ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2019-07-18
    Description: Sunlight reflected from the earth is, to a certain extent, polarized. Radiometers, such as the MODIS instrument on board the TERRA and AQUA spacecraft, are to a certain extent polarizers. Accurate radiometric measurements must take into account both the polarization state of the scene and the polarization sensitivity of the measuring instrument. The measured polarization characteristics of the MODIS instruments are contained in various radiometric models. Continued use of these radiometric math models, over a number of years, have shown where these models can be improved. Currently a MODIS polarization ray trace model has been created which models the thin film structure on the optical elements. This approach is described and modeled and measured instrument polarization sensitivity results presented.
    Keywords: Earth Resources and Remote Sensing
    Type: 2004 Conference on Characterization and Radiometry Calibration for Remote Sensing; Aug 01, 2004; UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra Mission began to produce data in February 2000. Now a little over 2 years from that time, the instrument continues to produce good data and products for land, oceans, and atmospheres studies are reaching or achieved maturity for science and applications studies. All subsystems of the instrument are performing as expected: the signal-to-noise (S/N) performance meets or exceeds specifications, band-to-band registration meets specifications, geodetic registration of observations is nearing 50 meters (one sigma) and the spectral bands are located where they were intended to be pre-launch and attendant gains and offsets are stable to date. Some problems with electronic noise, optical leaks, etc. have been identified and solutions to compensate or eliminate these effects have been successful. The data systems have produced a complete year or more for all data products extending from November 2000. Efforts are underway to provide data sets for the greater Earth science community and to improve access to these products at the various Distributed Active Archive Centers (DAAC's). The MODIS instrument on the EOS Aqua mission should also be expected to be in orbit and functioning in the Spring of 2002.
    Keywords: Earth Resources and Remote Sensing
    Type: Invited Talk at Los Alamos National Laboratory; May 14, 2002; Los Alamos, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NPP Visible Infrared Imaging Radiometer Suite (VIIRS) test program at the instrument and observatory level is complete and has provided an extensive amount of high quality data to enable the assessment of sensor performance.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: GSFC.CPR.5133.2011 , CALCON Technical Conference on Characterization and Radiometric Calibration for Remote Sensing; Aug 29, 2011 - Sep 01, 2011; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Restoring Terra MODIS LWIR spectral band calibration and data quality using improved crosstalk correction algorithm and coefficients derived from on-orbit lunar observations.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Two nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) have successfully operated onboard the Terra and Aqua spacecraft for more than II years and 9 years since their launch in December 1999 and May 2002, respectively. MODIS is a key instrument for the NASA's Earth Observing System (EOS) missions. MODIS observations have produced an unprecedented amount and a broad range of data products and significantly benefited the science and user community. Its follow-on instrument, the Visible/Infrared Imager Radiometer Suite (VIIRS) on-board the NPOESS Preparatory Project (NPP) spacecraft, is currently scheduled for launch in late October, 2011. The NPP serves as a bridge mission between EOS and the Joint Polar Satellite System (JPSS). MODIS collects data in 36 spectral bands, covering spectral regions from visible (VIS) to long-wave infrared (L WIR), and at three different spatial resolutions. Because of its stringent design requirements, MODIS was built with a complete set of onboard calibrators, including a solar diffuser (SO), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectroradiometric calibration assembly (SRCA), and a space view (SV) port. Except for tbe SRCA, VIlRS carries the same set of onboard calibrators as MODIS. The SD/SDSM system is used together to calibrate tbe reflective solar bands (RSB). The BB is designed for the thermal emissive bands (TEB) calibration. Similar to Terra and Aqua MODIS, VIlRS will also make regular lunar observations to monitor RSB radiometric calibration stability. In this paper, we provide an overview of MODIS on-orbit operation and calibration activities and present issues identified and lessons learned from mission-long instrument operations and implementation of various calibration and characterization strategies. Examples of both Terra and Aqua MODIS instrument on-orbit performance, including their similarities and unique characteristics, are discussed in tbe context of what might be expected from and benefited to tbe NPP VIlRS operation and calibration. It is anticipated that MODIS experience and lessons will also provide valuable information for other earth observing missions/sensors.
    Keywords: Space Radiation
    Type: GSFC.ABS.5964.2012 , American Meteorological Society (AMS) Annual Meeting; Jan 22, 2012 - Jan 26, 2012; New Orlearns, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.
    Keywords: Instrumentation and Photography
    Type: GSFC.ABS.6923.2012 , 2012 Optics + Photonics; Aug 12, 2012 - Aug 16, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda 〈 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda 〉 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by 〉 10%, which is a large change.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41254 , Ocean Sensing and Monitoring VIII; Apr 17, 2016 - Apr 21, 2016; Baltimore, MD; United States|SPIE Proceedings ; 9827; 98270Y
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Terra MODIS has been known since pre-launch to have polarization sensitivity, particularly in shortest-wavelength bands 8 and 9. On-orbit reflectance trending of pseudo-invariant sites show a variation in reflectance as a function of band and scan mirror angle of incidence consistent with time-dependent polarization effects from the rotating double-sided scan mirror. The MODIS Characterization Support Team [MCST] estimates the Mueller matrix trending from this variation as observed from a single desert site, but this effect is not included in Collection 6 [C6] calibration. Here we extend the MCSTs current polarization sensitivity monitoring to two ocean sites distributed over latitude to helpestimate the uncertainties in the derived Mueller matrix. The Mueller matrix elements derived for polarization-sensitive Band 8 for a given site are found to be fairly insensitive to surface brdf modeling. The site-to-site variation is a measure of the uncertainty in the Mueller estimation.Results for band 8 show that the polarization correction reduces mirror-side striping by up to 50% and reduces the instrument polarization effect on reflectance time series of an ocean target.
    Keywords: Optics; Numerical Analysis; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41546 , Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) (ISSN 0277-786X) (e-ISSN 1996-756X); 9827; 98270V|SPIE Ocean Sensing and Monitoring; Apr 19, 2016 - Apr 20, 2016; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...