ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 218 (2003), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2236
    Keywords: Key words: coccolithophores, Emiliana huxleyi, Gephyrocapsa oceanica, pyrolysis, liquid-saturated hydrocarbons, marine sediment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract: Two nanoplanktonic marine coccolithophores, Emiliania huxleyi and Gephyrocapsa oceanica, were grown at 23°C with a 16-hour light and 8-hour darkness regimen. The cells were dried at room temperature and then subjected to pyrolysis at 100° to 500°C under anoxygenic conditions to produce hydrocarbons. Temperature-dependent profiles of the liquid-saturated hydrocarbons (saturates) produced during pyrolysis were very similar for the two strains, although the total amount was higher in E. huxleyi than in G. oceanica. The amount of saturates produced was only 0.05% to 0.15% below 200°C, but about 2.1% to 2.8% at 300°C. Their major components were normal alkanes in a series ranging from nC11 to nC35 with the predominant peak at nC15. At 400° and 500°C most of saturates transformed into gaseous compounds. The major saturates identified in all pyrolysates were normal C31 monounsaturated and diunsaturated alkenes, a series of normal alkanes, phytenes, C28 sterenes, and steranes. Profiles of saturates in gas chromatography–mass spectroscopy varied with increasing pyrolysis temperature and also differed between E. huxleyi and G. oceanica. The two coccolithophores are useful candidates for the production of renewable liquid fuel through pyrolysis—especially E. huxleyi, which has higher production. The results also provide information for further studies on the characterization, source, and paleogeographic distribution of marine sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: chlorophyll synthesis ; cyanobacteria ; chlorophyl-binding proteins ; photosynthesis ; thylakoid membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 μE m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding ‘chelator’ protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5176
    Keywords: Chlorella protothecoides ; hydrocarbon gases ; simulated pyrolysis ; heterotrophy ; bacterial degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four kinds of cells ofChlorella protothecoides, green autotrophic cells, bacterially degraded green autotrophic cells, yellow heterotrophic cells and bacterially degraded yellow heterotrophic cells, were used to simulate thermal degradation and gas formation by heating without oxygen at 300°C for 100 h. The yield of pyrolysed hydrocarbon gases in yellow heterotrophic cells with bacterial degradation was 8.5 times higher than that of green autotrophic cells without bacterial degradation. The use of bacterially degraded yellow heterotrophic cells resulted in relatively more lipid and less protein. The results suggest that the hydrocarbon-producing potential of microplanktonic algae in nature may be greater than previously thought based on studies of green autotrophic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 1 (1989), S. 285-287 
    ISSN: 1573-5176
    Keywords: Oscillatoria tenuis ; natural gas ; thermal degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cultures of the blue-green alga (cyanobacterium)Oscillatoria tenuis were used to simulate thermal degradation and gas formation by heating without oxygen at 250° and 350 °C for 100 h. Analysis through gas chromatography showed that the gases were mainly CH4, C2H6, C3H8, iC4 (isobutane), nC4 (normal butane), iC5 (isopentane), nC5 (normal pentane), H2, C02 and N2. The volume of gases per g dry weight of alga was 44 ml at 250 °C and 100 ml at 350 °C. Alkane gas comprised only 2.04% of the total at 250 °C and rising to 40.0% at 350 °C. The fraction of C02 decreased from 83.3% at 250 °C to 40.0% at 350 °C. The quantity of alkane in the soluble organic matter doubled with rising temperature but the H/C atomic ratio in the ‘kerogen’, insoluble organic matter, decreased sharply. Infrared spectra of the ‘kerogen’ showed that the peak of adipose radical at 2900 cm−1 disappeared gradually with rising temperature, which reflects the gradual break of CH4 or C2H6 from ‘kerogen’. This demonstrates that insoluble organic matter rather than soluble organic matter in blue-green algae are the main sources of the gas alkanes in the process of simulated thermal degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5176
    Keywords: Emiliania huxleyi ; hydrocarbon gases ; renewable energy ; pyrolysis ; temperature effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The marine coccolithophore, Emiliania huxleyi, grown in the laboratory was subjected to vacuum pyrolysis at various temperatures from 100 to 500 °C. The highest yield of pyrolytic gases (183 mL g−1 dry cells) was obtained at 400 °C. The amount of total hydrocarbon gas produced at 400 °C was 129 mL, about 10 times higher than at 300 °C. CH4 was the major component at the high gas-production stage (400–500 °C). The great increase in hydrocarbon gases at 400 °C was accompanied by a marked decrease in liquid saturates and aromatics. The results indicate that the liquid hydrocarbons (oil) produced by pyrolysis at lower temperature is a direct source for the formation of the hydrocarbon gases. Due to its large potential for the production of biomass and hydrocarbons with low energy input, E. huxleyi is suggested as one of candidates for the production of renewable fuels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 12 (2000), S. 147-152 
    ISSN: 1573-5176
    Keywords: Chlorella protothecoides ; fuel ; pyrolysis ; renewable energy source ; thermogravimetric analysis ; microalga
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To investigate the influence of temperature andholding time on the pyrolyzate yields of Chlorella protothecoides, the microalgal cells weresubjected to pyrolysis at 200, 300, 400, 500 and 600 °Cfor 5, 20, 60 and 120 min, separately. High oil yields above 40% dry weight cells wereobtained both at relatively low temperature (300 °C)with relatively long holding times (20–120min) and relatively high temperatures (400–500 °C)with relatively short holding times (5–20min). The maximum oil yield of 52.0% was achieved at500 °C for 5 min. The gas yield was generallyincreased with the increasing temperature and holdingtime. It could reach 63.3–76.0% at 600 °C.High pyrolytic rates of 72–87% were obtained at allexperiments except at 200 °C for 5–20 min or300 °C for 5 min. Thermogravimetric analysisindicated that the main thermal degradation of thismicroalga occurred at 200–520 °C. The resultsimply that C. protothecoides is a good candidatefor the production of renewable fuels by pyrolysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-18
    Description: Heterotrimeric G proteins are important transducers of receptor signaling, functioning in plants with CLAVATA receptors in controlling shoot meristem size and with pathogen-associated molecular pattern receptors in basal immunity. However, whether specific members of the heterotrimeric complex potentiate cross-talk between development and defense, and the extent to which these functions are conserved across species, have not yet been addressed. Here we used CRISPR/Cas9 to knock out the maize G protein β subunit gene (Gβ) and found that the mutants are lethal, differing from those in Arabidopsis, in which homologous mutants have normal growth and fertility. We show that lethality is caused not by a specific developmental arrest, but by autoimmunity. We used a genetic diversity screen to suppress the lethal Gβ phenotype and also identified a maize Gβ allele with weak autoimmune responses but strong development phenotypes. Using these tools, we show that Gβ controls meristem size in maize, acting epistatically with G protein α subunit gene (Gα), suggesting that Gβ and Gα function in a common signaling complex. Furthermore, we used an association study to show that natural variation in Gβ influences maize kernel row number, an important agronomic trait. Our results demonstrate the dual role of Gβ in immunity and development in a cereal crop and suggest that it functions in cross-talk between these competing signaling networks. Therefore, modification of Gβ has the potential to optimize the trade-off between growth and defense signaling to improve agronomic production.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-05-13
    Description: Hepsin is a transmembrane serine protease primarily expressed in the liver. To date, the physiological function of hepsin remains poorly defined. Here we report that hepsin-deficient mice have low levels of blood glucose and lipids and liver glycogen, but increased adipose tissue browning and basal metabolic rates. The phenotype is caused by reduced hepatocyte growth factor activation and impaired Met signaling, resulting in decreased liver glucose and lipid metabolism and enhanced adipocyte browning. Hepsin-deficient mice exhibit marked resistance to high-fat diet-induced obesity, hyperglycemia, and hyperlipidemia. Indb/dbmice, hepsin deficiency ameliorates obesity and diabetes. These data indicate that hepsin is a key regulator in liver metabolism and energy homeostasis, suggesting that hepsin could be a therapeutic target for treating obesity and diabetes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-27
    Description: Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to theCORINpromoter and enhances the promoter activity. Disruption of theKLF17gene in the endometrial cells abolishesCORINexpression. In mice,Klf17is up-regulated in the pregnant uterus.Klf17deficiency prevents uterineCorinexpression in pregnancy. Moreover,Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulatingCorinexpression and uterine physiology in pregnancy.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...