ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,321)
  • Meteorology and Climatology  (1,274)
  • Astronomy  (1,047)
  • 2005-2009  (2,308)
  • 1945-1949  (13)
  • 1
    Publication Date: 2011-08-26
    Description: The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-01
    Description: The goal of this study was to determine, through modeling, the impact of aircraft emissions on regional air quality, especially in regard to fine particulate matter (PM(2.5)) as well as ozone and other pollutants. For this, we focused on Hartsfield-Jackson Atlanta International Airport which is the busiest airport in the world based on passenger traffic (AIC, 2003). Hartsfield-Jackson serves the metropolitan Atlanta area where air quality does not meet national standards. Emissions from mobile and industrial sources (including several large electric power generating utilities) are the major contributors to the area's air pollution. In this study, we assessed the impact of Hartsfield-Jackson Airport on air quality around Atlanta, Georgia, and compared it to the impacts of other emission sources in the area. The assessment was built upon other, related air quality studies involving both field and modeling components. To achieve the objectives, first a detailed inventory was developed for aircraft and other emissions at Hartsfield-Jackson Atlanta International Airport. Then, air quality simulations were performed to relate these emissions to regional air quality around Atlanta. The Community Multiscale Air Quality Model (CMAQ) was used as the modeling platform. The period of August 11-20 2000 was selected as the episode to be modeled in this study. Prior modeling of this episode during the Fall Line Air Quality Study (FAQS) and availability of additional PM(2.5) measurements for evaluation played a major role in this selection. Meteorological data for this episode as well as emission data for sources other than aircrafts were already available from FAQS.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-05
    Description: The project goals are: Make data analysis faster and cheaper. Increase use of NASA data by removing barriers to data access. Cope with data heterogeneity. Support code reuse and rapid application development. Support multiple applications, users. Including fire and health domains. Improve QOS. Always provide an answer. Tell user how good it is, where it come from.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-26
    Description: .We interpret observations of trace-gases from three satellite platforms to provide top-down constraints on the production of NO by lightning. The space-based observations are tropospheric NO2 columns from SCIAMACHY, tropospheric O3 columns from OMI and MLS, and upper tropospheric HNO3 from ACE-FTS. A global chemical transport model (GEOS-Chem) is used to identify locations and time periods in which lightning would be expected to dominate the trace gas observations. The satellite observations are sampled at those locations and time periods. All three observations exhibit a maximum in the tropical Atlantic region and a minimum in the tropical Pacific. This wave-1 pattern is driven by injection of lightning NO into the upper troposphere over the tropical continents, followed by photochemical production of NO2, HNO3, and O3 during transport. Lightning produces a broad enhancement over the tropical Atlantic and Africa of 2-6 x 10(exp 14) molecules NO2/sq cm, 4 x 10(exp 17) molecules O3/sq cm (15 Dobson Units), and 125 pptv of upper tropospheric HNO3. The lightning background is 25-50% weaker over the tropical Pacific. A global source of 6+/-2 Tg N/yr from lightning in the model best represents the satellite observations of tropospheric NO2, O3, and HNO3.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-26
    Description: Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
    Keywords: Meteorology and Climatology
    Type: MSFC-2190 , 89th American Meteorological Society; 11-15 Jan. 2009; Pheonix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-13
    Description: To meet the goals of extreme weather event warning, this approach couples a modeling and visualization system that integrates existing NASA technologies and improves the modeling system's parallel scalability to take advantage of petascale supercomputers. It also streamlines the data flow for fast processing and 3D visualizations, and develops visualization modules to fuse NASA satellite data.
    Keywords: Meteorology and Climatology
    Type: Computing in Science and Engineering (ISSN 1521-9615); 13; 56; 55-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-09
    Description: Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrophysics is to reproduce (in a realistic way) the physical conditions that exist in the emission and/or absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. This paper will focus on the recent progress made in the laboratory to measure the direct absorption spectra of neutral and ionized PAHs in the gas phase in the near-UV and visible range in astrophysically relevant environments. These measurements provide data on PAHs and nanometer-sized particles that can now be directly compared to astronomical observations. The harsh physical conditions of the IS medium - characterized by a low temperature, an absence of collisions and strong VUV radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. The electronic bands measured for ionized PAH are found to be intrinsically broad (about 20 cm(sup -1)) while the bands associated with the neutral precursors are narrower (of the order of 2 - 10 cm(sup -1)). The laboratory data are discussed and compared with recent astronomical spectra of large and narrow DIBs and with the spectra of circumstellar environments of selected carbon stars and the implications for the interstellar PAH population are derived. Preliminary results also show that carbon nanoparticles are formed during the short residence time of the precursors in the plasma.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at 〈http://www.ncdc.noaa.gov /nexradin/〉. 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, 〈http://www.openchannelfoundation.org/projects/3DRadPlot〉). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.
    Keywords: Meteorology and Climatology
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 52-53; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: We present validation studies of MLS version 2.2 upper tropospheric and stratospheric ozone profiles using ozonesonde and lidar data as well as climatological data. Ozone measurements from over 60 ozonesonde stations worldwide and three lidar stations are compared with coincident MLS data. The MLS ozone stratospheric data between 150 and 3 hPa agree well with ozonesonde measurements, within 8% for the global average. MLS values at 215 hPa are biased high compared to ozonesondes by approximately 20% at middle to high latitude, although there is a lot of variability in this altitude region.
    Keywords: Meteorology and Climatology
    Type: Journal Of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Multiyear estimates of sea ice drift in Baffin Bay and Davis Strait are derived for the first time from the 89 GHz channel of the AMSR-E instrument. Uncertainties in the drift estimates, assessed with Envisat ice motion, are approximately 2-3 km/day. A persistent atmospheric trough, between the coast of Greenland and Baffin Island, drives the prevailing southward drift pattern with average daily displacements in excess of 18-20 km during winter. Over the 5-year record, the ice export ranges between 360 and 675 x 10(exp 3) km(exp 2), with an average of 530 x 10(exp 3) km(exp 2). Sea ice area inflow from the Nares Strait, Lancaster Sound and Jones Sound potentially contribute up to a third of the net area outflow while ice production at the North Water Polynya contributes the balance. Rough estimates of annual volume export give approximately 500-800 km(exp 3). Comparatively, these are approximately 70% and approximately 30% of the annual area and Strait.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340-380 nm irradiances that is comparable to that produced by smoke over Sub-Saharan Africa. Dust activity was very low at Alice Springs during 2004, therefore we were not able to identify strong dust events to fully assess the UVeffect of dust. For the cases studied, smoke aerosols seem to produce a stronger reduction in surface UV irradiances than dust aerosols.
    Keywords: Meteorology and Climatology
    Type: Remote Sensing of Environment: Multi-angle Imaging SpectroRadiometer (MISR) Special Issue; Volume 107; Issues 1-2; 65-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0-30 N and 0-30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of 〈5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) 〉0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission (SIM-PlanetQuest), operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-analog extra-solar planets as well as a wealth of important astrophysics. Results from SIM will permit the determination of stellar masses to accuracies of 2% or better for objects ranging from brown dwarfs through main sequence stars to evolved white dwarfs, neutron stars, and black holes. Studies of star clusters will yield age determinations and internal dynamics. Microlensing measurements will present the mass spectrum of the Milky Way internal to the Sun while proper motion surveys will show the Sun's orbital radius and speed. Studies of the Galaxy's halo component and companion dwarf galaxies permit the determination of the Milky Way's mass distribution, including its Dark Matter component and the mass distribution and Dark Matter component of the Local Group. Cosmology benefits from precision (1-2%) determination of distances to Cepheid and RR Lyrae standard candles. The emission mechanism of supermassive black holes will be investigated. Finally, radio and optical celestial reference frames will be tied together by an improvement of two orders of magnitude. Optical interferometers present severe technological challenges. The Jet Propulsion Laboratory, with the support of Lockheed Martin Advanced Technology Center (LM ATC) and Northrop Grumman Space Technology (NGST), has addressed these challenges with a technology development program that is now complete. The requirements for SIM have been satisfied, based on outside peer review, using a series of laboratory tests and appropriate computer simulations: laser metrology systems perform with 10 picometer precision; mechanical vibrations have been controlled to nanometers, demonstrating orders of magnitude disturbance rejection; and knowledge of component positions throughout the whole test assembly has been demonstrated to the required picometer level. Technology transfer to the SIM flight team is now well along.
    Keywords: Astronomy
    Type: Proceedings, SPIE; Volume 6693
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument with flexible scheduling that delivers parallaxes at about 4 microarcsec (microns)as) on targets as faint as V = 20, and differential accuracy of 0.6 (microns)as on bright targets. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed in 2005 all of the enabling technologies needed for the flight instrument. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. Using differential astrometry SIM will search for planets with masses as small as an Earth orbiting in the 'habitable zone' around the nearest stars, and could discover many dozen if Earth-like planets are common. It will characterize the multiple-planet systems that are now known to exist, and it will be able to search for terrestrial planets around all of the candidate target stars in the Terrestrial Planet Finder and Darwin mission lists. It will be capable of detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. Precision astrometry allows the measurement of accurate dynamical masses for stars in binary systems. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the Galactic mass distribution, and through studies of tidal tails, the formation and evolution of the Galactic halo. SIM will contribute to cosmology through improved accuracy of the Hubble Constant. With repeated astrometric measurements of the nuclei of active galaxies, SIM will probe the dynamics of accretion disks around supermassive black holes, and the relativistic jets that emerge from them.
    Keywords: Astronomy
    Type: Publications of the Astronomical Society of the Pacific; Volume 120; 38-88
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.During its 2005 January opposition, the saturnian system could be viewed at an unusually low phase angle. We surveyed a subset of Saturn's irregular satellites to obtain their true opposition magnitudes, or nearly so, down to phase angle values of 0.01 deg. Combining our data taken at the Palomar 200-inch and Cerro Tololo Inter-American Observatory's 4-m Blanco telescope with those in the literature, we present the first phase curves for nearly half the irregular satellites originally reported by Gladman et al. [2001. Nature 412, 163-166], including Paaliaq (SXX), Siarnaq (SXXIX), Tarvos (SXXI), Ijiraq (SXXII), Albiorix (SXVI), and additionally Phoebe's narrowest angle brightness measured to date. We find centaur-like steepness in the phase curves or opposition surges in most cases with the notable exception of three, Albiorix and Tarvos, which are suspected to be of similar origin based on dynamical arguments, and Siarnaq.
    Keywords: Astronomy
    Type: Icarus 184 (ISSN 0019-1035); Volume 184; 181-187
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.
    Keywords: Astronomy
    Type: Science; Volume 310; No. 5756; 1925-1928
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: Several meteorological datasets, including U.K. Met Office (MetO), European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), and NASA's Goddard Earth Observation System (GEOS-4) analyses, are being used in studies of the 2002 Southern Hemisphere (SH) stratospheric winter and Antarctic major warming. Diagnostics are compared to assess how these studies may be affected by the meteorological data used. While the overall structure and evolution of temperatures, winds, and wave diagnostics in the different analyses provide a consistent picture of the large-scale dynamics of the SH 2002 winter, several significant differences may affect detailed studies. The NCEP-NCAR reanalysis (REAN) and NCEP-Department of Energy (DOE) reanalysis-2 (REAN-2) datasets are not recommended for detailed studies, especially those related to polar processing, because of lower-stratospheric temperature biases that result in underestimates of polar processing potential, and because their winds and wave diagnostics show increasing differences from other analyses between similar to 30 and 10 hPa (their top level). Southern Hemisphere polar stratospheric temperatures in the ECMWF 40-Yr Re-analysis (ERA-40) show unrealistic vertical structure, so this long-term reanalysis is also unsuited for quantitative studies. The NCEP/Climate Prediction Center (CPC) objective analyses give an inferior representation of the upper-stratospheric vortex. Polar vortex transport barriers are similar in all analyses, but there is large variation in the amount, patterns, and timing of mixing, even among the operational assimilated datasets (ECMWF, MetO, and GEOS-4). The higher-resolution GEOS-4 and ECMWF assimilations provide significantly better representation of filamentation and small-scale structure than the other analyses, even when fields gridded at reduced resolution are studied. The choice of which analysis to use is most critical for detailed transport studies (including polar process modeling) and studies involving synoptic evolution in the upper stratosphere. The operational assimilated datasets are better suited for most applications than the NCEP/CPC objective analyses and the reanalysis datasets.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review; Volume 133; Issue 5; 1261-1278
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: The analysis of the response of the Earth Climate System to the seasonal changes of solar forcing in the tropical oceans using four years of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) data between 2002 and 2006 gives new insight into amplitude and phase relationships between surface and tropospheric temperatures, humidity, and convective activity. The intensity of the convective activity is measured by counting deep convective clouds. The peaks of convective activity, temperature in the mid-troposphere, and water vapor in the 0 - 30 N and 0 - 30 S tropical ocean zonal means occur about two months after solstice, all leading the peak of the sea surface temperature by several weeks. Phase is key to the evaluation of feedback. The evaluation of climate models in terms of zonal and annual means and annual mean deviations from zonal means can now be supplemented by evaluating the phase of key atmospheric and surface parameters relative to solstice. The ability of climate models to reproduce the statistical flavor of the observed amplitudes and relative phases for broad zonal means should lead to increased confidence in the realism of their water vapor and cloud feedback algorithms. AIRS and AMSU were launched into a 705 km altitude polar sun-synchronous orbit on the EOS Aqua spacecraft on May 4, 2002, and have been in routine data gathering mode since September 2002.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, (alpha), on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with (alpha), and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes. The temperatures of the A and B rings are correlated with their optical depth, (tau), when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest (tau), these temperatures are also the same at both low and high a, suggesting that little sunlight is penetrating these regions. The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: The recent Department of Energy Atmospheric Radiation Measurement (ARM) Aerosol Intensive Operations Period (AIOP, May 2003) yielded one of the best measurement sets obtained to date to assess our ability to measure the vertical profile of ambient aerosol extinction sigma(ep)(lambda) in the lower troposphere. During one month, a heavily instrumented aircraft with well-characterized aerosol sampling ability carrying well-proven and new aerosol instrumentation devoted most of the 60 available flight hours to flying vertical profiles over the heavily instrumented ARM Southern Great Plains (SGP) Climate Research Facility (CRF). This allowed us to compare vertical extinction profiles obtained from six different instruments: airborne Sun photometer (AATS-14), airborne nephelometer/absorption photometer, airborne cavity ring-down system, groundbased Raman lidar, and two ground-based elastic backscatter lidars. We find the in situ measured sigma(ep)(lambda) to be lower than the AATS-14 derived values. Bias differences are 0.002-0.004 Km!1 equivalent to 13-17% in the visible, or 45% in the near-infrared. On the other hand, we find that with respect to AATS-14, the lidar sigma(ep)(lambda) are higher: Bias differences are 0.004 Km(-1) (13%) and 0.007 Km(-1) (24%) for the two elastic backscatter lidars (MPLNET and MPLARM, lambda = 523 nm) and 0.029 Km(-1) (54%) for the Raman lidar (lambda = 355 nm). An unnoticed loss of sensitivity of the Raman lidar had occurred leading up to AIOP, and we expect better agreement from the recently restored system. Looking at the collective results from six field campaigns conducted since 1996, airborne in situ measurements of sigma(ep)(lambda) tend to be biased slightly low (17% at visible wavelengths) when compared to airborne Sun photometer sigma(ep)(lambda). On the other hand, sigma(ep)(lambda) values derived from lidars tend to have no or positive biases. From the bias differences we conclude that the typical systematic error associated with measuring the tropospheric vertical profile of the ambient aerosol extinction with current state-of-the-art instrumentation is 15-20% at visible wavelengths and potentially larger in the UV and near-infrared.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: In May 2003, a Twin Otter airplane, equipped with instruments for making in situ measurements of aerosol optical properties, was deployed during the Atmospheric Radiation Measurements (ARM) Program s Aerosol Intensive Operational Period in Oklahoma. Several of the Twin Otter flights were flown in formation with an instrumented light aircraft (Cessna 172XP) that makes routine in situ aerosol profile flights over the site. This paper presents comparisons of measured scattering coefficients at 467 nm, 530 nm, and 675 nm between identical commercial nephelometers aboard each aircraft. Overall, the agreement between the two nephelometers decreases with longer wavelength. During the majority of the flights, the Twin Otter flew with a diffuser inlet while the Cessna had a 1 mm impactor, allowing for an estimation of the fine mode fraction aloft. The fine mode fraction aloft was then compared to the results of a ground-based nephelometer. Comparisons are also provided in which both nephelometers operated with identical 1 mm impactors. These scattering coefficient comparisons are favorable at the longer wavelengths (i.e., 530 nm and 675 nm), yet differed by approximately 30% at 467 nm. Mie scattering calculations were performed using size distribution measurements, made during the level flight legs. Results are also presented from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument, which compared favorably (i.e., agreed within 2%) with data from other instruments aboard the Twin Otter. With this paper, we highlight the significant implications of coarse mode (larger than 1 mm) aerosol aloft with respect to aerosol optical properties.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: Using the efficient discrete-ordinate method, we present an analytical solution for radiative transfer in the coupled atmosphere-ocean system with rough air-water interface. The theoretical formulations of the radiative transfer equation and solution are described. The effects of surface roughness on radiation field in the atmosphere and ocean are studied and compared with measurements. The results show that ocean surface roughness has significant effects on the upwelling radiation in the atmosphere and the downwelling radiation in the ocean. As wind speed increases, the angular domain of sunglint broadens, the surface albedo decreases, and the transmission to ocean increases. The downward radiance field in the upper ocean is highly anisotropic, but this anisotropy decreases rapidly as surface wind increases and as depth in ocean increases. The effects of surface roughness on radiation also depend greatly on both wavelength and angle of incidence (i.e., solar elevation); these effects are significantly smaller throughout the spectrum at high sun. The model-observation discrepancies may indicate that the Cox-Munk surface roughness model is not sufficient for high wind conditions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-11
    Description: Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol layers located between about 2.6 and 3.6 km were observed by the Raman lidar on May 25 and May 27. The airborne measurements and lidar retrievals indicated that these layers, which were likely smoke produced by Siberian forest fires, were primarily composed of relatively large particles (r(sub eff) approximately 0.23 micrometers), and that the layers were relatively nonabsorbing (omega(sub o) approximately 0.96-0.98). Preliminary results show that major modifications that were made to the Raman lidar system during 2004 have dramatically improved the sensitivity in the aerosol and water vapor channels and reduced random errors in the aerosol scattering ratio and water vapor retrievals by an order of magnitude.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research - Atmospheres; Volume 111; 1-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Description: This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: Many of the clouds important to the Earth's energy balance, from the tropics to the Arctic, are optically thin and contain liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP) when the liquid water path is small (i.e., 〈 g/sq m) and, thus, the radiative properties of these clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are optically thin, potentially mixed-phase, and often (i.e., have large 3-D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison included eighteen different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast cloud, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future work.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-11
    Description: The large horizontal extent, location in the cold upper troposphere, and ice composition make cirrus clouds important modulators of the earth's radiation budget and climate. Cirrus cloud microphysical properties are difficult to measure and model because they are inhomogeneous in nature and their ice crystal size distribution and habit are not well characterized. Accurate retrievals of cloud properties are crucial for improving the representation of cloud scale processes in large-scale models and for accurately predicting the earth's future climate. A number of passive and active remote sensing retrieval algorithms exist for estimating the microphysical properties of upper tropospheric clouds. We believe significant progress has been made in the evolution of these retrieval algorithms in the last decade, however, there is room for improvement. Members of the Atmospheric Radiation measurement program (ARM) Cloud properties Working Group are involved in an intercomparison of optical depth(tau), ice water path, and characteristic particle size in clouds retrieved using ground-based instruments. The goals of this intercomparison are to evaluate the accuracy of state-of-the-art algorithms, quantify the uncertainties, and make recommendations for improvement.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-11
    Description: Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.
    Keywords: Astronomy
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-11
    Description: For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full six-parameter orbits to investigate what causes this change in observed angular rates. Are these faint objects either the same population of high area-to-mass (A/M) objects on eccentric orbits as discovered by the ESA Space Debris Telescope (Schildknecht, et al. 2004), or are they just normal debris from breakups in GEO?
    Keywords: Astronomy
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-11
    Description: The Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) radiance profile dataset of 1978/79 was reconditioned and reprocessed to Version 6 (V6) profiles of temperature and species that are improved significantly over those from Version 5 (V5). The LIMS V6 dataset was archived for public use in 2002. Improvements for its ozone include: (1) a more accurate accounting for instrument and spacecraft motion effects in the radiances, (2) the use of better spectroscopic line parameters for its ozone forward model, (3) retrievals of all its scans, (4) more accurate and compatible temperature versus pressure profiles (or T(p)), which are needed for the registration of the ozone radiances and for the removal of temperature effects from them, and (5) a better accounting for interfering species in the lower stratosphere. The retrieved V6 ozone profiles extend from near cloud top altitudes to about 80 km and from 64S to 84N latitude with better sampling along the orbit than for the V5 dataset. Calculated estimates of the single-profile precision and accuracy are provided for the V6 ozone from this study. Precision estimates based on the data themselves are of order 3% or better from 1 to 30 hPa. Estimates of total systematic error for a single profile are hard to generalize because the separate sources of error may not all be of the same sign and they depend somewhat on the atmospheric state. It is estimated that the V6 zonal mean ozone distributions are accurate to within 9% to 7% from 50 hPa to 3 hPa, respectively. Effects of a temperature bias can be significant and may be present at 1 to 2 hPa though. There may be ozone biases of order 10% at those levels due to possible biases of up to +2 K, but there is no indication of a similar problem elsewhere in the stratosphere. Simulation studies show that the LIMS retrievals are also underestimating slightly the small amplitudes of the atmospheric temperature tides, which affect its retrieved day/night ozone differences. There are small biases in the middle to lower stratosphere for the ascending versus descending node LIMS ozone, due principally to not accounting for the asymmetric weighting of its radiances across the tangent layer. The estimates of total accuracy were assessed by comparing the daily zonal mean LIMS ozone distributions against those from the Nimbus 7 SBUV Version 8 (V8) dataset for the same period. Generally, the LIMS V6 ozone agrees well with SBUV, except perhaps in the tropical lower stratosphere where the LIMS ozone is less. Still, the accuracy for LIMS V6 ozone in the lower stratosphere is improved over that found for LIMS V5, as indicated by several LIMS comparisons with ECC ozonesonde profiles. The LIMS V6 ozone is considered especially suitable for detailed studies of large-scale stratospheric processes above the 100-hPa level. Comparison of diurnal, photochemical model calculations with the monthly-averaged, upper stratospheric ozone observed from LIMS V6 indicates only a slight ozone deficit for the model at about 2 hPa. However, that deficit exhibits little to no seasonal variation and is in good agreement with similar model comparisons for a seasonal time series of ozone obtained with ground-based microwave instruments. Because the LIMS V6 ozone in the lower stratosphere has improved accuracy and sampling versus that of V5, it should now be possible to conduct quantitative studies of ozone transport and chemistry for the northern hemisphere, polar stratospheric winter of 1978/79 a time period when the catalytic loss of ozone due to reactive chlorine should not have been a major factor for the Arctic region.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-11
    Description: The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-11
    Description: We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06/cm spectral resolution with a nadir footprint of 5 x 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-11
    Description: This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meterological Society; Volume 87; No. 7; 911-926
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-11
    Description: In this paper, an analytical treatment of the atmospheric remote sensing problem of determining the raindrop size distribution (DSD) with a spaceborne multifrequency microwave nadir-looking radar system is presented. It is typically assumed that with two radar measurements at different frequencies one ought to be able to calculate two state variables of the DSD: a bulk quantity, such as the rain rate, and a distribution shape parameter. To determine if this nonlinear problem can indeed be solved, the DSD is modeled as a Gamma distribution and quadratic approximations to the corresponding radar-rain relations are used to examine the invertibility of the resulting system of equations in the case of two as well as three radar frequencies. From the investigation, it is found that for regions of DSD state space multiple solutions exist for two or even three different frequency radar measurements. This should not be surprising given the nonlinear coupled nature of the problem.
    Keywords: Meteorology and Climatology
    Type: Journal of Applied Meteorology and Climatology; Volume 45; No. 4; 529-536
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This slide presentation reviews the use of the a reduced cost version of the Space Interferometry Mission (SIM), called SIM "Lite" to detect potential planets that are earth like around about 60 of the nearest stars.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This document is a chart showing the inputs to and outputs from various parts of the integrated climate model.
    Keywords: Meteorology and Climatology
    Type: Prepared for a site visit meeting on urban air quality in Region 2 and the NASA IDEAS project, San Juan, Puerto Rico, Feb. 19-21, 2008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-12
    Description: The origin of the short (〈2 s) class of gamma-ray bursts (GRBs) is finally becoming clear after decades of search. The first one localized to a few arcseconds accuracy, GRB 050509B, was found to have a highly probable association with a nearby (z = 0.225) elliptical galaxy. A second one with arcsecond localization, GRB 050709, was also associated with a low redshift (z = 0.16) galaxy. We report here the detection of short GRB 050724 with remarkable properties; in particular, it has low energy gamma-ray emission that lasts for 100 s after the main short pulse, strong early X-ray afterglow, and an unusual lightcurve that rebrightens at 3x10(exp 4) s. A position on the sky accurate to 9 arcsec was determined and provided as a GCN alert to ground-based telescopes within 80 s. A subsequent high-resolution X-ray image provided a sub-arcsec position coincident with ground-based optical and radio observations of the afterglow. Like GRB 050509B, this burst is located off-center in an elliptical galaxy. The energy output of the GRB at the host distance of z = 0.258 is 2-3 orders of magnitude less than for long bursts. The low level of star formation in such galaxies is strong evidence against a collapsar or hypernova origin like that associated with long GRBs. Based on these new data, it is highly probable that short GRBs are produced by the coalescence of orbiting neutron stars (NSs) or black holes (BHs), with some evidence for a NS-BH merger in this burst.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-12
    Description: Contemporaneous BAT and XRT observations of two recent well-covered GRBs observed by Swift, GRB 050315 and GRB 050319, show clearly a prompt component of the afterglow emission. The rapid slewing capability of the spacecraft enables X-ray observations immediately after the burst, typically approximately 100 s following the initiation of the prompt gamma-ray phase. By fitting a power law form to the gamma-ray spectrum, we extrapolate the time dependent fluxes measured by the BAT, in the energy band 15 - 350 keV, into the spectral regime observed by the XRT, 0.2 - 10 keV, and examine the functional form of the rate of decay of the two light curves. We find that the BAT and XRT light curves merge to form a unified curve. There is a period of steep decay up to approximately 300 s, followed by a flatter decay. The duration of the steep decay, approximately 100 s in the source frame after correcting for cosmological time dilation, agrees with a theoretical estimate for the deceleration time of the relativistic ejecta as it interacts with circumstellar material. For GRB 050315, the steep decay can be characterized by an exponential form, where T(sub e),(BAT)approximately equal to 24 plus or minus 2 s, and T(sub e)(XRT) approximately equal to 35 plus or minus 2 s. For GRB 050319 a power law decay -d lnf/d lnt = n, where n approximately equal to 3, provides a reasonable fit. The early time X-ray fluxes are consistent with representing the lower energy tail of the prompt emission, and provide our first quantitative measure of the decay of the prompt gamma-ray emission over a large dynamic range. The initial steep decay is expected from the high latitude emission from a curved shell of relativistic plasma illuminated only for a short interval. The overall conclusion is that the prompt phase of GRBs lasts for hundreds of seconds longer than previously thought.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-12
    Description: The general climate of the island of Puerto Rico is dominated by the easterly trade winds from the Atlantic Ocean, and during synoptically calm days by the topographic and local land surface characteristics [1]. The urban canopy of the metropolitan area of San Juan, capital city of the Island, may introduce a new microclimate that changes the characteristics of the low atmosphere and interacts with the other microclimates already present in the island. The primitive land cover and land use (LCLU) of the metropolitan area of San Juan was composed by broadleaf trees, moist soils, and very dense vegetation in general. The urban LCLU changes the balance for the mass, momentum and energy between the bottom boundary and the lower atmosphere, creating different climate conditions over urban and rural regions. Some of these differences are low relative humidity and high temperatures observed in urban areas when compared to rural areas. These in turn produces a convective circulation over the urban areas, a phenomenon compared to the sea and land breezes, commonly known as heat islands (UHI). Factors that contribute to the formation of the UHI are anthropogenic heat sources, aerosols from pollutants, fast water canalization due to the presence of buildings and streets, among others. The comparison between urban and rural climates is the most common approach to analyze the UHI. These contrasts are larger in clear and calm conditions and tend to disappear in cloudy and windy weather. The UHI was recognized in the early 1950 s as closed isotherms that separates the city from the general temperature field [2]. The impact of the urban LCLU in San Juan, Puerto Rico, was quantified calculating the difference between historical data sets for the air temperature over an identified urban area and a rural area dT(U-R). The analysis of the climatological data revealed that a UHI exists in the metropolitan area of San Juan, Puerto Rico. The data reveals a permanent urban heat island effect present in the SJMA during the year, which is increasing at a rate of 0.41oC/decade. These findings encouraged the planning and execution of an intense field campaign in February 2004 referred as the ATLAS San Juan mission. The focus of the remaining of this report is the analysis of the data for this field campaign.
    Keywords: Meteorology and Climatology
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XVII-1 - XVII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-12
    Description: During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity. areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%. and remaining 97.6%. The set of weakest/smallest features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) per minute. The greatest observed flash rate is 1351 fl per minute; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 square kilometers and the greatest rainfall from an individual precipitation feature exceeds 2 x 10 kg per hour of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations. seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land-ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.
    Keywords: Astronomy
    Type: The Astrophysical Journal Letters; Volume 679; L131-L134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-11
    Description: Polarization-sensitive lidars have proven to be highly effective in discriminating between spherical and non-spherical particles in the atmosphere. These lidars use a linearly polarized laser and are equipped with a receiver that can separately measure the components of the return signal polarized parallel and perpendicular to the outgoing beam. In this work we describe a technique for calibrating polarization-sensitive lidars that was originally developed at NASA s Langley Research Center (LaRC) and has been used continually over the past fifteen years. The procedure uses a rotatable half-wave plate inserted into the optical path of the lidar receiver to introduce controlled amounts of polarization cross-talk into a sequence of atmospheric backscatter measurements. Solving the resulting system of nonlinear equations generates the system calibration constants (gain ratio, G, and offset angle, theta) required for deriving calibrated measurements of depolarization ratio from the lidar signals. In addition, this procedure also determines the mean depolarization ratio within the region of the atmosphere that is analyzed. Simulations and error propagation studies show the method to be both reliable and well behaved. Operational details of the technique are illustrated using measurements obtained as part of Langley Research Center s participation in the First ISCCP Regional Experiment (FIRE).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-11
    Description: The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-11
    Description: A previously unreported phenomenon, a 'frozen-in' anticyclone (FrIAC) after the 2005 Arctic spring vortex breakup, was discovered in Earth Observing System (EOS) Microwave Limb Sounder (MLS) long-lived trace gas data. A tongue of low-latitude (high-N2O, low-H2O) air was drawn into high latitudes and confined in a tight anticyclone, then advected intact in the summer easterlies through late August. A similar feature in O3 disappeared by early April as a result of chemical processes. The FrIAC was initially advected upright at nearly the same speed at all levels from approx.660 to 1300 K (approx.25-45 km); increasing vertical wind shear after early June tilted the FrIAC and weakened it at higher levels. The associated feature in PV disappeared by early June; transport calculations fail to reproduce the remarkable persistence of the FrIAC, suggesting deficiencies in summer high-latitude winds. The historical PV record suggests that this phenomenon may have occurred several times before. The lack of a persistent signature in O3 or PV, along with its small size and rapid motion, make it unlikely that a FrIAC could have been reliably identified without hemispheric daily longlived trace gas profiles such as those from EOS MLS.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-11
    Description: The atmospheric moisture and temperature profiles from the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit on the NASA Aqua mission, in combination with the precipitation from the Tropical Rainfall Measuring Mission (TRMM), are employed to study the vertical moist thermodynamic structure and spatial-temporal evolution of the Madden-Julian oscillation (MJO). The AIRS data indicate that, in the Indian Ocean and western Pacific, the temperature anomaly exhibits a trimodal vertical structure: a warm (cold) anomaly in the free troposphere (800-250 hPa) and a cold (warm) anomaly near the tropopause (above 250 hPa) and in the lower troposphere (below 800 hPa) associated with enhanced (suppressed) convection. The AIRS moisture anomaly also shows markedly different vertical structures as a function of longitude and the strength of convection anomaly. Most significantly, the AIRS data demonstrate that, over the Indian Ocean and western Pacific, the enhanced (suppressed) convection is generally preceded in both time and space by a low-level warm and moist (cold and dry) anomaly and followed by a low-level cold and dry (warm and moist) anomaly. The MJO vertical moist thermodynamic structure from the AIRS data is in general agreement, particularly in the free troposphere, with previous studies based on global reanalysis and limited radiosonde data. However, major differences in the lower-troposphere moisture and temperature structure between the AIRS observations and the NCEP reanalysis are found over the Indian and Pacific Oceans, where there are very few conventional data to constrain the reanalysis. Specifically, the anomalous lower-troposphere temperature structure is much less well defined in NCEP than in AIRS for the western Pacific, and even has the opposite sign anomalies compared to AIRS relative to the wet/dry phase of the MJO in the Indian Ocean. Moreover, there are well-defined eastward-tilting variations of moisture with height in AIRS over the central and eastern Pacific that are less well defined, and in some cases absent, in NCEP. In addition, the correlation between MJO-related mid-tropospheric water vapor anomalies and TRMM precipitation anomalies is considerably more robust in AIRS than in NCEP, especially over the Indian Ocean. Overall, the AIRS results are quite consistent with those predicted by the frictional Kelvin-Rossby wave/conditional instability of the second kind (CISK) theory for the MJO.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 63; Issue 10; 2462-2485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-12
    Description: A "dimensional reduction" (DR) method is introduced for analyzing lightning field changes whereby the number of unknowns in a discrete two-charge model is reduced from the standard eight to just four. The four unknowns are found by performing a numerical minimization of a chi-squared goodness-of-fit function. At each step of the minimization, an Overdetermined Fixed Matrix (OFM) method is used to immediately retrieve the best "residual source". In this way, all 8 parameters are found, yet a numerical search of only 4 parameters is required. The inversion method is applied to the understanding of lightning charge retrievals. The accuracy of the DR method has been assessed by comparing retrievals with data provided by the Lightning Detection And Ranging (LDAR) instrument. Because lightning effectively deposits charge within thundercloud charge centers and because LDAR traces the geometrical development of the lightning channel with high precision, the LDAR data provides an ideal constraint for finding the best model charge solutions. In particular, LDAR data can be used to help determine both the horizontal and vertical positions of the model charges, thereby eliminating dipole ambiguities. The results of the LDAR-constrained charge retrieval method have been compared to the locations of optical pulses/flash locations detected by the Lightning Imaging Sensor (LIS).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-12
    Description: We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20min prior to its fast eruption and strong soft X-ray (SXR) flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, an SXR sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V magnetograms show that the pre-emption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measured the canceling network fields to be approx. 40 G, and we estimated that approx. 10(exp 19)Mx of flux canceled during the five hours prior to eruption; this is only approx.5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption.
    Keywords: Astronomy
    Type: Publications of the Astronomical Society of Japan; Volume 59; S823-S829
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-12
    Description: We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-12
    Description: When averaged over the tropical oceans (30deg N/S), latent heat flux anomalies derived from passive microwave satellite measurements as well as reanalyses and climate models driven with specified seal-surface temperatures show considerable disagreement in their decadal trends. These estimates range from virtually no trend to values over 8.4 W/sq m decade. Satellite estimates also tend to have a larger interannual signal related to El Nino/Southern Oscillation (ENSO) events than do reanalyses or model simulations. An analysis of wind speed and humidity going into bulk aerodynamic calculations used to derive these fluxes reveals several error sources. Among these are apparent remaining intercalibration issues affecting passive microwave satellite 10 m wind speeds and systematic biases in retrieval of near-surface humidity. Likewise, reanalyses suffer from discontinuities in availability of assimilated data that affect near surface meteorological variables. The results strongly suggest that current latent heat flux trends are overestimated.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-12
    Description: The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as strong pulsations of its X-ray flux with a pulsed fraction above 40% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebular is very compact in size. about 1" x 1.5" and might be interpreted as a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of an effective temperature about 1 MK covered with a magnetized hydrogen atmosphere At higher energies the pulsar's emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index Gamma approx. equals 1.1. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-12
    Description: The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4〉+l.08 and 0〈NqNO3.4〈I.08. Finally, we investigate the spatial distribution of areas that consistently portrayed enhanced lightning activity during the main warm/cold (El Nino/La Nina) ENSO episodes of the past decade. The observed patterns show no spatial overlapping and identify areas that in their majority are in agreement with empirical precipitation/ENSO maps. The areas that appear during the warm ENSO phase are found over regions that have been identified as anomalous Hadley circulation ENSO-related patterns. The areas that appear during the cold ENSO phase are found predominantly around the west hemisphere equatorial belt and are in their majority identified by anomalous Walker circulation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-12
    Description: Anomalous X-ray Pulsars (AXPs) belong to a class of neutron stars believed to harbor the strongest magnetic fields in the universe, as indicated by their energetic bursts and their rapid spindowns. However, a direct measurement of their surface field strengths has not been made to date. It is also not known whether AXP outbursts result from changes in the neutron star magnetic field or crust properties. Here we report the first, spectroscopic measurement of the surface magnetic field strength of an AXP, XTE J1810-197, and solidify its magnetar nature. The field strength obtained from detailed spectral analysis and modeling is remarkably close to the value inferred from the rate of spindown of this source and remains nearly constant during numerous observations spanning over two orders of magnitude in source flux. The surface temperature, on the other hand, declines steadily and dramatically following the 2003 outburst of this source. Our findings demonstrate that heating occurs in the upper neutron star crust during an outburst and sheds light on the transient behaviour of AXPs.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-12
    Description: We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-12
    Description: We present a type-I outburst of the high-mass X-ray binary EX0 2030+375, detected during INTEGRAL'S Performance and Verification phase in December 2002 (on-source time about 10(exp 6) seconds). In addition, six more outbursts have been observed during INTEGRAL'S Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798 plus or minus 0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7 x 10 (exp 36) erg per second, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT(sub BB) approximately 8 keV) and either with a power law model with Gamma=2.04 plus or minus 0.11 keV or a Comptonized component (spherical geometry, kT(sub e).=30 keV, tau = 2.64, kT(sub w)=1.5 keV).
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-06
    Description: ICE: The Nature, the History, and the Uses of an Astonishing Substance is a recently published book by Mariana Gosnell about ice. It covers not just the ice that is readily seen, such as sea ice, lake ice, icebergs, glaciers, ice sheets, and ice cubes, but also ice in the ground, in the atmosphere, inside plants and animals, and in outer space, plus new ice forms being created in scientific laboratories. Gosnell treats the reader to a well-written, easy-going mixture of science, adventure, history, applications, science methods and controversies, and philosophy, all centered in one way or another on ice. The book is 563 pages long and is filled with fascinating anecdotes and details, such as beetles in the Canadian Rockies that can supercool to 60 C below freezing and a lake in Minnesota where each winter typically 65,000 fishing shanties are set up on the lake's ice, many with couches, beds, television sets, and bathrooms. Gosnell also includes many practical suggestions. Among them: When driving on lake ice, keep your windows open, in case your vehicle breaks through the ice and you need to make a rapid exit.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z 〉 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z 〉 1 cluster surveys.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: Luciola is a large (one kilometer) "multi-aperture densified-pupil imaging interferometer", or "hypertelescope" employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a pupil densifier micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having hundreds of thousands of individual receivers . With its high limiting magnitude, reaching the mv=30 limit of HST when 100 collectors of 25cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1200 Angstrom ultra-violet to the 20 micron infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras ( currently 200 to 1000nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120nm to 20 microns, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6m2 , using a specialized mid infra-red focal spacecraft. Calculations ( Boccaletti et al., 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie. & Le Coroller, 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red . Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary Direct Imaging Field , and limiting magnitude, approaching that of an 8-meter space telescope when 1000 apertures of 25cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flasheshich may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, 1994) , will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue ( Ragazzoni et al., 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015-2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) 〈 3 x 10(exp 25)/sq cm), local (〈 z 〉= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) 〈 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E 〉 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air that frequently moves westward off of the Saharan desert of Africa and over the tropical Atlantic Ocean, has long been appreciated. As air moves over the desert, it is strongly heated from below, producing a very hot air mass at low levels. Because there is no moisture source over the Sahara, the rise in temperature causes a sharp drop in relative humidity, thus drying the air. In addition, the warm air produces a very strong jet of easterly flow in the middle troposphere called the African easterly jet that is thought to play a critical role in hurricane formation. In recent years, there has been an increased focus on the impact that the SAL has on the formation and evolution of hurricanes in the Atlantic. However, the nature of its impact remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The argument for positively influencing hurricane development is based upon the fact that the African easterly jet produces the waves that eventually form hurricanes and that it leads to rising motion south of the jet that favors the development of deep thunderstorm clouds. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm SAL air aloft, which increases thermodynamic stability and suppresses cloud development; and 3) dry air, which produces cold downdrafts in precipitating regions, thereby removing energy needed for storm development. As part of this recent focus on the SAL and hurricanes (which motivated a 2006 NASA field experiment), there has been little emphasis on the SAL s potential positive influences and almost complete emphasis on its possible negative influences, almost to the point of claims that the SAL is the major suppressing influence on hurricanes in the Atlantic. Multiple NASA satellite data sets (TRMM, MODIS, and AIRS/AMSU) and National Centers for Environmental Prediction global analyses are used to characterize the SAL s properties and evolution in relation to developing hurricanes. The results show that storms generally form on the southern side of the jet, where favorable background rotation is high. The jet often helps to form the northern side of the storms and rarely moves over their inner cores, so jet-induced vertical wind shear does not appear to be a negative influence on developing storms. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. Of the three proposed negative influences, dry air appears to be the key influence; however, the presence of dry SAL air is not a good indicator of whether a storm will weaken since many examples of intensifying storms surrounded by such dry air can be found. In addition, a global view of relative humidity shows moisture distributions in other ocean basins that are almost identical to the Atlantic. The dry zones correspond to regions of descending air on the eastern and equatorward sides of semi-permanent oceanic high pressure systems. Thus, the dry air over the Atlantic appears to be primarily a product of the large-scale flow, but with enhanced drying at low levels associated with the Sahara. As a result, we conclude that the SAL is not a major negative influence on hurricanes. It is just one of many possible influences and can be both positive and negative.
    Keywords: Meteorology and Climatology
    Type: To be published in Bulletin of the American Meteorologial Society
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post- CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-06
    Description: Over the years, hurricane track and intensity forecasts and storm surge models and the digital terrain and bathymetry data they depend on have improved significantly. Strides have also been made in knowledge of the detailed variation of the surface wind field driving the surge. The area of least improvement has been in obtaining data on the details of the temporal/spatial variation of the storm surge dome of water as it evolves and inundates the land to evaluate the performance of the numerical models. Tide gages in the vicinity of the landfall are frequently destroyed by the surge. Survey crews dispatched after the event provide no temporal information and only indirect indications of the maximum surge envelope over land. The landfall of Hurricane Bonnie on 26 August 1998, with a surge less than 2 m, provided an excellent opportunity to demonstrate the potential benefits of direct airborne measurement of the temporal/spatial evolution of storm surge. Despite a 160 m variation in aircraft altitude, an 11.5 m variation in the elevation of the mean sea surface relative to the ellipsoid over the flight track, and the tidal variation over the 5 hour data acquisition interval, a survey-quality Global Positioning System (GPS) aircraft trajectory allowed the NASA Scanning Radar Altimeter carried by a NOAA hurricane research aircraft to produce storm surge measurements that generally fell between the predictions of the NOAA SLOSH model and the North Carolina State University storm surge model.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
    Keywords: Meteorology and Climatology
    Type: (ISSN 0147-0227)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: We investigate the radio luminosity function and radio source population for two fields within the Coma cluster of galaxies, with the fields centered on the cluster core and southwest infall region and each covering about half a square degree. Using VLA data with a typical rms sensitivity of 28 (mu)Jy per 4.4" beam, we identify 249 radio sources with optical counterparts brighter than r = 22 (equivalent to M(sub r) = -13 for cluster member galaxies). Comprehensive optical spectroscopy identifies 38 of these as members of the Coma cluster, evenly split between sources powered by an active nucleus and sources powered by active star formation. The radio-detected star-forming galaxies are restricted to radio luminosities between about 10(exp 21) and 10(exp 22) W/Hz, an interesting result given that star formation dominates field radio luminosity functions below about 10(exp 23) W/Hz. The majority of the radio-detected star-forming galaxies have characteristics of starbursts, including high specific star formation rates and optical spectra with strong emission lines. In conjunction with prior studies on post-starburst galaxies within the Coma cluster, this is consistent with a picture in which late-type galaxies entering Coma undergo a starburst prior to a rapid cessation of star formation. Optically bright elliptical galaxies (Mr less than or equals -20.5) make the largest contribution to the radio luminosity function at both the high (〉 approx. 3x10(exp 22) W/Hz) and low (〈 approx. 10(exp 21) W/Hz) ends. Through a stacking analysis of these optically-bright ellipticals we find that they continue to harbor radio sources down to luminosities as faint as 3x10(exp 19) W/Hz. However, contrary to published results for the Virgo cluster we find no evidence for the existence of a population of optically faint (M(sub r) approx. equals -14) dwarf ellipticals hosting strong radio AGN.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.
    Keywords: Astronomy
    Type: Submitted to Astrophysical Journal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: We report the detection and localization of X-ray emitting ejecta in the middle-aged Galactic supernova remnant Puppis A using five observations with the Suzaku X-ray Imaging Spectrometer to survey the eastern and middle portions of the remnant. A roughly 3' x 5', double-peaked region in the north center is found to be highly enriched in Si and other elements relative to the rest of the remnant. The X-ray fitted abundances are otherwise well below the solar values. While the ejecta-enhanced regions show some variation of relative element abundances, there is little evidence for a very strong enhancement of one element over the others in the imaged portion of the remnant, except possibly for a region of 0 and Ne enhancement in the remnant's south center. There is no spatial correlation between the compact [0 1111 emitting ejecta knots seen optically and the abundance enhancements seen in X-rays, although they are located in the same vicinity. The map of fitted column density shows strong variations across the remnant that echo earlier X-ray spectral hardness maps. The ionization age (as fitted for single temperature models) is sharply higher in a ridge behind the northeast-east boundary of the remnant, and is probably related to the strong molecular cloud interaction along that boundary. The temperature map, by comparison, shows relatively weak variations.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-06
    Description: This investigation seeks a better understanding of the assorted mechanisms controlling the global distribution of precipitation diurnal variability based on the use of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer and radar data. The horizontal distributions of precipitation's diurnal cycle are derived from eight years of TRMM Microwave Imager (TMI) and Precipitation Radar (PR) measurements involving three TRMM standard rain rate retrieval algorithms -- the resultant distributions analyzed at various spatiotemporal scales. The results reveal the prominent and expected late-evening to early-morning (LE-EM) precipitation maxima over oceans and the counterpart prominent and expected mid- to late-afternoon (MLA) maxima over continents. Moreover, and not generally recognized, the results reveal a widespread distribution of secondary maxima occurring over both oceans and continents -- maxima which generally mirror their counterpart regime's behavior. That is, many ocean regions exhibit clearcut secondary MLA precipitation maxima while many continental regions exhibit just as evident secondary LE-EM maxima. This investigation is the first comprehensive study of these globally prevalent secondary maxima and their widespread nature, a type of study only made possible when the analysis procedure is applied to a high-quality global-scale precipitation dataset. The characteristics of the secondary maxima are mapped and described on global grids using an innovative clock-face format, while a current study to be published at a later date provides physically-based explanations of the seasonal-regional distributions of the secondary maxima. In addition to an "explicit" maxima identification scheme, a "Fourier decomposition" maxima identification scheme is used to examine the amplitude and phase properties of the primary and secondary maxima -- as well as tertiary and quaternary maxima. Accordingly, the advantages, ambiguities, and pitfalls resulting from use of Fourier harmonic analysis are explained.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: From analyses of blended space-based and ground-based global rainfall data, we found increasing trends in the occurrence of extreme heavy and light rain events, coupled to a decreasing trend in moderate rain events in the tropics during 1979-2003. The trends are consistent with a shift in the large-scale circulation associated with a) a relatively uniform increase in warm rain over the tropical oceans, b) enhanced ice-phase rain over the near-equatorial oceans, and c) reduced mixed-phase rain over the tropical ocean and land regions. Due to the large compensation among different rain categories, the total tropical rainfall trend remained undetectable.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-06
    Description: Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-06
    Description: We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-06
    Description: The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars during its nine-year lifetime. We conducted an exhaustive search of the EGRET archives and selected all the blazars that were observed multiple times and were bright enough to enable a spectral analysis using standard powerlaw models. The sample consists of 18 flat-spectrum radio quasars (FSRQs), 6 low-frequency-peaked BL Lacs (LBLs) and 2 high-frequency-peaked BL Lacs (HBLs). We do not detect any clear pattern in'the variation of spectral index with flux. Some of the blazars do not show any statistical evidence for spectral variability. The spectrum hardens with increasing flux in a few cases. There is also evidence for a flux-hardness anticorrelation at lo\v fluxes in five blazars. The well observed blazars (3C 279,3C 273, PKS 0528-i-134, PKS 1622-297, PKS 0208- 512) do not show any overall trend in the long-term spectral dependence on flux, but the sample shows a mixture of hard and soft states. We observed spectral hysteresis at weekly timescales in all the three FSRQs for which data from flares lasting for 3 approx. 4 weeks were available. All three sources show a counterclockwise rotation despite the widely different flux profiles. Hysteresis in the spectral index vs. flux space has never been observed in FSRQs in gamma-rays at weekly timescales. itre analyze the observed spectral behavior in the context of various inverse-Compton mechanisms believed to be responsible for emission in the EGRET energy range. Our analysis uses the EGRET skymaps that were regenerated to include the changes in performance during the mission.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-06
    Description: In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-06
    Description: Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-06
    Description: This study provides explanations for some of the experimental findings of Chao (2000) and Chao and Chen (2001) concerning the mechanisms responsible for the ITCZ in an aqua-planet model. These explanations are then applied to explain the origin of some of the systematic errors in the GCM simulation of ITCZ precipitatin over oceans. The ITCZ systematic errors are highly sensitive to model physics and by extension model horizontal resolution. The findings in this study along with those of Chao (2000) and Chao and Chen (2001, 2004) contribute to building a theoretical foundation for ITCZ study. A few possible methods of alleviating the systematic errors in the GCM simulaiton of ITCZ are discussed. This study uses a recent version of the Goddard Modeling and Assimilation Office's Goddard Earth Observing System (GEOS-5) GCM.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: The operational retrieval of height-resolved cloud motion vectors by the Multiangle Imaging SpectroRadiometer on the Terra satellite has been significantly improved by using sub-pixel approaches to co-registration and disparity assessment, and by imposing stronger quality control based on the agreement between independent forward and aft triplet retrievals. Analysis of the fore-aft differences indicates that CMVs pass the basic operational quality control 67% of the time, with rms differences - in speed of 2.4 m/s, in direction of 17 deg, and in height assignment of 290 m. The use of enhanced quality control thresholds reduces these rms values to 1.5 m/s, 17 deg and 165 m, respectively, at the cost of reduced coverage to 45%. Use of the enhanced thresholds also eliminates a tendency for the rms differences to increase with height. Comparison of CMVs from an earlier operational version that had slightly weaker quality control, with 6-hour forecast winds from the Global Modeling and Assimilation Office yielded very low bias values and an rms vector difference that ranged from 5 m/s for low clouds to 10 m/s for high clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-06
    Description: Gamma ray bursts (GFU3s) are known to come in two duration classes, separated at approx.2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its approx.102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-06
    Description: Solar proton fluxes have been measured by satellites for over forty years (1963-2005). Several satellites, including the NASA Interplanetary Monitoring Platforms (1963-1993) and the NOAA Geostationary Operational Environmental Satellites (1994-2005), have been used to compile this long-term dataset. Some solar eruptions lead to solar proton events (SPEs) at the Earth, which typically last a few days. High energy solar protons associated with SPEs precipitate on the Earth's atmosphere and cause increases in odd hydrogen (HOx) and odd nitrogen (NOy) in the polar cap regions (greater than 60 degrees geomagnetic). The enhanced HOx leads to short-lived ozone depletion (~days) due to the short lifetime of HOx constituents. The enhanced NOy leads to long-lived ozone changes because of the long lifetime of the NOy family in the stratosphere and lower mesosphere. Very large SPEs occurred in 1972, 1989, 2000, 2001, and 2003 and were predicted to cause maximum total ozone depletions of 1-3%, which lasted for several months to years past the events. These long-term ozone changes caused by SPES are discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-06
    Description: The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 111; C12001
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: The SBUV/2 (Solar Backscattered Ultraviolet, model 2) instrument is designed to monitor ozone stratospheric profile and total column ozone using measurements of the Earth's backscattered ultraviolet albedo. We have previously demonstrated that the normal radiance measurements from SBUV/2 instruments, which sample 12 discrete wavelengths between 252 and 340 nm during each scan, can be used to identify polar mesospheric clouds (PMCs). Some SBUV/2 instruments also periodically view the earth in continuous scan mode, covering the wavelength range 160-400 nm with 0.15 nm sampling. Analysis of these data show PMC occurrence rates similar to the normal discrete scan results, although the observation technique reduces the number of daily measurements by a factor of six. PMC observed by SBUV/2 instruments show a monotonic variation in the residual spectral albedo over the wavelength range 250 300 nm, with maximum enhancements of 10 15% at 250 nm. This result is consistent with microphysical model predictions from Jensen [1989. A numerical model of polar mesospheric cloud formation and evolution, Ph. D. Thesis, University of Colorado]. We find no evidence for a systematic localized increase in PMC residual albedo for wavelengths near 260 nm, in contrast to the recently reported results from the MSX UVISI instrument [Carbary J.F., et al., 2004. Evidence for bimodal particle distribution from the spectra of polar mesospheric clouds. Geophysics Research. Letters 31, L13108]. This result is observed for three different SBUV/2 instruments in both Northern and Southern Hemisphere data over a 13-year span. Our Mie scattering calculations show that the location and magnitude of the 260 nm hump feature is dependent upon the specific scattering angles appropriate to the MSX measurements. Although it explains the MSX spectrum, the bimodal size distribution proposed by Carbary et al. (2004), cannot explain the lack of scattering angle dependence of the SBUV/2 spectral shapes. The spectral signature of the SBUV/2 continuous scan PMC data is thus inconsistent with the bimodal particle size distribution suggested by Carbary et al. (2004).
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Solar-Terrestrial Physics; Volume 68; Issue 1; 65-77
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-06
    Description: We describe the operational algorithm for the retrieval of stratospheric, tropospheric, and total column densities of nitrogen dioxide NO2 from earthshine radiances measured by the Ozone Monitoring Instrument (OMI), aboard the EOS-Aura satellite. The algorithm uses the DOAS method for the retrieval of slant column NO densities. Air mass factors (AMFs) calculated from a stratospheric NO2 profile are used to make initial estimates of the vertical column density. Using data collected over a 24-h period, a smooth estimate of the global stratospheric field is constructed. Where the initial vertical column densities exceed the estimated stratospheric field, we infer the presence of tropospheric NO2, and recalculate the vertical column density (VCD) using an AMF calculated from an assumed tropospheric NO2 profile. The parameters that control the operational algorithm were selected with the aid of a set of data assembled from stratospheric and tropospheric chemical transport models. We apply the optimized algorithm to OMI data and present global maps of NO2 VCDs for the first time.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 44; Issue 5; 1245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-06
    Description: Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.
    Keywords: Meteorology and Climatology
    Type: Tellus: Series B Chemical and Physical Meteorology; Volume 58; Issue 5; 463
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity-duration threshold is developed by examining a number of landslide occurrences and their corresponding TMPA precipitation characteristics across the world. These early results , in combination with TRMM real-time precipitation estimation system, may form a starting point for developing an operational early warning system for rainfall-triggered landslides around the globe.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-06
    Description: The black-hole X-ray binary transient GRO J1655-40 underwent an outburst beginning in early 2005. We present the results of our multi-wavelength observational campaign to study the early outburst spectral and temporal evolution, which combines data from X-ray (RXTE, INTEGRAL), radio (VLA) and optical (ROTSE, SMARTS) instruments. During the reported period the source left quiescence and went through four major accreting black hole states: low-hard, hard intermediate, soft intermediate and high-soft. We investigated dipping behavior in the RXTE band and compare our results to the 1996-1997 case, when the source was predominantly in the high-soft state, finding significant differences. We consider the evolution of the low frequency quasi-periodic oscillations and find that the frequency strongly correlates with the spectral characteristics, before shutting off prior to the transition to the high-soft state. We model the broad-band high-energy spectrum in the context of empirical models, as well as more physically motivated thermal and bulk-motion Comptonization and Compton reflection models. RXTE and INTEGRAL data together support a statistically significant high energy cut-off in the energy spectrum at approximately equal to 100 - 200 keV during the low-hard state. The RXTE data alone also show it very significantly during the transition, but cannot see one in the high-soft state spectra. We consider radio, optical and X-ray connections in the context of possible synchrotron and synchrotron self-Compton origins of X-ray emission in low-hard and intermediate states. In this outburst of GRO J1655-40, the radio flux does not rise strongly with the X-ray flux.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: The Burst Alert Telescope (BAT) onboard Swift detected bright emission from 15-195 keV from the source SWIFT J0746.3+2548 (J0746 in the following), identified with the optically-faint (R approx. 19), z=2.979 quasar SDSS J074625.87+244901.2. Here we present Swift and multiwavelength observations of this source. The X-ray emission from J0746 is variable on timescales of hours to weeks in 0.5-8 keV and of a few months in 15-195 keV, but there is no accompanying spectral variability in the 0.5-8 keV band. There is a suggestion that the BAT spectrum, initially very hard (photon index Gamma approx. 0.7), steepened to Gamma approx. 1.3 in a few months, together with a decrease of the 15-195 keV flux by a factor approx. 2. The 0.5-8 keV continuum is well described by a power law with Gamma approx. 1.3, and spectral flattening below 1 keV. The latter can be described with a column density in excess of the Galactic value with intrinsic column density Nz(sub H) approx. 10(exp 22)/sq cm , or with a flatter power law, implying a sharp (Delta(Gamma) less than or approx. 1) break across 16 keV in the quasar's rest-frame. The Spectral Energy Distribution of J0746 is double-humped, with the first component peaking at IR wavelengths and the second component at MeV energies. These properties suggest that J0746 is a a blazar with high gamma-ray luminosity and low peak energy (MeV) stretching the blazar sequence to an extreme.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: Using Chandra observations we have measured the energy-resolved dust-scattered X-ray halo around the low-mass X-ray binary GX5-1, detecting for the first time multiply scattered X-rays from interstellar dust. % e compared the observed X-ray halo at various energies to predictions from a range of dust models. These fits used both smoothly-distributed dust as well as dust in clumped clouds, with CO and 21 cm observations helping to determine the position of the clouds along the line of sight. We found that the BARE-GR-B model of Zubko, Dwek & Arendt (2004) generally led to the best results, although inadequacies in both the overall model and the data limit our conclusions. We did find that the composite dust models of Zubko, Dwek & Arendt (2004), especially the "no carbon" models, gave uniformly poor results. Although models using cloud positions and densities derived naively from CO and 21 cm data gave generally poor results, plausible adjustments to the distance of the largest cloud and the mass of a cloud in the expanding 3 kpc Arm lead to significantly improved fits. We suggest that combining X-ray halo, CO, and 21 cm observations will be a fruitful method to improve our understanding of both the gas and dust phases of the interstellar medium.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: The Atmospheric InfraRed Sounder (AIRS), flying aboard NASA's Earth Observing System (EOS) Aqua satellite with the Advanced Microwave Sounding Unit-A (AMSU-A), has been providing data for use in numerical weather prediction (NWP) and data assimilation systems (DAS) for over three years. The full AIRS data set is currently not transmitted in near-real-time (NRT) to the NWP centers. Instead, data sets with reduced spatial and spectral information are produced and made available in NRT. In this paper, we evaluate the use of different channel selections and error specifications. We achieved significant positive impact from the Aqua AIRS/AMSU-A combination in both hemispheres during our experimental time period of January 2003. The best results were obtained using a set of 156 channels that did not include any in the 6.7micron water vapor band. The latter have a large influence on both temperature and humidity analyses. If observation and background errors are not properly specified, the partitioning of temperature and humidity information from these channels will not be correct, and this can lead to a degradation in forecast skill. We found that changing the specified channel errors had a significant effect on the amount of data that entered into the analysis as a result of quality control thresholds that are related to the errors. However, changing the channel errors within a relatively small window did not significantly impact forecast skill with the 155 channel set. We also examined the effects of different types of spatial data reduction on assimilated data sets and NWP forecast skill. Whether we picked the center or the warmest AIRS pixel in a 3x3 array affected the amount of data ingested by the analysis but had a negligible impact on the forecast skill.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: Use of dual-wavelength radar, with properly chosen wavelengths, will significantly lessen the ambiguities in the retrieval of microphysical properties of hydrometeors. In this paper, a dual-wavelength algorithm is described to estimate the characteristic parameters of the snow size distributions. An analysis of the computational results, made at X and Ka bands (T-39 airborne radar) and at S and X bands (CP-2 ground-based radar), indicates that valid estimates of the median volume diameter of snow particles, D(sub 0), should be possible if one of the two wavelengths of the radar operates in the non-Rayleigh scattering region. However, the accuracy may be affected to some extent if the shape factors of the Gamma function used for describing the particle distribution are chosen far from the true values or if cloud water attenuation is significant. To examine the validity and accuracy of the dual-wavelength radar algorithms, the algorithms are applied to the data taken from the Convective and Precipitation-Electrification Experiment (CaPE) in 1991, in which the dual-wavelength airborne radar was coordinated with in situ aircraft particle observations and ground-based radar measurements. Having carefully co-registered the data obtained from the different platforms, the airborne radar-derived size distributions are then compared with the in-situ measurements and ground-based radar. Good agreement is found for these comparisons despite the uncertainties resulting from mismatches of the sample volumes among the different sensors as well as spatial and temporal offsets.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-06
    Description: We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: We have conducted an archival XMM-Newton study of the bright X-ray point sources in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population. Indeed, 16 sources in our sample match the criteria we set for a low-state ULX, namely, L(sub X) greater than 10(exp 38 ergs per second) and a spectrum best fit with an absorbed power law. Further, we find evidence for 26 high-state ULXs which are best fit by a combined blackbody and a power law. As in Galactic black hole systems, the spectral indices, GAMMA, of the low-state objects, as well a s the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures is 0.1-1 keV with the most luminous systems tending toward the lowest temperatures. We also find a class of object whose properties (luminosity, blackbody temperature, and power law slopes) are very similar to those of galactic stellar mass black holes. In addition, we find a subset of these objects that can be best fit by a Comptonized spectrum similar to that used for Galactic black holes in the very high state, when they are radiating near the Eddington limit.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-06-06
    Description: An atmospheric general circulation model simulation for 1948-1997 of the water budgets for the MacKenzie, Mississippi and Amazon River basins is presented. In addition to the water budget, we include passive tracers to identify the geographic sources of water for the basins, and the analysis focuses on the mechanisms contributing to precipitation recycling in each basin. While each basin s precipitation recycling has a strong dependency on evaporation during the mean annual cycle, the interannual variability of the recycling shows important relationships with the atmospheric circulation. The MacKenzie River basin has only a weak interannual dependency on evaporation, where the variations in zonal moisture transport from the Pacific Ocean can affect the basin water cycle. On the other hand, the Mississippi River basin has strong interannual dependencies on evaporation. While the precipitation recycling weakens with increased low level jet intensity, the evaporation variations exert stronger influence in providing water vapor for convective precipitation at the convective cloud base. High precipitation recycling is also found to be partly connected to warm SSTs in the tropical Pacific Ocean. The Amazon River basin evaporation exhibits small interannual variations, so that the interannual variations of precipitation recycling are related to atmospheric moisture transport from the tropical south Atlantic Ocean. Increasing SSTs over the 50-year period are causing increased easterly transport across the basin. As moisture transport increases, the Amazon precipitation recycling decreases (without real time varying vegetation changes). In addition, precipitation recycling from a bulk diagnostic method is compared to the passive tracer method used in the analysis. While the mean values are different, the interannual variations are comparable between each method. The methods also exhibit similar relationships to the terms of the basin scale water budgets.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic open field lines). We also show that the presence of Fe K(sub alpha), emission-line strengths, QPOs, and the link between them does not depend on radio flux in 4U 1728-34.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: We analyse archival Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) data of thermonuclear X-ray bursts from the 2002 outburst of the accreting millisecond pulsar SAX 51808.4-3658. We present evidence of a complex frequency modulation of oscillations during burst rise, and correlations among the time evolution of the oscillation frequency, amplitude, and the inferred burning region area. We discuss these findings in the context of a model, based on thermonuclear flame spreading on the neutron star surface, that can qualitatively explain these features. From our model, we infer that for the 2002 Oct. 15 thermonuclear burst, the ignition likely occurred in the mid-latitudes, the burning region took approx. 0.2 s to nearly encircle the equatorial region of the neutron star, and after that the lower amplitude oscillation originated from the remaining asymmetry of the burning front in the same hemisphere where the burst ignited. We emphasize that studies of the evolution of burst oscillation properties during burst rise can provide a powerful tool to understand thermonuclear flame spreading on neutron star surfaces under extreme physical conditions.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...