ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell
  • American Meteorological Society
  • Annual Reviews
  • 2015-2019  (14,990)
  • 1920-1924
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-11-18
    Description: A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
    Description: Published
    Description: 1333–1361
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; atlantic basin ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: In this study, Mg/Ca, Sr/Ca and Ba/Ca ratios in a Lateglacial to Holocene stalagmite (CC26) from Corchia Cave (central Italy) are compared with stable isotope data to define palaeohydrological changes. For most of the record, the trace element ratios show small absolute variability but similar patterns, which are also consistent with stable isotope variations. Higher trace element-to-calcium values are interpreted as responses to decreasing moisture, inducing changes in the residence time of percolation, producing prior calcite precipitation and/or variations in the hydrological routing. Statistically meaningful levels of covariability were determined using anomalies of Mg/Ca, d18O and d13C. Combining these three time series into a single ‘palaeomoisture-trend’ parameter, we highlight several events of reduced moisture (ca. 8.9–8.4, 6.2, 4.2, 3.1 and 2.0 ka), a humid period between ca. 7.9 and 8.3 ka and other shorter-term wet events at ca. 5.8, 5.3 and 3.7 ka. Most of these events can be correlated with climate changes inferred from other regional studies. For both extremities of the record (i.e. before ca. 12.4 ka and after ca. 0.5 ka) Mg/Ca and Sr/Ca are anti-correlated and show the greatest amplitude of values, a likely explanation for which involves aragonite and/or gypsum precipitation (the latter derived from pyrite oxidation) above the CC26 drip point.
    Description: Published
    Description: 381–392
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: central Italy; Corchia Cave; Holocene; speleothems; trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-14
    Description: This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4+ concentration. At the same time, abundant availability of NH4+ and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils.
    Description: Published
    Description: 150–162
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal soils ; geomicrobiology ; chemolithotrophs ; methanotrophs ; Pantelleria ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-18
    Description: This article presents an integrated approach for the probabilistic systemic risk analysis of a road network considering spatial seismic hazard with correlation of ground motion intensities, vulnerability of the network components, and the effect of interactions within the network, as well as, between roadway components and built environment to the network functionality. The system performance is evaluated at the system level through a global connectivity performance indicator, which depends on both physical damages to its components and induced functionality losses due to interactions with other systems. An object-oriented modeling paradigm is used, where the complex problem of several interacting systems is decomposed in a number of interacting objects, accounting for intra- and interdependencies between and within systems. Each system is specified with its components, solving algorithms, performance indicators and interactions with other systems. The proposed approach is implemented for the analysis of the road network in the city of Thessaloniki (Greece) to demonstrate its applicability. In particular, the risk for the road network in the area is calculated, specifically focusing on the short-term impact of seismic events (just after the earthquake). The potential of road blockages due to collapses of adjacent buildings and overpass bridges is analyzed, trying to individuate possible criticalities related to specific components/subsystems. The application can be extended based on the proposed approach, to account for other interactions such as failure of pipelines beneath the road segments, collapse of adjacent electric poles, or malfunction of lighting and signaling systems due to damage in the electric power network.
    Description: Published
    Description: 524–540
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Systemic vulnerability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-22
    Description: This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes.
    Description: Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA
    Description: Published
    Description: 8918-8933
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Arctic Oscillation ; Teleconnections ; Greenhouse gases ; Glaciation ; Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-14
    Description: The knowledge of the local soil structure is important for the assessment of seismic hazards. A widespread, but time-consuming technique to retrieve the parameters of the local underground is the drilling of boreholes. Another way to obtain the shear wave velocity profile at a given location is the inversion of surface wave dispersion curves. To ensure a good resolution for both superficial and deeper layers, the used dispersion curves need to cover a wide frequency range. This wide frequency range can be obtained using several arrays of seismic sensors or a single array comprising a large number of sensors. Consequently, these measurements are time-consuming. A simpler alternative is provided by the use of the ellipticity of Rayleigh waves. The frequency dependence of the ellipticity is tightly linked to the shear wave velocity profile. Furthermore, it can be measured using a single seismic sensor. As soil structures obtained by scaling of a given model exhibit the same ellipticity curve, any inversion of the ellipticity curve alone will be ambiguous. Therefore, additional measurements which fix the absolute value of the shear wave velocity profile at some points have to be included in the inversion process. Small-scale spatial autocorrelation measurements or MASW measurements can provide the needed data. Using a theoretical soil structure, we show which parts of the ellipticity curve have to be included in the inversion process to get a reliable result and which parts can be omitted. Furthermore, the use of autocorrelation or high-frequency dispersion curves will be highlighted. The resulting guidelines for inversions including ellipticity data are then applied to real data measurements collected at 14 different sites during the European NERIES project. It is found that the results are in good agreement with dispersion curve measurements. Furthermore, the method can help in identifying the mode of Rayleigh waves in dispersion curve measurements.
    Description: Published
    Description: 207-229
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Inverse theory Surface waves and free oscillations Site effects Computational seismology Wave propagation ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-07
    Description: Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma–Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in d18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1‰ in d18O of pedogenic carbonate recorded after this eruption. The d13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.
    Description: Published
    Description: 813-824
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: stable isotope ; palaeosols ; Somma–Vesuvius ; palaeoclimate ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-22
    Description: Operative seismic aftershock risk forecasting can be particularly useful for rapid decision-making in the presence of an ongoing sequence. In such a context, limit state first-excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance-based framework for adaptive aftershock risk assessment in the immediate post-mainshock environment. A time-dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event-dependent fragility curves as a function of the first-mode spectral acceleration for a prescribed limit state is calculated by employing back-to-back non- linear dynamic analyses. An epidemic-type aftershock sequence model is employed for estimating the spatio-temporal evolution of aftershocks. The event-dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic-type aftershock sequence aftershock hazard. The daily probability of limit state first-excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the num- ber of aftershocks. As a numerical example, daily aftershock risk is calculated for the L’Aquila 2009 aftershock sequence (central Italy). A representative three-story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first-excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.
    Description: Published
    Description: 2179–2197
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: aftershock ; time-dependent reliability ; seismic risk ; etas modeling ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Harmful Algal Blooms: A Compendium Desk Reference, Wiley-Blackwell, 12 p., pp. 563-574, ISBN: 978-1-118-99465-8
    Publication Date: 2018-06-28
    Description: The genus Alexandrium (Halim) is perhaps the most intensively studied among toxic marine dinoflagellates. This is largely attributable to the devastating consequences of toxigenic blooms of this genus, with human poisonings from contaminated seafood, primarily from shellfish and more rarely from finfish; socio–economic losses to the aquaculture and fisheries industries; marine faunal mortalities; and food web disruptions common in coastal waters throughout the world. Members of this genus are globally distributed from the Arctic to the tropics, and in both hemispheres from sub–polar through temperate to sub–tropical to tropicalwaters. At least four distinct groups of marine phycotoxins are associated with various Alexandrium species, along with poorly characterized bioactive compounds (allelochemicals) that may affect species interactions among the plankton. According to the most recent iteration of the IOC–UNESCO reference list of toxic microalgae, there are now more than 30 recognized morphological species of Alexandrium, posing a daunting challenge for risk assessment and accurate identification in toxic phytoplankton monitoring programs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis, Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis, Wiley-Blackwell, pp. 663-701, ISBN: 978-1-119-15404-4
    Publication Date: 2017-10-09
    Description: Exploitation of Southern Ocean marine resources began more than 200 years ago with the massive hunt for seals and whales. In the 1960s/70s, fisheries for finfish and krill entered Southern Ocean waters. Within a few years many fish populations were heavily overfished and dramatically depleted, and some of these stocks still did not recover. Today, fish stocks and fisheries activities are managed and monitored by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) which was established in 1982 to ensure sustainable exploitation and protection of the delicate marine ecosystem. Current target species include Mackerel icefish (Champsocephalus gunnari), Patagonian as well as Antarctic toothfish (Dissostichus eleginoides and D. mawsoni) and Antarctic krill (Euphausia superba). Most of these species are vulnerable to overfishing due to slow growth, late age at maturity, and rather low fecundity. This vulnerability might increase, as Southern Ocean living communities are currently also faced with alterations of their environment due to climate change, such as increasing water temperatures and decreasing sea ice. Species, including the ones targetted by fisheries, are well-adapted to their particular environmental conditions and are believed to be highly sensitive to changes because of their cold-adapted physiology, their life history traits, and their direct or indirect dependence on sea ice. The species will be exposed to several stressors at the same time, and fishing pressure, direct abiotic forcing and changes mediated via the food web might act synergistically and result in significant population declines. In particular the strongly sea ice-dependent Antarctic krill, a key species in the food web, might be adversely affected. Fish species seems to have low tolerance towards higher water temperatures and may thus, in the long run, be replaced by lower latitude species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC323rd Symposium on Boundary Layers and Turbulence, Renaissance Oklahoma City Convention Center Hotel - Ballroom E, 2018-06-2018-06Renaissance Oklahoma City Convention Center Hotel - Ballroom E, American Meteorological Society
    Publication Date: 2018-08-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  EPIC3Harmful Algal Blooms: A Compendium Desk Reference, Wiley-Blackwell, 8 p., pp. 605-612, ISBN: 978-1-118-99465-8
    Publication Date: 2018-06-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-10-06
    Description: Heavy precipitation is a major hazard over Europe. It is well established that climate model projections indicate a tendency towards more extreme daily rainfall events. It is still uncertain, however, how this changing intensity translates at the sub-daily time scales. The main goal of the present study is to examine possible differences in projected changes in intense precipitation events over Europe at the daily and sub-daily (3-hourly) time scales using a state-of-the-science climate model. The focus will be on one Representative Concentration Pathway (RCP 8.5), considered as illustrative of a high rate of increase in greenhouse gas concentrations over this century. There are statistically significant differences in intense precipitation projections (up to 40%) when comparing the results at the daily and sub-daily time scales. Over north-eastern Europe, projected precipitation intensification at the 3-hour scale is lower than at the daily scale. On the other hand, Spain and the western seaboard exhibit an opposite behaviour, with stronger intensification at the 3-hour scale rather than daily scale. While the mean properties of the precipitation distributions are independent of the analysed frequency, projected precipitation intensification exhibits regional differences. This finding has implications on the extrapolation of impacts of intense precipitation events, given the daily time scale the analyses are usually performed at.
    Description: Published
    Description: 6193–6203
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: rainfall ; extreme events ; heavy precipitation ; snow ; europe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The Pernicana Fault (PF) is the main structural element of Mt Etna and the northern boundary of a section sliding to the southeast. Observed ground motion records in the damage zone of the PF show strong variations of directional resonance in the horizontal plane. The observed resonance directions exhibit an abrupt rotation of azimuth by about 30◦ across the fault, varying from N166◦ on the north side to N139◦ on the south. We interpret the directional resonance observations in terms of changes in the kinematics and deformation fields on the opposite sides of the fault. The northern side is affected primarily by the left-lateral strike-slip movement, whereas the southern side, that is subjected also to sliding, is under a dominant extensional stress regime. Brittle deformation models based on the observed kinematic field predict different sets of fractures on the opposite sides of the fault: synthetic cleavages and extensional fractures are expected to dominate in the northern and southern sides, respectively. These two fracture fields have different orientations (N74◦ and N42◦, respectively) and both show a near-orthogonal relation (∼88◦ in the northern sector and ∼83◦ to the south) with the azimuth of the observed directional resonance. We conclude that the direction of the largest resonance motions is sensitive to and has transversal relationship with the dominant fracture orientation. The directional amplification is inferred to be produced by stiffness anisotropy of the fault damage zone, with larger seismic motions normal to the fractures.
    Description: Published
    Description: 986–996
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions; Site effects; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We consider a seismicity forecast experiment conducted during the last 4 yr. At the beginning of each year, three models make a 1-yr forecast of the distribution of large earthquakes everywhere on the Earth. The forecasts are generated and the observations are collected in the Collaboratory for the Study of Earthquake Predictability (CSEP). We apply CSEP likelihood measures of consistency and comparison to see how well the forecasts match the observations, and we compare results from some intuitive reference models. These results illustrate some undesirable properties of the consistency tests: the tests can be extremely sensitive to only a few earthquakes, and yet insensitive to seemingly obvious flaws—a na ̈ıve hypothesis that large earthquakes are equally likely everywhere is not always rejected. The results also suggest that one should check the assumptions of the so-called T and W comparison tests, and we illustrate some methods to do so. As an extension of model assessment, we explore strategies to combine forecasts, and we discuss the implications for operational earthquake forecasting. Finally, we make suggestions for the next generation of global seismicity forecast experiments.
    Description: Published
    Description: 422-431
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: probabilistic forecasting ; statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: The M ∼ 7 1915 Fucino (Central Italy) earthquake represents one of the most destructive seismic events ever occurred in the Italian Peninsula. Several seismogenic faults have been proposed in the past decades as the source of the earthquake by means of different approaches and techniques that lead to a variety of speculations about the source mechanism and the fault location, often contrasting with one another. The 1915 earthquake produced a remarkable data set of 73 coseismic hydrological changes in the near and intermediate field that consist in variation of the flow of streams and springs, liquefaction, rise of water temperature and turbidity. In this paper, we study the coseismic water level changes induced by the 1915 earthquake in the near field to provide convincing clues on the geometry of the earthquake causative fault. We model the coseismic strain field induced by seventeen individual faults proposed through different approaches, and compare its pattern with the distribution of streamflow changes. We find: (i) clues on the most probable geometry of the earthquake causative fault. Best fits between modelled deformation and observed data are displayed by sources (derived by geological or seismological data) that share several distinctive features, as they are ∼135◦-striking, SW-dipping, 25–30-km-long normal faults located along the eastern side of the Fucino basin. These data point to the Serrone Fault and the Parasano Fault as the most likely causative structures and support the hypothesis that the coseismic ruptures observed in the field represented primary surface faulting. On the contrary, our calculations show that the Pescina Fault and the Ventrino Fault are secondary faults from the perspective of the hydrological response. Finally, one of the best scoring potential sources (from geological data) is a multifaulting system that considers the presence, in the central-western part of the basin, of fault splays synthetic and antithetic to the main seismogenic structures; therefore, we infer for these splays a possible active involvement in a 1915-like seismogenic process; (ii) evidence against a number of seismogenic structures that were previously associated with the earthquake. In particular, the plots of coseismic strain induced by sources uniquely derived by macroseismic or geodetic data prove to be inconsistent with the polarities of the hydrological signatures. Also, sources mainly characterized by reverse faulting and/or by right-lateral strike-slip component are discarded and (iii) as a final remark, we maintain that the study of the hydrological signatures of earthquake strain can offer an alternative tool in the investigation of the historical seismicity, to estimate the focal mechanism of major earthquakes capable of giving rise to a consistent data set of hydrological data.
    Description: Published
    Description: 1374-1388
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1915 Fucino earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Macroseismic intensities are the only available data for most historical earthquakes and often represent the unique source of information for crucial events in the definition of seismic hazard. In this paper, we attempt at getting insight into source characteristics by reproducing the observed intensity field. As a test case, we study the source of 1908 Messina Straits earthquake ( M W = 7.1), by testing three distinct fault models deduced from the analysis of geodeticdata.Startingfromthestaticslipdistribution,wedevelop kinematicsourcemodelsfor the investigated fault and compute full waveform synthetic seismograms in a 1-D structural model, also accounting for anelastic attenuation. Then, we convert both computed peak- ground acceleration (PGA) and peak-ground velocity (PGV) to macroseismic intensity at 100 selected sites, by means of specific empirical relations for the Italian region. By comparing the original data separately with PGA- and PGV-based intensity fields, we discriminate among the tested faults and determine the best values for the investigated kinematic parameters of the source. We also perform a misfit analysis for the best source model, in order to investigate the dependence of the results on the selected parametrization. The results of the analysis indicate that among the tested models, the one characterized by an east-dipping fault, with strike- oriented NS slightly rotated clockwise, better explains the observed macroseismic field of the 1908 Messina Straits earthquake. Besides, the fracture nucleated at the southern end of the fault and ruptured northward, producing considerable directivity effects. This is in agreement with the published results obtained from the investigation of the historical seismograms. We alsodeterminerealisticvalues fortherupturevelocityand therise-time.Ourstudyconfirms the greatpotentialofthemacroseismicdata,demonstratingthattheycontainenoughinformationto constrain important characteristics of the fault, which can be retrieved by using complex source models and computing complete wavefield. Moreover, we also show that the simultaneous comparison of both PGA- and PGV-based synthetic macroseismic fields with the original intensities provides tighter constraints for discriminating among different source models, with respect to what attainable from each of them
    Description: Published
    Description: 164-173
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions; Earthquake source observations. ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Gravity and height changes, reflecting magma accumulation in subsurface chambers, are evaluated using Finite Element models in order to resolve controversial relationships observed in some volcanic areas. When significant gravity changes occur without any significant deformation, or vice versa, it is often difficult, if not impossible, to jointly explain the observations using the popular Mogi model. Here we explore whether these discrepancies can be explained by magma compressibility and source geometry effects. Compression of resident magma and expansion of the chamber wall act concurrently to accommodate newly added magma. Gravity-height ratios are found to mainly depend on: (i) geometry of the sources, which control the volume expansion of the chamber, (ii) magma compressibility, which affects the contraction of the magma resident in the chamber, and (iii) depth of the sources. Our numerical results show that, when magma compressibility and non-spherical sources are taken into account, significant gravity variations can, indeed, be successfully reconciled with negligible height changes. This may be the case at Etna volcano, where gravity changes (about 40 miuGal) without any significant deformation (below 5 cm) were observed during the 1994-1995 inflation period. The numerical results point to the accumulation of a 1.4x10^10 kg mass into an elongated source simulating a shallow storage region supplying the summit craters.
    Description: Published
    Description: 164-173
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: numerical modeling, gravity and height changes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We present an up-to-date high resolution picture of the ongoing crustal deformation field of Italy, based on an extensive combination of permanent and non-permanent GPS observations carried out since 1994. In addition, we present an updated map of contemporary SHmax orientations computed by a multidisciplinary data set of well-constrained stress indicators, including both published results and novel analyses. The comparison of stress and geodetic strain-rates directions reveals that both patterns are near-parallel over a large part of the investigated area, highlighting that crustal stress and surface deformation are driven by the same mechanism. The comparison of the azimuthal patterns of surface strain and mantle deformation shows a modest correlation on the Alps and a low correlation along the Apennines chain and the Calabro-Peloritan Arc. Along the Apennines chain, this feature suggests the occurrence of significant strain partitioning and crust–mantle mechanical decoupling. Along the Calabro-Peloritan Arc, the apparent low correlation reflects a different mantle–crust mechanism of deformation to the ongoing subduction and rollback of the Ionian slab. In addition, the superposition of regional/local effects related to second-order sources (crustal lateral density changes, strength contrasts), which at regional/local scale modulate the crustal stress/strain-rate pattern, cannot be ruled out.
    Description: Published
    Description: 969-985
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Plate motions ; Seismic anisotropy ; Kinematics of crustal and mantle deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: In the Umbria Marche (Central Italy) region an important earthquake sequence occurred in 1997, characterized by nine earthquakes with magnitudes in the range between 5 and 6, that caused important damages and causalities. In the present paper we separately estimate intrinsic- and scattering- Q −1 parameters, using the classical MLTWA approach in the assumption of a half space model. The results clearly show that the attenuation parameters Qi −1 and Qs −1 are frequency dependent. This estimate is compared with other attenuation studies carried out in the same area, and with all the other MLTWA estimates obtained till now in other tectonic environments in the Earth. The bias introduced by the half space assumption is investigated through numerical solutions of the Energy Transport equation in the more realistic assumption of a heterogeneous crust overlying a transparent mantle, with a Moho located at a depth ranging between 35 and 45 km below the surface. The bias introduced by the half space assumption is significant only at high frequency. We finally show how the attenuation estimates, calculated with different techniques, lead to different PGA decay with distance relationships, using the well known and well proven Boore’s method. This last result indicates that care must be used in selecting the correct estimate of the attenuation parameters for seismic risk purposes. We also discuss the reason why MLTWA may be chosen among all the other available techniques, due to its intrinsic stability, to obtain the right attenuation parameters.
    Description: Published
    Description: 1370-1382
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: open
    Keywords: Seismic attenuation ; scattering ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Seismological, geological and geodetic data have been integrated to characterize the seismogenic structure of the late 2013-early 2014 moderate energy (maximum local magnitude MLmax = 4.9) seismic sequence that struck the interior of the Matese Massif, part of the Southern Apennines active extensional belt. The sequence, heralded by a ML = 2.7 foreshock, was characterized by two main shocks with ML = 4.9 and ML = 4.2, respectively, which occurred at a depth of ∼17–18 km. The sequence was confined in the 10–20 km depth range, significantly deeper than the 1997–1998 sequence which occurred few km away on the northeastern side of the massif above ∼15 km depth. The depth distribution of the 2013–14 sequence is almost continuous, albeit a deeper (16–19 km) and a shallower (11–15 km) group of events can be distinguished, the former including the main shocks and the foreshock. The epicentral distribution formed a ∼10 km long NNW–SSE trending alignment, which almost parallels the surface trace of late Pliocene–Quaternary southwest-dipping normal faults with a poor evidence of current geological and geodetic deformation. We built an upper crustal model profile for the eastern Matese massif through integration of geological data, oil exploration well logs and seismic tomographic images. Projection of hypocentres on the profile suggests that the seismogenic volume falls mostly within the crystalline crust and subordinately within the Mesozoic sedimentary cover of Apulia, the underthrust foreland of the Southern Apennines fold and thrust belt. Geological data and the regional macroseismic field of the sequence suggest that the southwest-dipping nodal plane of the main shocks represents the rupture surface that we refer to here as the Matese fault. The major lithological discontinuity between crystalline and sedimentary rocks of Apulia likely confined upward the rupture extent of the Matese fault. Repeated coseismic failure represented by the deeper group of events in the sequence, activated in a passive fashion the overlying ∼11–15 km deep section of the upper crustal normal faults. We consider the southwest-dipping Matese fault representative of a poorly known type of seismogenic structures in the Southern Apennines, where extensional seismogenesis and geodetic strain accumulation occur more frequently on NE-dipping, shallower-rooted faults. This is the case of the Boiano Basin fault located on the northern side of the massif, to which the 1997–1998 sequence is related. The close proximity of the two types of seismogenic faults at the Matese Massif is related to the complex crustal architecture generated by the Pliocene–early Pleistocene contractional and transpressional tectonics.
    Description: Published
    Description: 823-837
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismicity and tectonics ; Continental tectonics: extensional ; Crustal structure ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: We analysed the conversion problem between teleseismic magnitudes (Ms and mb) provided by the Seismological Bulletin of the International Seismological Centre and moment magni- tudes (Mw) provided by online moment tensor (MT) catalogues using the chi-square general orthogonal regression method (CSQ) that, differently from the ordinary least-square regres- sion method (OLS), accounts for the measurement errors of both the predictor and response variables. To account for the non-linearity of the relationships, we used two types of curvilin- ear models: (i) the exponential model (EXP), recently proposed by the authors of the Global Catalogue sponsored by the Global Earthquake Model (GEM) Foundation and (ii) a connected bilinear (CBL) model, similar to that proposed by Ekstro ̈m & Dziewonski, where two different linear trends at low and high magnitudes are connected by an arc of circle that preserves the continuity of the function and of its first derivative at the connecting points. For Ms, we found that the regression curves computed for a global data set (GBL) are likely to be biased by the incompleteness of global MT catalogues for Mw 〈5.0–5.5. In fact, the GBL curves deviate significantly from a similar regression curve computed for a Euro-Mediterranean data set (MED) integrated with the data provided by two regional MT catalogues including many more events with Mw 〈 5.0–5.5. The GLB regression curves overestimate the Mw proxies computed from Ms up to 0.5 magnitude units. Hence for computing Mw proxies at the global scale of Ms ≤ 5.5, we suggest to adopt the coefficients obtained from the MED regression. The analysis of the frequency–magnitude relationship of the resulting Mw proxy catalogues confirms the validity of this choice as the behaviour of b-value as a function of cut-off magnitude of the GBL data set is much more stable using such approach. The incompleteness of Mw’s provided from MT global catalogues also affects the mb GBL data set but in this case the use of the CSQ regression method, in place of the OLS, mitigates the bias and then, at low magnitudes, the EXP regression curve computed from the more complete MED data set almost coincides with that computed from the GBL data set. Our results also indicate that the slope at low magnitudes of the Mw–Ms relationship is substantially consistent with the hypothesized theoretical value of 2/3 for Ms 〈 5.0 while the slope of the Mw–mb relationship at high magnitudes probably reaches the theoretically expected value of 2 only in the proximity of the upper limit of mb determinations in our data set (mb = 7.2).
    Description: Published
    Description: 805–828
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations ; Statistical seismology ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: In a recent paper, important issues were raised about the identification of the fault responsible for the 1908 Messina Straits earthquake. Starting with a reanalysis of the available original geodetic data, the authors aimed to demonstrate that both of the fault–plane orientations derived by the focal mechanism are compatible with the measurements. On these grounds, and based on geological considerations, they argued in favour of the Armo fault—a high-angled structure on the Calabrian side of the Messina Straits—as responsible for the 1908 earthquake. We indicate here that their analysis has some pitfalls that produce questionable results, and that render their conclusions unreliable. Moreover, especially when dealing with such old events and data, we consider that it is more prudent not to derive conclusions on the basis of a single data set, as all of the available information should be included in any interpretation. Indeed, when the joint results of the seismological and geodetic analyses are taken into account, a consistent and robust source model can be derived that indicates that a low-angle, east-dipping fault is the most likely source of this 1908 Messina Straits earthquake
    Description: Published
    Description: 1399-1402
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; Seismicity and tectonics; Europe ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: In this study,we use Differential Synthetic Aperture Radar Interferometry (DInSAR) and multiaperture interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hr apart and an Mw 5.7 event that occurred 40 d later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan Block of the Eurasian Plate. Surface displacements estimated from ascending and descending ENVISAT ASAR acquisitions were used to derive elastic dislocation models for the sources of the two main events. The estimated slip distributions have peak values of 120 and 130 cm on a pair of almost parallel and near-vertical faults striking NW–SE, and of 50 cm and 60 cm on two high-angle faults striking NE–SW. Values up to 50 cm were found for the largest aftershock on an NE–SW fault located between the sources of the main shocks. The MAI measurements, with their high sensitivity to the north–south motion component, are crucial in this area to accurately describe the coseismic displacement field. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at shallow depths on large NW fault planes is compatible with left-lateral activation on smaller NE–SW faults.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Radar interferometry ; Satellite geodesy ; Seismicity and Tectonics ; Continental margins: convergent ; Earthquake interaction, forecasting and prediction ; Earthquake source observation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: The relative seismic velocity variations possibly associated to large earthquakes can be readily monitored via cross-correlation of seismic noise. In a recently published study, more than 2 yr of continuous seismic records have been analysed from three stations surrounding the epicentre of the 2009 April 6, Mw 6.1 L’Aquila earthquake, observing a clear decrease of seismic velocities likely corresponding to the co-seismic shaking. Here, we extend the analysis in space, including seismic stations within a radius of 60 km from the main shock epicentre, and in time, collecting 5 yr of data for the six stations within 40 km of it. Our aim is to investigate how far the crustal damage is visible through this technique, and to detect a potential post-seismic recovery of velocity variations. We find that the co-seismic drop in velocity variations extends up to 40 km from the epicentre, with spatial distribution (maximum around the fault and in the north– east direction from it) in agreement with the horizontal co-seismic displacement detected by global positioning system (GPS). In the first few months after L’Aquila earthquake, the crust’s perturbation in terms of velocity variations displays a very unstable behaviour, followed by a slow linear recovery towards pre-earthquake conditions; by almost 4 yr after the event, the co-seismic drop of seismic velocity is not yet fully recovered. The strong oscillations of the velocity changes in the first months after the earthquake prevent to detect the fast exponential recovery seen by GPS data. A test of differently parametrized fitting curves demonstrate that the post-seismic recovery is best explained by a sum of a logarithmic and a linear term, suggesting that processes like viscoelastic relaxation, frictional afterlip and poroelastic rebound may be acting concurrently.
    Description: Published
    Description: 604-6011
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis; Interferometry; Computational seismology; Europe ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-12-13
    Description: Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50–100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.
    Description: Published
    Description: 848–866
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Fourier analysis, Earthquake ground motions , Site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-05-27
    Description: We propose an innovative approach to mapping CMB topography from seismic P-wave trav- eltime inversions: instead of treating mantle velocity and CMB topography as independent parameters, as has been done so far, we account for their coupling by mantle flow, as formulated by Forte & Peltier. This approach rests on the assumption that P data are sufficiently sensitive to thermal heterogeneity, and that compositional heterogeneity, albeit important in localized regions of the mantle (e.g. within the D′′ region), is not sufficiently strong to govern the pattern of mantle-wide convection and hence the CMB topography. The resulting tomographic maps of CMB topography are physically sound, and they resolve the known discrepancy between images obtained from classic tomography on the basis of core-reflected and core-refracted seismic phases. Since the coefficients of mantle velocity structure are the only free parameters of the inversion, this joint tomography–geodynamics approach reduces the number of param- eters; nevertheless the corresponding mantle models fit the seismic data as well as the purely seismic ones.
    Description: Published
    Description: 730-746
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: We present the results of palaeomagnetic analysis on Late Bronge Age pottery from Santorini carried out in order to estimate the thermal effect of the Minoan eruption on the pre-Minoan habitation level. A total of 170 specimens from 108 ceramic fragments have been studied. The ceramics were collected from the surface of the pre-Minoan palaeosol at six different sites, including also samples from the Akrotiri archaeological site. The deposition temperatures of the first pyroclastic products have been estimated by the maximum overlap of the re-heating temperature intervals given by the individual fragments at site level. A new statistical elaboration of the temperature data has also been proposed, calculating at 95 per cent of probability the re-heating temperatures at each site. The obtained results show that the precursor tephra layer and the first pumice fall of the eruption were hot enough to re-heat the underlying ceramics at temperatures 160–230 ◦C in the non-inhabited sites while the temperatures recorded inside the Akrotiri village are slightly lower, varying from 130 to 200 ◦C. The decrease of the temperatures registered in the human settlements suggests that there was some interaction between the buildings and the pumice fallout deposits while probably the buildings debris layer caused by the preceding and syn-eruption earthquakes has also contributed to the decrease of the recorded re-heating temperatures.
    Description: Published
    Description: 33-47
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Archaeomagnetism ; Rock and mineral magnetism ; Volcaniclastic deposits ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Probabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical simulations of tsunami generation, propagation, and non-linear inundation on high-resolution topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis- placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations are typically needed to incorporate in SPTHA the full expected variability of seismic sources (the aleatory uncertainty). We propose an approach for reducing their number. To this end, we (i) introduce a simplified event tree to achieve an effective and consistent exploration of the seismic source parameter space; (ii) use the computationally inexpensive linear approximation for tsunami propagation to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these ‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’ probabilistic inundation maps at the target site, using only the selected sources. We find that the selection of the important sources needed for approximating probabilistic inundation maps can be obtained based on the offshore HMax values only. The filtering procedure is semi-automatic and can be easily repeated for any target sites. We describe and test the performances of our approach with a case study in the Mediterranean that considers potential subduction earthquakes on a section of the Hellenic Arc, three target sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison between the filtered SPTHA results and those obtained for the full set of sources indicates that our approach allows for a 75–80 per cent reduction of the number of the numerical simulations needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.
    Description: Published
    Description: 574-588
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Tsunami ; Hazard ; Probabilistic ; Subduction ; Mediterranean ; SPTHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: Temporal variations in the elastic behaviour of the Earth’s crust can be monitored through the analysis of the Earth’s seismic response and its evolution with time. This kind of analysis is particularly interesting when combined with the reconstruction of seismic Green’s functions from the cross-correlation of ambient seismic noise, which circumvents the limitations imposed by a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded continuously and does not depend on earthquake sources, these cross-correlation functions can be considered analogously to records from continuously repeating doublet sources placed at each station, and can be used to extract observations of variations in seismic velocities. These variations, however, are typically very small: of the order of 0.1 per cent. Such accuracy can be only achieved through the analysis of the full reconstructed waveforms, including later scattered arrivals. We focus on the method known as Moving-Window Cross-Spectral Analysis that has the advantage of operating in the frequency domain, where the bandwidth of coherent signal in the correlation function can be clearly defined. We investigate the sensitivity of this method by applying it to microseismic noise cross-correlations which have been perturbed by small synthetic velocity variations and which have been randomly contaminated. We propose threshold signal-to-noise ratios above which these perturbations can be reliably observed. Such values are a proxy for cross-correlation convergence, and so can be used as a guideline when determining the length of microseismic noise records that are required before they can be used for monitoring with the moving-window cross-spectral technique.
    Description: Published
    Description: 867-882
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Interferometry; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Climate model simulations are currently the main tool to provide information about possible future climates. Apart from scenario uncertainties and model error, internal variability is a major source of uncertainty, complicating predictions of future changes. Here, a suite of statistical tests is proposed to determine the shortest time window necessary to capture the internal precipitation variability in a stationary climate. The length of this shortest window thus expresses internal variability in terms of years. The method is applied globally to daily precipitation in a 200-yr preindustrial climate simulation with the CMCC-CM coupled general circulation model. The two-sample Cramér–von Mises test is used to assess differences in precipitation distribution, the Walker test accounts for multiple testing at grid cell level, and field significance is determined by calculating the Bejamini–Hochberg false-discovery rate. Results for the investigated simulation show that internal variability of daily precipitation is regionally and seasonally dependent and that regions requiring long time windows do not necessarily coincide with areas with large standard deviation. The estimated time scales are longer over sea than over land, in the tropics than in midlatitudes, and in the transitional seasons than in winter and summer. For many land grid cells, 30 seasons suffice to capture the internal variability of daily precipitation. There exist regions, however, where even 50 years do not suffice to sample the internal variability. The results show that diagnosing daily precipitation change at different times based on fixed global snapshots of one climate simulation might not be a robust detection method.
    Description: Published
    Description: 3624–3630
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: precipitation ; internal variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: In this study we have investigated the forward directivity associated with the initial up-dip rupture propagation during the April 6th 2009 (MW 6.1) L’Aquila normal-faulting earthquake. The objective is the understanding of how the peculiar initial behavior of rupture history during the main shock has affected the near-source recorded ground motions in the L’Aquila town and surrounding areas. We have modeled the observed ground velocities at the closest near-source recording sites by computing synthetic seismograms using a discrete wavenumbers and finite difference approach in the low frequency bandwidth (0.02-0.4 Hz) to avoid site effects contaminations. We use both the rupture model retrieved by inverting ground motion waveforms and continuous high sampling-rate GPS time series as well as uniform-slip constant-rupture speed models. Our results demonstrate that the initial up-dip rupture propagation, characterizing the first three seconds of the rupture history during the L’Aquila main shock and releasing only ∼25% of total seismic moment, controls the observed ground motions in the near-source. This initial stage of the rupture is characterized by the generation of clear ground velocity pulses, which we interpret as a forward directivity effect. Our modeling results confirm a heterogeneous distribution of rupture velocity during the initial up-dip rupture propagation, since uniform rupture speed models overestimate up-dip directivity effects in the footwall of the causative fault. The up-dip directivity observed in the near field during the 2009 L’Aquila main shock is that predicted for a normal faulting earthquake by Somerville’s directivity model, but it differs from that inferred from far-field observations that conversely provide evidence of along-strike directivity. This calls for a careful analysis as well as for the realistic inclusion of rupture directivity to predict ground motions in the near source.
    Description: Published
    Description: 1618-1631
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: earthquake ground motion, earthquake source observations, computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Magnitude conversion problem using general orthogonal regression’ by H. R. Wason, Ranjit Das and M. L. Sharma, (Geophys. J. Int., 190, 1091–1096)
    Publication Date: 2017-04-04
    Description: The argument proposed by Wason et al. that the conversion of magnitudes from a scale (e.g. Ms or mb) to another (e.g. Mw), using the coefficients computed by the general orthogonal regression method (Fuller) is biased if the observed values of the predictor (independent) variable are used in the equation as well as the methodology they suggest to estimate the supposedly true values of the predictor variable are wrong for a number of theoretical and empirical reasons. Hence, we advise against the use of such methodology for magnitude conversions.
    Description: Published
    Description: 626-627
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations ; Statistical seismology ; Computational seismology ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley-Blackwell
    Publication Date: 2017-04-04
    Description: Fluids—essentially meteoric water—are present everywhere in the Earth’s crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in formof solitary pressure waves propagating at a velocity which decreases with time as v ∝t [1/(n − 1) − 1] with n 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.
    Description: Published
    Description: 1281–1285
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: N/A or not JCR
    Description: restricted
    Keywords: forecasting and prediction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The financial support of the Italian Ministry of Education, University and Research, and Ministry for Environment, Land and Sea through the project GEMINA and that of INDO-MARECLIM (Project 295092) is gratefully acknowledged. A. Cherchi thankfully acknowledges the generous hospitality of the International Pacific Research Center at UH Manoa, Honolulu. Jan Hafner is thanked for providing the moist static energy budget code used here and Matthew Windlansky is thanked for comments and proof reading. H. Annamalai acknowledges the partial support by the Office of Science (BER) U.S. Department of Energy, Grant DE-FG02-07ER6445, and also by the three institutional grants (JAMSTEC, NASA, NOAA) of the IPRC. Dr. Chen and an anonymous reviewer are acknowledged for the instructive and helpful comments given.
    Description: Dry summers over the eastern Mediterranean are characterized by strong descent anchored by long Rossby waves, which are forced by diabatic heating associated with summer monsoon rainfall over South Asia. The large-scale teleconnection between rising and subsiding air masses is referred to as the "monsoon-desert mechanism.'' This study evaluates the ability of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models in representing the physical processes involved in this mechanism. An evaluation of statistics between summer climatologies of monsoon diabatic heating and that of vertical velocity over the eastern Mediterranean suggests a linear relationship. Despite large spatial diversity in monsoon heating, descent over the Mediterranean is coherently located and realistic in intensity. To measure the sensitivity of descent to the diversity in the horizontal and vertical distribution of monsoon heating, a series of linear atmosphere model experiments are performed. It is shown that column-integrated heating over both the Bay of Bengal and the Arabian Sea provides the largest descent with a more realistic spatial pattern. In the vertical, CMIP5 models underestimate the diabatic heating at upper levels, while they overestimate it at lower levels, resulting in a weaker forced response and weaker associated descent over the Mediterranean. A moist static energy budget analysis applied to CMIP5 suggests that most models capture the dominant role of horizontal temperature advection and radiative fluxes in balancing descent over the Mediterranean. Based on the objective analysis herein, a subset of models is identified that captures the teleconnection for reasons consistent with observations. The recognized processes vary at interannual time scales as well, with imprints of severe weak/strong monsoons noticeable over the Mediterranean.
    Description: Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA INDO-MARECLIM 295092 Office of Science (BER) U.S. Department of Energy DE-FG02-07ER6445 (JAMSTEC) of the IPRC (NASA) of the IPRC (NOAA) of the IPRC
    Description: Published
    Description: 6877-6903
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Rossby waves ; Teleconnections ; Diabatic heating ; Coupled models ; Model evaluation/performance ; Interannual variability ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: Optimally modeling background-error horizontal correlations is crucial in ocean data assimilation. This paper investigates the impact of releasing the assumption of uniform background-error correlations in a global ocean variational analysis system. Spatially varying horizontal correlations are introduced in the recursive filter operator, which is used for modeling horizontal covariances in the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) analysis system. The horizontal correlation length scales (HCLSs) were defined on the full three-dimensional model space and computed from both a dataset of monthly anomalies with respect to the monthly climatology and through the so-called National Meteorological Center (NMC) method. Different formulas for estimating the correlation length scale are also discussed and applied to the two forecast error datasets. The new formulation is tested within a 12-yr period (2000–11) in the ½° resolution system. The comparison with the data assimilation system using uniform background-error horizontal correlations indicates the superiority of the former, especially in eddy-dominated areas. Verification skill scores report a significant reduction of RMSE, and the use of nonuniform length scales improves the representation of the eddy kinetic energy at midlatitudes, suggesting that uniform, latitude, or Rossby radius-dependent formulations are insufficient to represent the geographical variations of the background-error correlations. Furthermore, a small tuning of the globally uniform value of the length scale was found to have a small impact on the analysis system. The use of either anomalies or NMC-derived correlation length scales also has a marginal effect with respect to the use of nonuniform HCLSs. On the other hand, the application of overestimated length scales has proved to be detrimental to the analysis system in all areas and for all parameters.
    Description: This work has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry for the Environment, Land and Sea under the GEMINA project and from the European Commission's Copernicus program, previously known as the GMES program, under the MyOcean and MyOcean2 projects.
    Description: Published
    Description: 2330-2349
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: DATA ASSIMILATION SCHEME ; TROPICAL PACIFIC-OCEAN ; PART I ; VARIATIONAL ASSIMILATION ; COVARIANCE FUNCTIONS ; DIFFUSION EQUATION ; SYSTEM ; TEMPERATURE ; IMPLEMENTATION ; MODEL ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: Our improved capability to adapt to future changes in discharge is linked to our capability to predict the magnitude or at least the direction of these changes. For the agricultural U.S. Midwest, too much or too little water has severe socio-economic impacts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed discharge variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven global climate models part of the Coupled Model Intercomparison Project Phase 5 and two representative concentration pathways (RCPs 4.5 and 8.5). There is not a strong signal of change in the discharge projections under the RCP 4.5. However the results for the RCP 8.5 point to a stronger changing signal related to larger projected increases in rainfall, resulting in increasing trends in particular in the upper part of the discharge distribution (i.e., 60th percentile and above). Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be alleviated by decreasing the extent of the agricultural production. We also discuss how the methodology presented in this study represents a viable approach to move forward with the concept of return period for engineering design and management in a non-stationary world.
    Description: Published
    Description: 1361–1371
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: river discharge ; rainfall ; statistical model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: We present a strategy to thoroughly investigate the effects of prominent topography on the surface tilt due to a spherical pressure source. We use Etna's topography as a case of study and, for different source positions, we compare the tilt fields calculated through (i) a 3-D boundary element method and (ii) analytical half-space solutions. We systematically determine (i) the source positions leading to the strongest tilt misfits when numerical and analytical results are compared and (ii) the surface areas where the strongest distortions in the tilt field are most likely to be observed. We also demonstrate that, under critical circumstances, in terms of respective positions of pressure source and observation points, results of inversion procedures aimed at retrieving the source parameters can be misleading, if tilt data are analysed using models that do not account for topography.
    Description: Published
    Description: 1471–1481
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis ; Transient deformation ; Volcano monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-03-27
    Description: The first in situ measurements of seawater density that referred to a geographical position at sea and time of the year were carried out by Count Luigi Ferdinando Marsili between 1679 and 1680 in the Adriatic Sea, Aegean Sea, Marmara Sea, and the Bosporus. Not only was this the first investigation with documented oceanographic measurements carried out at stations, but themeasurements were described in such an accurateway that the authorswere able to reconstruct the observations in modern units. These first measurements concern the ‘‘specific gravity’’ of seawaters (i.e., the ratio between fluid densities). The data reported in the historical oceanographic treatise Osservazioni intorno al Bosforo Tracio (Marsili) allowed the reconstruction of the seawater density at different geographic locations between 1679 and 1680. Marsili’s experimental methodology included the collection of surface and deep water samples, the analysis of the samples with a hydrostatic ampoule, and the use of a reference water to standardize the measurements.Acomparison of reconstructed densities with present-day values shows an agreement within 10%–20% uncertainty, owing to various aspects of the measurement methodology that are difficult to reconstruct from the documentary evidence. Marsili also measured the current speed and the depth of the current inversion in the Bosporus, which are consistent with the present-day knowledge. The experimental data collected in the Bosporus enabledMarsili to enunciate a theory on the cause of the two-layer flow at the strait, demonstrated by his laboratory experiment and later confirmed by many analytical and numerical studies.
    Description: American Meteorological Society.
    Description: Published
    Description: 845 - 860
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Ocean ; Density currents ; Measurements ; Ship observations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-12-11
    Description: In this study we applied a multidisciplinary approach, coupling geophysical and geochemical measurements, to unveil the provenance of 170 obsidian flakes, collected on the volcanic island of Ustica (Sicily). On this island there are some prehistoric settlements dated from the Neolithic to the Middle Bronze Age. Despite not having geological outcrops of obsidian rocks, the countryside of Ustica is rich in fragments of this volcanic glass, imported from other source areas. The study of obsidian findings was carried out first through visual observations and density measurements. At least two different obsidian families have been distinguished, probably imported from Lipari and Pantelleria islands. Analysing the magnetic properties of the samples, these two main sources were confirmed, but the possibility of other provenances was inferred. Finally, we characterized the geochemical signature of the Ustica obsidians by performing microchemical analyses through electron microprobe (EMPA) and laser ablation (LA–ICP–MS). The results were compared with literature data, confirming the presence of the Lipari and Pantelleria sources (Sicily) and indicating for the first time in this part of Italy a third provenance from Palmarola island (Latium). Our results shed new light on the commercial exchanges in the peri-Tyrrhenian area during the prehistoric age.
    Description: Published
    Description: 435–454
    Description: 1SR. TERREMOTI - Servizi e ricerca per la Società
    Description: 2SR. VULCANI - Servizi e ricerca per la Società
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Description: JCR Journal
    Description: restricted
    Keywords: obsdian provenance ; LA-ICPMS ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-03-20
    Description: Our study area is a ~50 km long section of the central-southern Apennines tectonic belt that includes the Pergola-Melandro basin and the Agri valley. This region is located between the areas interested by the 1980 Ms=6.9 Irpinia and the 1857 M=7.0 Val d’Agri earthquakes and is characterized by rare historical events and very low and sparse background seismicity. In this study we provide new seismological and geophysical information to identify the characteristics of the seismotectonics in the area, as the prevailing faulting mechanism and the fit of local to regional stress field. These data concern focal mechanisms from waveform modeling and P-wave polarities, analyses of borehole breakouts and detailed investigation of two seismic sequences. All the data cover a significantly broad range of magnitudes and depths and suggest that no important local variation in stress orientation seems to affect this area, which shows a NE-SW direction of extension consistent with that regionally observed in Southern Italy. Such local homogeneity in the stress field pattern is peculiar of the study area; the variations of orientation and/or type of stress observed in the northern Apennines or only less than 100 km toward the northwest within the same tectonic belt are absent here. Furthermore, there is a suggestion for a northeastward sense of dip of the seismogenic faults in the region, an interesting constraint to the characterization of seismic sources
    Description: Published
    Description: 575-583
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Keywords: faulting ; seismicity ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-24
    Description: Metal-catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures 〉200°C. However, land-based present-day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non-pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial d13CCO2 of -40&, we obtained room temperature d13CCH4 values as 13C depleted as 142&. With time and temperature, the C-isotope separation between CO2 and CH4 decreased significantly and the final d13CCH4 values approached that of initial d13CCO2. The presence of minor amounts of C2-C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru-enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.
    Description: Published
    Description: 438–452
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: abiotic methane, Sabatier reaction ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-02-05
    Description: In this paper, we present a method for handling uncertainties in the determination of the source parameters of earthquakes from spectral data. We propose a robust framework for estimating earthquake source parameters and relative uncertainties, which are propagated down to the estimation of basic seismic parameters of interest such as the seismic moment, the moment magnitude, the source size and the static stress drop. In practice, we put together a Bayesian approach for model parameter estimation and a weighted statistical mixing of multiple solutions obtained from a network of instruments, providing a useful framework for extracting meaningful data from intrinsically uncertain data sets. The Bayesian approach used to estimate the source spectra parameters is a simple but powerful mechanism for non-linear model fitting, providing also the opportunity to naturally propagate uncertainties and to assess the quality and uniqueness of the solution. Another important added value of such an approach is the possibility of integrating information from the expertise of seismologists. Such data can be encoded in a prior state of information that is then updated with the information provided by seismological data. The performance of the proposed approach is demonstrated analysing data from the 1909 April 23 earthquake occurred near Benavente (Portugal).
    Description: Published
    Description: 691-701
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Fourier analysis ; Probability distributions ; Earthquake source observations ; Seismicity and tectonics ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Atmospheric and Oceanic Technology, American Meteorological Society, 32, pp. 591-602
    Publication Date: 2015-06-19
    Description: Iron in the vicinity of compasses results in magnetic deviations. ADCPs mounted on steel buoyancy devices and deployed on seven moorings on the East Greenland outer shelf and upper slope from 2007 to 2008 suffered from severe magnetic deviations of $〉$90$^\circ$ rendering the ADCP data useless without a compass correction. The effects on the measured velocities, which may also be present in other oceanic velocity measurements, are explained. On each of the moorings, velocity measurements from a different instrument which was assumed not to be affected by magnetic deviation are overlapping in space and time with the compromised ones. A method is described to determine the magnetic compass deviation from the compromised and uncompromised velocity measurements and the compromised compass headings. The method depends on the assumption that at least one instrument per mooring is not compromised. With this method, the magnetic deviation as well as the originally compromised velocity records can be corrected. The method is described in detail and a MATLAB(R) script implementing the method is supplied. The success of the method is demonstrated for one of the moorings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 30, pp. 4337-4350, ISSN: 0894-8755
    Publication Date: 2017-12-15
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders ofmagnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Physical Oceanography, American Meteorological Society, 46(4), pp. 1231-1254
    Publication Date: 2016-11-03
    Description: The West Spitsbergen Current (WSC) is a topographically steered boundary current that transports warm Atlantic Water northward in Fram Strait. The 16 yr (1997–2012) current and temperature–salinity measurements from moorings in the WSC at 78°50′N reveal the dynamics of mesoscale variability in the WSC and the central Fram Strait. A strong seasonality of the fluctuations and the proposed driving mechanisms is described. In winter, water is advected in the WSC that has been subjected to strong atmospheric cooling in the Nordic Seas, and as a result the stratification in the top 250 m is weak. The current is also stronger than in summer and has a greater vertical shear. This results in an e-folding growth period for baroclinic instabilities of about half a day in winter, indicating that the current has the ability to rapidly grow unstable and form eddies. In summer, the WSC is significantly less unstable with an e-folding growth period of 2 days. Observations of the eddy kinetic energy (EKE) show a peak in the boundary current in January–February when it is most unstable. Eddies are then likely advected westward, and the EKE peak is observed 1–2 months later in the central Fram Strait. Conversely, the EKE in the WSC as well as in the central Fram Strait is reduced by a factor of more than 3 in late summer. Parameterizations for the expected EKE resulting from baroclinic instability can account for the observed EKE values. Hence, mesoscale instability can generate the observed variability, and high-frequency wind forcing is not required to explain the observed EKE.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 842–854, doi:10.1175/JTECH-D-14-00215.1.
    Description: The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.
    Description: These data were collected as part of a joint field program, Data Assimilation and Remote Sensing for Littoral Applications (DARLA) and Rivers and Inlets (RIVET-1), both funded by the Office of Naval Research. The authors were funded through the Office of Naval Research Grant N00014-10-1-0932 and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-10-01
    Keywords: Wave breaking ; Waves, oceanic ; Wind waves ; In situ oceanic observations ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8574–8584, doi:10.1175/JCLI-D-14-00809.1.
    Description: The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.
    Description: The work was supported by the National Basic Research Program of China (2012CB955600), the National Natural Science Foundation of China (41125019, 41206021), and the U.S. National Science Foundation (AGS 1249145, 1305719).
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Physical Meteorology and Climatology ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 3829-3852, doi:10.1175/JCLI-D-16-0479.1.
    Description: This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.
    Description: Primary support for the study is provided by the NOAAModeling, Analysis, Predictions, and Projections (MAPP) Program’s Climate Reanalysis Task Force (CRTF) through Grant NA13OAR4310106.
    Description: 2017-11-02
    Keywords: Hydrologic cycle ; Precipitation ; Evaporation ; Salinity ; Water budget ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1233-1243, doi:10.1175/JCLI-D-16-0496.1.
    Description: A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming. Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.
    Description: The authors acknowledge support from the Strategic Environmental Research and Development Program (SERDP) (RC-2336). SERDP is the environmental science and technology program of the U.S. Department of Defense (DoD) in partnership with the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA).
    Description: 2017-08-01
    Keywords: Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1739-1751, doi:10.1175/JCLI-D-16-0200.1.
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multidecadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the twentieth century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multidecadal variations associated with the Pacific decadal oscillation, and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multidecadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward-propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Description: This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation, as well as the Ocean Climate Change Institute and the Investment in Science Fund at WHOI.
    Description: 2017-08-15
    Keywords: Indian Ocean ; Ocean dynamics ; Climate variability ; Multidecadal variability ; Pacific decadal oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2251-2265, doi:10.1175/JPO-D-17-0042.1.
    Description: The problem of localized dense water formation over a sloping bottom is considered for the general case in which the topography forms a closed contour. This class of problems is motivated by topography around islands or shallow shoals in which convection resulting from brine rejection or surface heat loss reaches the bottom. The focus of this study is on the large-scale circulation that is forced far from the region of surface forcing. The authors find that a cyclonic current is generated around the topography, in the opposite sense to the propagation of the dense water plume. In physical terms, this current results from the propagation of low sea surface height from the region of dense water formation anticyclonically along the topographic contours back to the formation region. This pressure gradient is then balanced by a cyclonic geostrophic flow. This basic structure is well predicted by a linear quasigeostrophic theory, a primitive equation model, and in rotating tank experiments. For sufficiently strong forcing, the anticyclonic circulation of the dense plume meets this cyclonic circulation to produce a sharp front and offshore advection of dense water at the bottom and buoyant water at the surface. This nonlinear limit is demonstrated in both the primitive equation model and in the tank experiments.
    Description: MAS was supported by the National Science Foundation under Grant OCE-1534618. Support for CC was given by the WHOI Ocean Climate Change Institute Proposal 27071273.
    Description: 2018-03-20
    Keywords: Bottom currents ; Buoyancy ; Ocean dynamics ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99, Suppl. S (2018): S21-S26, doi:10.1175/BAMS-D-17-0128.1.
    Description: NOAA Coral Reef Conservation Program; National Science Foundation OCE 1537338, OCE 1605365, OCE 1031971
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.
    Description: A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.
    Description: 2019-01-13
    Keywords: Coastal flows ; Currents ; Dynamics ; Gravity waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 99 (2018): 513-520, doi:10.1175/BAMS-D-16-0323.1.
    Description: Seasonally ice-covered marginal seas are among the most difficult regions in the Arctic to study. Physical constraints imposed by the variable presence of sea ice in all stages of growth and melt make the upper water column and air–sea ice interface especially challenging to observe. At the same time, the flow of solar energy through Alaska’s marginal seas is one of the most important regulators of their weather and climate, sea ice cover, and ecosystems. The deficiency of observing systems in these areas hampers forecast services in the region and is a major contributor to large uncertainties in modeling and related climate projections. The Arctic Heat Open Science Experiment strives to fill this observation gap with an array of innovative autonomous floats and other near-real-time weather and ocean sensing systems. These capabilities allow continuous monitoring of the seasonally evolving state of the Chukchi Sea, including its heat content. Data collected by this project are distributed in near–real time on project websites and on the Global Telecommunications System (GTS), with the objectives of (i) providing timely delivery of observations for use in weather and sea ice forecasts, for model, and for reanalysis applications and (ii) supporting ongoing research activities across disciplines. This research supports improved forecast services that protect and enhance the safety and economic viability of maritime and coastal community activities in Alaska. Data are free and open to all (see www.pmel.noaa.gov/arctic-heat/).
    Description: This work was supported by NOAA Ocean and Atmospheric Research and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and by the Innovative Technology for Arctic Exploration (ITAE) program at JISAO/PMEL. Jayne, Robbins, and Ekholm were supported by ONR (N00014-12-10110).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 893-910, doi:10.1175/JTECH-D-17-0102.1.
    Description: Rotary sidescan sonars are widely used to image the seabed given their high temporal and spatial resolution. This high resolution is necessary to resolve bedform dynamics and evolution; however, sidescan sonars do not directly measure bathymetry, limiting their utility. When sidescan sonars are mounted close to the seabed, bedforms may create acoustical “shadows” that render previous methods that invert the backscatter intensity to estimate bathymetry and are based on the assumption of a fully insonified seabed ineffective. This is especially true in coastal regions, where bedforms are common features whose large height relative to the water depth may significantly influence the surrounding flow. A method is described that utilizes sonar shadows to estimate bedform height and asymmetry. The method accounts for the periodic structure of bedform fields and the projection of the shadows onto adjacent bedforms. It is validated with bathymetric observations of wave-orbital ripples, with wavelengths ranging from 0.3 to 0.8 m, and tidally reversing megaripples, with wavelengths from 5 to 8 m. In both cases, bathymetric-measuring sonars were deployed in addition to a rotary sidescan sonar to provide a ground truth; however, the bathymetric sonars typically measure different and smaller areas than the rotary sidescan sonar. The shadow-based method and bathymetric-measuring sonar data produce estimates of bedform height that agree by 34.0% ± 27.2% for wave-orbital ripples and 16.6% ± 14.7% for megaripples. Errors for estimates of asymmetry are 1.9% ± 2.1% for wave-orbital ripples and 11.2% ± 9.6% for megaripples.
    Description: This project is partially supported by the National Science Foundation through a Graduate Research Fellowship and a Massachusetts Institute of Technology Energy Initiative Fellowship. Additionally, funding used in developing the method was obtained from NSF Grants OCE-1634481 and OCE-1635151. Field work was funded under ONR Grants N00014-06-10329 and N00014-13-1-0364.
    Keywords: Ocean ; Acoustic measurements/effects ; Algorithms ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in he balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. Journal of Physical Oceanography, 48(12), (2018) 2887-2899., doi: 10.1175/JPO-D-18-0032.1.
    Description: Salinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.
    Description: TW was supported by the National Key R&D Program of China (Grant 2017YFA0604104), National Natural Science Foundation of China (Grant 41706002), Natural Science Foundation of Jiangsu Province (Grant BK20170864), and MEL Visiting Fellowship (MELRS1617). WRG was supported by NSF Grant OCE 1736539. Part of this work is finished during TW’s visit in MEL and WHOI. We would like to acknowledge John Warner for providing the codes of the Hudson estuary model, and Parker MacCready, the editor, and two reviewers for their insightful suggestions on improving the manuscript.
    Description: 2019-06-06
    Keywords: Estuaries ; Dynamics ; Mixing ; Density Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 606–612, doi:10.1175/JPO-D-14-0221.1.
    Description: Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
    Description: Support of this research by the National Science Foundation and National Aeronautics and Space Administration is gratefully acknowledged.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Models and modeling ; Ocean models ; Primitive equations model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Description: We gratefully acknowledge funding provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD 1035423) and by DOE to Y-OK (DE-SC0007052).
    Description: 2015-08-01
    Keywords: Atmosphere-ocean interaction ; Atmospheric circulation ; Boundary layer ; Cyclogenesis/cyclolysis ; Diabatic heating ; Extratropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Description: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Description: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Description: 2015-10-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1610–1631, doi:10.1175/JPO-D-14-0047.1.
    Description: The use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.
    Description: We thank the U.K. Natural Environment Research Council and the U.S. National Science Foundation for funding the DIMES project.
    Description: 2015-12-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Physical Meteorology and Climatology ; Isopycnal mixing ; Observational techniques and algorithms ; Tracers ; Models and modeling ; Model comparison ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 72 (2015): 2786–2805, doi:10.1175/JAS-D-14-0257.1.
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Description: This study was supported by grants of the National Science Foundation (OCE- 0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2016-01-01
    Keywords: Katabatic winds ; Severe storms ; Air-sea interaction ; Mesoscale processes ; Orographic effects ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 6489–6502, doi:10.1175/JCLI-D-15-0143.1.
    Description: The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.
    Description: This research was supported by NASA Grant NNX12AF59GS03.
    Description: 2016-02-15
    Keywords: Climate change ; Climate prediction ; Hydrologic cycle ; Salinity ; Water budget ; Water vapor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 5885–5907, doi:10.1175/JCLI-D-14-00635.1.
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Description: This work was supported by a grant from the King Abdullah University of Science and Technology (KAUST) as well as National Science Foundation Grant OCE0927017 and from DOD (MURI) Grant N000141110087, administered by the Office of Naval Research.
    Description: 2016-02-01
    Keywords: Africa ; Orographic effects ; Monsoons ; Atmosphere-land interaction ; Atmosphere-ocean interaction ; Hydrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Description: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Description: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2820–2835, doi:10.1175/JPO-D-15-0101.1.
    Description: The response of a convective ocean basin to variations in atmospheric temperature is explored using numerical models and theory. The results indicate that the general behavior depends strongly on the frequency at which the atmosphere changes relative to the local response time to air–sea heat flux. For high-frequency forcing, the convective region in the basin interior is essentially one-dimensional and responds to the integrated local surface heat flux anomalies. For low-frequency forcing, eddy fluxes from the boundary current into the basin interior become important and act to suppress variability forced by the atmosphere. A theory is developed to quantify this time-dependent response and its influence on various oceanic quantities. The amplitude and phase of the temperature and salinity of the convective water mass, the meridional overturning circulation, the meridional heat flux, and the air–sea heat flux predicted by the theory compare well with that diagnosed from a series of numerical model calculations in both strongly eddying and weakly eddying regimes. Linearized analytic solutions provide direct estimates of each of these quantities and demonstrate their dependence on the nondimensional numbers that characterize the domain and atmospheric forcing. These results highlight the importance of mesoscale eddies in modulating the mean and time-dependent ocean response to atmospheric variability and provide a dynamical framework with which to connect ocean observations with changes in the atmosphere and surface heat flux.
    Description: This study was supported by the National Science Foundation under Grant OCE-1232389.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Deep convection ; Eddies ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2913–2932, doi:10.1175/JPO-D-14-0179.1.
    Description: The oceanic deep circulation is shared between concentrated deep western boundary currents (DWBCs) and broader interior pathways, a process that is sensitive to seafloor topography. This study investigates the spreading and deepening of Denmark Strait overflow water (DSOW) in the western subpolar North Atlantic using two ° eddy-resolving Atlantic simulations, including a passive tracer injected into the DSOW. The deepest layers of DSOW transit from a narrow DWBC in the southern Irminger Sea into widespread westward flow across the central Labrador Sea, which remerges along the Labrador coast. This abyssal circulation, in contrast to the upper levels of overflow water that remain as a boundary current, blankets the deep Labrador Sea with DSOW. Farther downstream after being steered around the abrupt topography of Orphan Knoll, DSOW again leaves the boundary, forming cyclonic recirculation cells in the deep Newfoundland basin. The deep recirculation, mostly driven by the meandering pathway of the upper North Atlantic Current, leads to accumulation of tracer offshore of Orphan Knoll, precisely where a local maximum of chlorofluorocarbon (CFC) inventory is observed. At Flemish Cap, eddy fluxes carry ~20% of the tracer transport from the boundary current into the interior. Potential vorticity is conserved as the flow of DSOW broadens at the transition from steep to less steep continental rise into the Labrador Sea, while around the abrupt topography of Orphan Knoll, potential vorticity is not conserved and the DSOW deepens significantly.
    Description: This work is supported by ONR Award N00014-09-1-0587, the NSF Physical Oceanography Program, and NASA Ocean Surface Topography Science Team Program.
    Description: 2016-06-01
    Keywords: Circulation/ Dynamics ; Abyssal circulation ; Boundary currents ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3139-3154, doi:10.1175/JPO-D-16-0042.1.
    Description: Downfront, or downwelling favorable, winds are commonly found over buoyant coastal plumes. It is known that these winds can result in mixing of the plume with the ambient water and that the winds influence the transport, spatial extent, and stability of the plumes. In the present study, the interaction of the Ekman velocity in the surface layer and baroclinic instability supported by the strong horizontal density gradient of the plume is explored with the objective of understanding the potential vorticity and buoyancy budgets. The approach makes use of an idealized numerical model and scaling theory. It is shown that when winds are present the weak stratification resulting from vertical mixing and the strong baroclinicity of the front results in near-zero average potential vorticity q. For weak to moderate winds, the reduction of q by diapycnal mixing is balanced by the generation of q through the geostrophic stress term in the regions of strong horizontal density gradients and stable stratification. However, for very strong winds the wind stress overwhelms the geostrophic stress and leads to a reduction in q, which is balanced by the vertical mixing term. In the absence of winds, the geostrophic stress dominates mixing and the flow rapidly restratifies. Nonlinearity, extremes of relative vorticity and vertical velocity, and mixing are all enhanced by the presence of a coast. Scaling estimates developed for the eddy buoyancy flux, the surface potential vorticity flux, and the diapycnal mixing rate compare well with results diagnosed from a series of numerical model calculations.
    Description: This study was supported by NSF Grants OCE-1433170 (MAS) and OCE-1459677 (LNT).
    Description: 2017-04-07
    Keywords: Coastal flows ; Ekman pumping/transport ; Mesoscale processes ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3011-3029, doi:10.1175/JPO-D-15-0248.1.
    Description: Seasonal variability of the tropical Atlantic circulation is dominated by the annual cycle, but semiannual variability is also pronounced, despite weak forcing at that period. This study uses multiyear, full-depth velocity measurements from the central equatorial Atlantic to analyze the vertical structure of annual and semiannual variations of zonal velocity. A baroclinic modal decomposition finds that the annual cycle is dominated by the fourth mode and the semiannual cycle is dominated by the second mode. Similar local behavior is found in a high-resolution general circulation model. This simulation reveals that the annual and semiannual cycles of the respective dominant baroclinic modes are associated with characteristic basinwide structures. Using an idealized, linear, reduced-gravity model to simulate the dynamics of individual baroclinic modes, it is shown that the observed circulation variability can be explained by resonant equatorial basin modes. Corollary simulations of the reduced-gravity model with varying basin geometry (i.e., square basin vs realistic coastlines) or forcing (i.e., spatially uniform vs spatially variable wind) show a structural robustness of the simulated basin modes. A main focus of this study is the seasonal variability of the Equatorial Undercurrent (EUC) as identified in recent observational studies. Main characteristics of the observed EUC including seasonal variability of transport, core depth, and maximum core velocity can be explained by the linear superposition of the dominant equatorial basin modes as obtained from the reduced-gravity model.
    Description: This study was supported by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 (SFB754) ‘‘Climate–Biogeochemistry Interactions in the Tropical Ocean’’ and through several research cruises with R/V Meteor, R/V Maria S. Merian, andR/VL’Atalante by the German Federal Ministry of Education and Research as part of the cooperative projects RACE (03F0605B) and SACUS (03G0837A) and by European Union 7th Framework Programme (FP7 2007–13) under Grant Agreement 603521 PREFACE project.
    Keywords: Atlantic Ocean ; Ocean circulation ; In situ oceanic observations ; Ocean models ; Seasonal cycle ; Tropical variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 355-373, doi:10.1175/JTECH-D-15-0226.1.
    Description: Passive longwave infrared radiometric satellite–based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically thin cirrus (OTC) clouds [cloud optical depth (COD) ≤ 0.3]. Level 2 nonlinear SST (NLSST) retrievals over tropical oceans (30°S–30°N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. OTC clouds are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level 2 data, representing over 99% of all contaminating cirrus found. Cold-biased NLSST (MODIS, AVHRR, and VIIRS) and triple-window (AVHRR and VIIRS only) SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5-km-thick OTC cloud placed incrementally from 10.0 to 18.0 km above mean sea level for cloud optical depths between 0.0 and 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud-top height and COD (assuming they are consistent across each platform) integrated within each corresponding modeled cold bias matrix. NLSST relative OTC cold biases, for any single observation, range from 0.33° to 0.55°C for the three sensors, with an absolute (bulk mean) bias between 0.09° and 0.14°C. Triple-window retrievals are more resilient, ranging from 0.08° to 0.14°C relative and from 0.02° to 0.04°C absolute. Cold biases are constant across the Pacific and Indian Oceans. Absolute bias is lower over the Atlantic but relative bias is higher, indicating that this issue persists globally.
    Description: Authors JWM, NJS, and JZ acknowledge the support of NASA Project NNX14AJ13G andNSF Project IIA-1355466.Author JZ also acknowledges the support of ONR N00014-16-1-2040 (Grant 11843919). Author JWM further recognizes the Naval Research Enterprise Internship Program (NREIP). Support for his NREIP fellowship came from NASA Interagency Agreement NNG15JA17P on behalf of theMicro-Pulse LidarNetwork (E. J. Welton). Authors JRC, JAC and DLW acknowledge the support of Office of Naval Research Code 322 (PE0602435). Author JRC also acknowledges the support of NASA Interagency Agreement RPO201522 on behalf of the CALIPSO Science Team (C. R. Trepte).
    Description: 2017-08-06
    Keywords: Sea surface temperature ; Cirrus clouds ; Lidars/Lidar observations ; Remote sensing ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 339-351, doi:10.1175/JPO-D-16-0165.1.
    Description: A novel multi-iteration statistical method for studying tracer spreading using drifter data is introduced. The approach allows for the best use of the available drifter data by making use of a simple iterative procedure, which results in the statistically probable map showing the likelihood that a tracer released at some source location would visit different geographical regions, along with the associated arrival travel times. The technique is tested using real drifter data in the North Atlantic. Two examples are considered corresponding to sources in the western and eastern North Atlantic Ocean, that is, Massachusetts Bay–like and Irish Sea–like sources, respectively. In both examples, the method worked well in estimating the statistics of the tracer transport pathways and travel times throughout the entire North Atlantic. The role of eddies versus mean flow is quantified using the same technique, and eddies are shown to significantly broaden the spread of a tracer. The sensitivity of the results to the size of the source domain is investigated and causes for this sensitivity are discussed.
    Description: This work was supported by the Grant OCE-1356630 from the National Science Foundation (NSF). Rypina also acknowledges NSF Grant OCE-1154641 and NASA Grant NNX14AH29G.
    Description: 2017-07-31
    Keywords: Atlantic Ocean ; Mass fluxes/transport ; Ocean circulation ; Trajectories ; Statistics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 269-275, doi:10.1175/JTECH-D-11-00196.1.
    Description: A data telemetry technique for communicating over standard oceanographic sea cables that achieves a nearly 100-fold increase in bandwidth as compared to traditional systems has been recently developed and successfully used at sea on board two Research Vessel (R/V) Atlantis cruises with an 8.5-km, 0.322-in.-diameter three-conductor sea cable. The system uses commercially available modules to provide Ethernet connectivity through existing sea cables, linking serial and video underwater instrumentation to the shipboard user. The new method applies Synchronous Digital Subscriber Line (SDSL) communications technology to undersea applications, greatly increasing the opportunities to use scientific instrumentation from existing ships and sea cables at minimal cost and without modification.
    Description: This development program has been supported, in part, through research grants from the National Science Foundation (OCE 0447395), the National Aeronautics and Space Administration’s ASTEP program (NNX09AB76G), and a WHOI Green and Hiam Innovative Technology Award.
    Description: 2017-07-23
    Keywords: Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 34 (2017): 309-333, doi:10.1175/JTECH-D-16-0156.1.
    Description: Doppler current profilers on autonomous underwater gliders measure water velocity relative to the moving glider over vertical ranges of O(10) m. Measurements obtained with 1-MHz Nortek acoustic Doppler dual current profilers (AD2CPs) on Spray gliders deployed off Southern California, west of the Galápagos Archipelago, and in the Gulf Stream are used to demonstrate methods of estimating absolute horizontal velocities in the upper 1000 m of the ocean. Relative velocity measurements nearest to a glider are used to infer dive-dependent flight parameters, which are then used to correct estimates of absolute vertically averaged currents to account for the accumulation of biofouling during months-long glider missions. The inverse method for combining Doppler profiler measurements of relative velocity with absolute references to estimate profiles of absolute horizontal velocity is reviewed and expanded to include additional constraints on the velocity solutions. Errors arising from both instrumental bias and decreased abundance of acoustic scatterers at depth are considered. Though demonstrated with measurements from a particular combination of platform and instrument, these techniques should be applicable to other combinations of gliders and Doppler current profilers.
    Description: Spray glider missions were supported by the National Science Foundation (OCE-1232971, OCE-1233282), the National Oceanic and Atmospheric Administration (NA10OAR4320156, NA15OAR4320071), Eastman Chemical Company, the Oceans and Climate Change Institute at WHOI, and the W. Van Alan Clark Jr. Chair for Excellence in Oceanography at WHOI. RET acknowledges additional support for analysis and publication from the National Science Foundation (OCE-1633911).
    Description: 2017-07-31
    Keywords: Currents ; Acoustic measurements/effects ; Data processing ; Data quality control ; Profilers ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.
    Description: Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.
    Description: DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G.
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Ekman pumping/transport ; Ocean circulation ; Water masses ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2735-2768, doi:10.1175/JPO-D-15-0134.1.
    Description: In Greenland’s glacial fjords, heat and freshwater are exchanged between glaciers and the ocean. Submarine melting of glaciers has been implicated as a potential trigger for recent glacier acceleration, and observations of ocean heat transport are increasingly being used to infer the submarine melt rates. The complete heat, salt, and mass budgets that underlie such methods, however, have been largely neglected. Here, a new framework for exploring glacial fjord budgets is developed. Building on estuarine studies of salt budgets, the heat, salt, and mass transports through the fjord are decomposed, and new equations for calculating freshwater fluxes from submarine meltwater and runoff are presented. This method is applied to moored records from Sermilik Fjord, near the terminus of Helheim Glacier, to evaluate the dominant balances in the fjord budgets and to estimate freshwater fluxes. Throughout the year, two different regimes are found. In the nonsummer months, advective transports are balanced by changes in heat/salt storage within their ability to measure; freshwater fluxes cannot be inferred as a residual. In the summer, a mean exchange flow emerges, consisting of inflowing Atlantic water and outflowing glacially modified water. This exchange transports heat toward the glacier and is primarily balanced by changes in storage and latent heat for melting ice. The total freshwater flux increases over the summer, reaching 1200 ± 700 m3 s−1 of runoff and 1500 ± 500 m3 s−1 of submarine meltwater from glaciers and icebergs in August. The methods and results highlight important components of fjord budgets, particularly the storage and barotropic terms, that have been not been appropriately considered in previous estimates of submarine melting.
    Description: The data collection and analysis was funded by NSF Grants ARC-0909373, OCE-113008, and OCE-1434041.
    Keywords: Geographic location/entity ; Estuaries ; Glaciers ; Circulation/ Dynamics ; Coastal flows ; Atm/Ocean Structure/ Phenomena ; Freshwater ; Snowmelt/icemelt ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2645-2662, doi:10.1175/JPO-D-15-0191.1.
    Description: The occurrence, drivers, and implications of small-scale O(2–5) km diameter coherent vortices, referred to as submesoscale eddies, over the inner shelf south of Martha’s Vineyard, Massachusetts, are examined using high-frequency (HF), radar-based, high-resolution (400 m) observations of surface currents. Within the 300 km2 study area, eddies occurred at rates of 1 and 4 day−1 in winter and summer, respectively. Most were less than 5 h in duration, smaller than 4 km in diameter, and rotated less than once over their lifespan; 60% of the eddies formed along the eastern edge of study area, adjacent to Wasque Shoal, and moved westward into the interior, often with relative vorticity greater than f. Eddy generation was linked to vortex stretching on the ebb and flood tide as well as the interaction of the spatially variable tide and the wind-driven currents; however, these features had complex patterns of surface divergence and stretching. Eddies located away from Wasque Shoal were related to the movement of wind-driven surface currents, as wind direction controlled where eddies formed as well as density effects. Using an analysis of particles advected within the radar-based surface currents, the observed eddies were found to be generally leaky, losing 60%–80% of particles over their lifespan, but still more retentive than the background flow. As a result, the combined translation and rotational effects of the observed eddies were an important source of lateral exchange for surface waters over the inner shelf.
    Description: The HF radar data utilized here were obtained using internal funding from the Woods Hole Oceanographic Institution. The analysis was supported by NSF OCE Grant 1332646.
    Description: 2017-02-19
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Currents ; Eddies ; Observational techniques and algorithms ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1291-1305, doi:10.1175/JPO-D-16-0160.1.
    Description: Along-stream variations in the dynamics of the Antarctic Circumpolar Current (ACC) impact heat and tracer transport, regulate interbasin exchange, and influence closure of the overturning circulation. Topography is primarily responsible for generating deviations from zonal-mean properties, mainly through standing meanders associated with regions of high eddy kinetic energy. Here, an idealized channel model is used to explore the spatial distribution of energy exchange and its relationship to eddy geometry, as characterized by both eddy momentum and eddy buoyancy fluxes. Variations in energy exchange properties occur not only between standing meander and quasi-zonal jet regions, but throughout the meander itself. Both barotropic and baroclinic stability properties, as well as the magnitude of energy exchange terms, undergo abrupt changes along the path of the ACC. These transitions are captured by diagnosing eddy fluxes of energy and by adopting the eddy geometry framework. The latter, typically applied to barotropic stability properties, is applied here in the depth–along-stream plane to include information about both barotropic and baroclinic stability properties of the flow. These simulations reveal that eddy momentum fluxes, and thus barotropic instability, play a leading role in the energy budget within a standing meander. This result suggests that baroclinic instability alone cannot capture the dynamics of ACC standing meanders, a challenge for models where eddy fluxes are parameterized.
    Description: The authors all acknowledge support from NSF OCE-1235488. MKY also acknowledges support from the AMS Graduate Student Fellowship.
    Description: 2017-10-12
    Keywords: Southern Ocean ; Channel flows ; Stability ; Topographic effects ; Eddies ; Mesoscale models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 435-453, doi:10.1175/JPO-D-17-0122.1.
    Description: Observations of surface waves, currents, and turbulence at the Columbia River mouth are used to investigate the source and vertical structure of turbulence in the surface boundary layer. Turbulent velocity data collected on board freely drifting Surface Wave Instrument Float with Tracking (SWIFT) buoys are corrected for platform motions to estimate turbulent kinetic energy (TKE) and TKE dissipation rates. Both of these quantities are correlated with wave steepness, which has previously been shown to determine wave breaking within the same dataset. Estimates of the turbulent length scale increase linearly with distance from the free surface, and roughness lengths estimated from velocity statistics scale with significant wave height. The vertical decay of turbulence is consistent with a balance between vertical diffusion and dissipation. Below a critical depth, a power-law scaling commonly applied in the literature works well to fit the data. Above this depth, an exponential scaling fits the data well. These results, which are in a surface-following reference frame, are reconciled with results from the literature in a fixed reference frame. A mapping between free-surface and mean-surface reference coordinates suggests 30% of the TKE is dissipated above the mean sea surface.
    Description: Funding for this project was provided by the Office of Naval Research as part of the RIVET-II DRI, and for the DARLA group.
    Keywords: Ocean ; Estuaries ; Gravity waves ; Turbulence ; Wave breaking ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 573-590, doi:10.1175/JPO-D-17-0206.1.
    Description: Motivated by the proximity of the Northern Recirculation Gyre and the deep western boundary current in the North Atlantic, an idealized model is used to investigate how recirculation gyres and a deep flow along a topographic slope interact. In this two-layer quasigeostrophic model, an unstable jet imposed in the upper layer generates barotropic recirculation gyres. These are maintained by an eddy-mean balance of potential vorticity (PV) in steady state. The authors show that the topographic slope can constrain the northern recirculation gyre meridionally and that the gyre’s adjustment to the slope leads to increased eddy PV fluxes at the base of the slope. When a deep current is present along the topographic slope in the lower layer, these eddy PV fluxes stir the deep current and recirculation gyre waters. Increased proximity to the slope dampens the eddy growth rate within the unstable jet, altering the geometry of recirculation gyre forcing and leading to a decrease in overall eddy PV fluxes. These mechanisms may shape the circulation in the western North Atlantic, with potential feedbacks on the climate system.
    Description: We gratefully acknowledge an AMS graduate fellowship (IALB) and U.S. National Science Foundation Grants OCE-1332667 and 1332834 (IALB and JMT).
    Description: 2018-09-06
    Keywords: Boundary currents ; Meridional overturning circulation ; Mesoscale processes ; Ocean circulation ; Potential vorticity ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 739-748, doi:10.1175/JPO-D-17-0089.1.
    Description: McDougall and Ferrari have estimated the global deep upward diapycnal flow in the boundary layer overlying continental slopes that must balance both downward diapycnal flow in the deep interior and the formation of bottom water around Antarctica. The decrease of perimeter of isopycnal surfaces with depth and the observed decay with height above bottom of turbulent dissipation in the deep ocean play a key role in their estimate. They argue that because the perimeter of seamounts increases with depth, the net effect of mixing around seamounts is to produce net downward diapycnal flow. While this is true along much of a seamount, it is shown here that diapycnal flow of the densest water around the seamount is upward, with buoyancy being transferred from water just above. The same is true for midocean ridges, whose perimeter is constant with depth. It is argued that mixing around seamounts and especially midocean ridges contributes positively to the global deep overturning circulation, reducing the amount of turbulence demanded over the continental slopes to balance the buoyancy budget for the bottom and deep water.
    Description: This work was supported by National Science Foundation Grant OCE- 1232962.
    Description: 2018-09-29
    Keywords: Abyssal circulation ; Boundary currents ; Buoyancy ; Diapycnal mixing ; Mass fluxes/transport ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 643-646, doi:10.1175/JPO-D-17-0240.1.
    Description: A simple oceanic model is presented for source–sink flow on the β plane to discuss the pathways from source to sink when transport boundary layers have large enough Reynolds numbers to be inertial in their dynamics. A representation of the flow as a Fofonoff gyre, suggested by prior work on inertial boundary layers and eddy-driven circulations in two-dimensional turbulent flows, indicates that even when the source and sink are aligned along the same western boundary the flow must intrude deep into the interior before exiting at the sink. The existence of interior pathways for the flow is thus an intrinsic property of an inertial circulation and is not dependent on particular geographical basin geometry.
    Description: 2018-09-12
    Keywords: Abyssal circulation ; Bottom currents ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.
    Description: Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
    Description: S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.
    Description: 2018-08-26
    Keywords: Indian Ocean ; Baroclinic flows ; Potential vorticity ; Fronts ; Monsoons ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 607-623, doi:10.1175/JPO-D-17-0189.1.
    Description: The roles of straining and dissipation in controlling stratification are derived analytically using a vertical salinity variance method. Stratification is produced by converting horizontal variance to vertical variance via straining, that is, differential advection of horizontal salinity gradients, and stratification is destroyed by the dissipation of vertical variance through turbulent mixing. A numerical model is applied to the Changjiang estuary in order to demonstrate the salinity variance balance and how it reveals the factors controlling stratification. The variance analysis reveals that dissipation reaches its maximum during spring tide in the Changjiang estuary, leading to the lowest stratification. Stratification increases from spring tide to neap tide because of the increasing excess of straining over dissipation. Throughout the spring–neap tidal cycle, straining is almost always larger than dissipation, indicating a net excess of production of vertical variance relative to dissipation. This excess is balanced on average by advection, which exports vertical variance out of the estuarine region into the plume. During neap tide, tidal straining shows a general tendency of destratification during the flood tide and restratification during ebb, consistent with the one-dimensional theory of tidal straining. During spring tide, however, positive straining occurs during flood because of the strong baroclinicity induced by the intensified horizontal salinity gradient. These results indicate that the salinity variance method provides a valuable approach for examining the spatial and temporal variability of stratification in estuaries and coastal environments.
    Description: X. Li was supported by the China Scholarship Council. W. R. Geyer was supported by NSF Grants OCE 1736539 and OCE 1634480. J. Zhu was supported by the National Natural Science Foundation of China (41476077 and 41676083). H. Wu was supported by the National Natural Science Foundation of China (41576088 and 41776101).
    Description: 2018-09-08
    Keywords: Ocean ; Estuaries ; Freshwater ; Mixing ; Numerical analysis/modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 6245-6261, doi:10.1175/JCLI-D-17-0513.1.
    Description: Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.
    Description: 2019-01-11
    Keywords: Tropics ; Atmosphere-ocean interaction ; Climate change ; Climate models ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1831-1848, doi:10.1175/JPO-D-18-0068.1.
    Description: We present a simplified theory using reduced-gravity equations for North Atlantic Deep Water (NADW) and its variation driven by high-latitude deep-water formation. The theory approximates layer thickness on the eastern boundary with domain-averaged layer thickness and, in tandem with a mass conservation argument, retains fundamental physics for cross-equatorial flows on interannual and longer forcing time scales. Layer thickness anomalies are driven by a time-dependent northern boundary condition that imposes a southward volume flux representative of a variable source of NADW and damped by diapycnal mixing throughout the basin. Moreover, an outflowing southern boundary condition imposes a southward volume flux that generally differs from the volume flux at the northern boundary, giving rise to temporal storage of NADW within the Atlantic basin. Closed form analytic solutions for the amplitude and phase are provided when the variable source of NADW is sinusoidal. We provide a nondimensional analysis that demonstrates that solution behavior is primarily controlled by two parameters that characterize the meridional extent of the southern basin and the width of the basin relative to the equatorial deformation radius. Similar scaling applied to the time-lagged equations of Johnson and Marshall provides a clear connection to their results. Numerical simulations of reduced-gravity equations agree with analytic predictions in linear, turbulent, and diabatic regimes. The theory introduces a simple analytic framework for studying idealized buoyancy- and wind-driven cross-equatorial flows on interannual and longer time scales.
    Description: This research was supported by the National Science Foundation under Grant OCE- 1634468.
    Description: 2019-02-15
    Keywords: North Atlantic Ocean ; Tropics ; Meridional overturning circulation ; Ocean circulation ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 7565-7581, doi:10.1175/JCLI-D-18-0108.1.
    Description: There is mounting evidence that the width of the tropics has increased over the last few decades, but there are large differences in reported expansion rates. This is, likely, in part due to the wide variety of metrics that have been used to define the tropical width. Here we perform a systematic investigation into the relationship among nine metrics of the zonal-mean tropical width using preindustrial control and abrupt quadrupling of CO2 simulations from a suite of coupled climate models. It is shown that the latitudes of the edge of the Hadley cell, the midlatitude eddy-driven jet, the edge of the subtropical dry zones, and the Southern Hemisphere subtropical high covary interannually and exhibit similar long-term responses to a quadrupling of CO2. However, metrics based on the outgoing longwave radiation, the position of the subtropical jet, the break in the tropopause, and the Northern Hemisphere subtropical high have very weak covariations with the above metrics and/or respond differently to increases in CO2 and thus are not good indicators of the expansion of the Hadley cell or subtropical dry zone. The differing variability and responses to increases in CO2 among metrics highlights that care is needed when choosing metrics for studies of the width of the tropics and that it is important to make sure the metric used is appropriate for the specific phenomena and impacts being examined.
    Description: DW acknowledges support from NSF AGS-1403676.
    Description: 2019-02-08
    Keywords: Hadley circulation ; Hydrologic cycle ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2457-2475, doi:10.1175/JPO-D-17-0186.1.
    Description: A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. These boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.
    Description: This research was supported by the Research Council of Norway project NORTH. Support for the publication was provided by the University of Bergen. Ocean Outlook has supported a research visit for EL to Woods Hole Oceanographic Institute where much of the current work has been carried out. Support forMAS was provided by the National Science Foundation Grant OCE-1558742.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Boundary currents ; Buoyancy ; Freshwater ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 4847-4863, doi:10.1175/JCLI-D-17-0802.1.
    Description: The sensitivity of sea ice to the temperature of inflowing Atlantic water across the Greenland–Scotland Ridge is investigated using an eddy-resolving configuration of the Massachusetts Institute of Technology General Circulation Model with idealized topography. During the last glacial period, when climate on Greenland is known to have been extremely unstable, sea ice is thought to have covered the Nordic seas. The dramatic excursions in climate during this period, seen as large abrupt warming events on Greenland and known as Dansgaard–Oeschger (DO) events, are proposed to have been caused by a rapid retreat of Nordic seas sea ice. Here, we show that a full sea ice cover and Arctic-like stratification can exist in the Nordic seas given a sufficiently cold Atlantic inflow and corresponding low transport of heat across the Greenland–Scotland Ridge. Once sea ice is established, continued sea ice formation and melt efficiently freshens the surface ocean and makes the deeper layers more saline. This creates a strong salinity stratification in the Nordic seas, similar to today’s Arctic Ocean, with a cold fresh surface layer protecting the overlying sea ice from the warm Atlantic water below. There is a nonlinear response in Nordic seas sea ice to Atlantic water temperature with simulated large abrupt changes in sea ice given small changes in inflowing temperature. This suggests that the DO events were more likely to have occurred during periods of reduced warm Atlantic water inflow to the Nordic seas.
    Description: The research was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. The research leading to these results is part of the ice2ice project funded by the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 610055.
    Keywords: Ocean ; Arctic ; Sea ice ; Ocean dynamics ; Paleoclimate ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 2844–2857, doi:10.1175/JTECH-D-14-00108.1.
    Description: A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to −40°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.
    Description: This research was supported by the Joint Initiative Awards Fund from the Andrew W. Mellon Foundation, through Woods Hole Oceanographic Institution’s internal Interdisciplinary Study Award program (S. R. L. and T. M.), and by a China scholarship council (CSC) scholarship and the Program for Zhejiang Leading Team of S&T Innovation (Grant 2010R50036) provided to H. W.
    Description: 2015-06-01
    Keywords: Sea ice ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 412–433, doi:10.1175/JTECH-D-14-00080.1.
    Description: A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25° grids was constructed by the objectively analyzed air–sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1° analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg−1, and Ta has a mean difference of −0.03°C and an RMS difference of 0.45°C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8°C in Ta and 1.2 g kg−1 in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial–temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
    Description: This study was supported by the NOAA Ocean Climate Observation (OCO) program under Grant NA09OAR4320129.
    Description: 2015-09-01
    Keywords: Data processing ; Databases ; In situ oceanic observations ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015):1189–1204, doi:10.1175/JPO-D-14-0122.1.
    Description: Winter outcropping of the Eighteen Degree Water (EDW) and its subsequent dispersion are studied using a ° eddy-resolving simulation of the Family of Linked Atlantic Modeling Experiments (FLAME). Outcropped EDW columns in the model simulations are detected in each winter from 1990 to 1999, and particles are deployed in the center of each outcropped EDW column. Subsequently, the trajectories of these particles are calculated for the following 5 yr. The particles slowly spread away from the outcropping region into the nonoutcropping/subducted EDW region south of ~30°N and eventually to the non-EDW region in the greater subtropical gyre. Approximately 30% of the particles are found in non-EDW waters 1 yr after deployment; after 5 yr, only 25% of the particles are found within EDW. The reoutcropping time is defined as the number of years between when a particle is originally deployed in an outcropping EDW column and when that particle is next found in an outcropping EDW column. Of the particles, 66% are found to reoutcrop as EDW in 1 yr, and less than 5% of the particles outcrop in each of the subsequent 4 yr. While the individual trajectories exhibit significant eddy-like motions, the time scale of reoutcropping is primarily set by the mean circulation. The dominance of reoutcropping in 1 yr suggests that EDW outcropping contributes considerably to the persistence of surface temperature anomalies from one winter to the next, that is, the reemergence of winter sea surface temperature anomalies.
    Description: We gratefully acknowledge the support from the NSF OCE Physical Oceanography program (NSF OCE-0961090 to Y-OK and J-JP; NSF OCE-0960776 to MSL and SFG; and NSF OCE-1242989 to Y-OK).
    Description: 2015-10-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Atm/Ocean Structure/ Phenomena ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 3004–3023, doi:10.1175/JCLI-D-14-00591.1.
    Description: Time series of surface meteorology and air–sea exchanges of heat, freshwater, and momentum collected from a long-term surface mooring located 1600 km west of the coast of northern Chile are analyzed. The observations, spanning 2000–10, have been withheld from assimilation into numerical weather prediction models. As such, they provide a unique in situ record of atmosphere–ocean coupling in a trade wind region characterized by persistent stratocumulus clouds. The annual cycle is described, as is the interannual variability. Annual variability in the air–sea heat flux is dominated by the annual cycle in net shortwave radiation. In austral summer, the ocean is heated; the 9-yr mean annual heating of the ocean is 38 W m−2. Ocean cooling is seen in 2006–08, coincident with La Niña events. Over the full record, significant trends were found. Increases in wind speed, wind stress, and latent heat flux over 9 yr were 0.8 m s−1, 0.022 N m−2, and 20 W m−2 or 13%, 29%, and 20% of the respective 9-yr means. The decrease in the annual mean net heat flux was 39 W m−2 or 104% of the mean. These changes were found to be largely associated with spring and fall. If this change persists, the annual mean net air–sea heat flux will change sign by 2016, when the magnitude of the wind stress will have increased by close to 60%.
    Description: This work is supported by the NOAA Climate Observation Division (NA09OAR4320129).
    Keywords: Climate variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1410–1425, doi:10.1175/JPO-D-14-0192.1.
    Description: The west-to-east crossover of boundary currents has been seen in mean circulation schemes from several past models of the Red Sea. This study investigates the mechanisms that produce and control the crossover in an idealized, eddy-resolving numerical model of the Red Sea. The authors also review the observational evidence and derive an analytical estimate for the crossover latitude. The surface buoyancy loss increases northward in the idealized model, and the resultant mean circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In the midbasin, the northward surface flow crosses from the western boundary to the eastern boundary. Numerical experiments with different parameters indicate that the crossover latitude of the boundary currents changes with f0, β, and the meridional gradient of surface buoyancy forcing. In the analytical estimate, which is based on quasigeostrophic, β-plane dynamics, the crossover is predicted to lie at the latitude where the net potential vorticity advection (including an eddy component) is zero. Various terms in the potential vorticity budget can be estimated using a buoyancy budget, a thermal wind balance, and a parameterization of baroclinic instability.
    Description: This work is supported by Award USA 00002, KSA 00011, and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST), by National Science Foundation Grants OCE0927017, OCE1154641, and OCE85464100, and by the Woods Hole Oceanographic Institution Academic Program Office.
    Description: 2015-11-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Buoyancy ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1822–1842, doi:10.1175/JPO-D-14-0147.1.
    Description: Influences of time-dependent precipitation on water mass transformation and heat budgets in an idealized marginal sea are examined using theoretical and numerical models. The equations proposed by Spall in 2012 are extended to cases with time-dependent precipitation whose form is either a step function or a sinusoidal function. The theory predicts the differences in temperature and salinity between the convective water and the boundary current as well as the magnitudes of heat fluxes into the marginal sea and across the sea surface. Moreover, the theory reveals that there are three inherent time scales: relaxation time scales for temperature and salinity and a precipitation time scale. The relaxation time scales are determined by a steady solution of the theoretical model with steady precipitation. The relaxation time scale for temperature is always smaller than that for salinity as a result of not only the difference in the form of fluxes at the surface but also the variation in the eddy transport from the boundary current. These three time scales and the precipitation amplitude determine the strength of the ocean response to changes in precipitation and the phase relation between precipitation, changes in salinity and temperature, and changes in heat fluxes. It is demonstrated that the theoretical predictions agree qualitatively well with results from the eddy-resolving numerical model. This demonstrates the fundamental role of mesoscale eddies in the ocean response to time-dependent forcing and provides a framework with which to assess the extent to which observed variability in marginal sea convection and water mass transformation are consistent with an external forcing by variations in precipitation.
    Description: This work was initiated at the 2013 WHOI Geophysical Fluid Dynamics Summer Program, which was supported by the National Science Foundation and the Office of Naval Research. This work was also supported by Grant-in-Aid for Research Fellow (25·8466) of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan, the Program for Leading Graduate Schools, MEXT, Japan (YY), and by the National Science Foundation Grant OCE-1232389 (MAS).
    Description: 2016-01-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Deep convection ; Eddies ; Ocean dynamics ; Atm/Ocean Structure/ Phenomena ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2806–2819, doi:10.1175/JPO-D-15-0061.1.
    Description: An eastward-flowing current of a homogeneous fluid with velocity U, contained in a channel of width L, impinges on an island of width of O(L), and the resulting interaction and dynamics are studied for values of the supercriticality parameter, b = βL2/U, both larger and smaller than π2. The former case is subcritical with respect to Rossby waves, and the latter is supercritical. The nature of the flow field depends strongly on b, and in particular, the nature of the flow around the island and the proportion of the flow passing to the north or south of the island are sensitive to b and to the position of the island in the channel. The problem is studied analytically in a relatively simple, nonlinear quasigeostrophic and adiabatic framework and numerically with a shallow-water model that allows a qualitative extension of the results to the equator. Although the issues involved are motivated by the interaction of the Equatorial Undercurrent and the Galapagos Islands, the analysis presented here focuses on the fundamental issue of the distinctive nature of the flow as a function of Rossby wave criticality.
    Description: Supported by the National Science Foundation Grant OCE-0959381.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Ocean dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...