ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (42)
  • Apennines
  • Elsevier  (23)
  • Elsevier Science Limited  (22)
  • Blackwell Publishing Ltd  (2)
  • 2010-2014  (47)
  • 1990-1994
  • 1980-1984
  • 1925-1929
Collection
Years
Year
  • 1
    Publication Date: 2020-12-07
    Description: We present a new method for measuring SO2 with the data from the ASTER (Advanced Spaceborne Thermal Emission and Reflectance radiometer) orbital sensor. The method consists of adjusting the SO2 column amount until the ratios of radiance simulated on several ASTER bands match the observations. We present a sensitivity analysis for this method, and two case studies. The sensitivity analysis shows that the selected band ratios depend much less on atmospheric humidity, sulfate aerosols, surface altitude and emissivity than the raw radiances. Measurements with b25% relative precision are achieved, but only when the thermal contrast between the plume and the underlying surface is higher than 10 K. For the case studies we focused on Miyakejima and Etna, two volcanoes where SO2 is measured regularly by COSPEC or scanning DOAS. The SO2 fluxes computed from a series of ten images of Miyakejima over the period 2000–2002 is in agreement with the long term trend of measurement for this volcano. On Etna, we compared SO2 column amounts measured by ASTER with those acquired simultaneously by ground-based automated scanning DOAS. The column amounts compare quite well, providing a more rigorous validation of the method. The SO2 maps retrieved with ASTER can provide quantitative insights into the 2D structure of non-eruptive volcanic plumes, their dispersion and their progressive depletion in SO2.
    Description: R.C. was supported by a grant from F.R.I.A (Fond pour la Recherche Industrielle et Appliquée). GGS acknowledges a PhD grant funded by the project “Sviluppo di sistemi di monitoraggio” funded by Dipartimento di Protezione Civile della Regione Sicilia, INGV (Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania—Italy) and NOVAC (Network for Observation of Volcanic and Atmospheric Change) EU-funded FP6 project no. 18354. P-F. C. is research associate with FRS-FNRS and benefited from its financial support (F.4511.08).
    Description: Published
    Description: 42-54
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: remote sensing, SO2, ASTER, DOAS, Etna, Miyakejima ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: The quaternary volcanic complex of Mount Amiata is located in southern Tuscany (Italy) and represents the most recent manifestation of the Tuscan Magmatic Province. The region is characterised by a large thermal anomaly and by the presence of numerous CO2-rich gas emissions and geothermal features, mainly located at the periphery of the volcanic complex. Two geothermal systems are located, at increasing depths, in the carbonate and metamorphic formations beneath the volcanic complex. The shallow volcanic aquifer is separated from the deep geothermal systems by a low permeability unit (Ligurian Unit). A measured CO2 discharge through soils of 1.8 109 mol a 1 shows that large amounts of CO2 move from the deep reservoir to the surface. A large range in d13CTDIC ( 21.07 to +3.65) characterises the waters circulating in the aquifers of the region and the mass and isotopic balance of TDIC allows distinguishing a discharge of 0.3 109 mol a 1 of deeply sourced CO2 in spring waters. The total natural CO2 discharge (2.1 109 mol a 1) is slightly less than minimum CO2 output estimated by an indirect method (2.8 109 mol a 1), but present-day release of 5.8 109 mol a 1 CO2 from deep geothermal wells may have reduced natural CO2 discharge. The heat transported by groundwater, computed considering the increase in temperature from the infiltration area to the discharge from springs, is of the same order of magnitude, or higher, than the regional conductive heat flow (〉200 mWm 2) and reaches extremely high values (up to 2700mWm 2) in the north-eastern part of the study area. Heat transfer occurs mainly by conductive heating in the volcanic aquifer and by uprising gas and vapor along fault zones and in those areas where low permeability cover is lacking. The comparison of CO2 flux, heat flow and geological setting shows that near surface geology and hydrogeological setting play a central role in determining CO2 degassing and heat transfer patterns.
    Description: Published
    Description: 860–875
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Carbon dioxide degassing ; Monte Amiata ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Description: -
    Description: Published
    Description: 55-66
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-15
    Description: No eruption, no caldera collapse, and no landslide can take place in a volcano unless its state of stress is suitable for the associated type of rock failure. The state of stress, in turn, results in deformation, and both stress and deformation depend on the mechanical properties of the rocks that constitute the volcano. Understanding stress and deformation in volcanoes is thus of fundamental importance for understanding unrest periods and for accurate forecasting volcano failure, such as may result in large-scale lateral and vertical collapses and eruptions.
    Description: Published
    Description: 1-3
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: stress, deformation, volcano tectonics, physical propertie of volcanic rocks ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-14
    Description: We present the first density model of Stromboli volcano (Aeolian Islands, Italy) obtained by simultaneously inverting land-based (543) and sea-surface (327) relative gravity data. Modern positioning technology, a 1 × 1 m digital elevation model, and a 15 × 15m bathymetric model made it possible to obtain a detailed 3-D density model through an iteratively reweighted smoothness-constrained least-squares inversion that explained the land-based gravity data to 0.09 mGal and the sea-surface data to 5 mGal. Our inverse formulation avoids introducing any assumptions about density magnitudes. At 125 m depth from the land surface, the inferred mean density of the island is 2380 kg m−3, with corresponding 2.5 and 97.5 percentiles of 2200 and 2530 kg m−3. This density range covers the rock densities of new and previously published samples of Paleostromboli I, Vancori, Neostromboli and San Bartolo lava flows. High-density anomalies in the central and southern part of the island can be related to two main degassing faults crossing the island (N41 and N64) that are interpreted as preferential regions of dyke intrusions. In addition, two low-density anomalies are found in the northeastern part and in the summit area of the island. These anomalies seem to be geographically related with past paroxysmal explosive phreato-magmatic events that have played important roles in the evolution of Stromboli Island by forming the Scari caldera and the Neostromboli crater, respectively. © 2014 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 58–69
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli, Gravity, Inversion, Geophysics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-13
    Description: Deformation sources in volcanic areas are generally modeled in terms of pressurized tri-axial ellipsoids or pressurized cracks with simple geometrical shapes, embedded in a homogeneous half-space. However, the assumption of a particular source mechanism and the neglect of medium heterogeneities bias significantly the estimate of source parameters. A more general approach describes the deformation source in terms of a suitable moment tensor. Ratios between moment tensor eigenvalues are shown to provide a strong diagnostic tool for the physical interpretation of the deformation source and medium heterogeneities may be accounted for through 3D finite element computations. Leveling and EDM data, collected during the 1982–84 unrest episode at Campi Flegrei (Italy), are employed to retrieve the complete moment tensor according to a Bayesian inversion procedure, considering the heterogeneous elastic structure of the volcanic area. Best fitting moment tensors are found to be incompatible with any pressurized ellipsoid or crack. Taking into account the deflation of a deeper magma reservoir, which accompanies the inflation of a shallower source, data fit improves considerably but the retrieved moment tensor of the shallow source is found to be incompatible with pressurized ellipsoids, still. Looking for alternative physical models of the dislocation source, we find that the best fit moment tensor can be best interpreted in terms of a mixed mode (shear and tensile) dislocation at 5.5 km depth, striking EW and dipping by ~25°–30° to the North. Gravity changes are found to be compatible with the intrusion of ~60–70·10^6 m^3 of volatile rich magma with density ~2400 kg/m^3.
    Description: Published
    Description: 175-185
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic source ; unrest ; finite element ; inverse theory ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-11
    Description: The CO2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar returns were obtained up to a range of 3 km. The spatial resolution was 15 mand the temporal resolution was 20 s. By combining these measurements, the water vapor flux in the Stromboli volcano plume was found. To our knowledge, it is the first time that lidar retrieves water vapor concentrations in a volcanic plume.
    Description: Published
    Description: 1295–1298
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Lidar ; Volcanic plume ; DIAL ; Water vapor ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-30
    Description: Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4 kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer).
    Description: Published
    Description: 261–271
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.
    Description: Published
    Description: 110-122
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; basaltic explosive activity ; ash-rich jet and plume ; tachylite ; sideromelane ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO2/SO2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO2/SO2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of relatively-steady and low ratios (time-averaged ratio, 4.3) lasting from at least May to November 2006. By contrasting our observations with numerical simulations of volcanic degassing at Stromboli, derived by use of an equilibrium saturation model, we suggest that the pre-eruptive increase of the ratio reflected an enhanced supply of deeply-derived CO2-rich gas bubbles to the shallowplumbing system. This larger-than-normal ascent of gas bubbles was likely sourced by a 1–3 km deep gas– melt separation region (probably a magma storage zone), and caused faster convective overturning of magmas in the shallow conduit; an increase in the explosive rate and in seismic tremor, and finally the collapse of the la Sciara del Fuoco sector triggering the effusive phase. The high CO2/SO2 ratios (up to 21) observed during the effusive phase, and particularly in the days and hours before a paroxysmal explosion on March 15, 2007, indicate the persistence of the same gas source; and suggest that de-pressurization of the same 1–3 km deep magma storage zone could have been the trigger mechanism for the paroxysm itself
    Description: Published
    Description: 221-230
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; plume chemistry ; magma degassing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Mercury is outstanding among the global environmental pollutants of continuing concern. Although degassing of active volcanic areas represents an important natural source of mercury into the atmosphere, still little is known about the amount and behaviour of Hg in volcanic aquifers, especially regarding its chemical speciation. In order to assess the importance of mercury emissions from active volcanoes, thermal waters were sampled in the area surrounding La Solfatara, Pozzuoli bay. This is the most active zone of the Phlegrean Fields complex (coastal area north–west of Naples), with intense hydrothermal activity at present day. Studied groundwaters show total Hg (THg) concentrations range from 56 to 171 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization (WHO, 1993). We also carefully discriminated the different aqueous species of Hg in the collected water samples. Besides, original data on Hg determination in gaseous manifestations at La Solfatara crater are also reported. We measured volcanogenic mercury concentration and Hg/Stot ratio both in the volcanic plume and in fumarolic condensates in order to better constrain Hg reactivity once emitted into the atmosphere. Data on Hg/Stot reveal that there is no significant difference between Hg volcanic composition at the venting source (fumaroles) and in near-vent diluted volcanic plumes (1.6×10−5 and 1.9×10−5, respectively), suggesting that there is limited Hg chemical processing in volcanic fumarole plumes, at least on the timescales of a few seconds investigated here. Combining the mean fumaroles Hg/CO2 mass ratio of about 1.3×10−8 (molar ratio: 2.1×10−9) with the hydrothermal soil diffuse CO2 degassing of the area, the annual Hg flux from La Solfatara is estimated as 7 kg y−1 (0.007 t y−1). Current mercury emission from La Solfatara volcano represents a very small contribution to the estimated global volcanic budget for this element, and the estimated Hg flux is considerably lower than that estimated from open-conduit active basaltic volcanoes.
    Description: Published
    Description: 250–260
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: hydrothermal waters ; total mercury ; mercury speciation ; fumaroles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped outin the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.
    Description: Published
    Description: 118-124
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Moment tensors ; Southern Italy ; Apennines ; Stress inversion ; Seismicity and tectonics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: This study assessed the use of a H2 fuel cell as an H2-selective sensor for volcano monitoring. The resolution, repeatability, and cross-sensitivity of the sensor were investigated and evaluated under known laboratory conditions. A tailor-made device was developed and used for continuously monitoring H2 and CO2 at Mt Etna throughout 2009 and 2010. The temporal variations of both parameters were strongly correlated with the evolution of the volcanic activity during the monitoring period. In particular, the CO2 flux exhibited long-term variations, while H2 exhibited pulses immediately before the explosive activity that occurred at Mt Etna during 2010.
    Description: Published
    Description: 41–51
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; H2 monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Several volcanoes worldwide have shown changes in their stress state as a consequence of the deformation produced by the pressurization of a magmatic body. This study investigates seismic swarms occurring on the western flank of Mt. Etna in January 1997 - January 1998. Integrating seismic observations and geodetic data, we constrained the seismogenic fault system, and on the basis of stress tensor inversion and SHMAX analyses, we infer an inflating pressure source located at 5.5 km b.s.l. beneath the west portion of summit area. Evaluation of Coulomb failure stress (CFS) related to the proposed model, showed how a large part of the seismogenic fault underwent a significant CFS increase (500 kPa). We infer the presence of a sub-vertical faulted region, potentially weak, N50°E oriented beneath the western sector of Mt. Etna. This structure could be brought closer to failure thereby generating seismic swarms as the effect of elastic stress transfer induced by movement and/or overpressure of magmatic masses within the upper crust under the volcano.
    Description: This research was funded by the INGV–DPC 2007–2009 Agreement (Project V4_Flank).
    Description: Published
    Description: 339-348
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; modelling ; Seismicity ; GPS monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Spaceborne remote sensing techniques and numerical simulations have been combined in a web-GIS framework (LAV@HAZARD) to evaluate lava flow hazard in real time. By using the HOTSAT satellite thermal monitoring system to estimate time-varying TADR (time averaged discharge rate) and the MAGFLOW physicsbased model to simulate lava flow paths, the LAV@HAZARD platform allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We used LAV@HAZARD during the 2008–2009 lava flow-forming eruption at Mt Etna (Sicily, Italy). We measured the temporal variation in thermal emission (up to four times per hour) during the entire duration of the eruption using SEVIRI and MODIS data. The time-series of radiative power allowed us to identify six diverse thermal phases each related to different dynamic volcanic processes and associated with different TADRs and lava flow emplacement conditions. Satellite-derived estimates of lava discharge rates were computed and integrated for the whole period of the eruption (almost 14 months), showing that a lava volume of between 32 and 61 million cubic meters was erupted of which about 2/3 was emplaced during the first 4 months. These time-varying discharge rates were then used to drive MAGFLOW simulations to chart the spread of lava as a function of time. TADRs were sufficiently low (b30 m3/s) that no lava flows were capable of flowing any great distance so that they did not pose a hazard to vulnerable (agricultural and urban) areas on the flanks of Etna.
    Description: Published
    Description: 197-207
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano Infrared remote sensing Numerical simulation GIS Lava hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-03
    Description: A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4–8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3–4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4–8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.
    Description: Published
    Description: 91–98
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: According to the most common interpretation, the Apennines developed in Neogene and Quaternary times in the hanging wall of a west directed subduction zone. Seismic tomography is the most powerful tool to investigate large volume of Earth at depth, and it has been extensively applied to shed light on the geometry and shape of the subduction under the Italian peninsula. The various experiments were able to display the slab under the Southern Apennines, but even the most recent tomographic images were non-uniquely interpretable and left open questions about the characteristics of the subduction in the Northern-Central sector of the chain. We here present the results of an improved inversion experiment focused on the Northern and Central Apennines. The results do not show any pronounced subduction slab and the most evident anomaly is a low velocity body extending down to 100 km depth, located in a relatively small area under the western Tuscany. On the basis of accurate synthetic tests, we assess that, if established, a subduction like geometry should be visible in our tomographic images. We then conclude that no subduction is imaged in the Northern and Central Apennines. We thus interpret this anomaly as an asthenospheric flow. However, we cannot exclude that our result is due to intrinsic limitations of the methodology. In fact in response to the original question about the capability of local earthquake tomography to settle the matter about subduction, we underline that the absence of deep earthquakes to illuminate the model from below, the existence of seismic gaps in some sectors of the area under study even at shallow depth and the non uniqueness of interpretation of the tomographic images make local tomography unable to give alone definitive information on the deep structure of the Northern and Central Apennines.
    Description: Published
    Description: 63-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; Apennines ; Subduction ; Asthenospheric upwelling ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: In this paper, we report four years of soil CO2 emission data measured monthly at 130 sites in two peripheral areas of Mt Etna Volcano that are well known for their high discharge rates of volcanic gas. We remove the influence of atmospheric parameters, and by means of statistical analyses, we (i) demonstrate that variations in CO2 emissions are due mainly to CO2 of a deep origin and (ii) quantify the total amounts of CO2 derived from a deep magma source. Periods of anomalous deep degassing are identified in both areas. A comparison of the timing of these anomalies and geophysical data indicates that the periods of anomalous degassing can be mostly ascribed to intrusions of fresh magma into the Etna plumbing system, which is in agreement with many previous works. Based on the existing literature, we formulate an interpretative framework of magma migration within the plumbing system, consistent with temporal trends in the observed anomalies. Finally, we reconstruct the processes of recent magma ascent at Mt Etna based on our interpretative framework, published geophysical data, and records of volcanic activity.
    Description: Published
    Description: 218-227
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Mt Etna ; Volcanic activity ; Magma transfer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009–May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai–Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July–August 2011. We interpreted the seismic-related anomalies as ‘‘crustal fluid transients’’, i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.
    Description: Accordo Quadro DPC-INGV 2012-21, Convenzione C, 2012,Progetto V3, Task 3, WP13, UR2
    Description: Published
    Description: 160-169
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal transient ; Fumarole temperature ; Seismic activity ; Stress field ; Teleseism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The continuous monitoring shows short term dynamics and allows multidisciplinary comparisons. Sharp increases and trending variations were recorded in fumarole temperatures. The trends highlighted by punctual monitoring characterized the main fumaroles. A new phase of increasing temperature begun after the year 2001 at the rim fumaroles.
    Description: The exhalation activity at the La Fossa cone (Vulcano Island, Aeolian Archipelago, Italy) has been ongoing for more than 1 century. Many of the monitored geochemical and geophysical parameters have showed transient variations of energy release. The time-series analyses of fumarole temperatures presented in this paper enabled the sequence of observations to be defined and information from different monitoring stations to be integrated. The motion of fluids feeding the fumaroles of the La Fossa cone is driven by the thermal and kinetic energies that balance the seismic and volcanic forces active in the region, and the temperatures of the fumaroles reflect the local response of the hydrothermal system to these forces. During a 14-year period of observation, from 1998 to 2012, fumarole temperatures showed various trends but also cyclic variations characterized by sharp increases. The repetition of these variations during periods with different trends indicates that no physical variation occurred from the hydrothermal source to the surface during the analyzed period, and after each periodic geochemical crisis the previous thermal conditions were restored. Although the continuous monitoring of hightemperature fumaroles was limited to only a few sites, the observed trends characterized the most important fumaroles in the area of Vulcano Island. An evaluation of thermal-energy release based on these spatially discrete measurements would be a speculative exercise in thermodynamics, but the analyses of the recorded data represent a step forward in interpreting the signals from ongoing volcanic activity and in assessing the seismic risk. © 2013 Elsevier B.V. All rights reserved.
    Description: INGV-DPC project
    Description: Published
    Description: 150-163
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: temperature, fumarole, time series, monitoring, geochemistry, volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Herein we report on the chemical and isotopic (C, H, O, and He) compositions of the fluids from La Fossa crater fumaroles of Vulcano from 1999 to 2010. Consistent with records obtained since the end of the 1980s, our data show that the geochemical features of the fumarole system have experienced several episodes of remarkable change, each lasting no more than a few months. Typical signatures of these short-term anomalies are large increments in CO2, N2, and He concentrations, coupled to increased 13C/12C isotopic ratios, but their meaning remains widely debated. Within a model of fumarolic fluids based on mixing between hydrothermal and magmatic endmembers, we have developed a novel approach to constrain chemical (He/ CO2 and N2/He) and isotopic (13C/12C, D/H, and 3He/4He) ratios of the magmatic endmember during the short-term anomalies. Although much of the geochemical variability in fumaroles results from changes in mixing proportions, the magmatic fluid unquestionably shows significant variations in time. The magmatic He/CO2, N2/He, 13C/12C, and 3He/4He values throughout 1988–1996 differed from those feeding the anomaly at the end of 2004. Early clues of the new magmatic fluid appeared in 1998–1999, far from any short-term anomaly, whereas new and old magmatic fluids coexisted after 2004. We quantitatively prove that the detected geochemical changes are consistent with the degassing path of a magma having a latitic composition, and suggest the presence of two magma ponding levels at slightly different pressures, where bubble–melt decoupling can occur. The different He-isotope compositions at these levels suggest low hydraulic connectivity typical of a complex reservoir with dike and sill structures. In this framework, the short-term geochemical anomalies are probably due to gas accumulation at the top of magma bodies followed by massive escape, or activation of new degassing levels in the reservoir, for which the stress field almost certainly plays a key role. Such a scenario explains the observed increases in both fumarole output and shallow high-frequency seismicity (due to increased pore pressure) during the anomalies, while being consistent with the concomitant absence of any deep seismicity or ground deformation, eventually related to magma movement.
    Description: Published
    Description: 158-178
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: fumarole geochemistry ; magma degassing ; thermodynamic modeling ; noble gas geochemistry ; carbon isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Results of observations of the Mt. Vesuvius caldera, carried out by means of terrestrial laser scanning (TLS) in May 2005, October 2006 and June 2009, are reported here. In each survey the whole crater was acquired with 17/20 scans from 6 different viewpoints and the corresponding digital surface models were generated and registered into the UTM-WGS84 reference frame. In this way, a comparison between the multitemporal models leads to an evaluation of the occurred changes. The deformation maps, i.e. the contouring plots of the differences between the models along the direction of maximum variations, showed a progressive mass loss due to rock-falls from the NE vertical crater wall whose area was about 5000m2. The TLS data also showed the accumulation at the bottom. The volume loss which occurred from 2005 to 2009, was computed by subtraction of volumes defined with respect to reference planes parallel to the caldera walls and was estimated to be 20 300 m3. The volume uncertainties due to registration errors, subsampling noise effects, and effects due to choice of the reference plane, were also estimated. Some results were also interpreted on the basis of micro-seismic and meteorological data in order to plan a monitoring technique where seismic signals related to rock-fall and/or signals of intense rainfalls are used as alarms for fast TLS surveys able to characterize the corresponding changes of the caldera walls. The proposed methodology, in particular the simple but effective approach used in the estimation of volume uncertainties, can be applied to each rock slope instability phenomenon, regardless of the particular environment.
    Description: In press
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Terrestrial laser scanning ; 3D model ; Vesuvius ; Landslide ; volume ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We present the velocity field in Italy derived from over 300 continuous GPS stations operated in the 1998– 2009 time span. The GPS network maps the whole country with a mean inter-site distance of about 50 km and provides a valuable source of data to study the ongoing deformation processes in the central Mediterranean. The estimated horizontal and vertical velocity fields show major significant features and also less known second-order kinematic features. A general uplift characterizes the whole Apennines and Alpine belts that follow the topographic ridge, whereas the Po Plain shows a gradually increasing subsidence from west to east. The Apennines belt displays a distinctive extension (50–80 10−9 yr−1)while compressive tectonic regimes characterize northern Sicily, eastern Alps and the northeast front of the northern Apennines (25–50 10−9 yr−1). Second-order deformation patterns, on large scale wavelength (~100 km) have been detected on the accretionary prism of central and southern Apennines that are highly correlated with other geophysical data (Vp anomalies, seismic anisotropy, etc.) and related to deep rooted sections (70– 100 km), marked by different subduction regimes. Apparently at this scale-length the observed deformations are governed by the lithosphere as a whole. We interpret these deformations as a result of different subduction mechanisms, such as variations of the subduction rollback velocity affecting different segments of the subduction zone and/or to mantle flows in proximity of the slab edges. Further south, in central-southern Sicily, we detect a contraction of (−1.1±0.2) mm/yr that probably accommodates part of the Africa–Eurasia convergence on the outer thrust front of the Apennines–Maghrebides belt. This hypothesis agrees with an independent analysis of the seismicity associated to the Sicilian Basal Thrust, thought to be still active. The ITRF2005 estimates of the new GPS velocity field are available also in SINEX format as supplementary file S1.
    Description: Published
    Description: 230-241
    Description: 1.9. Rete GPS nazionale
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GPS velocity field ; Apennines ; Alps ; Adria ; Plate kinematics ; Subduction zone ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Using Etna as a case study location, we examine the balance between the volume of magma supplied to the shallow volcanic system (using ground-based SO2 data) and the volume erupted (using satellite thermal data). We do this for three eruptions of Mt. Etna (Italy) during 2002 to 2006. We find that, during the three eruptions, 2.3×107 m3 or 24% of the degassed volume remained unerupted. However, variations in the degree of partitioning between supplied (Vsupply) and erupted (Verupt) magma occur within individual eruptions over the time scales of days. Consequently, we define and quantify three types of partitioning. In the first case, VsupplybVerupt, i.e. more lava is erupted than is supplied. In such a case previously degassed magma is erupted or magma can rise faster than it is able to degas, as occurred during the open phases of the 2002–2003 and 2004–2005 eruptions, respectively. In the second case, VsupplyNVerupt, i.e. less lava is erupted than is supplied. In such a case, magma can erupt in an explosive manner, as occurred during Phase II of the 2002–2003 eruption, or remain within or below the edifice. In the third case, Vsupply=Verupt, i.e. all supplied magma is erupted. During 2002–2006, over a total of 280 days of eruptive activity, this balancing case applied to 50% of the time.
    Description: Published
    Description: 47-53
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; thermal remote sensing ; SO2 flux ; Effusive eruption ; mass balance ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.
    Description: Published
    Description: 27-39
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow field ; lava flow simulation ; Digital elevation model ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: The 15 March 2007 Vulcanian paroxysm at Stromboli volcano was recorded by several instruments that allowed description of the eruptive sequence and unravelling the processes in the upper feeding system. Among the devices installed on the island, two borehole strainmeters recorded unique signals not fully explored before. Here we present an analysis of these signals together with the time-lapse images from a monitoring system comprising both infrared and visual cameras. The two strainmeter signals display an initial phase of pressure growth in the feeding system lasting ~2 min. This is followed by 25 s of low-amplitude oscillations of the two signals, that we interpret as a strong step-like overpressure building up in the uppermost conduit by the gas-rich magma accumulating below a thick pile of rock produced by crater rim collapses. This overpressure caused shaking of the ground, and triggered a number of small landslides of the inner crater rim recorded by the monitoring cameras. When the plug obstructing the crater was removed by the initial Vulcanian blast, the two strainmeter signals showed opposite sign, compatible with a depressurizing source at ~1.5 km depth, at the junction between the intermediate and shallow feeding system inferred by previous studies. The sudden depressurization accompanying the Vulcanian blast caused an oscillation of the source composed by three cycles of about 20 sec each with a decreasing amplitude, as well recorded by the strainmeters. The visible effect of this behaviour was the initial Vulcanian blast and a 2-3 km high eruptive column followed by two lava fountainings displaying decreasing intensity and height. To our knowledge, this is the first time that such a behaviour was observed on an open conduit volcano.
    Description: Published
    Description: 249-256
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; paroxysmal explosions ; shallow plumbing system ; borehole strainmeters ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Herein, we present a method for continuous measurement of soil CO2 flux that is completely new and distinct from existing instruments. The foremost difference is that instead of using an infrared gas analyser (IRGA), the new device measures soil CO2 flux by means of a simple pressure sensor, measuring pressure transients inside a closed polymeric tube inserted into the soil. This allows continuous measurements even in soil placed in environments that could potentially damage IRGA. In addition, due to the innovative operating principle, measurements of soil CO2 flux can be effortlessly performed also in strongly harsh weather conditions. Theoretical equations were derived for calculating soil CO2 flux solely using measured transient values. The reliability of the equations was rigorously tested with a variety of experiments. Continuous measurements over four months, acquired in a high-emission area on the Island of Vulcano, compared favourably with the data obtained using an established method.
    Description: Published
    Description: 102-109
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Soil CO2 flux measurements ; Continuous monitoring ; Methods of measurement ; Polymeric membranes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Continuous seismic monitoring plays a key role in the surveillance of the Mt. Etna volcano. Besides earthquakes, which often herald eruptive episodes, the persistent background signal, known as volcanic tremor, provides important information on the volcano status. Changes in the regimes of activity are usually concurrent with variations in tremor characteristics. As continuous recording leads rapidly to the accumulation of large amounts of data, parameter extraction and automated processing become crucial. We propose techniques of unsupervised classification and present a software, named KKAnalysis, developed for this purpose. Essentials of KKAnalysis are demonstrated on tremor data recorded on Mt. Etna during various states of volcanic activity encountered in 2007 and 2008. KKAnalysis is based on MATLAB and combines various unsupervised pattern recognition techniques, in particular self-organizing maps (SOM) and cluster analysis. An early software version was successfully applied to seismic signals recorded on Mt. Etna during the eruption in 2001. Since each situation may require different configurations, we designed KKAnalysis with a specific GUI allowing users to easily modify parameters. All results are given graphically, in screen plots and metafiles (MATLAB and TIF format), as well as in alphanumeric form. The synoptic visualization of results from SOM and cluster analysis facilitates an immediate inspection. The potential of this representation is demonstrated by focusing on data recorded during a flank eruption on May 13, 2008. Changes of tremor characteristics can be clearly identified at a very early stage, well before enhanced volcanic activity becomes visible in the time series. At the same time, data reduction to less than 1% of the original amount is achieved, which facilitates interpretation and storage of the essential information. Running the program in a typical configuration requires computing time less than 1 min, allowing an on-line application for early warning purposes at INGV–Sezione di Catania
    Description: Published
    Description: 953-961
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 5.6. TTC - Attività di Sala Operativa
    Description: JCR Journal
    Description: reserved
    Keywords: Self-Organizing Map ; Cluster Analysis ; K-means ; Fuzzy C-means ; Volcano Seismology ; Volcano Monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: At Stromboli volcano, Italy, continuous seismic monitoring and periodic, visual observations of volcanic activity for surveillance purposes began in the mid-1980s. Since 1985, two eruptions have occurred, one lasting from December, 1985 until April, 1986, and one in May, 1993. There have also been two small overflows, in 1990 and 1994. Since these episodes of lava effusion, the persistent Strombolian activity of the volcano has had several fluctuations during the past 15 years. Some episodes climaxed in powerful explosions. According to seismic records, these paroxysms consisted of a variable number of explosion quakes in rapid succession (i.e. from tens of seconds to a few minutes), associated with a notable increment in the amplitude of volcanic tremor. Throughout these episodes - which are called explosive sequences - lapilli, fragments of old rock, and bombs of varying dimensions were ejected, affecting an area greater than the crater terrace where the active craters are located. In this article, we describe the explosive sequences recorded at Stromboli between 1985 and 1999. We provide a characterization in terms of reduced displacement and duration for nine episodes occurring in 1998 and 1999. Their reduced displacements range from 15 to 124 cm2; their durations are between 6 and 18 min. We find no change in the frequency content of the seismic signal several minutes before and during the sequences. Considering medium- to long-term behavior, the spectral amplitude of the seismic signal decreases or has low values over several months preceding the occurrence of the paroxysms. This feature is common to 20 of the 22 explosive sequences, and is indicative of internal conditions that periodically characterize the feeder. We surmise that the paroxysms are the result of the partial obstruction of the volcanic conduit when the magma column is low or dropping. The onset of the explosive sequence, causing the sudden removal of the material which forms the obstruction, would trigger a sudden depressurization of the conduit and the rapid rise of magma from depth.
    Description: Published
    Description: 137-150
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Paroxysms ; Seismicity ; Volcanoes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: A 4-year geochemical survey of some fumaroles at the Voragine summit crater of Mt Etna was performed in combination with synchronous monitoring of peripheral gas emissions at the base of the volcano. This was the first geochemical study at Mt Etna to have included the abundances of Ar, He, and C isotopes. Once the effects of postmagmatic shallow processes were identified and quantitatively removed, the He–Ar–CO2 systematics of the Voragine crater fumaroles and peripheral gas emissions described the same degassing path. Combining the carbon-isotope composition with information about noble gases provided evidence that the crater fumaroles are fed from a two-endmember mixture composed of a deep member coming from pressures between 200 and 400 MPa (depending on time), and a shallower one exsolved at 130 MPa. Similar mixing processes probably also occur in gases from peripheral vents. The simultaneous assessment of d13CCO2 and He/Ar values of crater fumaroles over time has identified simple changes in the mixing proportion between the two endmembers and, moreover, periods during which the exsolution pressure of the deep fluid increased. These periods seem to be linked to pre-eruptive phases of the volcano. The identified open-system degassing processes are indicative of efficient bubble–melt decoupling at depth, whereas the mixing process requires a convective transfer of the deeply exsolved fluids toward shallower levels of magma where further vapor is exsolved. In agreement with the most recent geophysical and petrological data from Mt Etna, these observations allow inferences about a deep portion of the plumbing system (5 to 12 km b.s.l.), comprising sill-like reservoirs connected by small vertical structures, and a main reservoir at 2–3 km b.s.l. that is probably fluxed by magmatic volatiles. 2012 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 380-394
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry, isotopes, degassing, modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: On 13 May 2008, an eruption began at Mt. Etna from an eruptive fissure that opened on the upper eastern flank of the volcano. During 12-13 May, 157 infrasonic events, together with the related seismic transients, were collected. We carried out several analyses to obtain dominant frequencies, pseudospectrograms, peak-to-peak amplitudes, source locations and time lags between infrasonic and seismic events. Spectra of the infrasonic events show two main spectral peaks in the frequency bands ~0.4-0.7 Hz and 1.5-2.0 Hz, respectively. Both infrasonic and seismic events were separately located below the North-East Crater, where no eruptive activity was observed. Moreover, significant changes in infrasound spectral content, as well as in the infrasonic-seismic lags, were found a few hours before the beginning of the eruption. On the basis of the collected information the infrasound source mechanism was modelled as a superposition of pipe and Helmholtz resonance, also leading to outline the geometry of the shallower portion of the North-East Crater plumbing system. The occurrence of these seismo-infrasonic events together with other geological and geophysical evidences, led us to inferring a direct link between North-East Crater activity and the eruptive fissure. Further, based on variations over time of both spectral features and seismicinfrasonic time lag, shallowing phenomena of the free magma column inside North-East Crater conduit were hypothesized. Such an uprise of magma was likely caused by a pressure increase inside the plumbing system occurring before the beginning of the 2008-2009 eruption.
    Description: Published
    Description: 53-68
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; Helmholtz resonator ; plumbing system geometry ; seismo-acoustic studies ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: We present a review of our work on data acquired by GEOSTAR-class (GEophysical and Oceanographic STation for Abyssal Research) observatories deployed at three EMSO (European Multidisciplinary Seafloor and water-column Observatory; http://www.emso-eu.org) sites in southern European waters where strong geo-hazards are present: the Western Iberian Margin, the Western Ionian Sea, the Marmara Sea, and the Marsili basin in the Tyrrhenian Sea. A procedure for multiparameter data quality control is described. Then we explain why the seafloor is an interesting observation point for geophysical parameters and how it differs from land sites. We consider four interesting geophysical phenomena found at the EMSO sites that are related to geo-hazard. In the first case, we show how unknown seismicity and landslides in the Western Ionian Sea were identified and roughly localised through a single-sensor analysis based on the seismometer. In the second case, we concentrate on the problem of near-coast tsunami generation and describe a Tsunami Early Warning Detection (TEWD) system, tested in the Western Iberian Margin and currently operating in real time at the Western Ionian site. In the third case, we consider two large volcanoes in the central Mediterranean area, Mt. Etna and the Marsili seamount. Signals from the seismometer and gravimeter recorded at the seafloor at 2100 m b.s.l. show various phases of Mt. Etna's 2002–2003 eruption. For the less-known Marsili we illustrate how several indicators coming from different sensors point to hydrothermal activity. A vector magnetometer at the two volcanic sites helps identify the magnetic lithospheric depth. In the fourth and final case, we present a multiparameter analysis which was focused on finding possible correlations between methane seepage and seismic energy release in the Gulf of Izmit (Marmara Sea).
    Description: Published
    Description: 12–30
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: European Seas ; Geophysical measurements ; Multiparameter seafloor and water-column observatories ; Data quality analysis ; Geo-hazard ; Tsunami early detection ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: In this paper we present the first data of temperature continuously recorded in two fumarole fields (designated VOR and HOR) located in the summit area of Mount Etna volcano (Italy). The time series embraces two distinct periods: (1) October 2007 to November 2009, during which an effusive eruption occurred from May 2008 to July 2009, and (2) November 2011 to June 2012, characterized by the occurrence of strong paroxysms (fire fountains and lava flow). The analysis of the temperature signal in both the time and frequency domains, and its comparison with meteorological observations allowed us to separate the exogenous influences from the effects of variations in the activity state of the volcano. The acquired data were weakly affected by seasonal cycles of the air temperature and strongly affected by the rainfall. Optimization of site conditions (i.e., sensor depth and soil permeability) markedly reduced meteorological disturbances. The distance from the main degassing and/or eruptive fractures was crucial to maximizing the probability of the technical survival of the monitoring apparatus, which was seriously affected by the emission of acidic gases, tephra fallout, and lava flows. Apart from the exogenous influences, the most appreciable variation was observed at VOR, where a huge increase in fumarole temperature was detected immediately after the onset of the 2008–2009 eruption. Such an anomalous increase was attributed to the rapid ascent of magma feeding the eruptive fracture. Another abrupt increase in temperature was recorded at HOR in March and April 2012. During this period the frequency of paroxysm occurrence increased markedly, and this led us to hypothesize that the thermal anomaly was due to the intrusion of a new batch of magma in the conduits of the southeast crater. Medium- to long-term monitoring (weeks to months) of fumarole temperatures revealed variations that were attributed to pressurization/depressurization phases of the shallow volcanic system, which varied between the various monitored sectors of the volcano. Our observations suggest that continuous monitoring of fumarole temperature can give useful information about the activity of Mount Etna. Moreover, due to the complexity of its shallow plumbing system, we conclude that the monitoring systems should be extended to cover the entire fumarole network of the summit area.
    Description: Published
    Description: 12-20
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Continuous monitoring ; Mount Etna ; Fumarole temperature ; Meteorological parameters ; Volcanic Degassing ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: The shallow thermal aquifer at Vulcano Island is strongly affected by deep volcanic fluids. The most significant variations were observed during the 1989–1996 crisis due to a large input of steam and acidic gases from depth. Besides chemical variations related to the input of deep fluids, the record of the water-table elevation at monitored wells has provided remarkable insights into the pressure conditions of the volcano-hydrothermal system. After the pressure drop due to the extensive vaporization of the hydrothermal aquifer, occurred after 1993, the volcano-hydrothermal system has been re-pressurized since 2001, probably because of the contribution of volatiles from the hydrothermal-magmatic source. The increase in fluid pressure may have caused reopening of fractures (which had self-seated during the previous period of cooling) and the onset of a phase of higher vapor output in the fumarole field later in 2004. The fracture opening would have promoted further vapor separation from the deep fluid reservoir (hypothesized at 0.5–1.5 km depth) and finally the drainage of S-rich fluids into the shallow thermal aquifer (found out at few tens of meters of depth). The monitoring of both the water chemistry and the water-table elevation provides insights into the eventual pressurization of the volcano-hydrothermal system that precedes the fracture opening and the extensive drainage of deep fluids. The findings of this study could represent crucial information about the stability of the volcano edifice, and lead to reliable techniques for determining the risk of or even predicting phreatic explosions.
    Description: Published
    Description: 70-80
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrothermal system ; Vulcano Island ; Fluid pressure ; Thermal wells ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-02-24
    Description: Questo lavoro ha analizzato i risultati del monitoraggio termico delle eruzioni di Stromboli del 2002-2003 e 2007, ed ha mostrato come prima di ogni parossisma il volume di lava eruttato nel corso dell’attività effusiva sia stato confrontabile. Questa osservazione ha fatto ipotizzare l’esistenza di una decompressione critica nel sistema di alimentazione superficiale del vulcano, raggiungibile anche lentamente, che innesca la veloce risalita del magma ricco in gas, responsabile dei parossismi. Durante l’attività effusiva, a questa decompressione critica è associabile una soglia di volume di magma emesso, che diventa la misura discriminante per valutare la fase critica del vulcano e predire il parossisma.
    Description: The 2007 effusive eruption of Stromboli followed a similar pattern to the previous 2002-3 episode. In both cases, magma ascent led to breaching of the uppermost part of the conduit forming an eruptive fissure that discharged lava down the Sciara del Fuoco depression. Both eruptions also displayed a ‟paroxysmal„ explosive event during lava flow output. From daily effusion rate measurements retrieved from helicopter- and satellite-based infrared imaging, we deduce that the cumulative volume of lava erupted before each of the two paroxysms was similar. Based on this finding, we propose a conceptual model to explain why both paroxysms occurred after this „threshold‟ cumulative volume of magma was erupted. The gradual decompression of the deep plumbing system induced by magma withdrawal and eruption, drew deeper volatile-rich magma into the conduit, leading to the paroxysms. The proposed model might provide a basis for forecasting paroxysmal explosions during future effusive eruptions of Stromboli.
    Description: This paper was partially supported by a research project (Project INGV-DPC Paroxysm V2/03, 2007–2009) funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection. E.R. thanks Rafal Dunin-Borkowski, director of Cen/DTU (Denmark), for logistic support.
    Description: Published
    Description: 317-323
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli volcano ; effusive eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas measurements in tandem with the melt inclusion record of pre-eruptive dissolved volatile abundances, and with the results of an equilibrium saturation model. Comparison between natural (volcanic gas and melt inclusion) and modelled compositions is used to propose a degassing mechanism for Stromboli volcano, which suggests surface gas discharges are mixtures of CO2-rich gas bubbles supplied from the deep (〉 4 km) plumbing system, and gases released from degassing of dissolved volatiles in the magma filling the upper conduits. The proposed mixing mechanism offers a viable and general model to account for composition of gas discharges at all volcanoes for which petrologic evidence of CO2 fluxing exists. A combined volcanic gas-melt inclusion-modelling approach, as used in this paper, provides key constraints on degassing processes, and should thus be pursued further.
    Description: Published
    Description: 195-204
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: volcanic degassing ; Stromboli ; volcanic gases ; CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: We report simultaneous laboratory measurements of seismic velocities and fluid permeability on lava flow basalt from Etna (Italy). Results were obtained for dry and saturated samples deformed under triaxial compression. During each test, the effective pressure was first increased up to 190 MPa to investigate the effect of pre-existing crack closure on seismic properties. Then, the effective pressure was unloaded down to 20 MPa, a pressure which mirrors the stress field acting under a lava pile of approximately 1.5–2 km thick, and deviatoric stress was increased until failure of the specimens. Using an effective medium model, the measured elastic wave velocities were inverted in terms of two crack densities: ρi the crack density of the pre-existing thermal cracks and ρv the crack density of the stress-induced cracks. In addition a link was established between elastic properties (elastic wave velocities Vp and Vs) and permeability using a statistical permeability model. Our results show that the velocities increase with increasing hydrostatic pressure up to 190 MPa, due to the closure of the pre-existing thermal cracks. This is interpreted by a decrease of the crack density ρi from ~1 to 0.2. The effect of pre-existing cracks closure is also highlighted by the permeability evolution which decreases of more than two orders of magnitude. Under deviatoric loading, the velocities signature is interpreted, in the first stage of the loading, by the closure of the pre-existing thermal cracks. However, with increasing deviatoric loading newly-formed vertical cracks nucleate and propagate. This is clearly seen from the velocity signature and its interpretation in term of crack density, the location of the acoustic emission sources, and from microstructural observations. This competition between pre-existing cracks closure and propagation of vertical cracks is also seen from the permeability evolution, and our study shows that mechanically-induced cracks has lesser influence on permeability change than pre-existing thermal cracks.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: Elastic wave velocity, Permeability, Acoustic emission, Fracture, Basalt ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: We report a laboratory and microstructural study of a suite of deformation experiments in which basalt from Mount Etna volcano is deformed and fractured at an effective confining pressure representative of conditions under a volcanic edifice (40 MPa). Particular attention was paid to the formation of a fracture and damage zone with which to stimulate coupled hydro-mechanical interactions that create the various types of seismicity recorded on volcanic edifices, and which usually precede eruption. Location of AE events through time shows the formation of a fault plane during which waveforms exhibit the typical high frequency characteristics of volcano-tectonic (VT) earthquakes. We found that these VT earthquakes were particularly pronounced when generated using dry samples, compared to samples saturated with a pore fluid (water). VT events generated during deformation of water saturated sample are characterised by a distinctive high frequency onset and a longer, low frequency coda exhibiting properties often seen in the field as hybrid events. We present evidence that hybrid events are, in fact, the common type of volcanic seismic event with either VT or low frequency (LF) events representing end members, and whose proportion depend on pore fluid being present in the rock type being deformed, as well as how close the rock is to failure. We find a notable trend of reducing instances of hybrid events leading up to the failure stage in our experiments, suggesting that during this stage, the pore fluid present in the rock moves sufficiently quickly to provide a resonance, seen as a LF coda. Our data supports recent modeling and field studies that postulate that hybrid events generated in volcanic areas are likely to be generated through the interaction of hydrothermal fluids moving through a combination of pre-existing microcrack networks and larger faults, such as those we observe in forensic (post-test) examination.
    Description: Published
    Description: 315-323
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: volcano-tectonics, acoustic emission, rock physics, seismology, hazard ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Aim of this paper is to identify variations in Very-Long-Period (VLP) source associated with eruptive style changes at Stromboli volcano (Italy) and to retrieve information about the shallow plumbing system that sustains the eruptive activity. We have considered a dataset of 74493 VLP events recorded during the period from January through August 2007, when an effusive eruption occurred (February 27–April 2).We performed a polarization analysis of the entire dataset and divided the considered period into four sub-periods on the basis of polarization characteristics. We then located the events and selected a subset of these events by applying a location quality threshold. The high quality locations demonstrate that during the effusive eruption the VLP sources first moved downward and then moved southwestward. To retrieve information about the geometry of the structures where the source processes take place, we further consider a subset of events and estimate their source mechanisms by using a moment tensor source function (MTSF) inversion technique. Inversion of the waveforms of the VLP events that occurred on February 27 allows us to obtain information about the dynamics of different source centroids distributed along different portions of the shallow magmatic conduits. The structure defined by the locations and source mechanisms shows a greater complexity compared with previous studies and their time variations give an insight into the kinematics of the eruption.
    Description: Published
    Description: 162–171
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: stromboli ; very-long-period events ; seismic source mechanism ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: Permanent Scatterers Synthetic Aperture Radar Interferometry (PSInSAR) and Global Position System (GPS) are applied to investigate the most recent surface deformation of the Campi Flegrei caldera. The PSInSAR analysis, based on SAR data acquired by ERS-1/2 sensors during the 1992–2001 time interval and by the Radarsat sensor during 2003–2007, identifies displacement patterns over wide areas with high spatial resolution. GPS data acquired by the Neapolitan Volcanic Continuous GPS network provide detailed ground velocity information of specific sites. The satellite-derived data allow us to characterize the deformation pattern that affected the Campi Flegrei caldera during two recent subsidence (1992–1999) and uplift (2005– 2006) phases. PSInSAR results show the re-activation of the caldera ring-faults, intra-caldera faults, and eruptive fissures. We discuss the results in the light of the available volcanological, structural and geophysical data and propose a relationship between the structures activated during the recent unrest episodes and those responsible for the recent (b3.8–4 ka) volcanism. The combined interpretation of the collected data show that (a) the caldera consists of two sectors separated by a N–S striking faulting zone and (b) the intra-caldera NW–SE faults and eruptive fissures in the central-eastern sector re-activated during the studied unrest episodes and represent possible pathways for the ascent of magma and/or gas to the surface. In this sector, maximum horizontal strain, recent volcanism (3.8–4 ka), active degassing and seismicity concentrate. The fault re-activation is related to the dynamics of the caldera and not to tectonic stress. The deformation fields of the uplift and subsidence episodes are consistent with hydrothermal processes and degassing from a magmatic reservoir that is significantly smaller than the large (∼40 km3) magma chamber responsible for the caldera formation. We provide evidence that the monitoring of the horizontal and vertical components of deformation improves the identification of active, aseismic faults. Accordingly, we suggest that future ground deformation models should include the re-activation of the detected structures.
    Description: This study has been supported by the TELLUS project (Telerilevamento Laboratori Unità di Supporto), which has been developed in the framework of the PODIS project (Progetto Operativo Difesa Suolo) of the Ministero dell'Ambiente e per la Tutela del Territorio e del Mare,and has been funded by the European Union QCS 2000–2006 PONATAS, by INGV-Osservatorio Vesuviano, and by 'Creep' IYPE-UNESCO project.
    Description: Published
    Description: 2373-2383
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: restricted
    Keywords: PSInSAR ; Fault re-activation ; Campi Flegrei ; Caldera ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-09-03
    Description: Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (〉90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: partially_open
    Keywords: gas hazard ; hydrogen sulfide ; carbon dioxide ; Colli Albani volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-12-13
    Description: Volcanic lake research boosted after lethal gas burst occurred at Lake Nyos (Cameroon) in 1986, a limnic rather than a volcanic event. This led to the foundation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990s. We here introduce the first data base of volcanic lakes VOLADA, containing 474 lakes, a number that, in our opinion, is surprisingly high. VOLADA could become an interactive, open-access working tool where our community can rely on in the future. Many of the compiled lakes were almost unknown, or at least unstudied to date, whereas there are acidic crater lakes topping active magmat- ic–hydrothermal systems that are continuously or discontinuously monitored, providing useful information for volcanic surveillance (e.g., Ruapehu, Yugama, Poás). Nyos-type lakes, i.e. those hosted in quiescent volcanoes and characterized by significant gas accumulation in bottom waters, are potentially hazardous. These lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term build- up of gas, which can be released after a trigger. Some of the unstudied lakes are possibly in the latter situation. Acidic crater lakes are easily recognized as active, whereas Nyos-type lakes can only be recognized as potentially hazardous if bottom waters are investigated, a less obvious operation. In this review, research strategies are lined out, especially for the “active crater lakes”. We make suggestions for monitoring frequency based on the principle of the “residence time dependent monitoring time window”. A complementary, multi-disciplinary (geochemis- try, geophysics, limnology, statistics) approach is considered to provide new ideas, which can be the bases for fu- ture volcanic lake monitoring. More profound deterministic knowledge (e.g., precursory signals for phreatic eruptions, or lake roll-over events) should not only serve to enhance conceptual models of single lakes, but also serve as input parameters in probabilistic approaches. After more than 25 years of pioneering studies on rather few lakes (~20% of all), the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazards.
    Description: Published
    Description: 78-97
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic lakes ; Active crater lakes ; Nyos-type lakes ; Monitoring ; Residence time dependent monitoring time window ; Hazard forecasting ; VOLADA data base ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...