Skip to main content
Log in

Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM (1986) Photoregulation of the composition, function and structure of thylakoid membranes. Annu. Rev. Plant Physiol. 37: 93-136.

    Article  CAS  Google Scholar 

  • Arnon D (1949) Cooper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24: 1-15.

    PubMed  CAS  Google Scholar 

  • Avron M, Ben-Hayyim G (1969) Interaction between two photochemical systems in photoreactions of isolated chloroplasts. In: Metzner H (ed.), Progress in Photosynthesis Research, Vol. III. H. Laupp Jr, Tubingen: 1185-1196.

    Google Scholar 

  • Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17: 16-66.

    Article  Google Scholar 

  • Baroli I, Melis A (1996) Photoinhibition and repair in Dunaliella salinaacclimated to different growth irradiances. Planta 198: 640-646.

    Article  CAS  Google Scholar 

  • Baroli I, Melis A (1998) Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II lightharvesting chlorophyll antenna size. Planta 205: 288-296.

    Article  PubMed  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489-504.

    Article  Google Scholar 

  • Björkman O, Ludlow MM (1972) Characterization of the light climate on the floor of a queensland rainforest. Carnegie Institution Yearbook 71: 85-94.

    Google Scholar 

  • Burlew JS (1953) Algal Culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, D.C. Publication Number 600: 235-272.

    Google Scholar 

  • Chain RK, Arnon DI (1977) Quantum efficiency of photosynthetic energy use. Proc. Natl. Acad. Sci. USA 74: 3377-3381.

    Article  PubMed  CAS  Google Scholar 

  • Demmig B, Björkman O (1987) Comparison of the effect of excessive light on chlorophyll fluorescence (77 K) and photon yield of O2 evolution in leaves of higher plants. Planta 171: 171-184.

    Article  CAS  Google Scholar 

  • Greenbaum E (1984) Biophotolysis of water: the light saturation curves. Photobiochem. Photobiophys. 8: 323-332.

    CAS  Google Scholar 

  • Herron HA, Mauzerall D (1972) The development of photosynthesis in a greening mutant of Chlorellaand an analysis of the light saturation curve. Plant Physiol. 50: 141-148.

    PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends in Plant Science 3: 224-230.

    Article  Google Scholar 

  • Kim JH, Hemson JA, Melis A (1993) Photosystem II reaction center damage and repair in Dunaliella salina(green alga): Analysis under physiological and irradiance-stress conditions. Plant Physiol. 103: 181-189.

    Article  PubMed  CAS  Google Scholar 

  • Kirk JTO (1994) Light and Photosynthesis in Aquatic Ecosystems. 2nd Edn. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Kok B (1953) Experiments on photosynthesis by Chlorellain flashing light. In: Burley JS (ed.), Algal Culture: From Laboratory to Pilot Plant. Carnegie Institution of Washington, Washington DC: 63-75.

    Google Scholar 

  • Kok B (1960) Efficiency of photosynthesis. In: Ruhland W (ed.), Encyclopedia of Plant Physiology. Springer Verlag, Berlin: 566-633.

    Google Scholar 

  • Ley AC, Mauzerall DC (1982) Absolute absorption cross sections for photosystem II and the minimum quantum requirement for photosynthesis in Chlorella vulgaris. Biochim. Biophys. Acta 680: 95-106.

    Article  CAS  Google Scholar 

  • Melis A (1989) Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. Phil. Trans. R. Soc. Lond. B 323: 397-409.

    CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta (Reviews on Bioenergetics) 1058: 87-106.

    CAS  Google Scholar 

  • Melis A (1996) Excitation energy transfer: Functional and dynamic aspects of Lhc(cab) proteins. In: Ort DR, Yocum CF (eds), Oxygenic Photosynthesis: The Light Reactions. Kluwer Academic Publishers, Dordrecht, The Netherlands: 523-538.

    Google Scholar 

  • Melis A (1998) Photostasis in plants: mechanisms and regulation. In: Williams TP, Thistle A (eds), Photostasis. Plenum Publishing Corporation, New York, NY: 207-221.

    Google Scholar 

  • Melis A, Murakami A, Nemson JA, Aizawa K, Ohki K, Jujita Y (1996) Chromatic regulation in Chlamydomonas reinhardtiialters photosystem stoichiometry and improves the quantum efficiency of photosynthesis. Photosynth. Res. 47: 253-265.

    Article  CAS  Google Scholar 

  • Melis A, Neidhardt J, Baroli I, Benemann JR (in press) Maximizing photosynthetic productivity and light utilization in microalgae by minimizing the light-harvesting chlorophyll antenna size of the photosystems. In: Zaborsky OR (ed.), BioHydrogen '97. Proceedings of the International Conference on Biological Hydrogen Production. Waikoloa-Hawaii, Plenum Publishing Corporation, New York, NY.

  • Myers J (1957) Algal culture. In: Kirk RE, Othmer DE (eds), Encyclopedia of Chemical Technology. Interscience, New York, NY: 649-680.

    Google Scholar 

  • Naus J, Melis A (1991) Changes of photosystem stoichiometry during cell growth in Dunaliella salinacultures. Plant Cell Physiol. 32: 569-575.

    CAS  Google Scholar 

  • Neale PJ, Melis A (1986) Algal photosynthetic membrane complexes and the photosynthesis-irradiance curve: a comparison of light-adaptation responses in Chlamydomonas reinhardtii. J. Phycol. 22: 531-538.

    CAS  Google Scholar 

  • Neale PJ, Cullen JJ, Lesser MP, Melis A (1993) Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation. In: Yamamota HY, Smith CM (eds), Photosynthetic Responses to the Environment. Current Topics in Plant Physiology. American Society of Plant Physiologists Publication Series, Volume 8: 61-77.

  • Neidhardt J, Benemann JR, Zhang L, Melis A (1998) Photosystem II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina(green algae). Photosynth. Res. 56: 175-184.

    Article  CAS  Google Scholar 

  • Osborne BA, Geider RJ (1987) The minimum photon requirement for photosynthesis. New Phytologist 106: 631-644.

    Article  CAS  Google Scholar 

  • Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol. 81: 92-96.

    PubMed  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu. Rev. Plant Physiol 35: 15-44.

    Article  CAS  Google Scholar 

  • Powles SB, Critchley C (1980) Effect of light intensity during growth on photoinhibition of intact attached bean leaflets. Plant Physiol. 65: 1181-1187.

    PubMed  CAS  Google Scholar 

  • Richmond A (1996) Efficient utilization of high irradiance for production of photoautotrophic cell mass: A survey. J. appl. Phycol. 8: 381-387.

    Article  CAS  Google Scholar 

  • Smith BM, Morrissey PJ, Guenther JE, Nemson JA, Harrison MA, Allen JF, Melis A (1990) Response of the photosynthetic apparatus in Dunaliella salina(green algae) to irradiance stress. Plant Physiol. 93: 1433-1440.

    Article  PubMed  CAS  Google Scholar 

  • Starr RC (1978) The culture collection of algae at the University of Texas at Austin. J. Phycol. 14: 47-100.

    Article  Google Scholar 

  • Sukenik A, Bennett J, Falkowski PG (1988) Changes in the abundance of individual apoproteins of light harvesting chlorophyll a/b-protein complexes of photosystem I and II with growth irradiance in the marine chlorophyte Dunaliella tertiolecta. Biochim. Biophys. Acta 932: 206-215.

    Article  CAS  Google Scholar 

  • Sun ASK, Sauer K (1971) Pigment systems and electron transport in chloroplasts. Biochim. Biophys. Acta 234: 399-414.

    Article  PubMed  CAS  Google Scholar 

  • Vasilikiotis C, Melis A (1994) Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. Proc. natl Acad. Sci. USA 91: 7222-7226.

    Article  PubMed  CAS  Google Scholar 

  • Weaver PF, Lien S, Seibert M (1980) Photobiological production of hydrogen. Solar Energy 24: 3-45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melis, A., Neidhardt, J. & Benemann, J.R. Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. Journal of Applied Phycology 10, 515–525 (1998). https://doi.org/10.1023/A:1008076231267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008076231267

Navigation