ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (185)
  • Other Sources
  • photosynthesis  (185)
  • Springer  (185)
  • 1995-1999  (185)
  • 1945-1949
  • 1940-1944
  • Biology  (185)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mangroves and salt marshes 2 (1998), S. 99-107 
    ISSN: 1572-977X
    Keywords: conductance ; mangrove ; photosynthesis ; productivity ; water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diurnal gas exchange characteristics were measured simultaneously in two mangrove species, Avicennia marina and Bruguiera gymnorrhiza, over 7 d in summer (February–March), to compare their productivity. The study was undertaken in the Beachwood Mangroves Nature Reserve, Durban, South Africa, using fully expanded leaves of young and mature trees at the top of the canopy. Gas exchange was strongly influenced by photosynthetic photon flux density (PPFD), leaf temperature and the accompanying leaf to air vapour pressure deficit (Δ w). Carbon dioxide exchange was saturated at a PPFD of about 600 μmol m-2s-1 in B. gymnorrhiza compared to 800 μmol m-2s-1 in A. marina. Maximal CO2 exchange occurred between 12h00 and 14h00 and was consistently greater in A. marina (8.8 μmol m-2s-1) than in B. gymnorrhiza (5.3 mu;mol m-2s-1). Mean internal CO2 concentrations ( ci) were 260 μl l-1 in A. marina and 252 μl l-1 in B. gymnorrhiza. Photorespiratory activity was 32% in A. marina and 30% in B. gymnorrhiza. Mean water use efficiency (WUE) was 8.0 μmol mmol-1 in A. marina and 10.6 μmol mmol-1 in B. gymnorrhiza. Diurnal leaf water potentials ranged from –0.8 to –3.5 MPa and were generally lower in A. marina.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mangroves and salt marshes 2 (1998), S. 191-198 
    ISSN: 1572-977X
    Keywords: canopy ; Hinchinbrook ; leaf area index ; mangrove ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Data on stand structure and rates of photosynthesis were used to estimate net canopy carbon fixation and carbon accumulation as living biomass in mangrove forests in Hinchinbrook Channel, Australia. Total annual canopy net carbon fixation was estimated to be about 29 t C ha−1 yr−1. This equates to about 204,000 t C yr−1 for all mangrove forests in Hinchinbrook Channel. Of this, only about 12% was stored as living plant biomass. Although it is not yet possible to present a robust carbon balance for mangrove trees, the remainder is presumably lost through plant respiration, litter fall, root turnover and exudation of organic compounds from roots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mangroves and salt marshes 3 (1999), S. 147-153 
    ISSN: 1572-977X
    Keywords: conductance ; gas exchange ; mangrove ; photorespiration ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic characteristics were investigated in the geographically isolated and restricted mangrove species, P.rhizophoreae. Gas exchange measurements were made on two to seven years old hydroponically grown plants maintained in 10%, 50% and 100% seawater. CO2 exchange in the 50% and 100% seawater treatments was reduced by 10% and 26%, respectively, compared to the 10% seawater treatment. CO2 response curves indicated that carboxylation efficiency was greater in 10% than in 50% seawater, while stomatal limitation increased from 11% to 16% as salinity increased from 10% to 50% seawater. Carbon losses via photorespiration (31% and 41%) and CO2 compensation point (67 and 81 μ11−1) were greater in 50% than in the 10% seawater treatment. Maximal CO2 exchange occurred at 30 °C with no differences among the salinity treatments. The results indicate that P. rhizophoreae exhibits many gas exchange characteristics previously reported for other mangroves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Agrostis canina ; CO2 vents ; photosynthesis ; lignification ; growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The aim of this study was to characterise growth and photosynthetic capacity in plants adapted to long-term contrasting atmospheric CO2 concentrations (C a). Seeds of Agrostis canina L. ssp. monteluccii were collected from a natural CO2 transect in central-western Italy and plants grown in controlled environment chambers at both ambient and elevated CO2 (350 and 700 μmol mol−1) in nutrient-rich soil. Seasonal mean C a at the source of the plant material ranged from 610 to 451 μmol CO2 mol−1, derived from C4 leaf stable carbon isotope discrimination (δ13C). Under chamber conditions, CO2 enrichment stimulated the growth of all populations. However, plants originating from elevated C a exhibited higher initial relative growth rates (RGRs) irrespective of chamber CO2 concentrations and a positive relationship was found between RGR and C a at the seed source. Seed weight was positively correlated with C a, but differences in seed weight were found to explain no more than 34% of the variation in RGRs at elevated CO2. Longer-term experiments (over 98 days) on two populations originating from the extremes of the transect (451 and 610 μmol CO2 mol−1) indicated that differences in growth between populations were maintained when plants were grown at both 350 and 700 μmol CO2 mol−1. Analysis of leaf material revealed an increase in the cell wall fraction (CWF) in plants grown at elevated CO2, with plants originating from high C a exhibiting constitutively lower levels but a variable response in terms of the degree of lignification. In vivo gas exchange measurements revealed no significant differences in light and CO2 saturated rates of photosynthesis and carboxylation efficiency between populations or with CO2 treatment. Moreover, SDS-PAGE/ LISA quantification of leaf ribulose bisphosphate carboxylase/oxygenase (Rubisco) showed no difference in Rubisco content between populations or CO2 treatments. These findings suggest that long-term adaptation to growth at elevated CO2 may be associated with a potential for increased growth, but this does not appear to be linked with differences in the intrinsic capacity for photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: Cell cycle ; circadian clock ; green alga ; GTP-binding proteins ; light regulation ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract ADP-ribosylation factor (ARF) is a highly conserved, low molecular mass (ca. 21 kDa) GTP-binding protein that has been implicated in vesicle trafficking and signal transduction in yeast and mammalian cells. However, little is known of ARF in plant systems. A putative ARF polypeptide was identifed in subcellular fractions of the green alga Chlamydomonas reinhardtii, based on [32P]GTP binding and immunoblot assays. A cDNA clone was isolated from Chlamydomonas (Arf1), which encodes a 20.7 kDa protein with 90% identity to human ARF1. Northern blot analyses showed that levels of Arf1 mRNA are highly regulated during 12 h/12 h light/dark (LD) cycles. A biphasic pattern of expression was observed: a transient peak of Arf1 mRNA occurred at the onset of the light period, which was followed ca. 12 h later by a more prominent peak in the early to mid-dark period. When LD-synchronized cells were shifted to continuous darkness, the dark-specific peak of Arf1 mRNA persisted, indicative of a circadian rhythm. The increase in Arf1 mRNA at the beginning of the light period, however, was shown to be light-dependent, and, moreover, dependent on photosynthesis, since it was prevented by DCMU. We conclude that the biphasic pattern of Arf1 mRNA accumulation during LD cycles is due to regulation by two different factors, light (which requires photosynthesis) and the circadian clock. Thus, these studies identify a novel pattern of expression for a GTP-binding protein gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: gene expression ; photosynthesis ; protein turnover ; psbA ; tac promoter ; D1 protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Over-expression of the psbAIII gene encoding for the D1 protein (form II; D1:2) of the photosystem II reaction centre in the Synechococcus sp. PCC 7942 was studied using a tac promoter and the lacI Q system. Over-expression was induced with 40 μg/ml IPTG in the growth medium for either 6 or 12 h at growth irradiance (50 μmol photons m-2 s-1). This treatment doubled the amount of psbAII/III mRNA and the D1:2 protein in membranes but decreased the amount of psbAI messages and the D1:1 protein. The total amount of both heterodimeric reaction centre proteins, D1 and D2, remained constant under growth light conditions, indicating that the number of PSII centres in the membranes was not affected, only the form of the D1 protein was changed from D1:1 to D1:2 in most centres. When the cells were photoinhibited either at 500 or 1000 μmol photons m-2 s-1, in the presence or absence of the protein synthesis inhibitor lincomycin, the D1:2 protein remained at a higher level in cells in which over-expression had been induced by IPTG. These cells were also less prone to photoinhibition of PSII. It is suggested that the tolerance of cells to photoinhibition increases when most PSII reaction centres contain the D1:2 protein at the beginning of high irradiance. This tolerance is further strengthened by maintaining psbAIII gene over-expression during the photoinhibitory treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: antisense ; Corynebacterium glutamicum ; Escherichia coli ; Flaveria trinervia ; overexpression ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphoenolpyruvate carboxylase (PEPC) genes from Corynebacterium glutamicum (cppc), Escherichia coli (eppc) or Flaveria trinervia (fppc) were transferred to Solanum tuberosum. Plant regenerants producing foreign PEPC were identified by Western blot analysis. Maximum PEPC activities measured in eppc and fppc plants grown in the greenhouse were doubled compared to control plants. For cppc a transgenic plant line could be selected which exhibited a fourfold increase in PEPC activity. In the presence of acetyl-CoA, a known activator of the procaryotic PEPC, a sixfold higher activity level was observed. In cppc plants grown in axenic culture PEPC activities were even higher. There was a 6-fold or 12-fold increase in the PEPC activities compared to the controls measured in the absence or presence of acetyl-CoA, respectively. Comparable results were obtained by transient expression in Nicotiana tabacum protoplasts. PEPC of C. glutamicum (PEPC C.g.) in S. tuberosum leaf extracts displays its characteristic K m(PEP) value. Plant growth was examined with plants showing high expression of PEPC and, moreover, with a plant cell line expressing and antisense S. tuberosum (anti-sppc) gene. In axenic culture the growth rate of a cppc plant cell line was appreciably diminished, whereas growth rates of an anti-sppc line were similar or slightly higher than in controls. Malate levels were increased in cppc plants and decreased in antisense plants. There were no significant differences in photosynthetic electron transport or steady state CO2 assimilation between control plants and transformants overexpressing PEPC C.g. or anti-sppc plants. However, a prolonged dark treatment resulted in a delayed induction of photosynthetic electron transport in plants with less PEPC. Rates of CO2 release in the dark determined after a 45 min illumination period at a high proton flux density were considerably enhanced in cppc plants and slightly diminished in anti-sppc plants. When CO2 assimilation rates were corrected for estimated rates of mitochondrial respiration in the light, the electron requirement for CO2 assimilation determined in low CO2 was slightly lower in transformants with higher PEPC, whereas transformants with decreased PEPC exhibited an appreciably elevated electron requirement. The CO2 compensation point remained unchanged in plants (cppc) with high PEPC activity, but might be increased in an antisense plant cell line. Stomatal opening was delayed in antisense plants, but was accelerated in plants overexpressing PEPC C.g. compared to the controls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5028
    Keywords: photosystem II ; photosynthesis ; chlorophyll-binding protein ; Synechocystis ; oxygen evolution ; oligonucleotide-mediated mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5028
    Keywords: chloroplasts ; gene expression ; heat bleaching ; photosynthesis ; transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A shift in the ratio of chlorophyll (Chl) a and Chl b is an early indicator of heat bleaching in Euglena gracilis. This observation prompted us to consider whether or not changes in steady-state levels of chloroplast transcripts and in transcriptional activity could limit the synthesis of Chl a-binding proteins in bleaching plastids. We found that the mature transcripts for CP47 and CP43, the Chl a-binding apoproteins of the proximal antenna of photosystem II, decline sharply very early during bleaching. Our study also shows that transcription of psbB and psbC, the chloroplast genes encoding CP47 and CP43, remains essentially unchanged during the same interval. We conclude that posttranscriptional events, such as mRNA stability, could play a major role in initiating an irreversible loss of chloroplast function in Euglena at a moderately elevated temperature. Lack of these transcripts would eventually impair the assembly of photosystem II in thylakoids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5028
    Keywords: Cyanobacteria ; gene copy number ; light regulation ; photosynthesis ; photosystem II reaction center ; polymerase chain reaction ; psbA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence, copy number, expression and phylogenetic relevance of the psbA gene from the abundant marine prokaryote P. marinus CCMP 1375 was analyzed. The 7 amino acids near the C-terminus missing in higher plant and in Prochlorothrix hollandica D1 proteins are present in the derived amino acid sequence. P. marinus contains only a single psbA gene. Thus, this organism lacks the ability to adapt its photosystem II by replacement of one type of D1 by another, as several cyanobacteria do. Phylogenetic trees suggested the D1-1 iso-form from Synechococcus PCC 7942 as the next related D1 protein and place P. Marinus separately from Prochlorothrix hollandica among the cyanobacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1573-5028
    Keywords: chlorophyll synthesis ; cyanobacteria ; chlorophyl-binding proteins ; photosynthesis ; thylakoid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 μE m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding ‘chelator’ protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-5028
    Keywords: Cyanobacteria ; photosynthesis ; random mutagenesis ; sodium bisulfite ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To identify amino acid residues of the D2 protein that are critical for functional photosystem II (PS II), sodium bisulfite was utilized for in vitro random mutagenesis of the psbDI gene from Synechocystis sp. PCC 6803. Sodium bisulfite reacts specifically with cytosine in single-stranded regions of DNA and does not attack double-stranded DNA. Using a hybrid plasmid that was single-stranded in the region to be mutagenized and that was double-stranded elsewhere, mutations were targeted to a specific psbDI region coding for the lumenal A-B loop of the D2 protein. Several mutants were isolated with a total of 15 different amino acid changes in the loop. The majority of these mutations did not result in a loss of photoautotrophic growth or in significantly altered PS II function. However, mutation of Glu-69 to Lys, Ser-79 to Phe, and Ser-88 to Phe were found to influence photosystem II activity; the importance of the latter two residues for proper PS II function was unexpected. Cells carrying the double mutation S79F/S88F in D2 did not grow photoautotrophically and had no functionally active PS II centers. The single mutant S79F was also incapable of photoautrophic growth, but displayed reasonably stable oxygen evolution, while PS II function in the single mutant S88F appeared to be close to normal. Because of the more pronounced phenotype of the S79F/S88F strain as compared to the single mutants, both Ser residues appear to affect stable assembly and function of the PS II complex. The mechanism by which the S79F mutant loses photoautotrophic growth remains to be established. However, these results show the potential of targeted random mutagenesis to identify functionally important residues in selected regions of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1573-5125
    Keywords: chlorophyll fluorescence ; nutrient limitation ; phytoplankton ; photosynthesis ; quantum efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1573-5125
    Keywords: intertidal areas ; photosynthetically active radiation ; photosynthesis ; Tagus estuary ; tides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetically active radiation (PAR) and temperature were measured continuously at the surface of estuarine intertidal sediments in the Tagus estuary, Portugal, along two spring-neap tidal cycles. PAR and temperature were strongly conditioned by the periodic tidal inundation, with large and abrupt variations occurring during flooding and ebbing. PAR levels reaching the sediment surface decreased very rapidly to zero or very low values during most of the daytime immersion. Inundation during high tide had the general effect of attenuating the amplitude of daily temperature fluctuation, with the incoming water usually warmer than the sediment during the night or early morning and cooler during the day. The daily progression of tidal emersion resulted in a clear fortnightly variation in total daily PAR reaching the sediment surface, while both daily mean temperature and mean temperature of diurnal low tide periods failed to exhibit a well-defined fortnightly periodicity. The obtained results indicate that the estuarine intertidal environment is dominated, at sub-seasonal time scales, by fortnightly periodicity in irradiance and temperature conditions favourable for benthic photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 547-554 
    ISSN: 1573-5176
    Keywords: herbicide ; green alga ; growth ; nutrients ; photosynthesis ; it Protosiphon botryoides ; respiration ; Thiobencarb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of the herbicide thiobencarb (Saturn) were tested on the growth and physiology of the chlorophyte Protosiphon botryoides isolated from an Egyptian paddy. Assays were conducted using 16-day batch cultures. Chlorophyll and dry weight biomass yields were significantly reduced at 2–3 mg L-1 thiobencarb, and dark respiration increased and protein decreased significantly at 3 mg L-1. Reductions in exponential specific growth rate (μ) were generally small, but in some cases significant. Thiobencarb also slightly, but significantly, reduced the 77 K fluorescence parameter Fv/Fm, an indicator of maximum photosynthetic efficiency. No consistent dose-dependent changes occurred in chlorophyll per unit dry weight, total carbohydrate or gross photosynthetic capacity. Whereas half of the added thiobencarb was recovered from control (uninoculated) medium, it was largely absent from cells and culture medium after sixteen days, indicating biodegradation by the alga or associated bacteria. P. botryoides recovered fully within sixteen days following subculture in thiobencarb-free medium. Independently varying phosphate and nitrate nine-fold had no clear effect on the sensitivity of P. botryoides to thiobencarb.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1573-5176
    Keywords: Cyanobacterium ; Spirulina platensis ; Arthrospira ; CO2 ; organic carbon ; nitrogen ; photosynthesis ; batch culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The consequences of the addition of CO2 (1%) in cultures of S. platensis are examined in terms of biomass yield, cell composition and external medium composition. CO2 enrichment was tested under nitrogen saturating and nitrogen limiting conditions. Increasing CO2 levels did not cause any change in maximum growth rate while it decreased maximum biomass yield. Protein and pigments were decreased and carbohydrate increased by high CO2, but the capability to store carbohydrates was saturated. C:N ratio remained unchanged while organic carbon released to the external medium was enhanced, suggesting that organic carbon release in S. platensis is an efficient mechanism for the maintenance of the metabolic integrity, balancing the cell C:N ratio in response to environmental CO2 changes. CO2 affected the pigment content: Phycocyanin, chlorophyll and carotenoids were reduced in around 50%, but the photosynthetic parameters were slightly changed. We propose that in S. platensis CO2 could act promoting degradation of pigments synthetised in excess in normal CO2 conditions, that are not necessary for light harvesting. Nitrogen assimilation was significantly not affected by CO2, and it is proposed that the inability to stimulate N assimilation by CO2 enrichment determined the lack of response in maximum growth rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 195-201 
    ISSN: 1573-5176
    Keywords: dense algal suspension ; light-harvesting pigment ; photosynthesis ; productivity ; cyanobacterium ; Synechocystis PCC 6714
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 8 (1996), S. 263-273 
    ISSN: 1573-5176
    Keywords: molecular biology ; mutagenesis ; photosynthesis ; protein engineering ; respiration ; thylakoid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cyanobacteriumSynechocystis sp. PCC 6803 is readily amenable to targeted mutagenesis: Foreign DNA is taken up spontaneously, and after uptake DNA can be integrated into the organism's genome by homologous recombination. Using appropriate DNA constructs for transformation, specific genes in the organism can be interrupted, deleted, or replaced by modified gene copies. The organism can grow under a number of different conditions, ranging from photoautotrophic to fully heterotrophic modes, making genetic modifications that alter fundamental processes such as photosynthesis and/or respiration feasible. For example, deletion of photosystem I leads to an obligate (photo)heterotrophic strain in which photosystem II-generated electrons appear to be consumed by respiratory processes, whereas deletion of photosystem II leads to an obligate (photo)heterotrophic strain in which cyclic electron flow around photosystem I appears to remain active. A major advantage ofSynechocystis sp. PCC 6803 is that its entire genome has been sequenced (by S. Tabata and co-workers), opening many avenues to address basic and applied research problems. For example, genes can be introduced, modified or deleted, and hypotheses regarding the function of an open reading frame can be tested by deletion of this open reading frame. Methods to modify genes are numerous. In addition to site-directed mutagenesis, novel molecular genetic approaches including ‘targeted random mutagenesis’, combinatorial mutagenesis and introduction of hybrid genes have come of age and have proven to be very powerful tools in protein engineering. These approaches have been utilized primarily in this strain to study photosynthesis, but applications of this technology, including pathway engineering, alterations of substrate specificity of enzymes and introduction of tolerance to a variety of stresses, are equally feasible in relation to more applied aims. For optimal utilization of the potential of theSynechocystis sp. PCC 6803 system, however, an increased emphasis toward understanding the biochemistry and molecular physiology of cyanobacteria will also be critically important.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5176
    Keywords: fluorescence ; photoinhibition ; photosynthesis ; Spirulina ; photobioreactor ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L−1) and low (0.44 g L−1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F′ m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L−1, reached 30% at the middle of the day. At the same time of the day thedF/F′ m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F′ m was lower in the cultures grown at 1.1 g L−1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L−1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F′ m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 419-425 
    ISSN: 1573-5176
    Keywords: Gracilaria cornea ; photosynthesis ; respiration ; chlorophyll ; phycoerythrin ; Florida ; salinity ; temperature ; irradiance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The agarophyte Gracilaria cornea, collected over 2.5 y in the Florida Keys, shows adaptations to oceanic salinities and subtropical to tropical water temperatures in its photosynthetic and respiratory responses as measured with a respirometer. No seasonal pattern in responses to irradiance, temperature, and salinity were evident between five collections over a 20-month period, indicating the tropical nature of the populations from Bahia Honda and Pigeon Keys. Concentrations of chlorophyll a (0.09 to 0.41 mg g d wt-1) and phycoerythrin (0.06 to 0.36 mg g d wt- 1) were low and reflect the low nutrient regime of the habitats, especially when compared to laboratory cultured plants. Compensation and saturation irradiances were also low (11–38 and 90–127 μmol photon m-2 s-1), indicating acclimation to lower irradiances in their shallow (1–2 m depth) habitats where turbidity can be high. In comparison with other subtropical and warm temperate species of Gracilaria, G. cornea had lower levels of pigment, but similarly high photosynthetic efficiency, demonstrating shade adaptation; it had only limited tolerance to salinities below 20‰ and temperatures below 15 °C. Thus, G. cornea from the Florida Keys in mariculture would require subtropical to tropical temperatures and stable oceanic salinities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1573-5176
    Keywords: Chlorophyll antenna size ; damage and repair cycle ; photon use efficiency ; photosynthesis ; photoinhibition ; Dunaliella salina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 157-163 
    ISSN: 1573-5176
    Keywords: Euglena gracilis ; photosynthesis ; waste water ; pulp and paper industry ; ultraviolet-B radiation (280–320 nm) ; pentachlorophenol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The green flagellate Euglena gracilis has been used as a model organism to elucidate the possible large-scale and short-term effects of waste substances from the pulp and paper industry on photosynthetic efficiency (PE). Different concentrations of waste substances before and after treatment in a cleaning system were studied. The uncleaned sample at concentrations up to 1:10 and the cleaned sample at concentrations up to 1:5 showed stimulating effects on the PE after 7 days of incubation compared to the control. The effects of waste substances on the PE of E. gracilis were also studied in combination with short-term studies (20 and 40 min) of ultraviolet-B radiation (UV-B, 280–320 nm). It was shown that increasing concentrations of the uncleaned sample had continuously stimulating effects on the PE and worked protectively against UV-B radiation. The cleaned sample exhibited no effects, or negative effects, on the PE of E. gracilis together with UV-B radiation compared to the experiments with only UV-B radiation. At the concentration 1:1 of the cleaned sample an increase in the PE was detected due to the high concentration of the coloured substances and a decrease in the UV-B penetration. PE revealed itself to be highly sensitive for detecting toxic effects on E. gracilis and is thus very promising for use in regular toxicity tests of waste water from pulp and paper industry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 51-53 
    ISSN: 1573-5176
    Keywords: blue-green alga ; cyanobacterium ; Fv/Fmlight ; Nostoc flagelliforme ; photosynthesis ; rewetting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 µmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-5176
    Keywords: ammonium ; C:N ratio ; tank culture ; dietary fibre ; fatty acids ; nitrogen ; photosynthesis ; Ulva rigida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Physiological and biochemical changes in relation to inorganic nitrogen availability were studied for tank-cultivated Ulva rigida grown under nitrogen- enriched and nitrogen-depleted seawater. U. rigida was initially cultivated in nitrogen-enriched seawater (daily concentrations of NH4+ and NO3- + NO2- ranged between 0.5–1.7 and 0.06–0.15 mg L-1, respectively), then transferred to nitrogen-depleted seawater where photosynthetic capacity decreased to zero after 23 d. At the time (14 d) when photosynthetic rates were lower than 2.0 μmol O2 g-1 FW min-1 and strong bleaching had occurred, some algae were returned to the initial nitrogen-enriched seawater to study recovery from N-limited growth. Data on biochemical composition (chlorophylls, ash, caloric content, fatty acids and dietary fibres) and colouration varied significantly depending on the nitrogen conditions. C:N ratios correlated significantly with biochemical parameters. Fatty acid (FA) synthesis continued during the N-starvation period; saturated and mono-unsaturated FA increased to a maximun of 72.2%, while poly-unsaturated fatty acids (PUFA) decreased to 27.7%. During the N-enriched recovery period, the reverse was found. C:N ratios above 10 correlated with carbohydrate synthesis as shown by the dietary fibre level. Under nitrogen enriched conditions, C:N ratios decreased along with a decrease in fibre level. Under controlled conditions, nitrogen represents a major influence on the development of intensive tank cultivation of Ulva rigida, not only by affecting parameters closely related to nitrogen metabolism but also some clearly influenced by carbon uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5176
    Keywords: herbicide ; DCMU ; photosynthesis ; monoalgal culture ; Chaetoceros ; Dunaliella ; Nannochloropsis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The selective effect of DCMU on photosynthetic activity and growth rate was examined in several marine unicellular algae:Nannochloropsis sp. (Eustigmatohyceae),Dunaliella salina (Chlorophyceae)Isochrysis galbana (Prymnesiophyceae) andChaetoceros sp. (Bacillariophyceae). DCMU at 10−7 M caused an immediate decrease in the photosynthetic rate ofDunaliella andIsochrysis (about 50% inhibition), whereas 10−6 M imposed 80% inhibition in the photosynthetic rate ofChaetoceros. InNannochloropsis the rate was affected only when DCMU concentration exceeded 10−6M. Cellular growth rate of all studied algae was affected by DCMU in a similar manner to photosynthesis. The differential effect of DCMU was further examined in mixed cultures in whichNannochloropsis was cultivated together with an additional species simulating a contamination situation of aNannochloropsis culture. When DCMU was added at concentrations higher than 10−7 M, the growth of the competing algae significantly decreased, whileNannochloropsis maintained a relatively high growth rate. Consequently, after a growth period of 4 to 7 days a clear domination ofNannochloropsis was observed. These results demonstrate that DCMU and probably other herbicides of similar characteristics can be used effectively as a selective tool to suppress contaminating unicellular algae in open ponds in order to maintain a monoculture ofNannochloropsis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5176
    Keywords: Spirulina platensis ; cyanobacterium ; NaCl ; photoinhibition ; photosynthesis ; photosystem II ; salt stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The response ofSpirulina platensis cells to salinity stress was studied. Once adapted to the higher osmoticum, photosynthetic parameters such as the maximum rate of photosynthesis under saturating irradiance (Pmax) and the initial slope of the P-I curve (α) are reduced by 15% and 25% in 0.5 M NaCl grown cells, respectively. Salt-adapted cells have a modified biochemical composition; reduced protein and chlorophyll content, and an increased level of carbohydrates. The reduction in the photosynthetic capacity of the salt-adaptedSpirulina cells reflects a lower ability to utilize light energy and results in an increase in the susceptibility of the stressed cells to photoinhibition. This conclusion is supported by the finding that cultures exposed to salt stress show not only a decrease in growth rate (μ), but lose the ability to respond to increased irradiance with an increase in growth. The use of variable fluorescence as a fast and reliable measurement to follow the changes in PSII of salt-stressesSpirulina cells enables following the early events of salinity shock. It indicates that as soon as the cells are exposed to salt, a protection mechanism is induced. This mechanism does not require any protein synthesis and may take place even in the dark, though at somewhat reduced effectiveness. The significance of the result in providing a better understanding of the interaction between two environmental stresses — light and salinity — and their application in the outdoor mass cultivation ofSpirulina are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5176
    Keywords: algal growth ; Porphyra ; inorganic carbon (Ci) ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-5176
    Keywords: CO2 ; inorganic carbon ; macroalgae ; photosynthesis ; PAM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis and cell composition of Porphyraleucosticta discs grown at low (〈 0.0001% in air), current (control) and high (1% CO2 in air)inorganic carbon (Ci) concentrations were analyzed. Carbohydrate content in discs grown at high Ci increased (15.1 mg g-1 FW) with respect to the control (6.4 mg g FW-1), whereas soluble protein content decreased to one-third (5.6 to2.1 mg g-1 FW). Carbohydrate content was unaffected and soluble protein slightly increased in discs grown at low Ci. As a consequence of these changes, a lower C/N molar ratio (8.6) was found in the discs grown at low compared to high Ci(12.4). Nitrate reductase activity increased at high Ci from 0.3 ± 0.2 to 1.7 ± 0.4 μmolNO2 - g-1 FW h-1indicating that reduction and assimilation of nitrate were uncoupled. The response of photosynthesis to increasing irradiance, estimated from O2evolution vs. irradiance curves, was affected by the treatments. Maximum quantum yield (Φ O2°) and effective quantum yield (Φ O2) at 150 μmol photon m-2s-1 decreased by 20% and 50%, respectively, at low Ci. These differences could be due to changes in photosynthetic electron flow between PSII and PSI. Treatments also produced changes in maximal (Fv/Fm) and effective (ΔF/Fm′)quantum yield for photosystem II charge separation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    ISSN: 1573-5176
    Keywords: cell-wall polysaccharides ; chlorophylla ; Gelidium sesquipedale ; internal C and N ; light quality ; photosynthesis ; phycobiliproteins ; respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of different light qualities on the photosynthetic rate, dark respiration, intracellular carbon and nitrogen content, and accumulation of photosynthetic pigments and cell-wall polysaccharides during short-term incubation (5 h) of the red algaGelidium sesquipedale was investigated. The same photon irradiance of 50μmol m−2 s−2 below the light saturation point of photosynthesis was applied in each case. Blue light stimulated photosynthesis, dark respiration and the accumulation of chlorophyll and biliproteins, phycoerythrin in particular. The accumulation of internal carbon and nitrogen was greater under blue light than under the other light qualities. In contrast, the percentage of cell-wall polysaccharides was higher in red light. The content of cell-wall polysaccharides decreased during the time of incubation in all light treatments except in red light. The action of a non-photosynthetic photoreceptor in the control of cell-wall polysaccharide synthesis is suggested because the accumulation of cell-wall polysaccharides was not correlated with net photosynthesis in contrast to what occurred with carbon, chlorophyll and phycoerythrin accumulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-5176
    Keywords: cyanobacteria ; light intensity ; photoinhibition ; photosynthesis ; recovery ; Spirulina platensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three isolates ofSpirulina platensis (Norst) Geitler marked BP, P4P and Z19/2 were compared with respect to their response and acclimation capability to high photon flux densities (HPFD). Cultures exposed to HPFD (1500–3500 μmol photon m−2 s−1) exhibited a marked decrease in light-dependent O2 evolution rate. P4P was more sensitive to HPFD than the two other isolates. All three isolates recovered from photoinhibition when placed under low PFD. The BP isolate was able to recover also in the dark but to a lower extent and at a lower rate, while no recovery was observed in the other two isolates under dark conditions. No recovery was observed when protein synthesis was inhibited using chloramphenicol. Cultures grown at 200 μmol photon m−2 s−1 differed from cultures grown at 120 μmol photon m 2 s-1 by their lower maximal photosynthetic rate (P max ) and higher light saturation (I k ) value, while being more resistant to HPFD stress. The ability ofSpirulina isolates to acclimate and withstand HPFD may provide useful information for the selection of strains useful for outdoor mass cultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 9 (1997), S. 525-532 
    ISSN: 1573-5176
    Keywords: Gelidiella ; agarophyte ; photosynthesis ; P-I curve ; morphology ; tide ; pigment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The red seaweed agarophyte, Gelidiella acerosa (Forsskål) (Feldmann& Hamel) was collected from tidepools, high intertidal rocks. and shallow subtidal are as along a reef flat in Ilocos Norte, northern Philippines. The three populations were compared during the summer (dry) and rainy (wet) seasons to determine changes in morphology and photoacclimation capacity as possible use in mariculture. During summer months (February toApril) after exposure to environmental extremes (i.e. the highest percent of minus tides during daylight, high light regimes, desiccation, and solar bleaching), the populations differed in their morphologies and responses to increasing irradiance levels (P–I curve). Tidepool plants were the tallest, bushiest, and with increased diameter of cortical cells; while,high intertidal plants were the shortest, with sparse branching pattern and decreased diameter of cortical cells. Although their saturation irradiances indicated shade tolerance (Ik = 52 − 112 µmol photon m -2 s-1). their differential light saturation curves (P-I curves) suggested a capacity to acclimate to ambient light regimes. For example, plants from the high intertidal zone showed higher photosynthetic rates and saturation irradiances, slightly lower initial slopes of the P-I curves and levels of light harvesting accessory pigments, rphycoerhythrin (R-PE) and rphycocyanin (R-PC), after being exposed to higher light regimes. In contrast, plants from tidepools and shallow subtidal areas had lower photosynthetic rates and saturation irradiances, slightly steeper initial slopes of the P-I curves and levels of R-PE and R-PC, having been exposed to lower light regimes. During the rainy months (June to November) no significant responses in these parameters were recorded. Comparison of the P-I responses of vegetative and tetrasporic plants showed these to vary with season. The data suggest that when plants became reproductive their physiological fitness either was unchanged or slightly enhanced. These results indicate that all three populations of G. acerosa could be used as seed stock for mariculture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 9 (1997), S. 503-510 
    ISSN: 1573-5176
    Keywords: Chlorella pyrenoidosa ; dense algalsuspension ; light-harvesting pigment ; photosynthesis ; Synechocystis PCC 6714
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of light-harvesting pigments (LHP) inmicroalgal cells on photosynthetic activity in adense cell suspension were examined. The results suggest that a lower LHP content should result in higher photosynthetic productivity under high light intensity. The idea was first proposed by Lien and San Pietro in 1975 that photosynthesis could be improved by reducing the LHP content in microalgal cells, but this has not been demonstrated in detail. Experiments to evaluate the idea were conducted with Synechocystis PCC6714 and Chlorellapyrenoidosa. In the experiments with PCC 6714, photosynthesis of a phycocyanin-deficient mutant was compared with that of the wild type. In the experiments with C. pyrenoidosa, the LHP content was controlled by the light intensity in the algalculture. The maximum photosynthetic activity was 20–30% higher in the dense suspension of cells having a lower LHP content with both organisms. These results indicate that the idea of reducing the LHP contentcould be applicable to a wide variety of photosynthetic organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-5176
    Keywords: Gelidium sesquipedale ; photosynthesis ; fluorescence ; light response curves ; pigments ; depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis-light response curves of Gelidium sesquipedale from the west coast of Portugal (Cape Espichel) were determined at four different depths, 3, 10, 15 and 22 m. Data acquisition using chlorophyll a fluorescence methodology and oxygen electrode measurements were compared. Response curves were determined over an increasing range of irradiance values (I), from darkness to 900 μmol photon m-2 s-1 PAR. In general, light response curves obtained for G. sesquipedale showed a similar pattern whether determined by the chlorophyll fluorescence method or by oxygen evolution. The photosynthetic capacity of G. sesquipedale decreased with depth, as expected, revealing a ‘sun’ and ‘shade’ acclimation pattern, between shallow and deeper waters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1573-5176
    Keywords: UV-radiation ; chlorophyll fluorescence ; photosynthesis ; stress tolerance ; electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoinhibition and recovery kinetics after short exposure to solar radiation following three different irradiance treatments of irradiances (PAR, PAR+UVA and PAR+UVA+UVB) was assessed in two intertidal species of the genus Gelidium, Gelidium sesquipedale and G. latifolium, collected from Tarifa (southern Spain) using in vivo chlorophyll fluorescence (PAM fluorometry). After 3 h UV radiation exposure, optimal quantum efficiency (Fv/Fm) in G. sesquipedale decreased between 25 and 35% relative to the control. Under PAR alone, values decreased to 60%. In G. latifolium, photoinhibition did not exceed 40%. Similar results were found for the effective quantum yield (ΔF/Fm′), however, no marked differences in relation to light treatments were seen. When plants were shaded for recovery from stress, only in G. latifolium a significant increase in photosynthesis was observed (between 80 and 100% of control). In contrast, photosynthesis of G. sesquipedale suffered a chronic photoinhibition or photodamage under the three light irradiances. Full solar radiation (PAR+UVA+UVB) affected also the electron transport rate in both species. Here, initial slopes of electron transport vs. irradiance curves decreased up to 60% of controls. Although the recovery kinetic under PAR+UVA+UVB conditions was delayed in G. latifolium, after 24 h recovery this species reached significantly higher than G. sesquipedale. PAR impaired electron trasport only in G. sesquipedale. Overall, both species are characterized by different capacity to tolerate enhanced solar radiation. G. latifolium is a sun adapted plant, well suited to intertidal light conditions, whereas G. sesquipedale, growing at shaded sites in the intertidal zone, is more vulnerable to enhanced UV radiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-5176
    Keywords: 14C ; photosynthesis ; population growth ; Selenastrum capricornutum ; suspended sediment elutriate ; zinc ; cadmium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Short-term 14C-fixation (4 h) Selenastrum capricornutum algal toxicity tests were conducted with Cd (n=8), Zn (n=9) and suspended sediment aqueous elutriates (n=28) and the results were compared to those obtained in a 48 h population growth test. In order to provide more realistic experimental conditions, toxicity tests were carried out in prefiltered nutrient-spiked Lake Geneva water. The population growth inhibition test was significantly more sensitive than the14 C-fixation test for Cd (median EC50-4h and EC50-48h values of 600 and 118 µg L-1, respectively) whereas no significant difference was measured for Zn toxicity (median EC50-4h and EC50-48h values of 97 and 96 µg L-1, respectively). With suspended sediment aqueous elutriates, the relative sensitivity of the two different end points is sample dependent, with ratios of the EC25 for the14 C-fixation: population growth test ranging from 〈0.26 to 〉53.3. Elutriate toxicity shows no apparent relationship between the acute and chronic test, indicating that population growth inhibition cannot be derived directly or predicted from14 C-fixation. Both tests with their specific advantages and limitations provide valuable complementary information to measure the impact of single toxicants or complex mixtures on aquatic plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 10 (1998), S. 447-452 
    ISSN: 1573-5176
    Keywords: dense algal suspension ; light-harvesting pigment ; photosynthesis ; Synechocystis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects on photoinhibition of light-harvesting pigments in microalgal cells were examined using the wild type and a phycocyanin- deficient mutant (PD-1) of Synechosystis PCC 6714. Mutant PD-1 showed higher resistance to high light than the wild type in terms of the decline of photosynthetic activity at any light intensity and with various cell densities. This suggests that the loss of productivity induced by high light intensity would be improved by reducing the content of light-harvesting pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 473-477 
    ISSN: 1573-5176
    Keywords: aquaculture ; light ; photosynthesis ; Porphyra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Due to their rapid growth and nutrient assimilation,Porphyra spp. are good candidates for bioremediation and polyculture. The production potential of two strains of P. purpurea and P. umbilicalis from north-east USA was evaluated by measuring rates of photosynthesis (as O2evolution) of material grown at 20 °C. Photosynthetic rates of P. umbilicalis were 80%higher than P. purpurea over the temperature range 5–20 °C, at both sub-saturating andsaturating irradiances (37 and 289 μmol photonm-2 s-1). Porphyra umbilicalis was more efficient at low irradiances (higher α) and had a higher Pmax (23.0 vs 15.6 μmolO2 g-1 DW min-1) than P.purpurea, suggesting that P. umbilicalis is a better choice for mass culture, where self-shading maybe severe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 535-541 
    ISSN: 1573-5176
    Keywords: cyanobacterium ; Nostoc flagelliforme ; nutrients ; photosynthesis ; potassium ; re-hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nutrients on the photosynthetic recovery of Nostoc flagelliforme during re-hydration were investigated in order to see if their addition was necessary. Net photosynthesis was negligible in distilled water without nutrient-enrichment. Addition of K+ resulted in significant enhancement of net photosynthesis, whereas other nutrients (Fe3+, Mg2+, Na+, NO3 -, PO4 3-, Cl-) and trace-metals (A5) showed little effect. The recovered net photosynthetic activity increased with the increased K+, and reached the maximum at concentrations above 230 μM. Desiccation and re-hydration did not affect the dependence of photosynthetic recovery on K+. It was concluded that dried field populations of N. flagelliforme require exogenous addition of potassium for photosynthetic recovery and that growth may be potassium-limited in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5125
    Keywords: sherbicide tolerance ; photosynthesis ; phytoplankton ; simetryn ; triazine ; herbicides ; ultraviolet radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the effects of UV B radiation on14C-uptake rates and carbon assimilation into the major end-products of photosynthesis of the green algaScenedesmus in the presence and absence of the triazine herbicide simetryn. Experiments were conducted using both a herbicide-susceptible and herbicide-tolerant strains ofScenedesmus. Three different UV-B dose rates were used as well as a light control. The lowest dose rate was almost the same level as in subsurface of ponds and lakes, while the other two were slightly lower and higher than natural sunlight on the surface of ponds and lakes, respectively. Total uptake rates of14C were not reduced by the UV B irradiation alone even at the highest dose rate. However, in the presence of the herbicide, uptake rates were clearly reduced by the highest dose rate of UV-B concomitant with increasing herbicide concentrations in the herbicide-susceptible strain. On the other hand, the proportion of lipid fraction was slightly reduced by all the UV-B treatments in the herbicide-susceptible strain even in the absence of the herbicide. In the herbicide-tolerant strain, uptake rates were not affected by UV-B radiation or by the herbicide. These facts indicated that UV-B effects could be smaller than predicted. It may be important to examine combined effects of UV-B and other anthropogenic and/or natural stresses for assessing actual UV-B effects in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-5125
    Keywords: cryptomonads ; macromolecular ; Phototron ; photosynthesis ; UV radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We used a device called a Phototron to measure the effects of UV radiation on the cosmopolitan algae, Cryptomonas erosa, grown in continuous cultures. In the Phototron, we investigated changes in photosynthetic parameters (Pmax – specific production rate at optimal light intensity; α – initial slope of the linear portion of the Photosynthesis-Irradiance curve; and θ – the convexity or rate of bending) and carbon allocation as a function of irradiance at three different environmentally-realistic doses of UV radiation in unconditioned (no prior UV exposure) and conditioned algae (15 d previous UV exposure). For unconditioned control algae, Pmax-Total was lower, although not significantly, than the two highest UV treatments. For conditioned control algae, Pmax-Total was higher, although not significantly, than all UV treatments. Our data suggest that short term (4 h) exposure to low levels of UV (8.09 W m−2 unweighted) does not affect Pmax-Total in C. erosa, but does change the proportion of carbon allocated to lipids and proteins. Also, comparisons of lipids, polysaccharides and proteins as a percent of total carbon uptake between unconditioned and conditioned algae indicate that exposure history to UV radiation can have a negative impact on carbon allocation to lipids and proteins, in a wetland alga species that is crucial to the efficient transfer of energy through freshwater food webs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-5117
    Keywords: gas exchange ; mangrove ; photosynthesis ; salinity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Continuous measurements of gas exchange characteristics were made on two to nine year old hydroponically grown Avicennia germinans (L.) Stearn, Aegialitis annulata R. Br. and Aegiceras corniculatum (L.) Blanco maintained at 50 or 500 mol m−3 NaCl. In Avicennia germinans and Aegialitis annulata, CO2 assimilation rates were initially higher at 500 mol m−3 NaCl and decreased gradually towards the end of the photoperiod when rates were similar to those at the lower salinity. In Aegiceras corniculatum, assimilation rates were higher at 50 mol m−3 NaCl and about 55% lower at the higher salinity. In all three species, leaf conductance and transpiration exhibited trends similar to those for CO2 assimilation. Intercellular CO2 concentrations were similar at both salinities in Avicennia germinans and Aegialitis annulata, but considerably higher at the lower salinity in Aegiceras corniculatum. Water use efficiencies (WUE), although similar between salinity treatments in Avicennia germinans and Aegialitis annulata, were greater at the higher salinity in Aegiceras corniculatum. Data obtained from CO2 response curves indicated that assimilation at high salinity in Aegiceras corniculatum was limited by conductance, and to a lesser extent, by photosynthetic capacity. In Avicennia germinans and Aegialitis annulata, assimilation was greater at the higher salinity as indicated by increase in both the initial slope and the upper plateau of the CO2 response data. Greater assimilation at high salinity in Avicennia germinans and Aegialitis annulata may be attributed to lower carbon losses via photorespiration and to efficient salt excretion and sequestration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 364 (1997), S. 199-208 
    ISSN: 1573-5117
    Keywords: Phytoplankton ; photosynthesis ; light ; temperature ; tidal freshwater ; irradiance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photosynthetic response to irradiance wasquantified for phytoplankton from the tidalfreshwater Potomac River biweekly to monthly over aperiod of six years. Samples were collected from twoshallow embayments and portions of the deeper rivermainstem. Photosynthetic rate was measured in thelaboratory at in situ temperature over a range ofirradiance levels and photosynthetic parameters werecalculated using nonlinear regression.PB max,the maximum photosynthetic ratestandardized to chlorophyll a, increased withtemperature up to 25 °C with a Q10 of 2.02. Above 25 °C, PB max was essentiallyconstant with temperature. Lesser correlationbetween PB max and ambient irradiance couldbe explained by the correlation of irradiance withtemperature. α, the slope of the P–I curve atlow light, was correlated with both ambientirradiance and temperature. Highest α valueswere found in late summer when high temperature andintermediate ambient irradiance were observed. Spring and early summer were characterized by lowα. Despite low light penetration, Ik andα values were indicative of sun limitationpossibly due to intermittent high light levelsexperienced during mixing. Ik showed a clearseasonal trend directly related to days from summersolstice. Spatial patterns were minimal except thatIk was consistently lower in one shallowembayment than in the other two areas. Seasonalpatterns in photosynthetic parameters correspondedroughly to changes from a spring diatom populationto summer cyanobacterial assemblage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1573-5117
    Keywords: photon flux density ; intracellular metabolic pools ; proteins ; carbohydrates ; lipids ; polysaccharides ; photosynthesis ; phytoplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of photon flux density (PFD) on the partitioning of photosynthetically fixed 14CO2-C into major intracellular end products was investigated for three species of freshwater planktonic algae (Nitzschia palea, Monoraphidium minutum and Synechococcus elongatus belonging to three different classes. This study was designed to investigate the phenomenon of polysaccharide synthesis associated with the saturation of protein synthesis and to test if this process is common to all three phytoplankton species. Protein synthesis was saturated at low PFD in all three species of algae studied. However, fixed carbon was differentially stored, namely in lipids in Nitzschia palea (Bacillariophyceae), in polysaccharides in Monoraphidium minutum (Chlorophyceae), and in low molecular weight metabolites (LMW) in Synechococcus elongatus (Cyanophyceae). The results of this transient state study indicate that the metabolic pathways of algae can easily be controlled by different irradiance. Furthermore, it appears that the difference in the patterns of synthesis is taxonomy dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1573-5117
    Keywords: biotest ; brackish ; Gracilaria ; growth inhibition ; marine ; photosynthesis ; Rhodophyta ; seaweed ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A growth inhibition test method was developed using the macroalga Gracilaria tenuistipitata as the test organism. This alga was chosen because of its high laboratory growth rates, commonly 30–40% d−1, which are reached in salinities between 5 and 40‰, and its epiphyte resistance. The toxicity of a number of substances, including heavy metals, herbicides and complex wastewaters towards the alga was assayed. Anti-fouling paints were tested with a modification of the method. EC50 values for heavy metals varied between 0.05 and 17 mg l−1 and for herbicides between 0.002 and 0.02 mg l−l. The sensitivity to the toxicant was generally higher at low salinity. Omitting nitrogen and phosphorus additions to the test medium increased the sensitivity and a semi-static performance was possible with maintained or increased sensitivity. Preliminary tests done with a computerised photosynthesis inhibition method produced promising results. In conclusion, this is a simple, sensitive and reproducible test method for assessing the toxicity of substances, wastewaters and anti-fouling paints in brackish and marine environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1573-5117
    Keywords: Avicennia marina ; gas exchange ; mangroves ; photosynthesis ; waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study was undertaken in summer on fully expanded leaves of Avicennia marina trees in the Beachwood Mangroves Nature Reserve, Durban,South Africa. Data sets were obtained over 5–7 days of relatively dry conditions and over two periods of 5 days during which the swamp was continuously inundated with dilute seawater (〈 150 mol m−3NaCl). Gas exchange responses were strongly influenced by photosynthetic photon flux density (PPFD), leaf temperature and leaf to air vapour pressure deficit (Δw). Carbon dioxide exchange was saturated at a PPFD of about 800 µmol m−2 s−1. Maximal CO2 exchange rates ranged from 8.5 to 9.9 µmol m−2 s−1 with no differences between drained and waterlogged conditions. Under drained conditions, leaf conductance,transpiration and internal CO2 concentrations were generally lower, and water use efficiencies higher, than during waterlogging. Continuous waterlogging for 5 days had no adverse effect on CO2 exchange. Xylem water potentials ranged from −1.32to −3.53 MPa during drained and from −1.02 to −2.65 Mpa during waterlogged conditions. These results are discussed in relation to anatomical and metabolic adaptations of A. marina to waterlogging stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 19 (1999), S. 499-509 
    ISSN: 1573-4935
    Keywords: Arabidopsis ; auxiliary enzymes ; light stress ; photosynthesis ; protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract An improved cultivation system for Arabidopsis thaliana was developed, allowing advanced biochemical studies in vitro and in vivo of this important model plant. Highly functional Arabidopsis thylakoids were isolated and used to study both basic and regulatory photosynthetic functions with the aim to create a platform for the characterization of mutants deficient in auxiliary proteins. Light-induced proteolytic degradation of the D1 protein could be followed and shown to be a subsequent event to photoinactivation of electron transport. The phosphorylation and dephosphorylation of thylakoid proteins resembled that seen in spinach leaves although phospho-CP43 revealed an unusual regulatory behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 35 (1997), S. 407-416 
    ISSN: 1573-5028
    Keywords: cyanobacteria ; cytochrome oxidase ; electron transport ; photosynthesis ; respiration ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cyanobacterial thylakoids catalyze both photosynthetic and respiratory activities. In a photosystem I-less Synechocystis sp. PCC 6803 strain, electrons generated by photosystem II appear to be utilized by cytochrome oxidase. To identify the lumenal electron carriers (plastocyanin and/or cytochromes c 553, c 550, and possibly c M) that are involved in transfer of photosystem II-generated electrons to the terminal oxidase, deletion constructs for genes coding for these components were introduced into a photosystem I-less Synechocystis sp. PCC 6803 strain, and electron flow out of photosystem II was monitored in resulting strains through chlorophyll fluorescence yields. Loss of cytochrome c 553 or plastocyanin, but not of cytochrome c 550, decreased the rate of electron flow out of photosystem II. Surprisingly, cytochrome c M could not be deleted in a photosystem I-less background strain, and also a double-deletion mutant lacking both plastocyanin and cytochromec 553 could not be obtained. Cytochrome c M has some homology with the cytochrome c-binding regions of the cytochromecaa3 -type cytochrome oxidase from Bacillus spp. and Thermus thermophilus. We suggest that cytochrome c M is a component of cytochrome oxidase in cyanobacteria that serves as redox intermediate between soluble electron carriers and the cytochromeaa3 complex, and that either plastocyanin or cytochrome c 553 can shuttle electrons from the cytochrome b6f complex to cytochrome c M.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1573-5028
    Keywords: ferredoxin-NADP+ oxidoreductase ; petH ; divergent operator ; antisense mRNA ; phosphoribulokinase ; prk Synechocystis PCC 6803 ; photosynthesis ; cyanobacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The petH gene, encoding ferredoxin-NADP+ oxidoreductase (FNR), has been characterised in the unicellular cyanobacterium Synechocystis PCC 6803. Its product, FNR, was heterologously produced and functionally characterized. The start-site of the monocystronic petH transcript was mapped 523 bp upstream of the predicted PetH initiation codon, resulting in an unusually large 5′-untranslated region. The 5′ end of the petH transcript is situated within the open reading frame of phosphoribulokinase (encoded by prk), which is transcribed in opposite orientation with respect to petH. The transcription start site of the prk transcript was mapped 219 bp upstream of the initiation codon, resulting in a 223 bp antisense region between both transcripts. Under many conditions the expression of both genes (i.e. petH and prk) is co-regulated symmetrically at the transcriptional level, as was concluded from both northern hybridization experiments and from primer extension analyses; it became uncoupled, however, when specifically petH expression was stimulated, independent of prk expression, by stressing the Synechocystis cells with high salt concentrations. A model for a new type of bidirectional operator, regulating the expression of petH and prk, is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; energy dissipation ; light scattering ; photosynthesis ; state transition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The light-induced induction of components of non-photochemical quenching of chlorophyll fluorescence which are distinguished by different rates of dark relaxation (qNf, rapidly relaxing and qNs, slowly relaxing or not relaxing at all in the presence brief saturating light pulses which interrupt darkness at low frequencies) was studied in leaves of spinach. After dark adaptation of the leaves, a fast relaxing component developed in low light only after a lag phase. Quenching increased towards a maximum with increasing photon flux density. This ‘fast’ component of quenching was identified as energy-dependent quenching qE. It required formation of an appreciable transthylakoid ΔpH and was insignificant when darkened spinach leaves received 1 s pulses of light every 30 s even though zeaxanthin was formed from violaxanthin under these conditions. Another quenching component termed qNs developed in low light without a lag phase. It was not dependent on a transthylakoid pH gradient, decayed exponentially with a long half time of relaxation and was about 20% of total quenching irrespective of light intensity. When darkened leaves were flashed at frequencies higher than 0.004 Hz with 1 s light pulses, this quenching also appeared. Its extent was very considerable, and it did not require formation of zeaxanthin. Relaxation was accelerated by far-red light, and this acceleration was abolished by NaF. We suggest that qNs is the result of a so-called state transition, in which LHC II moves after its phosphorylation from fluorescent PS II to nonfluorescent PS I. This state transition was capable of decreasing in darkened leaves the potential maximum quantum efficiency of electron flow through Photosystem II by about 20%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-5079
    Keywords: cyanobacteria ; electron transport ; fluorescence ; photosynthesis ; spillover ; state changes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Adaptive responses to excess (supraoptimal) level of cobalt supplied to the growth medium were studied in the cyanobacterium Synechocystis PCC 6803. Growth of cells in the medium containing 10 μM CoCl2 led to a large stimulation (50%) in O2-evolution and an overall increase (∼30%) in the photosynthetic electron transport rates. Analysis of variable Chl a fluorescence yield of PS II and immuno-detection of Photosystem II (PS II) reaction-center protein D1, showed a small increase (15–20%) in the number of PS II units in cobalt-grown cells. Cobalt-grown cells, therefore, had a slightly elevated PS II/PS I ratio compared to control. We observed alteration in the extent of energy distribution between the two photosystems in the eobalt grown cells. Energy was preferentially distributed in favour of PS II accompanied by a reduction in the extent of energy transfer from PS II to PS I in cobalt-grown cells. These cells also showed a smaller PS I absorption cross-section and a smaller size of intersystem electron pool than the control cells. Thus, our results suggest that supplementation of 10 μM CoCl2, to the normal growth medium causes multiple changes involving small increase in PS II to PS I ratio, enhanced funneling of energy to PS II and an increase in PS I electron transport, decrease PS I cross section and reduction in intersystem pool size. The cumulative effects of these alterations cause stimulation in electron transport and O2 evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 51 (1997), S. 149-159 
    ISSN: 1573-5079
    Keywords: abscisic acid ; t Acacia confusa ; t Leucaenaleucocephala ; photosynthesis ; soil drying ; stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Effects of leaf water deficit and increase in endogenous ABA on photosynthesis of two tropical trees, t Acacia confusa and t Leucaena leucocephala, were investigated with two soil-drying methods, i.e. half or whole root system was subjected to soil drying. Half-root drying was achieved by allowing upper layer of soil column to dry and lower layer of soil column to remain watered. Half-root drying had little effect on leaf water potential, but when compared to the well-watered control, both methods of soil drying substantially increased the ABA concentration in xylem and reduced leaf conductance in both species. There was a significant relationship between leaf conductance and xylem ABA concentrations in both species, which was comparable to the same relationship that was generated by feeding ABA to excised twigs. The rate of photosynthesis was inhibited substantially in both soil-drying treatments and in both species, but photochchemical efficiency, measured as a ratio of variable fluorescence to a peak fluorescence emission of a dark-adapted leaf (Fv/Fm), was not reduced except in the whole root-dried t L. leucocephala plants where leaf water potential was reduced to –2.5 MPa. In all the cases where photosynthesis was inhibited, there was a concomitant reduction in both leaf conductance and calculated internal CO2 concentration. After two days of rewatering, leaf water potential and xylem ABA concentration rapidly returned to pre-treatment levels, but leaf conductance and photosynthesis of both whole-root and half root dried t L. leucocephala remained inhibited substantially. Rewatering led to a full recovery of both stomatal conductance and photosynthesis in soil-dried t A. confusa, although its photosynthesis of whole-root dried plants did not recover fully but such difference was not significant statistically. These results suggest that drought-induced decline of photosynthesis was mainly a result of the stomatal factor caused by the increase of ABA concentration in the xylem sap. Non-stomatal factors, e.g. reduced photochemical activity and/or carbon metabolic activity, were species-specific and were brought about only at very low water potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 51 (1997), S. 185-192 
    ISSN: 1573-5079
    Keywords: CAB ; cytochrome f ; photosynthesis ; Rubisco ; Rubisco activase ; senescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this report we examine the factors that regulate photosynthesis during leaf ontogeny in y3y3 and Y11y11, two chlorophyll-deficient mutants of soybean. Photosynthetic rates were similar during wild type and Y11y11 leaf development, but the senescence decline in photosynthesis was accelerated in y3y3. Photosynthetic rates fell more rapidly than chlorophyll concentrations during senescence in wild type leaves, indicating that light harvesting is not strongly limiting for photosynthesis during this phase of leaf development. Chlorophyll concentrations in Y11y11, though significantly lower than normal, were able to support normal photosynthetic rates throughout leaf ontogeny. Chlorophyll a/b ratios were constant during leaf development in the wild type, but in the mutants they progressively increased (y3y3) or decreased (Y11y11). In all three sets of plants, photosynthetic rates were directly proportional to Rubisco contents and activities, suggesting that Rubisco plays a dominant role in regulating photosynthesis throughout leaf ontogeny in these plants. The expression of some photosynthetic proteins, such as Rubisco activase, was coordinately regulated with that of Rubisco in all three genotypes, i.e. an early increase, coincident with leaf expansion, followed by a senescence decline in the fully-expanded leaf. On the other hand, the light harvesting chlorophyll a/b-binding proteins of PS II (the CAB proteins), while they showed a profile similar to that of Rubisco in the wild type and y3y3, progressively increased in amount during Y11y11 leaf development. We conclude that Y11y11 may be defective in the accumulation of a component required for LHC II assembly or function, while y3y3 has more global effects and may be a regulatory factor that controls the duration of senescence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 4 (1996), S. 245-256 
    ISSN: 1572-9834
    Keywords: Anaerobiosis ; baldcypress ; cherrybark oak ; nuttall oak ; photosynthesis ; productivity ; soil redox potential ; stomatal conductance ; waterlogging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seedlings of baldcypress (Taxodium distichum), nuttall oak (Quercus nuttalli), and cherrybark oak (Quercus falcata var.pagodaefolia) were subjected to four flooding treatments: control, continuously flooded, intermittently flooded, and partially flooded for 70 days in a greenhouse. The treatments imposed various durations and intensities of soil redox potential (Eh) conditions representing a range encountered by plants in their habitats. Morphological changes and gas exchange responses to the treatments differed among the study species. Rapid development of adventitious root and hypertrophied lenticels were observed in baldcypress and nuttall oak under all flooded treatments. Cherrybark oak had the highest percentage reduction in net photosynthesis ranging from 65–87%, whereas reductions in nuttall oak ranged between 35–68% and in baldcypress between 6–21% in response to various treatments. Recovery of gas exchange was noted in baldcypress but no significant recovery was found in oaks. The recovery in baldcypress contributed to the continued growth and biomass accumulation under various treatments. Little evidence of consistent changes in biomass allocation patterns in response to the treatments was found in baldcypress but total biomass decreased significantly under the continuously flooded treatment. In oaks, total biomass decreased significantly in all flooded treatments. The present findings demonstrated that physiological functions are adversely affected by low soil Eh conditions and the extent of such effects are dependent on the intensity and duration of soil reduction as well as the species' capability to respond to such conditions rapidly. Management plans concerned with regeneration of bottomland forested ecosystems should consider the species flood response capabilities at seedling stages as well as the timing, durations, and intensities of soil reduction at the specific site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 45 (1995), S. 157-168 
    ISSN: 1573-5079
    Keywords: chloroplast movement ; photosynthesis ; photothermal deflection spectroscopy ; Vallisneria americana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a study of photosynthetic energy storage efficiency (ES), the adaxial surface of the leaves of Vallisneria americana exhibited the highest ES values (22%) of the four aquatic plants examined. V. americana leaves have a dispersed structure and it was possible to measure the energy storage properties of the epidermal cells independently of the rest of the leaf. The abaxial epidermis had a higher value of ES at zero light fluence than the adaxial epidermis but ES in the abaxial epidermis declined much more rapidly with light fluence. Thus the abaxial epidermis is more suited to lower light fluences than the adaxial epidermis. ES declined as the pH rose from 4.0 to 8.0 at a constant dissolved inorganic carbon concentration. This paralleled the change from carbon dioxide to bicarbonate and suggests that these leaves utilise CO2 more efficiently than bicarbonate. ES increased by about 50% at pH 8.0 as leaf sections further from the leaf tip were examined which demonstrates that the older epidermal cells are less well able to use bicarbonate. Exposure to 30 min of a saturating light fluence caused the epidermal chloroplasts to move from the periclinal walls to the anticlinal walls. This decreased the photothermal signal by increasing the thermal diffusion distance and lowering the light fluence due to greater chloroplast shading. The latter effect increased ES. It appears that chloroplast movement could assist the epidermis to survive harmful light fluences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1573-5028
    Keywords: green algae ; high-CO2 stress ; photosynthesis ; regulation ; Rubisco activase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA and the corresponding genomic DNA region encoding Rubisco activase were isolated from the unicellular green alga Chlorococcum littorale. The deduced amino acid sequence encoded by the cDNA was 403 amino acids long and exhibited important homology with those of other known Rubisco activases. Its N-terminal sequence was similar to the chloroplastic transit peptides in Chlamydomonas reinhardtii. The mature protein had a predicted molecular mass of 42 kDa. Five introns were located inside the genomic gene encoding Rubisco activase (rca). Genomic Southern blots indicated that two copies of the rca gene were present in the genome of C. littorale. The level of rca messenger RNA increased when cells of C. littorale were subjected to high-CO2 stress (i.e. grown under at least 20% CO2). Hsp70 heat-shock protein was also induced under high-CO2 conditions and, as expected, was also induced at 35 °C. The rca gene, in contrast, was not induced at 35 °C, indicating that this gene was induced in response to the high CO2 concentration and not to general stress. A search of the promoter-binding proteins by a gel retardation assay showed that, under the high-CO2 conditions, a protein(s) which was probably an activator of the rca transcription was synthesized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1573-5028
    Keywords: cyanobacteria ; immunogold labelling ; light-harvesting complexes ; photosynthesis ; phycobilins ; phytoplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An intrinsic divinyl-chlorophyll a/b antenna and a particular form of phycobiliprotein, phycoerythrin (PE) III, coexist in the marine oxyphotobacterium Prochlorococcus marinus CCMP 1375. The genomic region including the cpeB/A operon of P. marinus was analysed. It encompasses 10 153 nucleotides that encode three structural phycobiliproteins and at least three (possibly five) different polypeptides analogous to cyanobacterial or red algal proteins involved either in the linkage of subunits or the synthesis and attachment of chromophoric groups. This gene cluster is part of the chromosome and is located within a distance of less than 110 kb from a previously characterized region containing the genes aspA-psbA-aroC. Whereas the Prochlorococcus phycobiliproteins are characterized by distinct deletions and amino acid replacements with regard to analogous proteins from other organisms, the gene arrangement resembles the organization of phycobiliprotein genes in some other cyanobacteria, in particular marine Synechococcus strains. The expression of two of the Prochlorococcus polypeptides as recombinant proteins in Escherichia coli allowed the production of individual homologous antisera to the Prochlorococcus α and β PE subunits. Experiments using these sera show that the Prochlorococcus PEs are specifically associated to the thylakoid membrane and that the protein level does not significantly vary as a function of light irradiance or growth phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 23-40 
    ISSN: 1573-5079
    Keywords: chloroplasts ; cyanobacteria ; ferredoxin ; photosynthesis ; plastocyanin ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosystem I functions as a plastocyanin:ferredoxin oxidoreductase in the thylakoid membranes of chloroplasts and cyanobacteria. The PS I complex contains the photosynthetic pigments, the reaction center P700, and five electron transfer centers (A0, A1, FX, FA, and FB) that are bound to the PsaA, PsaB, and PsaC proteins. In addition, PS I complex contains at least eight other polypeptides that are accessory in their functions. Recent use of cyanobacterial molecular genetics has revealed functions of the accessory subunits of PS I. Site-directed mutagenesis is now being used to explore structure-function relations in PS I. The overall architecture of PSI complex has been revealed by X-ray crystallography, electron microscopy, and biochemical methods. The information obtained by different techniques can be used to propose a model for the organization of PS I. Spectroscopic and molecular genetic techniques have deciphered interaction of PS I proteins with the soluble electron transfer partners. This review focuses on the recent structural, biochemical and molecular genetic studies that decipher topology and functions of PS I proteins, and their interactions with soluble electron carriers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1573-5079
    Keywords: diadinoxanthin ; dinoflagellate ; light-harvesting-complex ; peridinin ; photoacclimation ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have isolated Chl a-Chl c-carotenoid binding proteins from the dinoflagellates Prorocentrum minimum and Heterocapsa pygmaea grown under high (500 μmol m−2 s−1, HL) and low (35 μmol m−2 s−1, LL) light conditions. We compared various isolation procedures of membrane bound light harvesting complexes (LHCs) and assayed the functionality of the solubilized proteins by determining the energy transfer efficiency from the accessory pigments to Chl a by means of fluorescence excitation spectra. The identity of the newly isolated protein-complexes were confirmed by immunological cross-reactions with antibodies raised against the previously described membrane bound Chl a-c proteins (Boczar et al. (1980) FEBS Lett 120: 243–247). Spectroscopic analysis demonstrated the relatedness of these proteins with the recently described Chl-a-c 2-peridinin (ACP) binding protein (Hiller et al. (1993) Photochem Photobiol 57: 125–131; Iglesias Prieto et al. (1993) Phil Trans R Soc London B 338: 381–392). The water-soluble peridinin-Chl a binding-protein (PCP) was not detectable in P. minimum. Two functional forms of ACP with different pigmentation were isolated. A variant of ACP which was isolated from high-light grown cells, that specifically binds increased amounts of diadinoxanthin was compared to the previously described ACPs that bind proportionately more peridinin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1573-5079
    Keywords: glycine betaine ; osmolyte ; oxygen-evolving complex ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Natural osmoregulatory substances (osmolytes) allow a wide variety of organisms to adjust to environments with high salt and/or low water content. In addition to their role in osmoregulation, some osmolytes protect proteins from denaturation and deactivation by, for example, elevated temperature and chaotropic compounds. A ubiquitous protein-stabilizing osmolyte is glycine betaine (N-trimethyl glycine). Its presence has been reported in bacteria, in particular cyanobacteria, in animals and in plants from higher plants to algae. In the present review we describe the experimental evidence related to the ability of glycine betaine to enhance and stabilize the oxygen-evolving activity of the Photosystem II protein complexes of higher plants and cyanobacteria. The osmolyte protects the Photosystem II complex against dissociation of the regulatory extrinsic proteins (the 18 kD, 23 kD and 33 kD proteins of higher plants and the 9 kD protein of cyanobacteria) from the intrinsic components of the Photosystem II complex, and it also stabilizes the coordination of the Mn cluster to the protein cleft. By contrast, glycine betaine has no stabilizing effect on partial photosynthetic processes that do not involve the oxygen-evolving site of the Photosystem II complex. It is suggested that glycine betaine might act, in part, as a solute that is excluded from charged surface domains of proteins and also as a contact solute at hydrophobic surface domains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 117-125 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; chlorophyll-protein complex ; maize mutant ; photosynthesis ; thylakoid membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Chl-protein complexes of three maize (Zea mays L.) mutants and one barley (Hordeum vulgare L.) mutant were analyzed using low temperature Chl fluorescence emissions spectroscopy and LDS-polyacrylamide gel electrophoresis. The maize mutants hcf-3, hcf-19, and hcf-114 all exhibited a high Chl fluorescence (hcf) phenotype indicating a disruption of the energy transfer within the photosynthetic apparatus. The mutations in each of these maize mutants affects Photosystem II. The barley mutant analyzed was the well characterized Chl b-less mutant chlorina-f2, which did not exhibit the hcf phenotype. Chlorina-f2 was used because no complete Chl b-less mutant of maize is available. Analysis of hcf-3, hcf-19, and hcf-114 revealed that in the absence of CP43, LHC II can still transfer excitation energy to CP47. These results suggest that in mutant membranes LHC II can interact with CP47 as well as CP43. This functional interaction of LHC II with CP47 may only occur in the absence of CP43, however, it is possible that LHC II is positioned in the thylakoid membranes in a manner which allows association with both CP43 and CP47.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-5079
    Keywords: circular dichroism (CD) ; cyanobacteria ; energy transfer ; fluorescence ; light-harvesting antennae ; photosynthesis ; core particle ; allophycocyanin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a mutant Synechococcus sp. PCC 7942, termed R2HECAT, in which the entire phycobilisome rod operon has been deleted. In the whole cell absorption spectra of R2HECAT, the peak corresponding to phycocyanin (PC), λmax≈620 nm, could not be detected. However, a single pigment-protein fraction with λmax=654 nm could be isolated on sucrose gradients from R2HECAT. Analysis of this pigment-protein fraction by non-denaturing PAGE indicates an apparent molecular mass of about 1200–1300 kDa. On exposure to low temperature, the isolated pigment-protein complex dissociated to a protein complex with a molecular mass of about 560 kDa. When analysed by SDS-PAGE, the pigment-protein fraction was found to consist of the core polypeptides but lacked PC, 27, 33, 30, and the 9 kDa polypeptides which are a part of the rods. All the chromophore bearing polypeptides of the core were found to be chromophorylated. CD as well as absorption spectra showed the expected maxima around 652 and 675 nm from allophycocyanin (APC) and allophycocyanin B (APC-B) chromophores. Low temperature fluorescence and excitation spectra also showed that the core particles were fully functional with respect to the energy transfer between the APC chromophores. We conclude that PC and therefore the rods are dispensable for the survival of Synechococcus sp. PCC 7942. The results indicate that stable and functional core can assemble in absence of the rods. These rod-less phycobilisome core is able to transfer energy to Photosystem II.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1573-5079
    Keywords: chlorophyll radicals ; cyanobacteria ; photosynthesis ; photoinhibition ; protein degradation ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Photosystem II reaction center is rapidly inactivated by light, particularly at higher light intensity. One of the possible factors causing this phenomenon is the oxidized primary donor, P680+, which may be harmful to Photosystem II because of its highly oxidizing nature. However, no direct evidence specificially implicating P680+ in photoinhibition has been obtained yet. To investigate whether P680+ is harmful to Photosystem II, turnover of the D1 protein and of the Photosystem II reaction center complex were measured in vivo in a mutant of the cyanobacterium Synechocystis sp. PCC 6803, in which the physiological donor to P680+, Tyrz, was genetically deleted. In this mutant, D1 degradation in the light is an order of magnitude faster than in wild type. The most straightforward explanation of this phenomenon is that accumulation of P680+ leads to an increased rate of turnover of the Photosystem II reaction center complex, which is compatible with the hypothesis of destructive oxidation by P680+ that is damaging to the Photosystem II complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1573-5079
    Keywords: chlorophyll-a-fluorescence ; imaging ; oscillations ; photosynthesis ; minor veins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Images of chlorophyll-a-fluorescence oscillations were recorded using a camera-based fluorescence imaging system. Oscillations with frequencies around 1 per min were initiated by a transient decrease in light intensity during assimilation at an elevated CO2-concentration. The oscillation was inhomogenously distributed over the leaf. In cells adjacent to minor veins, frequency and damping rate was high, if there was any oscillation. In contrast, the amplitude was highest in cells most distant from phloem elements (maximal distance about 300 μm). The appearance of minor veins in oscillation images is explained by a gradient in the metabolic control in the mesophyll between minor veins and by transport of sugar from distant cells to phloem elements. The potential of fluorescence imaging to visualize ‘microscopic’ source-sink interactions and metabolic domains in the mesophyll is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 46 (1995), S. 87-91 
    ISSN: 1573-5079
    Keywords: bioenergetics ; photosynthesis ; chromatophores ; energy coupling ; evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This minireview in memory of Daniel I. Arnon, pioneer in photosynthesis research, concerns properties of the first and still only known alternative photophosphorylation system, with respect to the primary phosphorylated end product formed. The alternative to adenosine triphosphate (ATP), inorganic pyrophosphate (PPi), was produced in light, in chromatophores from the photosynthetic bacterium Rhodospirillum rubrum, when no adenosine diphosphate (ADP) had been added to the reaction mixture (Baltscheffsky H et al. (1966) Science 153: 1120–1122). This production of PPi and its capability to drive energy requiring reactions depend on the activity of a membrane bound inorganic pyrophosphatase (PPase) (Baltscheffsky M et al. (1966) Brookhaven Symposia in Biology, No. 19, pp 246–253); (Baltscheffsky M (1967) Nature 216: 241–243), which pumps protons (Moyle J et al. (1972) FEBS Lett 23: 233–236). Both enzyme and substrate in the PPase (PPi synthase) are much less complex than in the case of the corresponding adenosine triphosphatase (ATPase, ATP synthase). Whereas an artificially induced proton gradient alone can drive the synthesis of PPi, both a proton gradient and a membrane potential are required for obtaining ATP. The photobacterial, integrally membrane bound PPi synthase shows immunological cross reaction with membrane bound PPases from plant vacuoles (Nore BF et al. (1991) Biochem Biophys Res Commun 181: 962–967). With antibodies against the purified PPi synthase clones of its gene have been obtained and are currently being sequenced. Further structural information about the PPi synthase may serve to elucidate also fundamental mechanisms of electron transport coupled phosphorylation. The existence of the PPi synthase is in line with the assumption that PPi may have preceded ATP as energy carrier between energy yielding and energy requiring reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1573-5079
    Keywords: photosynthesis ; photoinhibition ; Photosystem II ; reaction center ; damage and repair cycle ; Dunaliella salina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoinhibition in the green alga Dunaliella salina is accompanied by the formation of inactive Photosystem II reaction centers. In SDS-PAGE analysis, the latter appear as 160 kD complexes. These complexes are structurally stable, enough to withstand re-electrophoresis of excised gel slices from the 160 kD region. Western blot analyses with specific polyclonal antibodies raised against the D1 or D2 reaction center proteins provided evidence for the presence of both of these polypeptides in the re-electrophoresed 160 kD complex. Incubation of excised gel slices from the 160 kD region, under aerobic conditions at 4°C for a prolonged period of time, caused a break-up of the 160 kD complex into a ∽52 kD D1-containing and ∽80 and ∽26 kD D2-containing pieces. Western blot analysis with polyclonal antibodies raised against the apoproteins of CPI (reaction center proteins of PS I) did not show cross-reaction either with the 160 kD complex or with the ∽52, ∽80 and ∽26 kD pieces. The results show the presence of both D1 and D2 in the 160 kD complex and strengthen the notion of a higher molecular weight D1- and D2-containing complex that forms upon disassembly of photodamaged PS II units.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1573-5079
    Keywords: Chlamydomonas ; mutation ; photosynthesis ; Photosystem 1 ; PsaA ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The psaA and psaB genes of the chloroplast genome in oxygenic photosynthetic organisms code for the major peptides of the Photosystem 1 reaction center. A heterodimer of the two polypeptides PsaA and PsaB is thought to bind the reaction center chlorophyll, P700, and the early electron acceptors A0, A1 and Fe-SX. Fe-SX is a 4Fe4S center requiring 4 cysteine residues as ligands from the protein. As PsaA and PsaB have only three and two conserved cysteine residues respectively, it has been proposed by several groups that Fe-SX is an unusual inter-peptide center liganded by two cysteines from each peptide. This hypothesis has been tested by site directed mutagenesis of PsaA residue C575 and the adjacent D576. The C575D mutant does not assemble Photosystem 1. The C575H mutant contains a photoxidisable chlorophyll with EPR properties of P700, but no other Photosystem 1 function has been detected. The D576L mutant assembles a modified Photosystem 1 in which the EPR properties of the Fe-SA/B centers are altered. The results confirm the importance of the conserved cysteine motif region in Photosystem 1 structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-5079
    Keywords: 9-aminoacridine fluorescence ; chlorophyll fluorescence ; cyclic electron transport ; light scattering ; photosynthesis ; transthylakoid proton gradient
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transthylakoid proton transport based on Photosystem I-dependent cyclic electron transport has been demonstrated in isolated intact spinach chloroplasts already at very low photon flux densities when the acceptor side of Photosystem I (PS I) was largely closed. It was under strict redox control. In spinach leaves, high intensity flashes given every 50 s on top of far-red, but not on top of red background light decreased the activity of Photosystem II (PS II) in the absence of appreciable linear electron transport even when excitation of PS II by the background light was extremely weak. Downregulation of PS II was a consequence of cyclic electron transport as shown by differences in the redox state of P700 in the absence and the presence of CO2 which drained electrons from the cyclic pathway eliminating control of PS II. In the presence of CO2, cyclic electron transport comes into play only at higher photon flux densities. At H+/e=3 in linear electron transport, it does not appear to contribute much ATP for carbon reduction in C3 plants. Rather, its function is to control the activity of PS II. Control is necessary to prevent excessive reduction of the electron transport chain. This helps to protect the photosynthetic apparatus of leaves against photoinactivation under light stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 53 (1997), S. 121-127 
    ISSN: 1573-5079
    Keywords: chlorophyll a/b light-harvesting complex ; major LHCP ; oceanic picophytoplankton ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chl a-containing, very small unicellular, eukaryotic phytoplankton (picophytoplankton) often become the dominant organisms near the bottom of the euphotic zone in the ocean, where light is limited, not only in intensity (about 0.5% of the surface irradiance), but also in quality (dominant in blue to green wavelengths). We have isolated picophytoplankton from subsurface waters (from 75 to 150 m in depth) of the Kuroshio area near Japan. EM observations showed that a single chloroplast occupies a large part of the cytoplasm. Some of the isolates have a flagellum. The major photosynthetic pigments found in these isolates were chlorophyll a and b. The light-harvesting chlorophyll a/b complex (LHCP) was isolated from three clones of picophytoplankton, one flagellated form (NIBB8001) and two coccoid forms (94B8100A and 94B5100C) . More than 50% of the total chlorophylls were recovered in the major LHCP fraction. A common feature of the major LHCPs isolated from the three picophytoplankton clones was a high abundance of chlorophyll b: the ratios of chlorophyll a to b were about 0.8, 0.7 and 0.6 for the clones NIBB8001, 94B8100A and 94B5100C, respectively. These values were very low compared with those in chlorophyll a/b-binding LHCIIs in higher plants and in the major chlorophyll a/b-binding LHCPs in microalgae (higher than 1.0). The major LHCP apoproteins of NIBB8001 and 94B5100C contained one major polypeptide; the apparent molecular masses analyzed with SDS-PAGE were about 22 kDa and 27 kDa, respectively. The major LHCP apoprotein of 94B8100A had two major polypeptides having apparent molecular masses of about 23 and 25 kDa. None of the thylakoid proteins cross-reacted with an antibody raised against the LHC IIα apoprotein of spinach. It is suggested that the high abundance of chlorophyll b in picophytoplankton, together with a large chloroplast in a small cell, enable them to utilize the reduced light in their habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 54 (1997), S. 25-34 
    ISSN: 1573-5079
    Keywords: cyanobacteria ; energy transfer ; Fischerella PCC 7603 ; photosynthesis ; phycobiliprotein ; phycoerythrocyanin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The component spectra (maxima of absorption, circular and linear dichroism) of individual chromophores have been assigned for phycoerythrocyanin (PEC) trimer, monomer(s), and its subunits (α-PEC and β-PEC) by titration with p-chloromercury-benzene-sulfonate (PCMS), linear dichroism and photochemical transformations, as well as by deconvolution using a ‘bilin’ line-shape spectrum based on the α-84 phycoviolobilin-chromophore in the α-subunit. The level ordering PVB-α-84 → PCB-β-155 → PCB-β-84 is the same irrespective of aggregation. Two different monomers (αβ) were observed. In 4 M urea, the spectra are appropriately weighted sums of the subunit spectra, whereas in the monomer obtained in 1 M KSCN, both β-chromophores are red-shifted by 4–5 nm. Formation of trimer (αβ)_3gives considerable spectral changes: (1) the absorption is narrowed, which has been rationalized by excitonic coupling between neighbouring monomers, (2) the short wavelength part in the CD spectrum is missing and (3) a fourth band (+) at 528 in the LD spectrum appears. A deconvolution of the trimeric aggregation state using only the ‘bilin’ line-shape model is not possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-5079
    Keywords: CD ; Chlorella ; cytochrome c6 ; EPR ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A c-type monohaem, cytochrome c6was isolated from a soluble extract of the green alga Chlorella fusca. The isolated protein shows an apparent molecular mass of 10 kDa by SDS-PAGE, but behaves as a dimer of 20.3 kDa in gel-filtration; the isoelectric point is 3.6. The N-terminal sequence shows high identity with other green algae cytochromes c6. The mid-point redox potential is about +350 mV between pH 5 and 9. The ferric and ferrous forms, and their pH equilibria, have been studied using visible, CD and EPR spectroscopies. The visible spectrum of the reduced cytochrome c6is typical of a c-type haem protein, with maxima at 274 nm, 318 nm (δ-peak), 416 nm (γ-peak), 522 nm (β-peak), 552–553 nm (α-peak). A 690 nm band, characteristic of a haem Met-His axial coordination of the haem group, is present in the oxidized form. At high pH values (≥ 8), cytochrome c6undergoes an alkaline transition, with a pKa of 8.7. Between pH 3 and 9 the EPR spectrum is dominated by two rhombic species, with g-values at 3.32, 2.05, 1.05 and 2.96, 2.30, 1.43, which interconvert with a pKaof 4. CD spectrum of Chlorella fusca cytochrome c6shows that the proteins must be mainly built up by α-helices. Even though there are similarities between Chlorella fusca cytochrome c6and that isolated from Monoraphidium braunii, no cross-reactivity with the antibodies raised against the Chlorella fusca cytochrome has been detected for the protein from Monoraphidium braunii.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 54 (1997), S. 169-183 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence quenching ; photoinhibition ; photoprotection ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used the technique of thermoluminescence (TL) to investigate high-light-induced chlorophyll fluorescence quenching phenomena in barley leaves, and have shown it to be a powerful tool in such investigations. TL measurements were taken from wild-type and chlorina f2 barley leaves which had been dark-adapted or exposed to 20 min illumination of varying irradiance or given varying periods of recovery following strong irradiance. We have found strong evidence that there is a sustained trans-thylakoid ΔpH in leaves following illumination, and that this ΔpH gives rise to quenching of chlorophyll fluorescence which has previously been identified as a slowly-relaxing component of antenna-related protective energy dissipation; we have identified a state of the PS II reaction centre resulting from high light treatments which is apparently able to perform normal charge separation and electron transport but which is ‘non-photochemically’ quenched, in that the application of a light pulse of high irradiance cannot cause the formation of a high fluorescent state; and we have provided evidence that a transient state of the PS II reaction centre is formed during recovery from such high light treatments, in which electron transport from QAto QBis apparently impaired.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1573-5079
    Keywords: hydroxyl radical ; light stress ; photosynthesis ; serine protease ; protein turnover ; reactive oxygen species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The psaB gene product (PsaB protein), one of the reaction center subunits of Photosystem I (PS I), was specifically degraded by light illumination of spinach thylakoid membranes. The degradation of the protein yielded N-terminal fragments of molecular mass 51 kDa and 45 kDa. The formation of the 51 kDa fragment was i) partially suppressed by the addition of phenylmethylsulfonyl fluoride or 3,4-dichloroisocoumarin, which are inhibitors of serine proteases, and ii) enhanced in the presence of hydrogen peroxide during photoinhibitory treatment, but iii) not detected following hydrogen peroxide treatment in the dark. These results suggest that the hydroxyl radical produced at the reduced iron-sulfur centers in PS I triggers the conformational change of the PS I complex, which allows access of a serine-type protease to PsaB. This results in the formation of the 51 kDa N-terminal fragment, presumably by cleavage on the loop exposed to the stromal side, between putative helices 8 and 9. On the other hand, the formation of the 45 kDa fragment, which was enhanced in the presence of methyl viologen but did not accompany the photoinhibition of PS I, was not affected by the addition of hydrogen peroxide or protease inhibitors. Another fragment of 18 kDa was identified as a C-terminal counterpart of the 45 kDa fragment. N-terminal sequence analysis of the 18 kDa fragment revealed that the cleavage occurred between Ala500 and Val501 on the loop exposed to the lumenal side, between putative helices 7 and 8 of the PsaB protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; C4 plant ; drought ; low CO2 ; photosynthesis ; zeaxanthin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of two light treatments (photosynthetically active photon flux density of either 650 or 1950 µmol m−2 s−1) on the photochemical efficiency of Photosystem II (PS II) (measured as variable to maximum fluorescence ratio) and on the xanthophyll cycle components was studied in wilted Zea mays leaves. For comparison, these parameters were followed under the same light conditions in well-hydrated leaves maintained either in normal or CO2-free air. The net CO2 assimilation of dehydrated leaves declined rapidly as their relative water content (RWC) decreased from 100 to 60% while the PS II efficiency measured after a prolonged dark period of 16 h declined only when RWC leaves was lower than 60%. Furthermore, drought caused an increase in the pool size of the xanthophyll cycle pigments and the presence of a sustained elevated level of zeaxanthin and antheraxanthin at the end of the long dark period. The leaf water deficit enhanced the sensitivity of PS II efficiency to light exposure. During illumination, strong inhibition of PS II efficiency and large violaxanthin deepoxidation was observed in wilted leaves even under moderate photon flux density compared to control leaves in the same conditions. After 2 h of darkness following the light treatment, the PS II efficiency that is dependent on the previous PPFD, decreased with leaf water deficit. Moreover, zeaxanthin epoxidation led to an accumulation of antheraxanthin in dehydrated leaves. All these drought effects on PS II efficiency and xanthophyll cycle components were also obtained in well-hydrated leaves by short-term CO2 deprivation during illumination. We conclude that the increased susceptibility of PS II efficiency to light in wilted maize leaves is mainly explained by the decrease of CO2 availability and the resulting low net CO2 assimilation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 56 (1998), S. 223-227 
    ISSN: 1573-5079
    Keywords: luminescence quenching ; oxygen electrode ; oxygen optode ; photosynthesis ; pressure sensitive paint
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We measured the light response curve of photosynthetic oxygen evolution by illuminating a leaf disc in an air-tight windowed chamber. Oxygen production was measured by monitoring the quenching of luminescence of an organometallic ruthenium compound. A photodiode based chlorophyll a fluorometer was used to measure the luminescence intensity. Oxygen evolution measurements with a traditional oxygen electrode gave the same numerical values at different light intensities when the same leaf disk was tested. The quality of the measurement signal of the new method was found to be similar to that obtained with the oxygen electrode method. The new luminescence based system is more stable against electrical disturbances than an oxygen electrode, its response to oxygen pressure changes is very rapid, and the new method allows the same basic equipment to be used for chlorophyll fluorescence and oxygen measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1573-5079
    Keywords: blue-green fluorescence (BGF) ; intact isolated chloroplasts ; Pisum sativum ; photosynthesis ; pyridine nucleotides ; Spinacia oleracea L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the present communication we report a spectral analysis of the blue-green fluorescence related to changes in NAD(P) redox state in chloroplasts and leaves. To assess the contribution of reabsorption and the inner filter effect, we compared transmission and fluorescence at different chloroplast concentrations, and showed that reabsorption by the photosynthetic pigments (chlorophylls and carotenoids) was at the origin of the two peaks in the emission spectrum in vivo. The absence of potential green-emitting fluorophores in chloroplasts was determined by measuring variable and time-resolved fluorescence at different wavelengths. We defined the conditions which optimize the UV-excited blue-green fluorescence signal dependent on NAD(P)H, and we present an example of monitoring of NAD(P)H fluorescence in intact leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 62 (1999), S. 1-29 
    ISSN: 1573-5079
    Keywords: chloroplast ; chlorosome ; chromatophore ; granules ; inositol ; Neurospora ; path of carbon ; photosynthesis ; polythdroxyalkanoate (PHA) ; prokaryote cellular inclusions ; protozoan biochemistry ; ribulose 1 ; 5-bis-phosphate ; Tetrahymena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract What follows is a very personal account of my professional life and the early years that preceded it. I have described the social and economic conditions in America and how the nineteen twenties and thirties nurtured our scientific future. The description of the early part of post-World War II research covers my experience in the areas of nutritional biochemistry, biochemical genetics and proceeds to photosynthesis. The latter era lasted around 35 years. For me the most memorable research accomplishments in which I was a participant during this period was the first demonstration of the primary carboxylation enzyme in an in vitro system in algal and higher plants as well to show that it was structurally associated with the chloroplast.Our group while at Oak Ridge and the University of Massachusetts assembled data that described the complete macromolecular assembly of the photosynthetic apparatus of the unusual photosynthetic green bacterium Chloroflexus aurantiacus and created a model of that system which differed greatly from the chomatophore system for the purple bacteria. For the last decade, my scientific journey, with numerous new colleagues has turned to the exciting area of biomaterials.We characterized and modeled the completely new bacterial intracellular inclusions responsible for the synthesis and degredation of biosynthetic, biodegradable and biocompatible bacterial polyesters in the cytoplasm of Pseudomonads.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-5079
    Keywords: (bacterio)chlorophyll ; energy transfer ; light harvesting ; membrane proteins ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Unlike the α and β polypeptides of the core light-harvesting complex (LH1) of Rhodobacter (Rb.) sphaeroides, the α and β polypeptides of the peripheral light-harvesting complex (LH2) of this organism will not form a subunit complex by in vitro reconstitution with bacteriochlorophyll. Guided by prior experiments with the LH1 β polypeptides of Rb. sphaeroides and Rhodospirillum rubrum, which defined a set of interactions required to stabilize the subunit complex, a series of mutations to the Rb. sphaeroides LH2 β polypeptide was prepared and studied to determine the minimal changes necessary to enable it to form a subunit-type complex. Three mutants were prepared: Arg at position −10 was changed to Asn (numbering is from the conserved His residue which is known to be coordinated to bacteriochlorophyll); Arg at position −10 and Thr at position +7 were changed to Asn and Arg, respectively; and Arg at position −10 was changed to Trp and the C-terminus from +4 to +10 was replaced with the amino acids found at the corresponding positions in the LH1 β polypeptide of Rb. sphaeroides. Only this last multiple mutant polypeptide formed subunit-type complexes in vitro. Thus, the importance of the C-terminal region, which encompasses conserved residues at positions +4, +6 and +7, is confirmed. Two mutants of the LH1 β polypeptide of Rb. sphaeroides were also constructed to further evaluate the interactions stabilizing the subunit complex and those necessary for oligomerization of subunits to form LH1 complexes. In one of these mutants, Trp at position −10 was changed to Arg, as found in LH2 at this position, and in the other His at position −18 was changed to Val. The results from these mutants allow us to conclude that the residue at the −10 position is unimportant in subunit formation or oligomerization, while the strictly conserved His at −18 is not required for subunit formation but is very important in oligomerization of subunits to form LH1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 361-373 
    ISSN: 1573-5117
    Keywords: production ; mathematical model ; Ecklonia cava ; light ; temperature ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dependence of photosynthesis on light and temperature is modelled through analysis of transition probabilities of photosystems. In the model, two transition probabilities are functions of light, and one transition probability is a function of temperature. The estimated light-saturated photosynthesis of Ecklonia cava blades at 20 °C was 0.037 mg C cm−2 h−1. The value of the activation energy, the standard enthalpy and the standard entropy were estimated to be 56.5 kJ mol−1, 204 kJ mol−1 and 678 J mol−1 K−1, respectively. A production model (an integral photosynthesis model) for an E. cava stand was developed using the photosynthesis model. Production calculated by the model agreed well with observed data during the growing period of an E. cava stand at a field observation site on the west side of Miura Peninsula, Japan. Results of the analysis of the effects of irradiance and temperature on the production of the E. cava community by the model are: 1. Production decreased with irradiance decrease. The estimated compensation irradiance was 26.5 μmol photons m−2 s−1 when the biomass was 3 kg wet mass m−2 (blade:stipe ratio = 2 kg m−2:1 kg m−2) and the temperature was 20 °C. 2. The optimum temperature decreased when irradiance decreased and when biomass increased. The highest estimated value for the optimum temperature was 24.0 °C. The estimated optimum temperature was 18.2 °C when the biomass was 12 kg wet mass m−2 and the photon irradiance was 200 μmol photons m−2 s−1. 3. The amount of biomass that resulted in the maximum production was influenced by irradiance and temperature. At 400 μmol photons m−2 s−1 and 20 °C, the estimated value of the biomass (blade:stipe = 2:1) giving the maximum pr oduction was about 5.3 kg wet mass m−2. However, at 100 μmol photons m−2 s−1 and 24 °C, the estimated value was about 3.0 kg wet mass m−2. The estimated values of the maximum production under the two conditions were 1.05 and 0.30 g C m−2 h−1, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 55-65 
    ISSN: 1573-5079
    Keywords: asymmetry ; bacteriopheophytins ; electron transfer ; pigment replacement ; photosynthesis ; plant-type pheophytins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The native bacteriopheophytin a in reaction centers of Rb. sphaeroides R26 has been exchanged with modified bacteriopheophytins (bacteriochlorins), as well as with plant-type pheophytins (chlorins). Emphasis is on four pigments, which differ by their C-3 substituents (vinyl or acetyl) or their state of oxidation (chlorin or bacteriochlorin). The native BPhe a, which is a member of this group, can be replaced by the other three at both binding sites, HA and HB. However, exchange at HB proceeds more readily. Optical spectra (absorption, cd) show characteristic shifts, and the cd spectra indicate induced interactions between HA,B and BA,B and possibly also with P. Upon flash illumination, all modified reaction centers show reversible electron transfer to QB with recombination times comparable to native reaction centers. Forward rates and electron-transfer yields are also reported for some of the pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5079
    Keywords: photosynthesis ; specific mutagenesis ; chloroplast DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1573-5079
    Keywords: D1 degradation fragments ; D1 proteolysis ; photosynthesis ; thylakoid membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 57 (1998), S. 323-333 
    ISSN: 1573-5079
    Keywords: ATPase phosphorylation ; chloroplast ; envelope ATPase ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract P-ATPases such as the plasma membrane proton pump are known to generate a phosphorylated intermediate as a step in their reaction mechanism; phosphoenzyme formation is a basis for classification of an ATPase as a member of this subfamily of ion pumps. The chloroplast inner envelope is known to contain a H+-ATPase which acts to maintain an alkaline stroma and, thus, optimal photosynthesis. Our characterization of this chloroplast envelope proton pump described in this report focused on determining whether purified chloroplast inner envelope membrane protein preparations containing this ATPase form a phosphorylated intermediate. Incubation of envelope membranes with [γ-32P]ATP documented the formation of P-type ATPase phosphoenzyme intermediates by these membrane protein preparations. Our work cannot discount the possibility that more than one chloroplast inner envelope ATPase contributes to this phosphoenzyme formation. However, the kinetics of this phosphoenzyme formation, along with the sensitivity of phosphoenzyme formation to inhibitors and other assay conditions suggested that one of the envelope membrane proteins which is covalently radiolabeled by [γ-32P]ATP is a P-type H+-ATPase. Autoradiography of chloroplast envelope membrane proteins size fractionated on lithium dodecyl sulfate-PAGE indicated that the phosphoenzyme intermediate corresponds to a 103 kDa polypeptide. P-type proton pumps are known to be comprised of a single type of ∼100 kDa subunit. Experimental evidence presented in this report is consistent with the classification of a chloroplast inner envelope H+-ATPase as a P-type proton pump.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-5079
    Keywords: circadian rhythms ; fluorescence ; gene regulation ; N2 fixation ; photosynthesis ; state transitions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract N2 fixation and oxygenic photosynthesis are important metabolic processes that are at odds with each other, since the N2-fixing enzyme, nitrogenase, is highly sensitive to oxygen. This review will discuss the strategies devised by the unicellular, diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142, to permit N2 fixation and photosynthesis to coexist in the same cell. This strain, like a number of other unicellular and filamentous (non-heterocystous) cyanobacteria, has developed a type of temporal regulation in which N2 fixation and photosynthesis occur at different times throughout a diurnal cycle. For nitrogenase, everyday dawns anew. The nifHDK operon is tightly regulated, such that transcription and translation occur within the first four hours of the dark period; nitrogenase is then proteolytically degraded. Photosynthesis also varies throughout the day reaching a minimum at the peak of nitrogenase activity and a maximum by late afternoon. This review will mainly concentrate on the various changes that occur in the photosynthetic apparatus as the cell modulates O2 evolution. The results indicate that the redox poise of the plastoquinone pool and the overall cellular energy needs are the basic driving forces behind these changes in the photosynthetic apparatus. Throughout the course of the diurnal cycle, Photosystem II becomes very heterogeneous as determined by 77 K fluorescence spectra, PAM fluorescence and O2-flash yield experiments. This system provides some important insight into cyanobacterial state transitions and, especially, on the organization of the photosystems within the membrane. Overall, PS II is altered on both the oxidizing and reducing sides of the photosystem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 58 (1998), S. 293-302 
    ISSN: 1573-5079
    Keywords: CO2 solubilization ; carbonic anhydrase ; Far-red light ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoacoustic signals were measured in expanded tobacco leaves, exposed to a controlled atmosphere by being only partly enclosed within the photoacoustic cell. It was aimed to corroborate the conjecture of Reising and Schreiber (Photosynthesis Research 42: 65-73, 1994) that under exceptionally high CO2 levels (ca. 1–5%) the photobaric uptake contribution reflects CO2 uptake induced by light dependent stromal alkalinization. This is shown here by: (1) the shallower damping of the uptake signal vs. the modulation frequency, compared to a normal oxygen evolution signal; (2) the partial inhibition of the uptake signal under 5% CO2 by nigericin; (3) the complete absence of uptake signals under 5% CO2 in a carbonic-anhydrase-deficient mutant, which gave rather a normal oxygen evolution signal. The photoacoustic signals from the wild type and the transgenic tobacco in air could not be distinguished, indicating that the CO2 uptake signal is negligible under this condition. Uptake photobaric signals were also measured in modulated far-red light (ca. 715–750 nm), following addition of white background light (in light limiting intensity). In normal tobacco under 5% CO2, the background light induced an uptake transient, lasting about a minute, then declining to a low steady level. Significantly smaller transients were obtained under normal air, and in the carbonic-anhydrase deficient mutant also under 5% CO2. Extrapolation to zero frequency of the signal damping vs. modulation frequency, in both tobacco genotypes, suggests however similar magnitudes of the uptake transients. On the other hand, no proportional steady-state uptake was observed for the last two cases. Presumably, the steady uptake under 5% CO2 in modulated far-red light reflects CO2 solubilization, while it is an open question whether the transient could be partly contributed also by oxygen photoreduction by PS I (Mehler reaction). It is reasoned that, under conditions of low light, the respiratory activity results in accumulation of CO2 in the photoacoustic cell, which is sufficient to induce an uptake phenomenon, giving a more satisfactory interpretation for the so-called 'low light state' [Cananni and Malkin (1984) Biochim Biophys Acta 766: 525–532].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; cyclic electron flow ; high temperature ; light scattering ; photosynthesis ; Photosystems II and I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In illuminated intact spinach chloroplasts, warming to and beyond 40 °C increased the proton permeability of thylakoids before linear electron transport through Photosystem II was inhibited. Simultaneously, antimycin A-sensitive cyclic electron transport around Photosystem II was activated with oxygen or CO2, but not with nitrite as electron acceptors. Between 40 to 42 °C, activation of cyclic electron transport balanced the loss of protons so that a sizeable transthylakoid proton gradient was maintained. When the temperature of darkened spinach leaves was slowly increased to 40°C, reduction of the quinone acceptor of Photosystem II, QA, increased particularly when respiratory CO2 production and autoxidation of plastoquinones was inhibited by decreasing the oxygen content of the atmosphere from 21 to 1%. Simultaneously, Photosystem II activity was partially lost. The enhanced dark QA reduction disappeared after the leaf temperature was decreased to 20 °C. No membrane energization was detected by light-scattering measurements during heating the leaf in the dark. In illuminated spinach leaves, light scattering and nonphotochemical quenching of chlorophyll fluorescence increased during warming to about 40 °C while Photosystem II activity was lost, suggesting extra energization of thylakoid membranes that is unrelated to Photosystem II functioning. After P700 was oxidized by far-red light, its reduction in the dark was biphasic. It was accelerated by factors of up to 10 (fast component) or even 25 (slow component) after short heat exposure of the leaves. Similar acceleration was observed at 20 °C when anaerobiosis or KCN were used to inhibit respiratory oxidation of reductants. Methyl viologen, which accepts electrons from reducing side of Photosystem II, completely abolished heat-induced acceleration of P700+ reduction after far-red light. The data show that increasing the temperature of isolated chloroplasts or intact spinach leaves to about 40 °C not only inhibits linear electron flow through Photosystem II but also activates Photosystem I-driven cyclic electron transport pathways capable of contributing to the transthylakoid proton gradient. Heterogeneity of the kinetics of P700+ reduction after far-red oxidation is discussed in terms of Photosystem I-dependent cyclic electron transport in stroma lamellae and grana margins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1573-5079
    Keywords: bacteriochlorophyll a ; electron transfer ; light harvesting ; photosynthesis ; Rhodobacter sphaeroides ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 59 (1999), S. 187-200 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; CO2 ; oxygen ; photosynthesis ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The kinetic properties of photosynthesis (both transient and steady-state) were monitored using three non-invasive techniques to evaluate limitations on triose-phosphate (triose-P) conversion to carbohydrate in rice. These included analyzing the O2 sensitivity of CO2 fixation and the assimilatory charge (AC) using gas exchange (estimate of the ribulose 1,5- bisphosphate pool) and measuring Photosystem II activity by chlorophyll fluorescence analysis under varying light, temperature and CO2 partial pressures. Photosynthesis was inhibited transiently upon switching from 20 to 2 kPa O2 (reversed O2 sensitivity), the degree of which was correlated with a terminal, steady-state suppression of low O2 enhancement of photosynthesis. Under current ambient levels of CO2 and moderate to high light, the transient pattern was more obvious at 18 °C than at 26 °C while at 34 °C no tra nsient response was observed. The transient inhibition at 18 °C ranged from 15% to 31% depending on the pre-measurement temperature. This pattern, symptomatic of feedback, was observed with increasing light and CO2 partial pressures with the degree of feedback decreasing from moderate (18 °C) up to high temperature (34 °C). Under feedback conditions, the rate of assimilation is shifted from being photorespiration limited to being triose-P utilization limited. Transitory changes in CO2 assimilation rates (A) under low O2 indicative of feedback coincided with a transitory drop in assimilatory charge (AC) and inhibition of electron transport. In contrast to previous studies with many C3 species, our studies indicate that rice shows susceptibility to feedback inhibition under moderate temperatures and current atmospheric levels of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1573-5079
    Keywords: Arnold ; chemical modification ; electron transfers ; oxygen evolution ; o-phthalaldehyde ; photosynthesis ; photosystems ; thermoluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Glow curves from spinach leaf discs infiltrated with o-phthalaldehyde (OPA) show significant similarity to those obtained by DCMU treatment which is known to block the electron flow from QA, the stable acceptor of Photosystem II (PS II). In both the cases, the thermoluminescence (TL) peak II (Q band) was intensified significantly, whereas peaks III and IV (B band) were suppressed. Total TL yield of the glow curve remained constant even when the leaf discs were infiltrated with high concentrations of OPA (4 mM) or with DCMU (100 μM), indicating that even at these high concentrations no significant change in the number of species undergoing charge recombination in PS II occurred. However, studies with thylakoids revealed significant differences in the action of OPA and DCMU on PS II. Although OPA, at a certain concentration and time of incubation, reduced the B band intensity by about 50–70%, and completely abolished the detectable oxygen evolution, it still retained the TL flash yield pattern, and, thus, S state turnover. OPA is known to inhibit the oxidoreductase activity of in vitro Cyt b6/f (Bhagwat et al. (1993) Arch Biochem Biophys 304: 38–44). However, in the OPA treated thylakoids the extent of inhibition of O2 evolution was not reduced even in the presence of oxidized tetramethyl-p-phenylenediamine which accepts electrons from plastoquinol and feeds then directly to Photosystem I. This suggests that OPA inhibition is at a site prior to plastoquinone pool in the electron transport chain, in agreement with it being between QA and QB. However, an unusual feature of OPA inhibition is that even though all oxygen evolution was completely suppressed, a significant fraction of PS II centers were functional and turned over with the same periodicity of four in the absence of any added electron donor, an observation which appears to be similar to that reported by Wydrzynski (Wydrzynski et al. (1985) Biochim Biophys Acta 809: 125–136) with lauroylcholine chloride, a lipid analogue compound. The detailed chemistry of OPA inhibition remains to be studied. Since we dedicate this paper to William A. Arnold, discoverer of delayed light and TL in photosynthesis, we have also included in the Introduction, a brief history of how TL work was initiated at BARC (Bombay, India).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 1573-5079
    Keywords: chlorophyll a/b-binding (CAB) protein ; cyclic electron flow ; gene-expression ; light-harvesing complex (LHC) ; photosynthesis ; Pyrobotrys (Chlamydobotrys) stellata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two genes (lhca5 and lhcb1) from the unicellular, green alga Pyrobotrys (formerly Chlamydobotrys) stellata were isolated, coding for Chlorophyll a/b-binding proteins that putatively represent constituents of the light-harvesting complexes connected with Photosystem I and Photosystem II, respectively. Expression of both genes on the mRNA-level is markedly inhibited by CO2-depletion. The lhca5 transcript-level was reduced to about 25%, and the lhcb1-expression was completely blocked 9 h after removal of CO2 from the growth medium. Simultaneous addition of acetate, which can substitute for CO2 as a carbon source during photoheterotrophic growth of P. stellata, did not compensate for the diminishing effect of CO2-depletion on lhcb1. However, the amount of lhca5 transcript was comparable to that during photoautotrophic growth. These results are interpreted in terms of the specific metabolic demands of photoheterotrophic growth in P. stellata. Cyclic electron-transfer along Photosystem I must be sustained for ATP-production. Linear electron transport fed by Photosystem II and concomitant production of NADPH for CO2-reduction is no longer required. The sequences reported in this article have been deposited at the EMBL data library under the accession numbers X69434 (CSCAB1) and X71965 (CSCAB2MR).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-5079
    Keywords: green sulfur bacterium ; Chlorobium tepidum ; chlorosomes ; DNA sequence ; protein overproduction ; primer extension mapping ; light-harvesting antenna ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The csmD and csmE genes, encoding two proteins of the chlorosome envelope, have been cloned and sequenced from the green sulfur bacterium Chlorobium tepidum. The csmD gene predicts a hydrophobic protein of 113 amino acids with a molecular mass of 11.1 kDa. The csmE gene was identified immediately upstream from csmD; the csmE gene predicts a protein of 82 amino acids (9.0 kDa) which is 49% identical to CsmA (Chung et al. (1994) Photosynthesis Res 41: 261–275). The CsmE protein is post-translationally processed, most likely in a manner similar to CsmA. The csmE and csmD genes are cotranscribed as a dicistronic mRNA but can also be cotranscribed with an open reading frame upstream from csmE that predicts a protein with sequence similarity to the CheY and SpoOF subclass of regulatory proteins. The CsmA, CsmC, CsmD, and CsmE proteins were overproduced in Escherichia coli, purified, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments using these antibodies indicate that all four proteins are exposed at the surface of isolated chlorosomes and hence are probably components of the chlorosome envelope. Additionally, antigalactose antibodies were used to confirm that the galactosyl moiety of monogalactosyl diglycerol is exposed at the chlorosome surface; this is consistent with the notion that these lipids are components of the chlorosome envelope.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1573-5079
    Keywords: glucose ; hexose phosphates ; ozone ; photosynthesis ; respiratory substrates ; starch ; sucrose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 52 (1997), S. 75-82 
    ISSN: 1573-5079
    Keywords: lemma ; light-enhanced dark CO2 fixation ; palea ; panicle ; photosynthesis ; pyruvate ; Pi dikinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In lemmas and paleae of rice, the amount of pyruvate, Pi dikinase (PPDK) protein increased dramatically 6 d after anthesis and this change was consistent with that in the activity of PPDK. Since lemmas and paleae at this stage also showed high activities of the other marker enzymes of C4 pathway including phosphot enolpyruvate carboxylase (Imaizumi et al. (1990) Plant Cell Physiol 31: 835–843), photosynthetic carbon metabolism with lemmas at this stage were characterized. In a 14C pulse-12C chase study by photosynthetic CO2 fixation, about 35% and 25% of 14C fixed in lemmas were incorporated initially into 3-phosphoglycerate (3-PGA) and C4 acids, respectively. This suggests that lemmas participate mainly in C3-type photosynthetic metabolism, but that lemmas may also participate in the metabolism of C4 acids to some extent. To clarify this possibility, large amounts of 14C-labeled C4 acids were synthesized in vivo by a light-enhanced dark CO2 fixation (LED) method and the fate of 14C in C4 acids in the light was investigated. The percentage distribution of 14C in C-4 position of malate was about 90% and 83% after 10 s of photosynthetic 14CO2 fixation and 110 s of LED, respectively. Some of the 14C incorporated into C4 acids was transferred into 3-PGA and sugar phosphates. The possibility of direct fixation of CO2 by phosphot enolpyruvate carboxylase and metabolic pathway of CO2 released by decarboxylation of malate produced were discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1573-5117
    Keywords: light climate manipulation ; Potamogeton pectinatus ; photosynthesis ; turbidity ; weed management
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Argentine Potamogeton pectinatus L. was grown in The Netherlands under laboratory conditions at four light intensities (50, 100, 150 and 200 µE m−2 s−1), and photosynthetic performance was evaluated after about 1, 2 and 3 months of growth. At these moments, chlorophyll-a and -b and tissue N and P content were also determined. During the growing period, plant lengths and number of secondary shoots were measured. In the field in Argentina, photosynthetic performance of P. pectinatus was also measured at different light intensities created by artificial shading at various times during the growing season. Field and laboratory photosynthetic results were in good agreement. P. pectinatus showed a significant plasticityin its photosynthesis, rather than in morphology. A fairly constant maximum photosynthetic rate with reduced light enabled the plants to maintain netproduction rates rather unaffected at low light intensities. Still, it can be predicted that increasing turbidity from 1–2 m−1 at present to 3 m−1 could lead to a strongly light-limited growth which should reduce the present weed problem considerably. Such a turbidity increase might be achieved by the introduction of a fairly dense bottom-feeding fish population like Common carp (Cyprinus carpio L.).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1573-5044
    Keywords: bryophytes ; cell culture ; chlorophyll content ; LHC II ; photosynthesis ; Rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photoautotrophic suspension cells of Marchantia polymorpha were grown at gas phase CO2 concentrations of 0.4% and 2.0%. At the higher CO2 concentration the chloroplast shape appeared to be modified and the cells had about 70% more chloroplasts per cell. Differences in chlorophyll content per cell were much less pronounced, indicating a reduction in chlorophyll content per chloroplast. Also the cell size was affected by the CO2 concentration, and our data suggest that it was about 37% lower in high CO2 grown cells than in low CO2 grown cells. The capacity and the efficiency of photosynthetic oxygen evolution on a chlorophyll basis and the photosystem II chlorophyll fluorescence parameters were almost identical in both cell types. Immunodection showed that also the ratio of light harvesting complex II antenna proteins and ribulose 1,5 bisphosphate carboxylase/oxygenase were unaltered. These data indicate that the chloroplast density within photoautotrophic culture cells may be regulated independently of their photosynthetic efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 1440-1703
    Keywords: chlorophyll fluorescence ; Macaranga gigantea ; Neobalanocarpus heimii ; photosynthesis ; Shorea leprosula ; tropical rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (δ; F/Fm′), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 μmol m−2 s−1) than in the gap site (5 μmol m−2 s−1), whereas that in N. heimii was lower in the open site (2 μmol m−2 s−1) than in the gap site (4 μmol m−2 s−1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plant’s regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 11 (1995), S. 649-653 
    ISSN: 1573-0972
    Keywords: Anacystis nidulans ; gibberellic acid ; glycollate dehydrogenase ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Gibberellic acid at 10-4 Mxxx was optimal for enhancement of growth, O2 evolution, photosystem II and I and the activity of glycollate dehydrogenase of Anacystis nidulans. A stimulatory effect was observed on photosystem II. Other concentrations of gibberellic acid were inhibitory to O2 evolution and photosystem I. Syntheses of phycocyanin, phycoerythrin and β-carotene were significantly enhanced after 48 h incubation with gibberellic acid at 10-3 Mxxx but the chlorophyll content began to increase 3 h after adding 10-4 Mxxx gibberellic acid.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1573-5044
    Keywords: carbon metabolism ; CO2 fixation ; embryo culture ; PEPC ; photosynthesis ; RubisCO
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phosphoenolpyruvate Carboxylase (PEPC; EC: 4.1.1.31) and Ribulose 1,5-bisphosphate Carboxylase/Oxygenase (RubisCO; EC: 4.1.1.39) enzyme specific activities were measured during the in vitro development of coconut (Cocos nucifera L.) zygotic mature embryos into plantlets and compared with those of palms produced by conventional seed germination. At the time of initiation of germination, high PEPC and low RubisCO activities were measured in both cultured and conventionally germinated embryos, thus indicating an anaplerotic CO2 fixation. During both in vitro and in planta development, RubisCO progressively took over and became the main route for inorganic carbon fixation. The in vitro-grown coconut plantlets showed a faster decrease in their PEPC:RubisCO ratio than the seedlings, suggesting that an earlier transition from a heterotrophic to an autotrophic mode of carbon fixation takes place in the in vitro-derived material. Just before acclimatization, the RubisCO activity in in vitro-derived plantlets (2.83 µmol CO2h−1mg−1 TSP) was lower than that in seedlings (6.98 µmol CO2h−1mg−1 TSP) of the same age. Nevertheless, after acclimatization, RubisCO activities were comparable in both in vitro and in planta germinated material
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-5044
    Keywords: chlorophyll fluorescence ; leaf anatomy ; photosynthesis ; root induction ; shoot multiplication ; stable carbon isotope composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper reports on the fast fluorescence responses of Gardenia jasminoides Ellis plantlets, at two successive stages (shoot multiplication and root induction) of culture in vitro. We test whether plantlets in vitro suffer photoinhibition during culture and whether the degree of photoautotrophy of these mixotrophic plantlets has any effect on the extent of photoinhibitory impairment. In this regard the effects of different sucrose levels in the medium and PPFD during growth on the development of photoautotrophy and the extent of photoinhibition were evaluated. Plantlets were grown under low, intermediate, and high (50, 100, and 300 μmol m-2 s-1) PPFD, and at 3 different sucrose concentrations (0.5, 1.5, and 3.0%, w/v) in the medium, during shoot multiplication. During root induction the same growth conditions were assayed except for the high PPFD. The development of photoautotrophy was assessed via the difference between the stable carbon isotope composition of sucrose used as heterotrophic carbon source and that of leaflets grown in vitro. Plantlets from root induction showed more developed photoautotrophy than those from shoot multiplication. For both stages the low-sucrose medium stimulated the photoautotrophy of plantlets in vitro. In addition, intermediate PPFD induced photoautotrophy during shoot multiplication. For plantlets of both culture stages at the lowest PPFD no photoinhibition occurred irrespective of the sucrose concentration in media. However, during the shoot multiplication stage chlorophyll fluorescence measurements showed a decrease in F v /F m and in t 1/2 as growing PPFD increased, indicating photoinhibitory damage. The decline of F v /F m was caused mostly by an increase in F o , indicating the inactivation of PSII reaction centers. However plantlets growing under low sucrose showed reduced susceptibility to photoinhibition. During root induction, only plantlets cultured with high sucrose showed a decrease in F v /F m as PPFD increased, although t 1/2 remained unchanged. In this case, the decline of F v /F m was mostly due to a decrease in F m , which indicates increased photoprotection rather than occurrence of photodamage. Therefore, growth in low-sucrose media had a protective effect on the resistance of PSII to light stress. In addition, plantlets were more resistant to photoinhibition during root induction than during shoot multiplication. Results suggest that increased photoautotrophy of plantlets reduces susceptibility to photoinhibition during gardenia culture in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 58 (1999), S. 31-37 
    ISSN: 1573-5044
    Keywords: carbohydrates ; chlorophylls ; photosynthesis ; tissue culture ; Vitis vinifera L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Grapevine plantlets multiplied in vitro were acclimatized at 40 or 90 μmol m−2 s−1 photon flux density for 12 or 16 h per day, respectively. In the high-light regime a decrease in total chlorophyll and an increase in chlorophyll a/chlorophyll b ratio occurred. However, at high-light intensity lower photosynthetic capacities and higher apparent photosynthesis were measured than at the low-light regime. In leaves expanded during acclimatization, the light compensation point was higher in plantlets under high-light while quantum yield was higher in low-light conditions. High-light also gave rise to an increase in carbohydrate concentration. As a whole, the results suggest that high-light increases carbon assimilation and growth although with a low investment in the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 44 (1995), S. 253-260 
    ISSN: 1573-5079
    Keywords: CO2 conductance ; CO2 recycling ; membrane ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 μL L−1 near the leaf base to below atmospheric (〈350 μL L−1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 μmol m−2 s−1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 μL L−1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L−1 O2 compared to 20 mL L−1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...