ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: A tool makes it possible to couple a torque wrench to an externally knurled, internally threaded, round cable connector. The purpose served by the tool is to facilitate the tightening of multiple such connectors (or the repeated tightening of the same connector) to repeatable torques. The design of a prior cable-connector/ torque-wrench coupling tool provided for application of the torque-wrench jaws to a location laterally offset from the axis of rotation of the cable connector, making it necessary to correct the torque reading for the offset. Unlike the design of the prior tool, the design of the present tool provides for application of the torque-wrench jaws to a location on the axis of rotation, obviating correction of the torque reading for offset. The present tool (see figure) consists of a split collet containing a slot that provides clearance for inserting and bending the cable, a collet-locking sleeve, a collet-locking nut, and a torque-wrench adaptor that is press-fit onto the collet. Once the collet is positioned on the cable connector, the collet-locking nut is turned to force the collet-locking sleeve over the collet, compressing the collet through engagement of tapered surfaces on the outside of the collet and the inside of the locking sleeve. Because the collet is split and therefore somewhat flexible, this compression forces the collet inward to grip the connector securely. The torque wrench is then applied to the torque-wrench adaptor in the usual manner for torquing a nut or a bolt.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, July 2006; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A method was developed for cutting a fabric structural member in an inflatable module, without damaging the internal structure of the module, using linear shaped charge. Lexan and magnets are used in a charge holder to precisely position the linear shaped charge over the desired cut area. Two types of charge holders have been designed, each with its own backing plate. One holder cuts fabric straps in the vertical configuration, and the other charge holder cuts fabric straps in the horizontal configuration.
    Keywords: Chemistry and Materials (General)
    Type: MSC-24529-1 , NASA Tech Briefs, April 2013; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes through a bearing plate; a load cell is slid onto that end, and then the nut to be tested is threaded onto that end and tightened until the nut and load cell press gently against the bearing plate.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23159 , NASA Tech Briefs, September 2004; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A method of testing explosive and pyrotechnic devices involves exploding the devices inside swell sleeves. Swell sleeves have been used previously for measuring forces. In the present method, they are used to obtain quantitative indications of the energy released in explosions of the devices under test. A swell sleeve is basically a thick-walled, hollow metal cylinder threaded at one end to accept a threaded surface on a device to be tested (see Figure 1). Once the device has been tightly threaded in place in the swell sleeve, the device-and-swell-sleeve assembly is placed in a test fixture, then the device is detonated. After the explosion, the assembly is removed from the test fixture and placed in a coordinate-measuring machine for measurement of the diameter of the swell sleeve as a function of axial position. For each axial position, the original diameter of the sleeve is subtracted from the diameter of the sleeve as swollen by the explosion to obtain the diametral swelling as a function of axial position (see Figure 2). The amount of swelling is taken as a measure of the energy released in the explosion. The amount of swelling can be compared to a standard amount of swelling to determine whether the pyrotechnic device functioned as specified.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23306 , NASA Tech Briefs, February 2003; 34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Description: An adapter for installing a connector to a terminal post, wherein the connector is attached to a cable, is presented. In an embodiment, the adapter is comprised of an elongated collet member having a longitudinal axis comprised of a first collet member end, a second collet member end, an outer collet member surface, and an inner collet member surface. The inner collet member surface at the first collet member end is used to engage the connector. The outer collet member surface at the first collet member end is tapered for a predetermined first length at a predetermined taper angle. The collet includes a longitudinal slot that extends along the longitudinal axis initiating at the first collet member end for a predetermined second length. The first collet member end is formed of a predetermined number of sections segregated by a predetermined number of channels and the longitudinal slot.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...