantified by the eddy diffusivity tensor) varies geographically and is anisotropic, that is, it has a well-defined direction of the maximum transport. One component of the time-dependent flow, zonally elongated large-scale transients, is particularly important for the anisotropy, as it corresponds to primarily zonal material transport and long correlation time scales. The importance of these large-scale zonal transients in the material distribution is further confirmed with simulations of idealized color dye tracers, which has implications for parameterizations of the eddy transport in non-eddy-resolving models.
    Description: IK would like to acknowledge support through the NSF Grant OCE-1154923. IR was supported by the NSF OCE-1154641 and NASA Grant NNX14AH29G.
    Description: 2015-09-01
    Keywords: Circulation/ Dynamics ; Eddies ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation ; Models and modeling ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1277-1284, doi:10.1175/JPO-D-16-0027.1.
    Description: The contemporary Arctic Ocean differs markedly from midlatitude, ice-free, and relatively warm oceans in the context of density-compensating temperature and salinity variations. These variations are invaluable tracers in the midlatitudes, revealing essential fundamental physical processes of the oceans, on scales from millimeters to thousands of kilometers. However, in the cold Arctic Ocean, temperature variations have little effect on density, and a measure of density-compensating variations in temperature and salinity (i.e., spiciness) is not appropriate. In general, temperature is simply a passive tracer, which implies that most of the heat transported in the Arctic Ocean relies entirely on the ocean dynamics determined by the salinity field. It is shown, however, that as the Arctic Ocean warms up, temperature will take on a new role in setting dynamical balances. Under continued warming, there exists the possibility for a regime shift in the mechanisms by which heat is transported in the Arctic Ocean. This may result in a cap on the storage of deep-ocean heat, having profound implications for future predictions of Arctic sea ice.
    Description: Support was provided by the National Science Foundation Division of Polar Programs Award 1350046 and Office of Naval Research Grant Number N00014-12-1-0110.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1823-1837, doi:10.1175/JPO-D-15-0165.1.
    Description: Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.
    Description: Funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518
    Keywords: Circulation/ Dynamics ; Energy transport ; Mixing ; Momentum ; Turbulence ; Wave breaking ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 149–163, doi:10.1175/JPO-D-13-0136.1.
    Description: Monthly mapped sea level anomalies (MSLAs) of the NW Atlantic in the region immediately downstream of the Gulf Stream (GS) separation point reveal a leading mode in which the path shifts approximately 100 km meridionally about a nominal latitude of 39°N, producing coherent sea level anomaly (SLA) variability from 72° to 50°W. This mode can be captured by use of a simple 16-point index based on SLA data taken along the maximum of the observed variability in the region 33°–46°N and 45°–75°W. The GS shifts between 2010 and 2012 are the largest of the last decade and equal to the largest of the entire record. The second group of EOF modes of variability describes GS meanders, which propagate mainly westward interrupted by brief periods of eastward or stationary meanders. These meanders have wavelengths of approximately 400 km and can be seen in standard EOFs by spatial phase shifting of a standing meander pattern in the SLA data. The spectral properties of these modes indicate strong variability at interannual and longer periods for the first mode and periods of a few to several months for the meanders. While the former is quite similar to a previous use of the altimeter for GS path, the simple index is a useful measure of the large-scale shifts in the GS path that is quickly estimated and updated without changes in previous estimates. The time-scale separation allows a low-pass filtered 16-point index to be reflective of large-scale, coherent shifts in the GS path.
    Description: Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) grant program of Apoyo al Personal Investigador en Formación and NSF Grant OCE-0726720
    Description: 2014-07-01
    Keywords: Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Indices ; Ocean dynamics ; Observational techniques and algorithms ; Altimetry ; Mathematical and statistical techniques ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.
    Description: Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f 〉 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
    Description: OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1).
    Keywords: North Atlantic Ocean ; Cyclogenesis/cyclolysis ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3651–3662, https://doi.org/10.1175/JPO-D-21-0076.1.
    Description: Ocean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents can be found in all the world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z coordinate and σ coordinate based on 10-yr averaged Simple Ocean Data Assimilation version 3 (SODA3) data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional–vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.
    Description: This work is supported by the National Natural Science Foundation of China (42076025, 41676021), the Key Special Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), the National Basic Research Program (973 Program) of China (2013CB956201). The numerical simulation is supported by the High Performance Computing Division in the South China Sea Institute of Oceanography. The authors thank Tingjin Guan for the help in enhancing drawing quality.
    Keywords: Currents ; Jets ; Mesoscale processes ; Potential vorticity ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Description: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Description: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Keywords: Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.
    Description: Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
    Description: This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Arctic ; Diapycnal mixing ; Diffusion ; Fluxes ; Instability ; Mixing ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-08-05
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(4), (2022): 491–502, https://doi.org/10.1175/jtech-d-21-0046.1.
    Description: The Air-Launched Autonomous Micro Observer (ALAMO) is a versatile profiling float that can be launched from an aircraft to make temperature and salinity observations of the upper ocean for over a year with high temporal sampling. Similar in dimensions and weight to an airborne expendable bathythermograph (AXBT), but with the same capability as Argo profiling floats, ALAMOs can be deployed from an A-sized (sonobuoy) launch tube, the stern ramp of a cargo plane, or the door of a small aircraft. Unlike an AXBT, however, the ALAMO float directly measures pressure, can incorporate additional sensors, and is capable of performing hundreds of ocean profiles compared to the single temperature profile provided by an AXBT. Upon deployment, the float parachutes to the ocean, releases the air-deployment package, and immediately begins profiling. Ocean profile data along with position and engineering information are transmitted via the Iridium satellite network, automatically processed, and then distributed by the Global Telecommunications System for use by the operational forecasting community. The ALAMO profiling mission can be modified using the two-way Iridium communications to change the profiling frequency and depth. Example observations are included to demonstrate the ALAMO’s utility.
    Description: This work was supported by the National Oceanographic and Atmospheric Administration under Grants NA13OAR4830233 (as part of CINAR Sandy Supplemental funding from the Disaster Relief Appropriations Act of 2013) and NA14OAR4320158 and by Office of Naval Research under Grants N0001416WX01384, N0001416WX01262, and N000141512293. ALAMO floats are commercially available from MRV Systems, LLC (https://www.mrvsys.com).
    Keywords: Ocean ; Hurricanes ; Ocean dynamics ; Mixed layer ; Aircraft observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Description: Funding for DIMES was provided by U.K. Natural Environment Research Council (NERC) Grants NE/E007058/1 and NE/E005667/1. JMC acknowledges the support of a NERC PhD studentship, and ACNG that of the Royal Society and the Wolfson Foundation. NV acknowledges support from the ARC Centre of Excellence for Climate Extremes (CLEX) Honours Scholarship and the ANU PBSA Partnership - Spotless Scholarship. CJS acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National University Futures Scheme award. Numerical simulations were conducted on the National Computational Infrastructure (NCI) facility, Canberra, Australia. This study has been conducted using E.U. Copernicus Marine Service Information. We thank two anonymous reviewers for their comments which helped to improve the manuscript significantly. Codes and output files are available online at the project repository (https://github.com/jessecusack/DIMES_eddy_wave_interactions).
    Keywords: Southern Ocean ; Eddies ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.
    Description: A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
    Description: This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu).
    Keywords: Dispersion ; Fronts ; Mesoscale processes ; Subgrid-scale processes ; Trajectories ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Pratt, L. J., Pearson-Potts, K. A., & Tan, S. Persistent turbulence in the Samoan Passage. Journal of Physical Oceanography, 49(12), (2019): 3179-3197, doi: 10.1175/JPO-D-19-0116.1.
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Description: The authors thank Zhongxiang Xao and Jody Klymak, who provided earlier setups of the numerical model, and also Arjun Jagannathan for insightful discussions on the subject of flow over topography. We also thank John Mickett and Eric Boget for their assistance in designing, deploying, and recovering the moorings. In addition, we also thank the crew and scientists aboard the R/V Revelle and R/V Thompson, without whom the data presented in this paper could not have been gathered. Ilker Fer and two anonymous reviewers provided thoughtful feedback that improved the paper. This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870, and OCE-1658027.
    Keywords: Gravity waves ; Turbulence ; Abyssal circulation ; Mixing ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 855-866, doi:10.1175/JPO-D-16-0194.1.
    Description: Mesoscale eddies shape the Beaufort Gyre response to Ekman pumping, but their transient dynamics are poorly understood. Climate models commonly use the Gent–McWilliams (GM) parameterization, taking the eddy streamfunction to be proportional to an isopycnal slope s and an eddy diffusivity K. This local-in-time parameterization leads to exponential equilibration of currents. Here, an idealized, eddy-resolving Beaufort Gyre model is used to demonstrate that carries a finite memory of past ocean states, violating a key GM assumption. As a consequence, an equilibrating gyre follows a spiral sink trajectory implying the existence of a damped mode of variability—the eddy memory (EM) mode. The EM mode manifests during the spinup as a 15% overshoot in isopycnal slope (2000 km3 freshwater content overshoot) and cannot be explained by the GM parameterization. An improved parameterization is developed, such that is proportional to an effective isopycnal slope , carrying a finite memory γ of past slopes. Introducing eddy memory explains the model results and brings to light an oscillation with a period ≈ 50 yr, where the eddy diffusion time scale TE ~ 10 yr and γ ≈ 6 yr are diagnosed from the eddy-resolving model. The EM mode increases the Ekman-driven gyre variance by γ/TE ≈ 50% ± 15%, a fraction that stays relatively constant despite both time scales decreasing with increased mean forcing. This study suggests that the EM mode is a general property of rotating turbulent flows and highlights the need for better observational constraints on transient eddy field characteristics.
    Description: GEM acknowledges the Stanback Postdoctoral Fellowship Fund at Caltech and the Howland Postdoctoral Program Fund at WHOI. MAS was supported by NSF Grants PLR-1415489 and OCE- 1232389. AFT acknowledges support from NSF OCE- 1235488.
    Keywords: Arctic ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Parameterization ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2611-2630, doi:10.1175/JPO-D-16-0259.1.
    Description: This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.
    Description: This work was supported by Linné FLOW Centre at KTH and the Academy of Finland Centre of Excellence program (Grant 307331) (E. E.) and VR Swedish Research Council, Outstanding Young Researcher Award, Grant VR 2014-5001 (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2018-04-26
    Keywords: Buoyancy ; Internal waves ; Turbulence ; Jets ; Oscillations ; Large eddy simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(5), (2022): 595–617, https://doi.org/10.1175/jtech-d-21-0039.1.
    Description: The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O(100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
    Description: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). All authors are supported by the SWOT project. J. T. Farrar was partially supported by NASA NNX16AH76G.
    Description: 2022-11-01
    Keywords: Internal waves ; Ocean dynamics ; Small scale processes ; Altimetry ; Global positioning systems (GPS) ; In situ oceanic observations ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...