ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Physical Review E, Kunming, China, 3-4, vol. 60, no. 4, pp. 4843-4850, pp. B05301, (ISSN: 1340-4202)
    Publication Date: 1999
    Keywords: Diffusion ; Scattering ; Plane waves ; Wave propagation ; SRICHWALSKI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-25
    Description: Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-11
    Description: Author(s): K. E. Jensen, D. A. Weitz, and F. Spaepen We perform a series of deformation experiments on a monodisperse, hard-sphere colloidal glass while simultaneously following the three-dimensional trajectories of roughly 50000 individual particles with a confocal microscope. In each experiment, we deform the glass in pure shear at a constant strain... [Phys. Rev. E 90, 042305] Published Fri Oct 10, 2014
    Keywords: Colloids and Complex Fluids
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-20
    Description: A positively charged, mixed bilayer vesicle in the presence of negatively charged surfaces (for example, colloidal particles) can spontaneously partition into an adhesion zone of definite area and another zone that repels additional negative objects. Although the membrane itself has nonnegative charge in the repulsive zone, negative counterions on the interior of the vesicle spontaneously aggregate there and present a net negative charge to the exterior. Beyond the fundamental result that oppositely charged objects can repel, this mechanism helps to explain recent experiments on surfactant vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aranda-Espinoza -- Chen -- Dan -- Lubensky -- Nelson -- Ramos -- Weitz -- New York, N.Y. -- Science. 1999 Jul 16;285(5426):394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 USA. Groupe de Dynamique des Phases Condensees, Case 26, Universite de Mo.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10411499" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-01-08
    Description: Dispersions of colloidal particles in cholesteric liquid crystals form an unusual solid by stabilizing a network of linear defects under tension in the ideal layered structure of the cholesteric. The large length scales of the cholesteric liquid crystals allowed direct observation of the network structure, and its properties were correlated with rheological measurements of elasticity. This system serves as a model for a class of solids formed when particles are mixed with layered materials such as thermotropic and lyotropic smectic liquid crystals and block copolymers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zapotocky -- Ramos -- Poulin -- Lubensky -- Weitz -- New York, N.Y. -- Science. 1999 Jan 8;283(5399):209-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9880250" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-04-17
    Description: Crystallization of concentrated colloidal suspensions was studied in real space with laser scanning confocal microscopy. Direct imaging in three dimensions allowed identification and observation of both nucleation and growth of crystalline regions, providing an experimental measure of properties of the nucleating crystallites. By following their evolution, we identified critical nuclei, determined nucleation rates, and measured the average surface tension of the crystal-liquid interface. The structure of the nuclei was the same as the bulk solid phase, random hexagonal close-packed, and their average shape was rather nonspherical, with rough rather than faceted surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gasser, U -- Weeks, E R -- Schofield, A -- Pusey, P N -- Weitz, D A -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):258-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. gasser@deas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303095" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-12-22
    Description: Colloidal particles can form unexpected two-dimensional ordered colloidal crystals when they interact with surfactants of the opposite charge. Coulomb interactions lead to self-limited adsorption of the particles on the surface of vesicles formed by the surfactants. The adsorbed particles form ordered but fluid rafts on the vesicle surfaces, and these ultimately form robust two-dimensional crystals. This use of attractive Coulomb interaction between colloidal particles and surfactant structures offers a potential new route to self-assembly of ordered colloidal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramos -- Lubensky -- Dan -- Nelson -- Weitz -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2325-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA. Department of Chemical Engineering, Drexel University, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600739" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-11-02
    Description: We present an approach to fabricate solid capsules with precise control of size, permeability, mechanical strength, and compatibility. The capsules are fabricated by the self-assembly of colloidal particles onto the interface of emulsion droplets. After the particles are locked together to form elastic shells, the emulsion droplets are transferred to a fresh continuous-phase fluid that is the same as that inside the droplets. The resultant structures, which we call "colloidosomes," are hollow, elastic shells whose permeability and elasticity can be precisely controlled. The generality and robustness of these structures and their potential for cellular immunoisolation are demonstrated by the use of a variety of solvents, particles, and contents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dinsmore, A D -- Hsu, Ming F -- Nikolaides, M G -- Marquez, Manuel -- Bausch, A R -- Weitz, D A -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1006-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and DEAS, Harvard University, Cambridge, MA 02138, USA. dinsmore@physics.umass.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411700" target="_blank"〉PubMed〈/a〉
    Keywords: Adsorption ; *Capsules ; Cell Physiological Phenomena ; Cell Survival ; Cells, Cultured ; Chemistry, Physical ; *Colloids ; Diffusion ; Elasticity ; Emulsions ; Fibroblasts/physiology ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Permeability ; Physicochemical Phenomena ; Polylysine ; Polymethyl Methacrylate ; Surface Properties ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-01-29
    Description: Confocal microscopy was used to directly observe three-dimensional dynamics of particles in colloidal supercooled fluids and colloidal glasses. The fastest particles moved cooperatively; connected clusters of these mobile particles could be identified; and the cluster size distribution, structure, and dynamics were investigated. The characteristic cluster size grew markedly in the supercooled fluid as the glass transition was approached, in agreement with computer simulations; at the glass transition, however, there was a sudden drop in their size. The clusters of fast-moving particles were largest near the alpha-relaxation time scale for supercooled colloidal fluids, but were also present, albeit with a markedly different nature, at shorter beta-relaxation time scales, in both supercooled fluid and glass colloidal phases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weeks -- Crocker -- Levitt -- Schofield -- Weitz -- New York, N.Y. -- Science. 2000 Jan 28;287(5453):627-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Physics and Astro.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10649991" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-05-24
    Description: Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA, kinetic or dynamic arrest, phase separation, percolation and jamming. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood-even the location of the gelation phase boundary is not agreed on. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation-often considered a purely kinetic phenomenon-is in fact a direct consequence of equilibrium liquid-gas phase separation. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation, that corresponds to gelation in models for attractive spheres.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Peter J -- Zaccarelli, Emanuela -- Ciulla, Fabio -- Schofield, Andrew B -- Sciortino, Francesco -- Weitz, David A -- England -- Nature. 2008 May 22;453(7194):499-503. doi: 10.1038/nature06931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Cambridge, Massachusetts 02138, USA. plu@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497820" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...