Direct estimate of lateral eddy diffusivity upstream of Drake Passage

Thumbnail Image
Date
2014-10
Authors
Tulloch, Ross
Ferrari, Raffaele
Jahn, Oliver
Klocker, Andreas
LaCasce, Joseph H.
Ledwell, James R.
Marshall, John C.
Messias, Marie-Jose
Speer, Kevin G.
Watson, Andrew J.
Alternative Title
Date Created
Location
DOI
10.1175/JPO-D-13-0120.1
Related Materials
Replaces
Replaced By
Keywords
Geographic location/entity
Southern Ocean
Circulation/ Dynamics
Diffusion
Eddies
Ocean circulation
Turbulence
Physical Meteorology and Climatology
Isopycnal mixing
Abstract
The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
Description
Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
Embargo Date
Citation
Journal of Physical Oceanography 44 (2014): 2593–2616
Cruises
Cruise ID
Cruise DOI
Vessel Name