ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge Univ. Press : Cambridge [u.a.]
    Call number: AWI A13-04-0126
    Description / Table of Contents: This comprehensive text and reference work on numerical weather prediction covers for the first time, not only methods for numerical modeling, but also the important related areas of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of the subject, equations of motion and their approximations, a modern and clear description of numerical methods, and the determination of initial conditions using weather observations (an important new science known as data assimilation). Finally, this book provides a clear discussion of the problems of predictability and chaos in dynamical systems and how they can be applied to atmospheric and oceanic systems. Professors and students in meteorology, atmospheric science, oceanography, hydrology and environmental science will find much to interest them in this book, which can also form the basis of one or more graduate-level courses.
    Type of Medium: Monograph available for loan
    Pages: XXII, 341 S. : graph. Darst., Kt.
    Edition: 1st publ. 2003,Reprint. 2004
    ISBN: 0521796296
    Language: English
    Note: Contents: Foreword. - Acknowledgements. - List of abbreviations. - List of variables. - 1 Historical overview of numerical weather prediction. - 1.1 Introduction. - 1.2 Early developments. - 1.3 Primitive equations, global and regional models, and nonhydrostatic models. - 1.4 Data assimilation: determination of the initial conditions for the computer forecasts. - 1.5 Operational NWP and the evolution of forecast skill. - 1.6 Nonhydrostatic mesoscale models. - 1.7 Weather predictability, ensemble forecasting, and seasonal to interannual prediction. - 1.8 The future. - 2 The continuous equations. - 2.1 Governing equations. - 2.2 Atmospheric equations of motion on spherical coordinates. - 2.3 Basic wave oscillations in the atmosphere. - 2.4 Filtering approximations. - 2.5 Shallow water equations, quasi-geostrophic filtering, and filtering of inertia-gravity waves. - 2.6 Primitive equations and vertical coordinates. - 3. Numerical discretization of the equations of motion. - 3.1 Classification of partial differential equations (PDEs). - 3.2 Initial value problems: numerical solution. - 3.3 Space discretization methods. - 3.4 Boundary value problems. - 3.5 Lateral boundary conditions for regional models. - 4 Introduction to the parameterization of subgrid-scale physical processes. - 4.1 Introduction. - 4.2 Subgrid-scale processes and Reynolds averaging. - 4.3 Overview of model parameterizations. - 5 Data assimilation. - 5.1 Introduction. - 5.2 Empirical analysis schemes. - 5.3 Introduction to least squares methods. - 5.4 Multivariate statistical data assimilation methods. - 5.5 3D-Var, the physical space analysis scheme (PSAS), and their relation to OI. - 5.6 Advanced data assimilation methods with evolving forecast error covariance. - 5.7 Dynamical and physical balance in the initial conditions. - 5.8 Quality control of observations. - 6 Atmospheric predictability and ensemble forecasting. - 6.1 Introduction to atmospheric predictability. - 6.2 Brief review of fundamental concepts about chaotic systems. - 6.3 Tangent linear model, ad joint model, singular vectors, and Lyapunov vectors. - 6.4 Ensemble forecasting: early studies. - 6.5 Operational ensemble forecasting methods. - 6.6 Growth rate errors and the limit of predictability in mid-latitudes and in the tropics. - 6.7 The role of the oceans and land in monthly, seasonal, and interannual predictability. - 6.8 Decadal variability and climate change. - Appendix A The early history of NWP. - Appcndix B Coding and checking the tangent linear and the adjoint models. - Appendix C Post-processing of numerical model output to obtain station weather forecasts. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 423 (2003), S. 528-531 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 427 (2004), S. 214-214 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Cai and Kalnay replyWe do not deny the obvious importance of global warming and decrease in diurnal temperature range (DTR) due to greenhouse effects, which are present in both surface-station observations and the NCEP/NCAR 50-year reanalysis (NNR). Moreover, the NNR shows ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 408 (2000), S. 842-844 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The drought that affected the US states of Oklahoma and Texas in the summer of 1998 was strong and persistent, with soil moisture reaching levels comparable to those of the 1930s ‘dust bowl’. Although other effects of the record-strength 1997–98 El Niño were ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(8), (2020): E1427-E1438, https://doi.org/10.1175/BAMS-D-19-0155.1.
    Description: The NOAA Science Advisory Board appointed a task force to prepare a white paper on the use of observing system simulation experiments (OSSEs). Considering the importance and timeliness of this topic and based on this white paper, here we briefly review the use of OSSEs in the United States, discuss their values and limitations, and develop five recommendations for moving forward: national coordination of relevant research efforts, acceleration of OSSE development for Earth system models, consideration of the potential impact on OSSEs of deficiencies in the current data assimilation and prediction system, innovative and new applications of OSSEs, and extension of OSSEs to societal impacts. OSSEs can be complemented by calculations of forecast sensitivity to observations, which simultaneously evaluate the impact of different observation types in a forecast model system.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-06-10
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-10
    Description: We estimate the effect of model deficiencies in the Global Forecast System that lead to systematic forecast errors, as a first step toward correcting them online (i.e., within the model) as in Danforth & Kalnay (2008a, 2008b). Since the analysis increments represent the corrections that new observations make on the 6 h forecast in the analysis cycle, we estimate the model bias corrections from the time average of the analysis increments divided by 6 h, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012–2016, seasonal means of the 6 h model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the submonthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which we attribute to improvements in the specification of the sea surface temperatures. These results provide support for future efforts to make online correction of the mean, seasonal, and diurnal and semidiurnal model biases of Global Forecast System to reduce both systematic and random errors, as suggested by Danforth & Kalnay (2008a, 2008b). It also raises the possibility that analysis increments could be used to provide guidance in testing new physical parameterizations.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-01
    Description: In 2011, the National Oceanic and Atmospheric Administration (NOAA) began a cooperative initiative with the academic community to help address a vexing issue that has long been known as a disconnection between the operational and research realms for weather forecasting and data assimilation. The issue is the gap, more exotically referred to as the “valley of death,” between efforts within the broader research community and NOAA’s activities, which are heavily driven by operational constraints. With the stated goals of leveraging research community efforts to benefit NOAA’s mission and offering a path to operations for the latest research activities that support the NOAA mission, satellite data assimilation in particular, this initiative aims to enhance the linkage between NOAA’s operational systems and the research efforts. A critical component is the establishment of an efficient operations-to-research (O2R) environment on the Supercomputer for Satellite Simulations and Data Assimilation Studies (S4). This O2R environment is critical for successful research-to-operations (R2O) transitions because it allows rigorous tracking, implementation, and merging of any changes necessary (to operational software codes, scripts, libraries, etc.) to achieve the scientific enhancement. So far, the S4 O2R environment, with close to 4,700 computing cores (60 TFLOPs) and 1,700-TB disk storage capacity, has been a great success and consequently was recently expanded to significantly increase its computing capacity. The objective of this article is to highlight some of the major achievements and benefits of this O2R approach and some lessons learned, with the ultimate goal of inspiring other O2R/R2O initiatives in other areas and for other applications.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-01
    Description: Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-02-01
    Description: Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFS/TMPA precipitation assimilation experiments presented in the companion paper. The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially and/or temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...