ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (1,434)
  • Man/System Technology and Life Support  (975)
  • Cell & Developmental Biology
  • Elasticity
  • Inorganic Chemistry
  • LUNAR AND PLANETARY EXPLORATION
  • 2000-2004  (2,486)
Collection
Keywords
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Kunming, China, 4, vol. 31, no. 13, pp. 65 & 70, pp. L13613, (ISSN: 1340-4202)
    Publication Date: 2004
    Keywords: Site amplification ; Elasticity ; Waves ; Wave propagation ; GRL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geophysical Journal International, Luxembourg, Conseil de l'Europe, vol. 156, no. 2, pp. 171-178, pp. 1892
    Publication Date: 2004
    Keywords: Elasticity ; GJI ; crustal ; deformation, ; flexure ; of ; the ; lithosphere ; lithospheric ; deformation, ; numerical ; techniques
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Geophys. J. Int., Leipzig, 3-4, vol. 159, no. 2, pp. 667-678, pp. L15313, (ISBN: 0-12-018847-3)
    Publication Date: 2004
    Keywords: Elasticity ; Anisotropy ; Physical properties of rocks ; Lame ; elastic ; tensor, ; seismic ; anisotropy, ; symmetry ; class ; upper ; mantle ; GJI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Pageoph, Kobe, Dec. 6-11, 1993, The Local Organizing Committee for the CRCM '93, vol. 161, no. 7, pp. 1305-1327, pp. 1008, (ISSN: 1340-4202)
    Publication Date: 2004
    Keywords: Dislocation ; Modelling ; earthquake ; series, ; rifting, ; shear ; Stress ; Elasticity ; Fernandez ; PAG
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Phys. Earth Plan. Int., Tübingen, Europ. Ass. Exploration Geophys., vol. 142, no. 1-2, pp. 113-135, pp. TC4007, (ISSN: 1340-4202)
    Publication Date: 2004
    Keywords: Rheology ; Fault zone ; Geothermics ; Elasticity ; PEPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Cambridge, 264 pp., Cambridge University Press, vol. 42, no. 3, pp. 632 pp., (ISBN 052)
    Publication Date: 2004
    Keywords: Textbook of geophysics ; Seismology ; Wave propagation ; Ray seismics ; Anisotropy ; Acoustics ; Elasticity ; Layers ; Cagniard ; Inversion ; WKBJ ; Maslov ; Born ; Kirchhoff ; Migration of earthquakes ; Inhomogeneity ; more ; advanced ; than ; Aki ; and ; Richards ; MATLAB
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-05-29
    Description: Networks of cross-linked and bundled actin filaments are ubiquitous in the cellular cytoskeleton, but their elasticity remains poorly understood. We show that these networks exhibit exceptional elastic behavior that reflects the mechanical properties of individual filaments. There are two distinct regimes of elasticity, one reflecting bending of single filaments and a second reflecting stretching of entropic fluctuations of filament length. The mechanical stiffness can vary by several decades with small changes in cross-link concentration, and can increase markedly upon application of external stress. We parameterize the full range of behavior in a state diagram and elucidate its origin with a robust model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gardel, M L -- Shin, J H -- MacKintosh, F C -- Mahadevan, L -- Matsudaira, P -- Weitz, D A -- GM52703/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1301-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15166374" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry/metabolism ; Actins/*chemistry/metabolism ; Biopolymers/chemistry/metabolism ; Elasticity ; Entropy ; Mathematics ; Microfilament Proteins/chemistry/metabolism ; Models, Biological ; Stress, Mechanical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Sens J (ISSN 1530-437X); Volume 4; 3; 337-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.
    Keywords: Man/System Technology and Life Support
    Type: MRS bulletin / Materials Research Society (ISSN 0883-7694); Volume 29; 10; 714-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); Volume 39; 7; 1546-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1483-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1502-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1528-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1539-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1546-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 34; 7; 1612-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag.
    Keywords: Man/System Technology and Life Support
    Type: Microbial ecology (ISSN 0095-3628); Volume 47; 2; 137-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-10-05
    Description: We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV 〈 E 〈 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.
    Keywords: Earth Resources and Remote Sensing
    Type: Workshop on Europa's Icy Shell: Past, Present, and Future; 17; LPI-Contrib-1195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Experimental and mathematical models were developed for describing and testing temperature and humidity parameters for plant production in bioregenerative life support systems. A factor was included for analyzing systems operating at low (10-101.3 kPa) pressure to reduce gas leakage and structural mass (e.g., inflatable greenhouses for space application). The expected close relationship between temperature and relative humidity was observed, along with the importance of heat exchanger coil temperature and air circulation rate. The presence of plants in closed habitats results in increased water flux through the system. Changes in pressure affect gas diffusion rates and surface boundary layers, and change convective transfer capabilities and water evaporation rates. A consistent observation from studies with plants at reduced pressures is increased evapotranspiration rates, even at constant vapor pressure deficits. This suggests that plant water status is a critical factor for managing low-pressure production systems. The approach suggested should help space mission planners design artificial environments in closed habitats.
    Keywords: Man/System Technology and Life Support
    Type: Habitation (Elmsford, N.Y.) (ISSN 1542-9660); Volume 10; 1; 49-59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the space suit of the future, specifically for productive work on planetary surfaces. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: Absorbing the electromagnetic radiation in several regions of the solar spectrum, C02 plays an important role in the Earth radiation budget since it produces the greenhouse effect. Many natural processes in the Earth's system add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at different sites around the world show an increased carbon dioxide concentration in the atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Earth Science and Applications Workshop; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-06
    Description: Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings; 38-46; NASA/CP-2004-212255
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: Systems Engineering and Risk Management processes can work synergistically to defend against the causes of many mission ending failures. Defending against mission ending failures is facilitated by fostering a team that has a healthy respect for Murphy's Law and a team with a of curiosity for how things work, how they can fail, and what they need to know. This curiosity is channeled into making the unknowns known or what is uncertain more certain. Efforts to assure mission success require the expenditure of energy in the following areas: 1. Understanding what defines Mission Success as guided by the customer's needs, objectives and constraints. 2. Understanding how the system is supposed to work and how the system is to be produced, fueled by the curiosity of how the system should work and how it should be produced. 3. Understanding how the system can fail and how the system might not be produced on time and within cost, fueled by the curiosity of how the system might fail and how production might be difficult. 4. Understanding what we need to know and what we need learn for proper completion of the above three items, fueled by the curiosity of what we might not know in order to make the best decisions.
    Keywords: Man/System Technology and Life Support
    Type: Space Systems Engineering and Risk Management Symposium; Manhattan Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: The Arctic is currently considered an area in transformation. Glaciers have been retreating, permafrost has been diminishing, snow covered areas have been decreasing, and sea ice and ice sheets have been thinning. This paper provides an overview of the unique role that satellite sensors have contributed in the detection of changes in the Arctic and demonstrates that many of the changes are not just local but a pan-Arctic phenomenon. Changes from the upper atmosphere to the surface are discussed and it is apparent that the magnitude of the trends tends to vary from region to region and from season to season. Previous reports of a warming Arctic and a retreating perennial ice cover have also been updated, and results show that changes are ongoing. Feedback effects that can lead to amplification of the signals and the role of satellite data in enhancing global circulation models are also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: Physics Today
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-05
    Description: This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.
    Keywords: Man/System Technology and Life Support
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the recycling of oxygen, carbon dioxide, and water for long-duration human presence in space. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-05
    Description: In an era of increasing automation, it is important to design displays and input devices that minimize human error. In this context, information concerning the human response to the detection of incongruous information is important. Such incongruous information can be operationalized as unexpected (perhaps erroneous) information on which a decision by the human or operation by an automated system is based. In the aviation environment, decision making when faced with inadequate, incomplete, or incongruous information may occur in a failure scenario. An additional challenge facing the human operator in automated environments is maintaining alertness or vigilance. The vigilance issue is of particular concern as a factor that may interact with performance when faced with inadequate, incomplete, or incongruous information. From the literature on eye-scan behavior we know that the time spent looking at a particular display or indicator is a function of the type of information one is trying to discern from the display. For example, quick glances are all it takes for confirming that an indicator is in a normal position or range, whereas a continuous look of several seconds may be required for confirmation that a complex control input is having the desired effect. Important to consider is that while an extended look takes place, visual input from other sources may be missed. Much like an extended look, the interpretation of incongruous information may require extra time. The present experiment was designed to explore the performance consequences of a decision making task when incongruous information was presented. For this experiment a display incongruity was created on a subset of trials of a clock reading laboratory task. Display incongruity was made possible through presentation of 'impossible' times (e.g. 1:65 or 11:90). Subjects made 'same' 'different' decisions and keyboard responses to pairings of Analog-Analog (AA), Digital-Digital (DD), and Analog- Digital (AD), display combinations. For trials during which display incongruities were not presented, based on prior research comparing digital and analog clock displays, it would be expected that the Digital-Digital condition would result in the shortest response times and the Analog-Analog and Analog-Digital conditions would have longer response times. The performance consequence expected on trials with incongruous times would be very long response times.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Viewgraphs on Advanced Life Support (ALS) Systems are presented. The topics include: 1) Fundamental Need for Advanced Life Support; 2) ALS organization; 3) Requirements and Rationale; 4) Past Integrated tests; 5) The need for improvements in life support systems; 6) ALS approach to meet exploration goals; 7) ALS Projects showing promise to meet exploration goals; and 9) GRC involvement in ALS.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 45-68; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 164-186; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: This paper will review the historical record of NASA's regenerative life support systems flight hardware with emphasis on the complexity of spiral development of technology as related to the International Space Station program. A brief summary of what constitutes ECLSS designs for human habitation will be included and will provide illustrations of the complex system/system integration issues. The new technology areas which need to be addressed in our future Code T initiatives will be highlighted. The development status of the current regenerative ECLSS for Space Station will be provided for the Oxygen Generation System and the Water Recovery System. In addition, the NASA is planning to augment the existing ISS capability with a new technology development effort by Code U/Code T for CO2 reduction (Sabatier Reactor). This latest ISS spiral development activity will be highlighted in this paper.
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 637-694; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 42; No. 10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-08
    Description: A magnitude 6.5 earthquake devastated the town of Bam in southeast Iran on 26 December 2003. Surface displacements and decorrelation effects, mapped using Envisat radar data, reveal that over 2 m of slip occurred at depth on a fault that had not previously been identified. It is common for earthquakes to occur on blind faults which, despite their name, usually produce long-term surface effects by which their existence may be recognised. However, in this case there is a complete absence of morphological features associated with the seismogenic fault that destroyed Bam.
    Keywords: Earth Resources and Remote Sensing
    Type: Geophysical Research Letters; Volume 31; L11611
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-08
    Description: Silicic lava domes exhibit distinct morphologic characteristics at scales of centimeters to kilometers. Multiparameter radar observations capture the unique geometric signatures of silicic domes in a set of radar scattering properties that are unlike any other natural geologic surfaces.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; Volume 109; e03001-e03012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
    Keywords: Man/System Technology and Life Support
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 587-611; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore proper assessment of the urban environment s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning-design and land-atmosphere-ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate. The goal of this paper is to provide a concise review of recent (1990-present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as METROMEX studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g. aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: The first polar orbiting satellite lidar instrument, the Geoscience Laser Altimeter System (GLAS), was launched in 2003 and is approaching six months of data operations. As part of the NASA Earth Observing System (EOS) project, the GLAS instrument is intended as a laser sensor fulfilling complementary requirements for several earth science disciplines including atmospheric and surface applications on the Ice, Cloud and Land Elevation Satellite. In this paper we present examples of atmospheric measurement results and explain access to data for the international science community.
    Keywords: Earth Resources and Remote Sensing
    Type: International Laser Radar Conference; Matera; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-05
    Description: The GPS Surface Reflection Instrument was integrated as an experiment on the GAINS (Global Airocean IN-situ System) 48-hour balloon mission flown in September 2001. The data collected by similar instruments in the past has been used to measure sea state from which ocean surface winds can be accurately estimated. The GPS signal has also been shown to be reflected from wetland areas and even from subsurface moisture. The current version of the instrument has been redesigned to be more compact, use less power, and withstand a greater variation in environmental conditions than previous versions. This instrument has also incorporated a new data collection mode to track 5 direct satellites (providing a continuous navigation solution) and multiplex the remaining 7 channels to track the reflected signal of the satellite tracked in channel 0. The new software mode has been shown to increase the signal to noise ratio of the collected data and enhance the science return of the instrument. During the 48-hour flight over the Northwest US, the instrument will measure surface reflections that can be detected over the balloon's ground track. Since ground surface elevations in this area vary widely from the WGS-84 ellipsoid altitude, the instrument software has been modified to incorporate a surface altitude correction based on USGS 30-minute Digital Elevation Models. Information presented will include facts about instrument design goals, data collection methodologies and algorithms, and results of the science data analyses for the 48-hour mission.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-18
    Description: The Atlas San Juan Mission was conducted in February 2004 with the main objectives of observing the Urban Heat Island of San Juan, providing high resolution data of the land use for El Yunque Rain Forest and for calibrating remote sensors. The mission was coordinated with NASA staff members at Marshall, Stennis, Goddard, and Glenn. The Airborne Thermal and Land Applications Sensor (ATLAS) from NASA/Stennis, that operates in the visual and IR bands, was used as the main sensor and was flown over Puerto Rico in a Lear 23 jet plane. To support the data gathering effort by the ATLAS sensor, remote sensing observations and upper air soundings were conducted along with the deployment of a number of ground based weather stations and temperature sensors. This presentation focuses in the analysis of this complementary data for the Atlas San Juan Mission. Upper air data show that during the days of the mission the Caribbean mid and high atmospheres were relatively dry and highly stable reflecting positive surface lifted index, a necessary condition to conduct this suborbital campaign. Surface wind patterns at levels below 850mb were dominated by the easterly trades, while the jet stream at the edge of the troposphere dominated the westerly wind at levels above 500mb. The jet stream remained at high latitudes reducing the possibility of fronts. In consequence, only 8.4 mm of precipitation were reported during the entire mission. Observation of soundings located about 150 km apart reflected minimum variations of the boundary layer across the island for levels below 850 meters and a uniform atmosphere for higher levels. The weather stations and the temperature sensors were placed at strategic locations to observe variations across the urban and rural landscapes. Time series plot of the stations' data show that heavily urbanized commercial areas have higher air temperatures than urban and suburban residential areas, and much higher temperatures than rural areas. Temperature differences [dT(U-R)] were obtained by subtracting the values of several stations from a reference urban station, located in the commercial area of San Juan. These time series show that the UHI peaks during the morning between 10:00am and noon to an average of 4.5 C, a temporal pattern not previously observed in similar studies for continental cities. It is also observed a high variability of the UHI with the precipitation patterns even for short events. These results may be a reflection of a large land use density by low level buildings with an apparent absence of significant heat storage effects in the urban areas, and the importance of the surrounding soil and vegetation moisture in controlling the urban tropical climate. The ATLAS data was used to determine albedo and surface temperature patterns on a 10m scale for the study area. These data were used to calibrate the spatial distribution of the surface temperature when using remote sensing images from MODIS (Moderate Resolution Imaging Spectroradiometer). Surface temperatures were estimated using the land surface temperature product MOD11_L2 distributed by the Land Process Distributed Active Archive Center (LP DAAC). These results show the maximum, minimum and average temperatures in San Juan and in the entire Island at a resolution of 1 km. The information retrieved from MODIS for land surface temperatures reflected similar temporal and spatial variations as the weather stations and ATLAS measurements with a highest absolute offset of about 5 C due to the differences between surface and air temperatures.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the data suggest that 5% hydrogen peroxide reduces the shelf life of the vegetable. A dip of either 1 % or 3% hydrogen peroxide helps reduce the microbial total count while not adversely affecting the quality of the vegetable.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-8304 , Habitation 2004 Conference; Jan 04, 2004 - Jan 07, 2004; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-18
    Description: At the United Nations Millennium Summit in September of 2000, the world leaders agreed on an ambitious agenda for reducing poverty and improving lives: the Millennium Development Goals (MDGs), a list of issues they consider highly pernicious, threatening to human welfare and, thereby, to global security and prosperity. Among the eight goals are included fundamental human needs such as the eradication of extreme poverty and hunger, the promotion of gender equality, the reduction of child mortality and improvement of maternal health, and ensuring the sustainability of our shared environment. In order to help focus the efforts to meet these goals, the United Nations (UN) has established a set of eighteen concrete targets, each with an associated schedule. Among these is Target 10: "By 2015, reduce by half the proportion of people without access to safe drinking water." A closely related target of equal dignity was agreed at the World Summit on Sustainable Development (Johannesburg, September 2002): "By 2015, reduce by half the proportion of people without access to basic sanitation." One of the greatest successes in the development of Exploration-class technologies for closed-loop, sustainable support of long-duration human space missions has been the work both ESA and NASA have done in bioregenerative water reclamation (WRS), and secondarily, in solid-waste management. Solid-waste and WRS systems tend to be combined in the commercial world into the field of sanitation, although as we will see, the most essential principles of sustainable terrestrial sanitation actually insist upon the separation of solid and liquid excreta. Seeing the potential synergy between the space program ALS technologies developed for Mars and the urgent needs of hundreds of millions of people for secure access to clean water here on Earth, we set out to organize the adaptation of these technologies to help the United Nations Development Programme (UNDP) meet Target 10. In this paper, we will summarize the issues and results of the first "Water for Two Worlds" summit held in January of this year, describe,the status of the sustainable sanitation systems that are on the table for adaptation to widespread terrestrial use, and present fundamental strategies for forward work.
    Keywords: Man/System Technology and Life Support
    Type: SAE-041CES-275 , International Conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-18
    Description: The quality factor used in radiation protection is defined as a function of LET, Q(sub ave)(LET). However, tissue equivalent proportional counters (TEPC) measure the average quality factors as a function of lineal energy (y), Q(sub ave)(Y). A model of the TEPC response for charged particles considers energy deposition as a function of impact parameter from the ion s path to the volume, and describes the escape of energy out of sensitive volume by delta-rays and the entry of delta rays from the high-density wall into the low-density gas-volume. A common goal for operational detectors is to measure the average radiation quality to within accuracy of 25%. Using our TEPC response model and the NASA space radiation transport model we show that this accuracy is obtained by a properly calibrated TEPC. However, when the individual contributions from trapped protons and galactic cosmic rays (GCR) are considered; the average quality factor obtained by TEPC is overestimated for trapped protons and underestimated for GCR by about 30%, i.e., a compensating error. Using TEPC's values for trapped protons for Q(sub ave)(y), we obtained average quality factors in the 2.07-2.32 range. However, Q(sub ave)(LET) ranges from 1.5-1.65 as spacecraft shielding depth increases. The average quality factors for trapped protons on STS-89 demonstrate that the model of the TEPC response is in good agreement with flight TEPC data for Q(sub ave)(y), and thus Q(sub ave)(LET) for trapped protons is overestimated by TEPC. Preliminary comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.2-4.1, while TEPC measures 2.9-3.4 for QQ(sub ave)(y), indicating that QQ(sub ave)(LET) for GCR is underestimated by TEPC.
    Keywords: Man/System Technology and Life Support
    Type: 9th Workshop on Radiation Monitoring for the International Space Station; Sep 08, 2004 - Sep 10, 2004; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Facilities Engineering and Architectural Branch is responsible for the design and maintenance of buildings, laboratories, and civil structures. In order to improve efficiency and quality, the FEAB has dedicated itself to establishing a data infrastructure based on Geographic Information Systems, GIs. The value of GIS was explained in an article dating back to 1980 entitled "Need for a Multipurpose Cadastre which stated, "There is a critical need for a better land-information system in the United States to improve land-conveyance procedures, furnish a basis for equitable taxation, and provide much-needed information for resource management and environmental planning." Scientists and engineers both point to GIS as the solution. What is GIS? According to most text books, Geographic Information Systems is a class of software that stores, manages, and analyzes mapable features on, above, or below the surface of the earth. GIS software is basically database management software to the management of spatial data and information. Simply put, Geographic Information Systems manage, analyze, chart, graph, and map spatial information. At the outset, I was given goals and expectations from my branch and from my mentor with regards to the further implementation of GIs. Those goals are as follows: (1) Continue the development of GIS for the underground structures. (2) Extract and export annotated data from AutoCAD drawing files and construct a database (to serve as a prototype for future work). (3) Examine existing underground record drawings to determine existing and non-existing underground tanks. Once this data was collected and analyzed, I set out on the task of creating a user-friendly database that could be assessed by all members of the branch. It was important that the database be built using programs that most employees already possess, ruling out most AutoCAD-based viewers. Therefore, I set out to create an Access database that translated onto the web using Internet Explorer as the foundation. After some programming, it was possible to view AutoCAD files and other GIS-related applications on Internet Explorer, while providing the user with a variety of editing commands and setting options. I was also given the task of launching a divisional website using Macromedia Flash and other web- development programs.
    Keywords: Earth Resources and Remote Sensing
    Type: Research Symposium I
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-18
    Description: With the deployment of Earth Observing System (EOS) satellites that provide daily, global imagery, there is increasing interest in defining the limitations of the data and derived products due to its coarse spatial resolution. Much of the detail, i.e. small fragments and notches in boundaries, is lost with coarse resolution imagery such as the EOS MODerate-Resolution Imaging Spectroradiometer (MODIS) data. Higher spatial resolution data such as the EOS Advanced Spaceborn Thermal Emission and Reflection Radiometer (ASTER), Landsat and airborne sensor imagery provide more detailed information but are less frequently available. There are, however, both theoretical and analytical evidence that burn scars and other fragmented types of land covers form self-similar or self-affine patterns, that is, patterns that look similar when viewed at widely differing spatial scales. Therefore small features of the patterns should be predictable, at least in a statistical sense, with knowledge about the large features. Recent developments in fractal modeling for characterizing the spatial distribution of undiscovered petroleum deposits are thus applicable to generating simulations of finer resolution satellite image products. We will present example EOS products, analysis to investigate self-similarity, and simulation results.
    Keywords: Earth Resources and Remote Sensing
    Type: Seventh International Geostatistics Congress; Sep 26, 2004 - Oct 01, 2004; Banff, Alberta; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-18
    Description: GeoSpec will support future satellite mission concepts in the Atmospheric Sciences and in Land and Ocean Sciences by providing time-resolved measurements of both chemically linked atmospheric trace gas concentrations of important molecules such as O3, NO2, CH2O and SO2 and at the same time coastal and ocean pollution events, tidal effects, and the origin and evolution of aerosol plumes. The instrument design concept in development is a dual spectrograph covering the WMS wavelength region of 310-500 nm and the VIS/NIR wavelength region of 480-900 nm coupled to all reflective telescope and high sensitivity PIN/CMOS area detector. The goal of the project is to demonstrate a system capable of making moderate spatial resolution (750 meters at nadir) hyperspectral measurements (0.6 to 1.2 nm resolution) from a geostationary orbit. This would enable studies of time-varying pollution and coastal change processes with a temporal resolution of 5 minutes on a regional scale to 1 hour on a continental scale. Other spatial resolutions can be supported by varying the focal length of the input telescope. Scientific rationale and instrument design and status will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-18
    Description: On-orbit calibration of Earth-observing sensors in the VIS and NIR spectral regions is usually performed using the sensors on-board devices such as internal lamp(s) or solar diffuser plate(s) to provide calibration parameters. For sensors with no (or with less reliable) on-board calibrators, lunar calibration or ground validation approaches are often used. Each of these has its own set of problems that need to be fully addressed in order to support high quality on-orbit calibration and characterization. Some science products, such as Ocean color, may impose more stringent requirements that demand greater calibration precision. This paper uses MODIS as an example to illustrate challenging issues involved in VIS and NIR on-orbit calibration. It focuses on the solar diffuser (SD) calibration approach, including the effects due to SD BRF, SD attenuation screen(s), and earthshine. The impact of optics (solar diffuser and scan mirror) on-orbit degradation, including changes in the sensor s response versus scan angle (RVS), on the calibration and subsequent data quality is also discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: CALCON (Conference on Characterization and Radiometric Calibration for Remote Sensing); Aug 23, 2004 - Aug 26, 2004; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Three lightweight, portable hyperspectral sensor systems have been built that capture energy from 200 to 1700 nanometers (ultravio1et to shortwave infrared). The sensors incorporate a line scanning technique that requires no relative movement between the target and the sensor. This unique capability, combined with portability, opens up new uses of hyperspectral imaging for laboratory and field environments. Each system has a GUI-based software package that allows the user to communicate with the imaging device for setting spatial resolution, spectral bands and other parameters. NASA's Space Partnership Development has sponsored these innovative developments and their application to human problems on Earth and in space. Hyperspectral datasets have been captured and analyzed in numerous areas including precision agriculture, food safety, biomedical imaging, and forensics. Discussion on research results will include realtime detection of food contaminants, molds and toxin research on corn, identifying counterfeit documents, non-invasive wound monitoring and aircraft applications. Future research will include development of a thermal infrared hyperspectral sensor that will support natural resource applications on Earth and thermal analyses during long duration space flight. This paper incorporates a variety of disciplines and imaging technologies that have been linked together to allow the expansion of remote sensing across both traditional and non-traditional boundaries.
    Keywords: Earth Resources and Remote Sensing
    Type: Monitoring Science and Technology Symposium; Oct 21, 2004 - Oct 24, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-18
    Description: An optimal de-convolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent on landcover, which is characterized by sharp boundaries. In this study, we mathematically de-convolve the observations into brightness temperature at the field scale (500-800m) using the sensor antenna response function. The result is more accurate spatial representation of field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-18
    Description: We present and discuss observed variations in thermal transients and radiation fields prior to the earthquakes of September 18 near Bodie (M5.5) and September 28,2004 near Parkfield(M6.0) in California. Previous analysis of earthquake events have indicated the presence of a thermal anomaly, where temperatures increased or did not return to its usual nighttime value. The procedures used in our work is to analyze weather satellite data taken at night and to record the general condition where the ground cools after sunset. Two days before the Bodie earthquake lower temperature radiation was observed by the NOAA/AVHRR satellite. This occurred when the entire region was relatively cloud-free. IR land surface nighttime temperature from the MODIS instrument rose to +4 C in a 100 km radius around the Bodie epicenter. The thermal transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +l C and it is significantly smaller than the Parkfield epicenter, however, for that period showed a steady increase 4 days prior to the earthquake and a significant drop of the night before the quake. Geosynchronous weather satellite thermal IR measurements taken every half hour from sunset to dawn, were also recorded for 10 days prior to the Parkfield event and 5 days after as well as the day of the quake. To establish a baseline we also obtained GOES data for the same Julian sets were then used to systematically observe and record any thermal anomaly prior to the events that deviated from the baseline. Our recent results support the hypothesis of a possible relationship between an thermodynamic processes produced by increasing tectonic stress in the Earth's crust and a subsequent electro-chemical interaction between this crust and the atmosphere/ionosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Fall AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-18
    Description: Surface roughness is one of the dominant vegetation properties that affects land surface exchange of energy, water, carbon, and momentum with the overlying atmosphere. We hypothesize that the canopy structure of terrestrial vegetation adapts optimally to climate by maximizing productivity, leading to an optimum surface roughness. An optimum should exist because increasing values of surface roughness cause increased surface exchange, leading to increased supply of carbon dioxide for photosynthesis. At the same time, increased roughness enhances evapotranspiration and cloud cover, thereby reducing the supply of photosynthetically active radiation. We demonstrate the optimum through sensitivity simulations using a coupled dynamic vegetation-climate model for present day conditions, in which we vary the value of surface roughness for vegetated surfaces. We find that the maximum in productivity occurs at a roughness length of 2 meters, a value commonly used to describe the roughness of today's forested surfaces. The sensitivity simulations also illustrate the strong climatic impacts of vegetation roughness on the energy and water balances over land: with increasing vegetation roughness, solar radiation is reduced by up to 20 W/sq m in the global land mean, causing shifts in the energy partitioning and leading to general cooling of the surface by 1.5 K. We conclude that the roughness of vegetated surfaces can be understood as a reflection of optimum adaptation, and it is associated with substantial changes in the surface energy and water balances over land. The role of the cloud feedback in shaping the optimum underlines the importance of an integrated perspective that views vegetation and its adaptive nature as an integrated component of the Earth system.
    Keywords: Earth Resources and Remote Sensing
    Type: AGU Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-18
    Description: A detailed optical radiometric model has been created of the MODIS instruments solar calibration process. This model takes into account the orientation and distance of the spacecraft with respect to the sun, the correlated motions of the scan mirror and the sun, all of the optical elements, the detector locations on the visible and near IR focal planes, the solar diffuser and the attenuation screen with all of its hundreds of pinholes. An efficient computational scheme, takes into account all of these factors and has produced results which reproduce the observed time dependent intensity variations on the two focal planes with considerable fidelity. This agreement between predictions and observations, has given insight to the causes of some small time dependent variations and how to incorporate them into the overall calibration scheme. The radiometric model is described and modeled and actual measurements are presented and compared.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Conference; Nov 08, 2004 - Nov 12, 2004; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-18
    Description: Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. T us includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being evaluated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems (LDAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification and validation.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-18
    Description: I shall review current efforts on measurement based assessment of the aerosol radiative effects at the top of the atmosphere using MODIS, CERES and VIRS instruments, and radiative effects at the surface using AERONET. I shall also discuss use of the MODIS derived fine aerosol fraction for assess the anthropogenic component.
    Keywords: Earth Resources and Remote Sensing
    Type: AeroCom Workshop; Mar 10, 2004 - Mar 12, 2004; Ispra; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-18
    Description: During March 2003, an extensive field campaign was conducted near Barrow, Alaska to validate AQUA Advanced Microwave Scanning Radiometer (AMSR) sea ice products. Field, airborne and satellite data were collected over three different types of sea ice: 1) first year ice with little deformation, 2) first year ice with various amounts of deformation and 3) mixed first year ice and multi-year ice with various degrees of deformation. The validation plan relies primarily on comparisons between satellite, aircraft flights and ground-based measurements. Although these efforts are important, key aspects such as the effects of atmospheric conditions, snow properties, surface roughness, melt processes, etc on the sea ice algorithms are not sufficiently well understood or documented. To improve our understanding of these effects, we combined the detailed, in-situ data collection from the 2003 field campaign with radiance modeling using a radiative transfer model to simulate the top of the atmosphere AMSR brightness temperatures. This study reports on the results of the simulations for a variety of snow and ice types and compares the results with the National Oceanographic and Atmospheric Administration Environmental Technology Laboratory Polarimetric Scanning Radiometer (NOAA) (ETL) (PSR) microwave radiometer that was flown on the NASA P-3.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 04; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-18
    Description: As scientists and policy-makers from both indigenous and non-indigenous communities begin to build closer partnerships to address common sustainability issues such as the health impacts of climate change and anthropogenic activities, it becomes increasingly important to create shared information management systems which integrate all relevant factors for optimal information sharing and decision-making. This paper describes a new GIs-based system being designed to bring local and indigenous traditional knowledge together with scientific data and information, remote sensing, and information technologies to address health-related environment, weather, climate, pollution and land use change issues for improved decision/policy-making for reindeer husbandry. The system is building an easily-accessible archive of relevant current and historical, traditional, local and remotely-sensed and other data and observations for shared analysis, measuring, and monitoring parameters of interest. Protection of indigenous culturally sensitive information will be respected through appropriate data protocols. A mechanism which enables easy information sharing among all participants, which is real time and geo-referenced and which allows interconnectivity with remote sites is also being designed into the system for maximum communication among partners. A preliminary version of our system will be described for a Russian reindeer test site, which will include a combination of indigenous knowledge about local conditions and issues, remote sensing and ground-based data on such parameters as the vegetation state and distribution, snow cover, temperature, ice condition, and infrastructure.
    Keywords: Earth Resources and Remote Sensing
    Type: 5th International Congress of Arctic social Sciences (ICASS V); 19*23 May 2004; Fairbanks, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-18
    Description: One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended abstract.
    Keywords: Earth Resources and Remote Sensing
    Type: IGWCO/GEWEX/UNESCO Workshop on Trends in Global Water Cycle Variables; Nov 03, 2004 - Nov 05, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-18
    Description: There is a significant interest in the Earth Science research and user remote sensing community to substantially increase the number of useful observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal, spectral, and spatial coverage of the area(s) under investigation. However, there is little analysis available in terms of the benefits, costs and the optimal set of sensors needed to make the necessary observations. Classic observing system solutions may no longer be applicable because of their point design philosophy. Instead, a new intelligent data collection system paradigm employing both reactive and proactive measurement strategies with adaptability to the dynamics of the phenomena should be developed. This is a complex problem that should be carefully studied and balanced across various boundaries including: science, modeling, applications, and technology. Modeling plays a crucial role in making useful predictions about naturally occurring or human-induced phenomena In particular, modeling can serve to mitigate the potentially deleterious impacts a phenomenon may have on human life, property, and the economy. This is especially significant when one is interested in learning about the dynamics of, for example, the spread of forest fires, regional to large-scale air quality issues, the spread of the harmful invasive species, or the atmospheric transport of volcanic plumes and ash. This paper identifies and examines these challenging issues and presents architectural alternatives for an integrated sensor web to provide observing scenarios driving the requisite dynamic spatial, spectral, and temporal characteristics to address these key application areas. A special emphasis is placed on the observing systems and its operational aspects in serving the multiple users and stakeholders in providing societal benefits. We also address how such systems will take advantage of technological advancement in small spacecraft and emerging information technologies, and how sensor web options may be realized and made affordable. Specialized detector subsystems and precision flying techniques may still require substantial innovation, development time and cost: we have presented the considerations for these issues. Finally, data and information gathering and compression techniques are also briefly described.
    Keywords: Earth Resources and Remote Sensing
    Type: International Society for Photogrammetry and Remote Sensing Congress; Jul 14, 2004 - Jul 23, 2004; Istanbul; Turkey
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-18
    Description: Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.
    Keywords: Earth Resources and Remote Sensing
    Type: International Radiation Symposium; Aug 23, 2004 - Aug 28, 2004; Busan; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-18
    Description: The first copy of the SSMIS (Special Sensor Microwave/Imager/Sounder) was launched on board the DMSP (Defense Meteorological Satellite Project) F-16 satellite in October 2003. During March-April 2004, six 5-hour SSMIS under-flights were conducted with the CoSMIR on board the NASA ER-2 aircraft over the coastal region of California. CoSMIR has nine channels at the frequencies of 50.3, 52.8, 53.6, 91.665 (V and H polarization), 150, 183.3+/-1, 183.3+/-3, and 183.3+/-6.6 GHz. All except the two 91.665 GHz channels are horizontally polarized. The instrument was carefully calibrated with LN2 target in the laboratory before the flights. Three of the aircraft flights passed over Lakes Pyramid and Tahoe that could be used to validate the in-flight sensor calibration. Immediately after these flights, an inter-comparison of the calibrated SSMIS and CoSMIR brightness temperatures (T(sub b)) followed. The results showed that, for channels at frequencies 〉 or equal to 91.665 GHz, the SSMIS and CoSMIR T(sub b) values tracked each other very well; for some channels there were some bias with magnitude generally less than 3-4 K (SSMIS values were higher). For the three 50-54 GHz channels, the SSMIS T(sub b) values were higher and frequency-dependent. For the least opaque channel at 50.3 GHz, the SSMIS T(sub b)'s over the ocean surface were higher than those of CoSMIR by more than 20 K under the clear-sky conditions. The most plausible explanation for this to happen is to assume that the 50-54 GHx channels of the SSMIS are vertically polarized. This assumption appears to be consistent with independent radiative transfer calculations. Attempts to estimate vertically polarized radiometric responses for 50-54 GHz channels of the SSMIS based on the CoSMIR observations are not plausible and results not reliable because of the highly variable ocean surface conditions (e.g., wind-induced emissivity changes). A conversion of the CoSMIR 50-54 GHz channels from horizontal to vertical polarization, and a subsequent repetition of the SSMIS under-flights are the right approach for the calibration/validation of the 50-54 GHz channels of the SSMIS. Details of the SSMIS-CoSMIR inter-comparison will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Specail Sensor Microwave/Imager/Sounder (SSMIS) Calibration/Validation Meeting; Jun 28, 2004 - Jun 30, 2004; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The MODerate Resolution Imaging Spectroradiometer (MODIS) is one of the key instruments for the NASA s Earth Observing System (EOS). It is currently operating on both EOS Terra and Aqua satellites. The MODIS is a major advance over its heritage sensors in terms of its spectral, spatial, and temporal resolutions with frequent global observations and a broad range of science applications. There are 20 reflective solar bands (RSB) with center wavelengths ranging from 0.41 to 2.l microns and 16 thermal emissive bands (TEB) from 3.7 to 14.4 microns. The absolute radiometric accuracy requirements (lsigma) at the typical spectral radiance levels are plus or minus 2% for the RSB reflectance factors and plus or minus 5% for the RSB radiance products. With few exceptions, the TEB requirements are plus or minus 1%. To verify that the instruments met their specified design requirements both Terra and Aqua MODIS underwent extensive pre-launch calibration and characterization at various levels, including system-level thermal vacuum testing. On-orbit calibration and characterization are performed by the on-board calibrators: a solar diffuser (SD) and a solar diffuser stability monitor (SDSM), a V-groove flat panel blackbody (BB), and a spectro-radiometric calibration assembly (SRCA). In this paper, we present an overview of MODIS calibration and characterization activities, methodologies, and lessons learned from pre-launch testing and on-orbit operations. Key issues to be discussed include our on-orbit efforts of monitoring detectors noise characterization, tracking solar diffuser and optics degradation, and updating sensor s response versus scan-angle. The MODIS experience has provided invaluable lessons that are being used in designing and testing the Visible Infrared Imaging Radiometer Suite (VIIRS), a direct follow-on to the MODIS that will be flown on the National Polar-Orbit Operational Environmental Satellite System (NPOESS) missions.
    Keywords: Earth Resources and Remote Sensing
    Type: Third International Ocean-Atmosphere Conference; Jun 27, 2004 - Jun 30, 2004; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-18
    Description: NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
    Keywords: Earth Resources and Remote Sensing
    Type: Presentation at Scientific COmmittee on Antarctic Research (SCAR) Conference; Jul 24, 2004 - Jul 31, 2004; Bremen; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-18
    Description: The EOS-Aura Mission is designed to answer three basic questions concerning the Earth's atmosphere: 1) Is stratospheric ozone recovering as predicted, 2) what are the processes that control air quality, and 3) how is changes in atmospheric chemistry effecting climate? Aura's four instruments work synergistically and are dedicated to answering these questions. Aura's instruments observe from the ultraviolet to the microwave region and view in the nadir and limb. This capability allows measurements of all the critical source, radical, and reservoir gases in the stratosphere to be observed globally on a daily basis. Aura will also continue the TOMS global ozone trend record. Observations in the troposphere will be conducted with the best spatial resolution and coverage ever achieved from space. Key pollutants, including aerosols, gases, and their precursors are the primary targets for Aura. High vertical resolution measurements will be made in the vicinity of the tropopause to better define the interactions of the UT/LS and particularly determine the amount downward transport of ozone and upward transport.of water vapor where both contribute to climate forcing. Aura will also measure aerosols in the stratosphere and troposphere where they play a role in ozone chemistry, air quality and climate. Aura data will be used by several environmental agencies for their decision support systems. Aura post launch validation program includes an augmented ground based measurement program which include the operational networks which measure atmospheric composition. Validation will be conducted under a range of geophysical conditions and throughout most of Aura s observing range. Balloon campaigns will conducted from a variety of latitudes and numerous aircraft missions are planned to cover an altitude range from the middle troposphere to the lower stratosphere and include in-situ and remote sensors. Long duration Un-inhabited aircraft are also being considered as part of the validation program. Substantial collaboration is planned with other chemistry satellite missions such as Envisat, SciSat, and Odin in order to make efficient use of resources and to provide continuity among these missions.
    Keywords: Earth Resources and Remote Sensing
    Type: 35th COSPAR Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. Currently a MODIS polarization ray trace model has been created which models the thin film structure on the optical elements. This approach is described and modeled and measured instrument polarization sensitivity results presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Conference on Characterization and Radiometry Calibration for Remote Sensing; Aug 01, 2004; UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: MODIS, one of the key instruments for the NASA's Earth Observing System (EOS), is currently operating on both the Terra and Aqua spacecraft making continuous observations in 36 spectral bands from 0.4 to 14.4 micrometers. A complete suite of on-board calibrators (OBC) have been designed for the instruments' on-orbit calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEZB), and a spectro-radiometric calibration assembly (SRCA) for the sensors' spatial and spectral characterization. The task of continuously performing high quality on-orbit calibration and characterization of all 36 spectral bands with a total of 490 detectors located on four focal plane assemblies is extremely challenging. The use of a large two-sided paddle wheel scan mirror with a +/- 55 deg scan angle range and a retractable pinhole attenuation screen in front of the SD panel for calibrating the high gain bands have resulted in additional unanticipated complexity. In this paper, we describe some of the key issues in the Terra and Aqua MODIS on-orbit calibration and characterization, and discuss the methods developed to solve these problems or to reduce their impact on the Level 1B calibration algorithms. Instrument performance and current issues are also presented.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: A TRMM-based 3-hr analyses that uses TRMM observations to calibrate polar-orbit microwave observations from SSM/I (and other satellites, including AMSR on AQUA and ADEOS II) and geosynchronous IR observations is described. The various calibrated observations are combined into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present) in 2003 as product 3B-42 of the TRMM Version 6. A real-time version of this merged product is being produced and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 degrees latitude-longitude resolution over the latitude range from 50 degrees N-50 degrees S. Examples will be shown, including its use in monitoring flood conditions and in relating weather-scale patterns to climate-scale patterns. Incorporation of this approach into the Global Precipitation Climatology Project (GPCP) will also be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: The New Rain Rate Retrieval Algorithms; Mar 10, 2003 - Mar 11, 2003; Osaka; Japan|AMSR Workshops and Symposium; Mar 12, 2003 - Mar 14, 2003; Awajishima; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: The high volume of Earth Observing System data has proven to be challenging to manage for data centers and users alike. At the Goddard Earth Sciences Distributed Active Archive Center (GES DAAC), about 1 TB of new data are archived each day. Distribution to users is also about 1 TB/day. A substantial portion of this distribution is MODIS calibrated radiance data, which has a wide variety of uses. However, much of the data is not useful for a particular user's needs: for example, ocean color users typically need oceanic pixels that are free of cloud and sun-glint. The GES DAAC is using a simple Bayesian classification scheme to rapidly classify each pixel in the scene in order to support several experimental content-based data services for near-real-time MODIS calibrated radiance products (from Direct Readout stations). Content-based subsetting would allow distribution of, say, only clear pixels to the user if desired. Content-based subscriptions would distribute data to users only when they fit the user's usability criteria in their area of interest within the scene. Content-based cache management would retain more useful data on disk for easy online access. The classification may even be exploited in an automated quality assessment of the geolocation product. Though initially to be demonstrated at the GES DAAC, these techniques have applicability in other resource-limited environments, such as spaceborne data systems.
    Keywords: Earth Resources and Remote Sensing
    Type: NASA''s Earth Science Technology Conference; Jun 22, 2004 - Jun 24, 2004; Palo Alto, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using the MIR measurements at 183.3 and 340 GHZ are currently in progress, and the results will be compared with those derived from the ACR reflectivity profiles. Implication from this comparison will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 2004; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to the Far East and down to Beijing and Bangkok. Zooms through the Cosmos to the site of the 2004 Summer Olympic games in Athens using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of typhoons/hurricanes and fires in California and around the planet. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual greening of the northern hemisphere land masses and Oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & Oceans are shown. See the currents and vortexes in the Oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Nino/La Nina climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, showing population concentrations in the US, Africa, and Asia observed by the "night-vision" DMSP satellite.
    Keywords: Earth Resources and Remote Sensing
    Type: Electronic Theater Presentation; Oct 27, 2004 - Nov 14, 2004; Bangkok; Thailand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: Validation of SCIAMACHY data products are is key element for the detecting a stratospheric ozone recovery, which is a high priority for environmental research and environmental policy. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be an effective means for correcting long term drifts of backscatter type satellite measurements such as SCIAMACHY and can be used to cross calibrate all BUV instruments in orbit (TOMS, SBUV/2, GOME, OMI, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. In addition to comparing radiances, validation of SCIAMACHY ozone products will conducted by comparing total and profile ozone with TOMS and SBUV/2.
    Keywords: Earth Resources and Remote Sensing
    Type: 2nd Workshop on Atmospheric Chemistry Validation; May 03, 2004 - May 07, 2004; Frascati; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Each MODIS has 20 reflective solar bands (RSB) with center wavelengths ranging from 0.41 to 2.1 micrometers and 16 thermal emissive bands (TEB) from 3.7 to 14.4 micrometers. The absolute radiometric accuracy requirements (1 sigma) at the typical spectral radiance levels are plus or minus 2% for the RSB for the RSB reflectance factors and plus or minus 5% for the RSB radiance products. With few exceptions, the TEB requirements are plus or minus 1%. The sensor's on-orbit radiometric calibration is performed by the on-board calibrators, including a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a V-groove flat panel blackbody (BB) for the TEB. In addition, the Moon has been extensively used by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. This paper presents MODIS lunar calibration methodology and inter-comparison of Terra and Aqua MODIS in the VIS/NIR spectral regions. Current results from lunar observations show that the calibration difference between the two sensors is less than plus or minus 1%. Also discussed in this paper are the approaches and results of inter-comparison of Terra and Aqua MODIS in the TEB using closely matched thermal infrared (TIR) channels on the Advanced Very High Resolution Radiometer (AVHRR) at 11 and 12 micrometers.
    Keywords: Earth Resources and Remote Sensing
    Type: CEOS-IVOS Workshop on the Intercomparison of Large Scale Optical Sensors; Oct 12, 2004 - Oct 14, 2004; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.
    Keywords: Earth Resources and Remote Sensing
    Type: 13th Conference on Satellite Meteorology and Oceanography; Sep 20, 2004 - Sep 24, 2004; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-18
    Description: Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are included in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0011-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: The National Aeronautics and Space Administration established the framework for the Science Investigator-led Processing Systems (SIPS) to enable the Earth science data products to be produced by personnel directly associated with the instrument science team and knowledgeable of the science algorithms. One of the first instantiations implemented for NASA was the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) SIPS. The AMSR-E SIPS is a decentralized, geographically distributed ground data processing system composed of two primary components located in California and Alabama. Initial science data processing is conducted at Remote Sensing Systems (RSS) in Santa Rosa, California. RSS ingests antenna temperature orbit data sets from JAXA and converts them to calibrated, resampled, geolocated brightness temperatures. The brightness temperatures are sent to the Global Hydrology and Climate Center in Huntsville, Alabama, which generates the geophysical science data products (e.g., water vapor, sea surface temperature, sea ice extent, etc.) suitable for climate research and applications usage. These science products are subsequently sent to the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado for archival and dissemination to the at-large science community. This paper describes the organization, coordination, and production techniques employed by the AMSR-E SIPS in implementing, automating and operating the distributed data processing system.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Optical Science and Technology 49th Annual Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-18
    Description: Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. The current MODIS polarization modeling effort is discussed in the context and limitations of past modeling efforts.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE-Optical Science and Technology Annual Meeting; Aug 02, 2004 - Aug 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-18
    Description: Land observations by the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), particularly of soil and vegetation moisture changes, have numerous applications in hydrology, ecology and climate. Quantitative retrieval of soil and vegetation parameters relies on accurate calibration of the brightness temperature measurements. Analyses of the spectral and polarization characteristics of early versions of the AMSR-E data revealed significant calibration biases over land at 6.9 GHz. The biases were estimated and removed in the current archived version of the data Radiofrequency interference (RFI) observed at 6.9 GHz is more difficult to quanti@ however. A calibration analysis of AMSR-E data over land is presented in this paper for a complete annual cycle from June 2002 through September 2003. The analysis indicates the general high quality of the data for land applications (except for RFI), and illustrates seasonal trends of the data for different land surface types and regions.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-18
    Description: The ability to use data stored in the current Earth Observing System (EOS) archives for studying regional or global phenomena is highly dependent on having a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time- consuming task that must be undertaken before the core investigation can begin. This is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets that are usually of different formats, structures, and resolutions, for example, when preparing data for input into modeling systems. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step towards meeting this challenge by developing an infrastructure with a Web interface that allows users to perform interactive analysis online without downloading any data, the GES-DISC Interactive Online Visualization and Analysis Infrastructure or "Giovanni." Giovanni provides interactive, online, analysis tools for data users to facilitate their research. There have been several instances of this interface created to serve TRMM users, Aerosol scientists, Ocean Color and Agriculture applications users. The first generation of these tools support gridded data only. The user selects geophysical parameters, area of interest, time period; and the system generates an output on screen in a matter of seconds. The currently available output options are: Area plot averaged or accumulated over any available data period for any rectangular area; Time plot time series averaged over any rectangular area; Time plots image view of any longitude-time and latitude-time cross sections; ASCII output for all plot types; Image animation for area plot. In the future, we will add correlation plots, GIS-compatible outputs, etc. This allow user to focus on data content (i.e. science parameters) and eliminate the need for expensive learning, development and processing tasks that are redundantly incurred by an archive's user community. The current implementation utilizes the GrADS-DODS Server (GDS), a stable, secure data server that provides subsetting and analysis services across the Internet for any GrADS-readable dataset. The subsetting capability allows users to retrieve a specified temporal and/or spatial subdomain from a large dataset, eliminating the need to download everything simply to access a small relevant portion of a dataset. The analysis capability allows users to retrieve the results of an operation applied to one or more datasets on the server. In our case, we use this approach to read pre-processed binary files and/or to read and extract the needed parts from HDF or HDF-EOS files. These subsets then serve as inputs into GrADS processing and analysis scripts. It can be used in a wide variety of Earth science applications: climate and weather events study and monitoring; modeling. It can be easily configured for new applications.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 AGU Fall Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-18
    Description: Verification of a stratospheric ozone recovery remains a high priority for environmental research and policy definition. Models predict an ozone recovery at a much lower rate than the measured depletion rate observed to date. Therefore improved precision of the satellite and ground ozone observing systems are required over the long term to verify its recovery. We show that validation of satellite radiances from space and from the ground can be a very effective means for correcting long term drifts of backscatter type satellite measurements and can be used to cross calibrate all B W instruments in orbit (TOMS, SBW/2, GOME, SCIAMACHY, OM, GOME-2, OMPS). This method bypasses the retrieval algorithms used for both satellite and ground based measurements that are normally used to validate and correct the satellite data. Radiance comparisons employ forward models and are inherently more accurate than inverse (retrieval) algorithms. This approach however requires well calibrated instruments and an accurate radiative transfer model that accounts for aerosols. TOMS and SCIAMACHY calibrations are checked to demonstrate this method and to demonstrate applicability for long term trends.
    Keywords: Earth Resources and Remote Sensing
    Type: International Quadrennial Ozone Symposium (QOS 2004); Jun 01, 2004 - Jun 08, 2004; Kos; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-18
    Description: The research described in this chapter demonstrates a method for using Landsat Thematic Mapper data to estimate instantaneous regional-scale energy fluxes over an arid valley in eastern Nevada, U.S.A. Here point-based models of surface energy and water balance fluxes were applied to individual pixels of a Landsat Thematic Mapper scene over the study area. Although the method used to estimate these instantaneous fluxes requires certain assumptions be made about the spatial distribution of several physical parameters, the results from this analysis and modeling suggest that it is possible to scale from point measurements of environmental state variables (i.e., net radiation flux, surface heat flux, sensible heat flux, and latent heat flux) to regional estimates of energy exchange to obtain an understanding of the spatial relationship between these fluxes and landscape variables.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-18
    Description: NASA's Global Change Master Directory (GCMD) assists the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 13,800 data set descriptions in Directory Interchange Format (DIF) and 700 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information and direct links to the data, thus allowing researchers to discover data pertaining to a geographic location of interest, then quickly acquire those data. The GCMD strives to be the preferred data locator for world-wide directory-level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are attracting widespread usage; however, a need for tools that are portable, customizable and versatile still exists. With tool usage directly influencing metadata population, it has become apparent that new tools are needed to fill these voids. As a result, the GCMD has released a new authoring tool allowing for both web-based and stand-alone authoring of descriptions. Furthermore, this tool incorporates the ability to plug-and-play the metadata format of choice, offering users options of DIF, SERF, FGDC, ISO or any other defined standard. Allowing data holders to work with their preferred format, as well as an option of a stand-alone application or web-based environment, docBUlLDER will assist the scientific community in efficiently creating quality data and services metadata.
    Keywords: Earth Resources and Remote Sensing
    Type: AAG Conference; Mar 14, 2004 - Mar 19, 2004; Philadelphia, PA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-18
    Description: The MODIS instrument relies on solar calibration to achieve the required radiometric accuracy. This solar calibration occurs as the TERRA spacecraft comes up over the North Pole. The earth underneath the spacecraft is still dark for approximately one minute and the sun is just rising over the earth's north polar regions. During this time the sun moves through about 4 degrees, the scan mirror rotates about 19 times and about 50 frames (exposures) are made of the white solar diffuser. For some of MODIS'S bands the brightness of the screen is reduced, to prevent detector saturation, by means of a pinhole screen, which produces approximately 600 pinhole images of the sun within the field of view of any one detector. Previous attempts at creating a detailed radiometric model of this calibration scenario produced intensity variations on the focal planes with insufficient detail to be useful. The current computational approach produces results, which take into account the motion of the sun and the scan mirror and produces variations, which strongly resemble the observed focal plane intensity variations. The computational approach and results and a comparison with actual observational data are presented.
    Keywords: Earth Resources and Remote Sensing
    Type: SPIE Conference; Oct 02, 2004 - Oct 06, 2004; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-18
    Description: I shall describe several distinct modes in which AERONET data are used in conjunction with MODIS data to evaluate the global aerosol system and its impact on climate. These includes: 1) Evaluation of the aerosol diurnal cycle not available from MODIS, and the relationship between the aerosol properties derived from MODIS and the daily average of these properties; 2) Climatology of the aerosol size distribution and single scattering albedo. The climatology is used to formulate the assumptions used in the MODIS look up tables used in the inversion of MODIS data; 3) Measurement of the aerosol effect on irradiation of the surface, this is used in conjunction with the MODIS evaluation of the aerosol effect at the TOA; and 4) Assessment of the aerosol baseline on top off which the satellite data are used to find the amount of dust or anthropogenic aerosol.
    Keywords: Earth Resources and Remote Sensing
    Type: AERONET Workshop; May 10, 2004 - May 14, 2004; El Arenosilo; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-18
    Description: MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The TOMS instrument was launched on the Nimbus-7 satellite in Oct 1978 with the goal of understanding the meteorological influences on the ozone column. The nominal lifetime of the instrument was 1 year. However, in response to the concern over possible man-made influences on the ozone layer NASA continued to nurse the instrument for 13.5 years and launched a major program to produce accurate trend quality dataset of ozone. Despite severe optical degradation and other significant anomalies that developed in the instrument over its lifetime, the effort turned out to be a tremendous success. In 1984, TOMS took center stage as the primary provider of Antarctic ozone hole maps to the world community; it continues to play that role until today. An unexpected benefit of the close attention paid to improving the TOMS data quality was that several atmospheric constituents that interfere with ozone measurement were also identified and meticulously converted into long-term datasets of their own. These constituents include clouds, volcanic S02, aerosols, and ocean phytoplankton. In addition, the high quality of the basic datasets made it possible to produce global maps of surface UV and tropospheric ozone. In most cases there are no other sources of these data sets. Advanced UV instruments currently under development in the US and Europe will continue to exploit the TOMS-developed techniques for several decades.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall AGU 2003 Meeting; Dec 08, 2003 - Dec 12, 2003; San Fransico, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The Advanced Life Support (ALS) Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Confounding the problem, the rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the rate at which new configurations are developed is slow, limiting the search space and potentially giving the perspective of a ALS technology, the ALS Metric may remain elusive. This paper is a sequel to a paper published in the proceedings of the 2003 ICES conference entitled, "Managing to the metric: an approach to optimizing life support costs." The conclusions of that paper state that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions. Certainly, these areas potentially offer large potential benefits to future ALS missions; however, the ALS Metric is not the only decision-making tool available to the community. To facilitate decision-making within the ALS community a combination of metrics should be utilized, such as the Equivalent System Mass (ESM)-based ALS metric, but also those available through techniques such as life cycle costing and faithful consideration of the sensitivity of the assumed models and data. Often a lack of data is cited as the reason why these techniques are not considered for utilization. An existing database development effort within the ALS community, known as OPIS, may provide the opportunity to collect the necessary information to enable the proposed systems analyses. A review of these additional analysis techniques is provided, focusing on the data necessary to enable these. The discussion is concluded by proposing how the data may be utilized by analysts in the future.
    Keywords: Man/System Technology and Life Support
    Type: 34rd International conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.
    Keywords: Earth Resources and Remote Sensing
    Type: Mesoamerican Environmental Information System-NASA Monitoring and Visualization System Workshop; Jul 10, 2004 - Jul 17, 2004; Panama City; Panama
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: This slide presentation presents an overview of work system requirements, extravehicular activity system evolution, key issues, future needs, and a summary. Key issues include pressure suits, life support systems, system integration, biomedical requirements, and work and mobility aids.
    Keywords: Man/System Technology and Life Support
    Type: Speech at Naval Undersea Museum; Apr 21, 2004; Silverdale, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save considerable time and money and is suitable in many process applications throughout industry.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2004-026
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: Space weather can be defined as the total ensemble of radiation in space, as well as on the surface of moons and asteroids. It consists of electromagnetic, charged-particle, and neutral particle radiation. The fundamental goal behind this NIAC Phase I research is to investigate methods of generating a static electric-field potential phi(x, y, z) in the volume above and around a "safe" or protected area on the lunar surface so that trajectories of harmful charged particle radiation are modified (deflected or reflected), thus creating a shadow over that region. Since the charged particles are not neutralized but merely redirected, there will be areas outside of the shadowed protected region that will have a higher flux concentration of radiation. One of the fundamental limitations of the static electric (electrostatic)-field approach to radiation shielding is that complete shadowing is accomplished only by complete reflection, which can only occur for shield voltages greater than or equal to the kinetic energy (in electron volts) of the incoming charged particles. Just as habitats on Earth are protected from severe weather events and conditions, such as extreme temperatures, high winds, and UV radiation, using multiple methods of shielding protection from severe space weather will undoubtedly require multiple strategies. The electrostatic shield concept may be one of many methods employed to protect astronaut habitats on the lunar surface from some of the harmful effects of space weather.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2005-023
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes through a bearing plate; a load cell is slid onto that end, and then the nut to be tested is threaded onto that end and tightened until the nut and load cell press gently against the bearing plate.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23159 , NASA Tech Briefs, September 2004; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: A proposed technique for locating concealed objects (especially small antipersonnel land mines) involves the acquisition and processing of spectral signatures over broad microwave frequency bands. This technique was conceived to overcome the weaknesses of older narrow- band electromagnetic techniques like ground-probing radar and low-frequency electromagnetic induction. Ground-probing radar is susceptible to false detections and/or interference caused by rocks, roots, air pockets, soil inhomogeneities, ice, liquid water, and miscellaneous buried objects other than those sought. Moreover, if the radar frequency happens to be one for which the permittivity of a sought object matches the permittivity of the surrounding soil or there is an unfavorable complex-amplitude addition of the radar reflection at the receiver, then the object is not detected. Low-frequency electromagnetic induction works well for detecting metallic objects, but the amounts of metal in plastic mines are often too small to be detectable. The potential advantage of the proposed technique arises from the fact that wideband spectral signatures generally contain more relevant information than do narrow-band signals. Consequently, spectral signatures could be used to make better decisions regarding whether concealed objects are present and whether they are the ones sought. In some cases, spectral signatures could provide information on the depths, sizes, shapes, and compositions of objects. An apparatus to implement the proposed technique (see Figure 1) could be assembled from equipment already in common use. Typically, such an apparatus would include a radio-frequency (RF) transmitter/receiver, a broad-band microwave antenna, and a fast personal computer loaded with appropriate software. In operation, the counter would be turned on, the antenna would be aimed at the ground or other mass suspected to contain a mine or other sought object, and the operating frequency would be swept over the band of interest.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22839 , NASA Tech Briefs, September 2004; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31316-1 , NASA Tech Briefs, September 2004; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: A prototype improved external cavity laser (ECL) was demonstrated in the second phase of a continuing effort to develop wavelength-agile lasers for fiber-optic communications and trace-gas-sensing applications. This laser is designed to offer next-generation performance for incorporation into fiber-optic networks. By eliminating several optical components and simplifying others used in prior designs, the design of this laser reduces costs, making lasers of this type very competitive in a price-sensitive market. Diode lasers have become enabling devices for fiber optic networks because of their cost, compactness, and spectral properties. ECLs built around diode laser gain elements further enhance capabilities by virtue of their excellent spectral properties with significantly increased (relative to prior lasers) wavelength tuning ranges. It is essential to exploit the increased spectral coverage of ECLs while simultaneously insuring that they operate only at precisely defined communication channels (wavelengths). Heretofore, this requirement has typically been satisfied through incorporation of add-in optical components that lock the ECL output wavelengths to these specific channels. Such add-in components contribute substantially to the costs of ECL lasers to be used as sources for optical communication networks. Furthermore, the optical alignment of these components, needed to attain the required wavelength precision, is a non-trivial task and can contribute substantially to production costs. The design of the present improved ECL differs significantly from the designs of prior ECLs. The present design relies on inherent features of components already included within an ECL, with slight modifications so that these components perform their normal functions while simultaneously effecting locking to the required discrete wavelengths. Hence, add-in optical components and the associated cost of alignment can be eliminated. The figure shows the locking feedback signal, and the frequency locking achieved by use of this signal, as a mirror is tilted through a range of angles to tune the ECL through 48 channels. The data for the frequency plot were obtained, simultaneously with the data for the locking-signal plot, by using a scanning Michelson interferometer to precisely determine the ECL wavelength (and, hence, frequency). Given the ability of the Michelson interferometer to obtain highly precise readings, the frequency plot can be taken to be a reliable indication of single-mode operation. The discontinuities in the frequency plot signify the switching of the ECL between channels; in other words, they indicate tuning with locking to discrete frequencies. The peaks of the feedbacklocking signal correspond to the centers, or near centers, of the mirror angle scan through the corresponding channels. Thus, it is clear that when the feedback-locking signal is at a local maximum, the ECL is operating at single frequency at or near the middle frequency of the selected channel. This is all that is required for precisely locking the ECL output wavelength. The locking is achieved without additional external optical components.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17313-1 , NASA Tech Briefs, September 2004; 28-29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40282 , NASA Tech Briefs, September 2004; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...