ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases  (47)
  • Mt. Etna  (23)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics  (22)
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
  • Elsevier Science Limited  (55)
  • Springer  (27)
  • Cabildo Insular de Tenerife Fundación Canaria ITER  (6)
  • Istituto Nazionale di Geofisica e Vulcanologia  (5)
  • Blackwell Publishing Ltd
  • EGU
  • Essen : Verl. Glückauf
  • 2010-2014  (79)
  • 2005-2009  (18)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-06-22
    Description: Total CO2 output from soil gas and plume, discharged from the Stromboli Island, was estimated. The CO2 emission of the plume emitted from the active crater was estimated on the basis of the SO2 crater output and C/S ratio, while CO2 discharged through diffuse soil emission was quantified on the basis of 419 measurements of CO2 fluxes from the soil of the whole island, performed by using the accumulation chamber method. The results indicate an overall output of ≅416 t day−1 of CO2 from the island. The main contribution to the total CO2 output comes from the summit area (396 t day−1), with 370 t/day from the active crater and 26 t day−1 from the Pizzo sopra La Fossa soil degassing area. The release of CO2 from peripheral areas is ≅20 t day−1 by soil degassing (Scari area mainly). The result of the soil degassing survey confirms the persistence of the highest CO2 degassing areas located on the North-East crater side and Scari area.
    Description: Published
    Description: 52-60
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: CO2 flux ; CO2 output ; Stromboli Island ; SO2 flux ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-25
    Description: The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial–interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.
    Description: Published
    Description: 420–433
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: ANDRILL ; Antarctic Ice Sheet ; rock magnetism ; sediment provenance ; electron microscopy ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-07
    Description: The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy) is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d—1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d—1.
    Description: Published
    Description: 301-308
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: SO2 ; Differential optical absorption spectroscopy ; Vulcano Island ; Network for Observation of Volcanic and Atmospheric Change ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Pelagic carbonates are deposited far from continents, usually at water depths of 3000–6000 m, at rates below 10 cm/kyr, and are a globally important sediment type. Recent advances, with recognition of widespread preservation of biogenic magnetite (the inorganic remains of magnetotactic bacteria), have fundamentally changed our understanding of the magnetic properties of pelagic carbonates. We review evidence for the magnetic minerals typically preserved in pelagic carbonates, the effects of magnetic mineral diagenesis on paleomagnetic and environmental magnetic records of pelagic carbonates, and what magnetic properties can tell us about the open-ocean environments in which pelagic carbonates are deposited. We also discuss briefly late diagenetic remagnetisations recorded by some carbonates. Despite recent advances in our knowledge of these phenomena, much remains undiscovered. We are only at early stages of understanding how biogenic magnetite gives rise to paleomagnetic signals in sediments and whether it carries a poorly understood biogeochemical remanent magnetisation. Recently developed techniques have potential for testing how different magnetotactic bacterial species, which produce different magnetite morphologies, respond to changing nutrient and oxygenation conditions. Future work needs to test whether it is possible to develop proxies for ancient nutrient conditions from well-calibrated modern magnetotactic bacterial occurrences. A tantalizing link between giant magnetofossils and Paleogene hyperthermal events needs to be tested; much remains to be learned about the relationship between climate and the organisms that biomineralised these large and novel magnetite morphologies. Rather than being a well-worn subject that has been studied for over 60 years, the magnetic properties of pelagic carbonates hold many secrets that await discovery.
    Description: Published
    Description: 111-139
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Pelagic carbonate ; Limestone ; Magnetic minerals ; Biogenic magnetite ; Magnetofossils ; Diagenesis ; Remagnetisation ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Here, we report the first continuous data of geochemical parameters acquired directly from the active summit crater of Vulcano. This approach provides a means to better investigate deep geochemical processes associated with the degassing system of Vulcano Island. In particular, we report on soil CO2 fluxes from the upper part of Vulcano, a closed-conduit volcano, from September 2007 to October 2010. Large variations in the soil CO2 and plume SO2 fluxes (order of magnitude), coinciding with other discontinuous geochemical parameters (CO2 concentrations in fumarole gas) and physical parameters (increase of shallow seismic activity and fumarole temperatures) have been recorded. The results from this work suggest new prospects for strengthening geochemical monitoring of volcanic activity and for improving the constraints in the construction of a “geochemical model”, this being a necessary condition to better understand the functioning of volcanic systems.
    Description: Published
    Description: 1859-1863
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Vulcano Island ; Geochemical monitoring ; CO2 flux ; CO2 fumaroles ; SO2 flux ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We made a stratigraphic, structural and morphologic study of Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist all around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of the edifice of Amiata onto its weak substratum, formed by the late Triassic evaporites (Anidriti of Burano) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement forcing the outward flow and spreading of the ductile layers below the volcano. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a solution. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for the formation of trains of adjacent diapirs. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays’ exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh-water aquifer) and the rocks of the geothermal field, constitute ideal pathways for water recharge during vapour extraction for geothermal energy production. We think that volcanic spreading could maintain faults in a critically stressed state, facilitating the occurrence of triggered seismicity.
    Description: Published
    Description: 16-31
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Amiata volcano ; geology ; structure ; volcanic spreading ; spreding model ; geothermal traps formation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: New paleomagnetic results from lower-to-middle Miocene samples from Ocean Drilling Program (ODP) Holes 744A and 744B, cored during ODP Leg 119 on the southern Kerguelen Plateau (Indian Ocean sector; Southern Ocean), provide a chronostratigraphic framework for an existing and under-utilized paleoclimate archive during a key period of Antarctic climate and ice sheet evolution. Site 744 is strategically positioned for high-latitude paleoceanographic and paleoclimatic studies because it lies within the southern domain of the Antarctic Circumpolar Current (ACC) and in proximity to the large and active Lambert Glacier-Amery Ice Shelf drainage system of the East Antarctic Ice Sheet. Magnetostratigraphic results were reported previously for this site, but technical difficulties and limited sampling prevented confident correlation of the magnetic polarity record with the geomagnetic polarity timescale. Our results, which are constrained by new semi-quantitative analyses of diatom assemblages and radiolarian first and last appearance events that are evaluated within a regional Southern Ocean biostratigraphic dataset through Constrained Optimization (CONOP) model runs, permit significant refinement of previous age models for the lower-to-middle Miocene sequence recovered at Site 744 (spanning the interval from ~ 21 to 13.7 Ma). An extended record of sediment accumulation, with average sedimentation rates of ~ 0.7–0.9 cm/kyr, is interrupted by a series of hiatuses in the middle Miocene. These disruptions in sediment supply, or erosional events, could mark a local response of north–south fluctuations in the location and/or strength of the Antarctic Circumpolar Current during transient glacial events within the Mid-Miocene Climate Optimum (MMCO; ~ 17 to 14.45 Ma). With the enhanced age control provided by this study, combined with a refined chronostratigraphy for the underlying upper Eocene to Oligocene strata, Site 744 becomes a good candidate for future high-resolution stable isotope and microfossil paleoecological work, which will further elucidate the late Paleogene and early Neogene paleoenvironmental history of the Southern Ocean.
    Description: Published
    Description: 434 – 454
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Antarctica ; Paleoclimate ; Miocene ; Diatom biostratigraphy ; Paleomagnetism ; CONOP ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Soil carbonates are key features in soils of arid and semiarid environment, playing an important role from pedogenetic, landscape history, paleoclimatic and environmental points of view. The objectives of this work were (i) to study pathways of pedogenic carbonate (PC) formation, (ii) to distinguish between lithogenic and pedogenic inorganic C by using the natural C isotope abundance, and (iii) to estimate the soil C pools in a gypsiferous semiarid Mediterranean environment (Sicily, Italy). Five soil pedons developed on calcareous and non-calcareous parent materials from Holocene (10,000 years BP) to Upper Tortonian (7.2–5.3 Ma BP) in age were surveyed. During field soil description, the highest stage of carbonate morphology was found in soils developed on non-calcareous Holocene colluvial deposits (youngest deposits in age) which also showed the highest amount of PC. The great amount of PC in soils developed on youngest deposits was ascribed to a soil–landscape relationships. Being located in a doline overhung by gypsum outcrops, precipitation of Ca2+ from gypsum dissolved by rainfall and biogenic CO2 is reliable. The significant positive relationship between soil organic C and pedogenic carbonates δ13C values confirms that PC was formed from biogenic CO2. Organic C pool in the first cubic meter of soil ranged from 17 to 42 kg, whilst pedogenic inorganic C pool from 2.8 to 30.7 kg. The estimated rate of inorganic C accumulation in soils developed on youngest deposits was 2.5 g m−3 y−1, whereas the rate was negligible on older parent material. The hypothesized pathways of PC formation were ex-novo precipitation of gypsum–Ca2+ and biogenic CO2 and dissolution of lithogenic CaCO3 and re-precipitation of Ca2+ with biogenic CO2. From an environmental prospective, investigated soils may act as a sink of C when Ca2+ from gypsum is available for the formation of pedogenic carbonates.
    Description: Published
    Description: 31-38
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Gypsiferous soils ; Soil carbonates ; Stable C isotopes ; Soil C pools ; Soil–landscape relationship ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Volatile metal(loid)s are known to be emitted from volcanoes worldwide.We tested the suitability of active moss monitoring for tracking volatilemetal(loid)s released fromthe fumarolic field on Vulcano Island, Italy, and differentiated fumaroles from other sources of gaseous and particulate trace elements such as sea spray and soil.Metal(loid) accumulation on the mosses per day did depend neither on the state of the exposed moss (dead or living) nor exposure time (3, 6, or 9 weeks). After collection, mosses were digested with either HNO3/H2O2 or deionized water and analyzed by ICP-MS.While for most elements both extraction methods yielded similar concentrations, higher concentrations were observed e.g. for Pb in the stronger HNO3/H2O2 extracts, indicating the presence of particles, which were not digested and removed by filtration in deionized water extracts. Due to their ubiquitous detection in comparable concentrations at all 23 moss monitoring stations all over the island, Li, Mg and Sr were attributed to sea spray origin. Iron, Co, W, V, Pb, Cr, Mo, and Ba occurred predominantly at the crater, where the soil was not covered by vegetation, and thus likely represent soil-borne particulate transport. Arsenic, Sb, S, Se, Tl, Bi, and I showed a clear concentration maximum within the fumarolic field. Concentrations gradually decreased along a transect in wind direction fromthe fumaroles, which confirms their volcanic origin. Activemossmonitoring thus proved to be an inexpensive and easy-to-apply tool for investigations of volcanic metal(loid) emissions and distributions enabling differentiation of trapped elements by their source of origin.
    Description: Published
    Description: 30–39
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: La Fossa crater ; particle transport ; biomonitoring ; volatilization ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In this work we show that the main springs of the central Apennine transport a total amount of heat of ∼2.2 109 J s−1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values 4300 mWm−2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.
    Description: Published
    Description: 65–74
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: heat flux ; CO2 Earth degassing ; central Apennine ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We investigate the transfer zone and linkage between divergent extensional seismogenic fault systems on the border amid the central and southern Apennines (central Italy). These regional NW-SE striking sets include large seismogenic sources that caused major historical earthquakes (Mw≤7). The faults in the northern part of the study area dip to the southwest; those in the southern part dip to the northeast. The SW-dipping system (Abruzzi Apennines) terminates with the Aremogna-Cinque Miglia source; the NE-dipping system (southern Apennines) terminates with the Boiano Basin source. To test whether the transfer zone model applies to the central-southern Apennines border, we analyzed and relocated seismicity that occurred from 2007 to 2011 between the Aremogna-Cinque Miglia and Boiano Basin sources, where we expect the transfer zone. Seismicity is made of independent events (Md〈3.5) and low-magnitude swarms. West of the Apennines, hypocenters are located within the uppermost 12-13 km. Events and swarms that occurred east of the axis affect the 13-25 km below. West of the chain, focal mechanisms show T-axes striking ~NNW-SSE. East of the chain, T-axes strike ~NE-SW. This trend is consistent with GPS data. The hypocentral distribution of swarms located between the Aremogna-Cinque Miglia and Boiano Basin sources shows a ~NNE-SSW trend, coincident with part of the Ortona-Roccamonfina Line, a regional transverse lineament. The spatial distribution of seismicity, the geometry and kinematics of active faulting in the region, and results from previous geophysical studies, allow us to contend the existence of a transfer zone between these seismogenic normal fault systems. Our data also allow us to recognize the activity of such transfer along the central part of the Ortona-Roccamonfina Line. We infer that reverse in dip polarity between the two normal fault systems could also result from the passage between the diverse tectonic units composing the border between central and southern Apennines.
    Description: Published
    Description: 18-31
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: seismogenic sources ; seismic swarms ; transverse lineaments ; fault polarity ; transfer zone ; southern italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-10-19
    Description: Starting from late May 2012, the Emilia region (Northern Italy) was severely shaken by an intense seismic sequence, originated from a ML 5.9 earthquake on May 20th, at a hypocentral depth of 6.3 km, with thrusttype focal mechanism. In the following days, the seismic rate remained high, counting 50 ML ≥ 2.0 earthquakes a day, on average. Seismicity spreads along a 30 km east–west elongated area, in the Po river alluvial plain, in the nearby of the cities Ferrara and Modena. Nine days after the first shock, another destructive thrust-type earthquake (ML 5.8) hit the area to the west, causing further damage and fatalities. Aftershocks following this second destructive event extended along the same east-westerly trend for further 20 km to the west, thus illuminating an area of about 50 km in length, on thewhole. After the first shock struck, on May 20th, a dense network of temporary seismic stations, in addition to the permanent ones, was deployed in the meizoseismal area, leading to a sensible improvement of the earthquake monitoring capability there. A combined dataset, including threecomponent seismic waveforms recorded by both permanent and temporary stations, has been analyzed in order to obtain an appropriate 1-D velocity model for earthquake location in the study area. Here we describe the main seismological characteristics of this seismic sequence and, relying on refined earthquakes location, we make inferences on the geometry of the thrust system responsible for the two strongest shocks.
    Description: Published
    Description: 44-55
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Seismology ; Hypocentral location ; Seismic sequence ; Velocity model ; Thrust fault system ; Po alluvial Plain ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-06-14
    Description: The depositional history of the Storfjorden and Kveithola trough-mouth fans (TMFs) in the northwestern Barents Sea has been investigated within two coordinated Spanish and Italian projects in the framework of the International Polar Year (IPY) Activity 367, NICE STREAMS. The investigation has been conducted using a multidisciplinary approach to the study of sediment cores positioned on high-resolution multibeam bathymetry and TOPAS/CHIRP sub-bottom profiles. Core correlation and the age model were based on 27 AMS 14C samples, rock magnetic parameters, lithofacies sequences, and the presence of marker beds including two oxidized layers marking the post Last Glacial Maximum (LGM) inception of deglaciation (OX-2) and the Younger Dryas cold climatic event (OX-1). Sediment facies analysis allowed the distinction of a number of depositional processes whose onset appears closely related to ice stream dynamics and oceanographic patterns in response to climate change. The glacigenic diamicton with low water content, high density, and high shear strength, deposited during glacial maxima, indicates ice streams grounded at the shelf edge. Massive release of IRD occurred at the inception of deglaciation in response to increased calving rates with possible outer ice streams lift off and collapse. The presence of a several-meter-thick sequence of interlaminated sediments deposited by subglacial outbursts of turbid meltwater (plumites) indicates rapid ice streams' melting and retreat. Crudely-layered and heavily-bioturbated sediments were deposited by contour currents under climatic/environmental conditions favorable to bioproductivity. The extreme sedimentation rate of 3.4 cm a− 1 calculated for the plumites from the upper-slope area indicates a massive, nearly instantaneous (less than 150 years), terrigenous input corresponding to an outstanding meltwater event. We propose these interlaminated sediments to represent the high-latitude marine record of MeltWater Pulse 1a (MWP-1a). Different bathymetric and oceanographic conditions controlled locally the mode of glacial retreat, resulting in different thickness of plumites on the upper continental slope of the Storfjorden and Kveithola TMFs. It is possible that the southern part of Storfjorden TMF received additional sediments from the deglaciation of the neighboring Kveithola ice stream.
    Description: Published
    Description: 309–326
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Barents Sea ; sedimentary processes ; LGM ; meltwater plumes ; gullies ; MWP-1a ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-06-10
    Description: Between January 2011 and April 2012, Santorini volcano (Greece) experienced a period of unrest characterised by the onset of detectable seismicity and caldera-wide uplift. This episode of inflation represented the first sizeable intrusion of magma beneath Santorini in the past 50 years. We employ a new approach using 222 Rn– δ 13 C systematics to identify and quantify the source of diffuse degassing at Santorini during the period of renewed activity. Soil CO 2 flux measurements were made across a network of sites on Nea Kameni between September 2010 and January 2012. Gas samples were collected in April and September 2011 for isotopic analysis of CO 2 ( δ 13 C), and radon detectors were deployed during September 2011 to measure ( 222 Rn). Our results reveal a change in the pattern of degassing from the summit of the volcano (Nea Kameni) and suggest an increase in diffuse CO 2 emissions between September 2010 and January 2012. High-CO 2 -flux soil gas samples have δ 13 C ∼ 0 .Using this value and other evidence from the literature we conclude that these CO 2 emissions from Santorini were a mixture between CO 2 sourced from magma, and CO 2 released by the thermal or metamorphic breakdown of crustal limestone. We suggest that this mixing of magmatic and crustal carbonate sources may account more broadly for the typical range of δ 13 CvaluesofCO 2 (from ∼− 4 to ∼+ 1 )in diffuse volcanic and fumarole gas emissions around the Mediterranean, without the need to invoke unusual mantle source compositions. At Santorini a mixing model involving magmatic CO 2 (with δ 13 C of − 3 ± 2 and elevated ( 222 Rn)/CO 2 ratios ∼ 10 5 –10 6 Bqkg − 1 )andCO 2 released from decarbonation of crustal limestone (with ( 222 Rn)/CO 2 ∼ 30–300 Bqkg − 1 ,and δ 13 Cof + 5 ) can account for the δ 13 C and ( 222 Rn)/CO 2 characteristics of the ‘high flux’ gas source. This model suggests ∼ 60% of the carbon in the high flux deep CO 2 end member is of magmatic origin. This combination of δ 13 Cand( 222 Rn) measurements has potential to quantify magmatic and crustal contributions to the diffuse outgassing of CO 2 in volcanic areas, especially those where breakdown of crustal limestone is likely to contribute significantly to the CO 2 flux
    Description: Published
    Description: 180-190
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic unrest ; soil gas measurements ; carbon isotopic analysis ; magmatic degassing ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-09
    Description: Copahue volcano is part of the Caviahue–Copahue Volcanic Complex (CCVC),which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina–Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe–Ofqui strike slip and the northern Copahue–Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from −8.8‰ to −6.8‰ vs. V-PDB), δ15N values (+5.3‰ to +5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°–220 °C. On the contrary, rock–fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006–2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic systemhad a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
    Description: Published
    Description: 44–56
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Fluid geochemistry ; Copahue volcano ; Fumarolic fluid ; Hydrothermal reservoir ; Volcanic unrest ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-05-09
    Description: Measurements of soil fluxes of hydrothermal gases, with special emphasis on C6H6, as well as chemical composition of mono-aromatic compounds in fumaroles and air, were carried out in April 2012 at the Solfatara crater (Campi Flegrei, Southern Italy) to investigate the distribution and behavior of these species as they migrate through the soil from their deep source to the atmosphere. Soil fluxes of CO2, CH4 and C6H6 exhibit good spatial correlation, suggesting that diffuse degassing is mainly controlled by local fractures. The calculated total output of diffuse C6H6 from Solfatara is 0.10 kg day 1, whereas fluxes of CO2 and CH4 are 79 103 and 1.04 kg day 1, respectively. A comparison between soil gas fluxes and fumarole composition reveals that within the crater soil CH4 is significantly affected by oxidation processes, which are more efficient for low gas fluxes, being dependent on the residence time of the uprising hydrothermal gases at shallow depth. Benzene degradation, mainly proceeding through oxidation via benzoate, seems to be strongly controlled by the presence of a shallow SO2 4 -rich aquifer located in the central and southwestern sectors of the crater, suggesting that the process is particularly efficient when SO2 4 acts as terminal electron acceptor (SO4 reduction). Relatively high C6H6/C7H8 ratios, typical of hydrothermal fluids, were measured in air close to the main fumarolic field of Solfatara crater. Here, C6H6 concentrations, whose detection limit is 0.1 lgm 3, are more than one order of magnitude higher than the limit value for ambient air (5 lgm 3). This suggests that hydrothermal fluids have a strong impact on air quality in the immediate surroundings of the fumarolic vents. Significant concentrations of endogenous mono-aromatics were also detected in air samples collected from the northern and western sides of the crater, where these gas compounds are mostly fed by diffuse degassing through the crater bottom soil.
    Description: Published
    Description: 142–153
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal gases ; Solfatara crater ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-04-07
    Description: Recognizing the seismogenic source of major historical earthquakes, particularly when these have occurred offshore, is a long-standing issue across the Mediterranean Sea and elsewhere. The destructive earthquake (M ~7) that struck western Calabria (southern Italy) on the night of 8 September 1905 is one such case. having various authors proposed a seismogenic source, with apparently diverse hypotheses and without achieving a unique solution. To gain novel insight into the crustal volume where the 1905 earthquake took place and to seek a more robust solution for the seismogenic source associated with this destructive event, we carried out a well-targeted multidisciplinary survey within the Gulf of S. Eufemia (SE Tyrrhenian Sea), collecting geophysical data, oceanographic measurements, and biological, chemical and sedimentary samples. We identified three main tectonic features affecting the sedimentary basin in the Gulf of S. Eufemia: 1) a NE-SW striking, ca. 13-km-long, normal fault, here named S. Eufemia Fault; 2) a WNW-striking polyphased fault system; and 3) a likely E-W trending lineament. Among these, the normal fault shows evidence of activity witnessed by the deformed recent sediments and by its seabed rupture along which, locally, fluid leakage occurs. Features in agreement with the anomalous distribution of prokaryotic abundance and biopolymeric C content, resulted from the shallow sediments analyses. The numerous seismogenic sources proposed in the literature during the past 15 years make up a composite framework of this sector of western Calabria, that we tested against a) the geological evidence from the newly acquired dataset, and b) the regional seismotectonic models. Such assessment allows us to propose the NE-SW striking normal fault as the most probable candidate for the seismogenic source of the 1905 earthquake. Re-appraising a major historical earthquake as the 1905 one enhances the seismotectonic picture of western Calabria. Further understanding of the region and better constraining the location of the seismogenic source may be attained through integrated interpretation of our data together with a) on-land field evidence, and b) seismological modeling.
    Description: Published
    Description: 62-75
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: seismogenic source ; earthquake ; seismotectonics ; prokaryotes ; Calabrian Arc ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Herein we report on the chemical and isotopic (C, H, O, and He) compositions of the fluids from La Fossa crater fumaroles of Vulcano from 1999 to 2010. Consistent with records obtained since the end of the 1980s, our data show that the geochemical features of the fumarole system have experienced several episodes of remarkable change, each lasting no more than a few months. Typical signatures of these short-term anomalies are large increments in CO2, N2, and He concentrations, coupled to increased 13C/12C isotopic ratios, but their meaning remains widely debated. Within a model of fumarolic fluids based on mixing between hydrothermal and magmatic endmembers, we have developed a novel approach to constrain chemical (He/ CO2 and N2/He) and isotopic (13C/12C, D/H, and 3He/4He) ratios of the magmatic endmember during the short-term anomalies. Although much of the geochemical variability in fumaroles results from changes in mixing proportions, the magmatic fluid unquestionably shows significant variations in time. The magmatic He/CO2, N2/He, 13C/12C, and 3He/4He values throughout 1988–1996 differed from those feeding the anomaly at the end of 2004. Early clues of the new magmatic fluid appeared in 1998–1999, far from any short-term anomaly, whereas new and old magmatic fluids coexisted after 2004. We quantitatively prove that the detected geochemical changes are consistent with the degassing path of a magma having a latitic composition, and suggest the presence of two magma ponding levels at slightly different pressures, where bubble–melt decoupling can occur. The different He-isotope compositions at these levels suggest low hydraulic connectivity typical of a complex reservoir with dike and sill structures. In this framework, the short-term geochemical anomalies are probably due to gas accumulation at the top of magma bodies followed by massive escape, or activation of new degassing levels in the reservoir, for which the stress field almost certainly plays a key role. Such a scenario explains the observed increases in both fumarole output and shallow high-frequency seismicity (due to increased pore pressure) during the anomalies, while being consistent with the concomitant absence of any deep seismicity or ground deformation, eventually related to magma movement.
    Description: Published
    Description: 158-178
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: fumarole geochemistry ; magma degassing ; thermodynamic modeling ; noble gas geochemistry ; carbon isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Herein, we present a method for continuous measurement of soil CO2 flux that is completely new and distinct from existing instruments. The foremost difference is that instead of using an infrared gas analyser (IRGA), the new device measures soil CO2 flux by means of a simple pressure sensor, measuring pressure transients inside a closed polymeric tube inserted into the soil. This allows continuous measurements even in soil placed in environments that could potentially damage IRGA. In addition, due to the innovative operating principle, measurements of soil CO2 flux can be effortlessly performed also in strongly harsh weather conditions. Theoretical equations were derived for calculating soil CO2 flux solely using measured transient values. The reliability of the equations was rigorously tested with a variety of experiments. Continuous measurements over four months, acquired in a high-emission area on the Island of Vulcano, compared favourably with the data obtained using an established method.
    Description: Published
    Description: 102-109
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: restricted
    Keywords: Soil CO2 flux measurements ; Continuous monitoring ; Methods of measurement ; Polymeric membranes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The Southern Apennines, Calabro-Peloritane block, and Sicilian Maghrebides form a ~700 km long orogenic bend, known as Calabrian Arc (Cifelli et al., 2007). The bending of this orogenic system was realized progressively through opposite-sense rotation of the two limbs, counterclockwise (CCW) in the Southern Apennines and clockwise (CW) in the Sicilian Maghrebides, synchronous to the Miocene-to-Present opening of the Tyrrhenian Sea. Despite the wealth of paleomagnetic data from the Southern Apennines, the main Miocene rotational phase still remains poorly constrained in time and, more importantly, data from the most internal paleogeographic domains of the belt are completely lacking. The Gorgoglione Formation, a middle Miocene piggy-back deposit of the Southern Apennines, unconformably resting over the internal Sicilide Unit, offers the unique opportunity to document the deformation pattern of the most internal units, and reconstruct the incipient tectonic phases leading to the formation of the Calabrian Arc. New paleomagnetic and biostratigraphic data from the Gorgoglione Fm. reveal a post-early Serravallian ~125° CCW rotation with respect to stable Africa. Such a large rotation, affecting the Gorgoglione Fm. (and consequently the underneath allochthonous Sicilide nappe) exceeds by ~45° the maximum mean CCW rotation previously reported for the Southern Apennines. We propose that the additional ~45° CCW rotation measured in the Sicilide Unit is the result of an earlier, late Miocene phase of deformation related to the onset of the Tyrrhenian Sea opening and affecting the most internal paleogeographic domains of the Southern Apennines. Our reconstructed tectonic scenario confirms and emphasizes the central role of the Ionian slab in the geodynamic evolution of the central Mediterranean.
    Description: Published
    Description: 24-37
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Apennines ; Gorgoglione Formation ; Paleomagnetism ; Tectonics ; Calabrian Arc ; Biostratigraphy ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Our study is aimed to develop a 3D physical model of the Campi Flegrei geothermal system, in order to achieve a more accurate and comprehensive representation of the hydrothermal processes occurring in the caldera. The new model, developed by using the TOUGH2 code simulator, accounts for the caldera rocks' physical properties, bathymetry and water table topography. In particular, the computational domain is constrained by density values obtained by tomographic inversion of gravity data collected during several surveys at CF both onshore and offshore the caldera. Empirical relations between density and porosity and between porosity and permeability, derived by published data on samples cored in deep wells or collected in outcrops, allowed us to characterize the main rocks physical parameters controlling the dynamic of the CF geothermal system. We have performed and compared several simulations investigating the effects of the injection at depth, underneath Solfatara crater, of a hot gaseous mixture rich in CO2. We show that, with respect to the available literature on 2D axisymmetric models, the effects of the water table topography together with the bathymetry and the heterogeneous distribution of the rocks' physical properties, lead to important differences in the hydrothermal circulation of fluids at CF. These constraints allow the activation of convective cells with different behaviors, which produce variable patterns of temperature inside the hydrothermal system. As a consequence, the predominant effect is again represented by a central plume below the Solfatara crater, but with a non-axisymmetric structure and a wider extension. Additionally, high temperature zones are present near the coastline and in the middle part of the submerged area of the caldera with a SE–NW alignment. Moreover, our results indicate that, the submerged part of the CF caldera would deserve a more accurate study and survey, being affected by phenomenon of heating and degassing. This information could be very useful in terms of hazard assessment and volcanic risk mitigation in such an active and densely inhabited volcanic and geothermal area.
    Description: Published
    Description: 172-182
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; Geothermal system ; 3D model ; Water table topography ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Epidermis micromorphology of in situ Erica arborea L. exposed for generations to long-term effect of volcanic gases in Pisciarelli and Solfatara di Pozzuoli areas have been studied by X-ray analyses, SEM and TEM observations. In particular, the aim of this study is to investigate the effects of volcanic gases on extant and possibly fossil plants. Plants of the same species living in a nearby control site were also studied for comparison. SEM coupled with EDX analysis was used to localize different elements within the leaves (mesophyll, cell wall and cuticle). After conventional and cryo preparation, SEM of mature leaves ascertained that the abaxial side is more serrate in fumigated leaves and hairs, epicuticular wax alterations have also been noted. Leaves experiencing chronic fumigation display stomata more sunken with respect to the epidermal surface. TEM of transverse and longitudinal sections of cuticle showed an outer A2 granular amorphous layer and external to a B1 fibrillous layer. Significant statistical variations of ultrastructural components of the cuticle revealed a response of E. arborea to this extreme environment. At the ultrastructural level, significant variations in thickness of the cell wall plus cuticle, cell wall and A2 layer among fumigated and non-fumigated leaves have been found. In the studied localities a positive correlation between atmospheric CO2 concentration and the thickness of A2 layer also exists. The results are of interest being applicable in the understanding of plant cuticle responses during periods of normal vs. volcanic activity.
    Description: Published
    Description: 197– 206
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Phlegrean Fields ; Erica arborea ; Volcanic gases ; Epidermis ; Cuticle ultrastructure ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We present the first chlorine isotope compositional data for gases and lavas from Mount Etna (Italy), and to our knowledge, of active Mediterranean volcanism. We investigated lavas erupted and gases discharged during 2008-2011 from a high-temperature fumarole (HT; 〉300°C) and plume gases from both North East and Central Craters. Most of the samples vary in a narrow range of chlorine isotope composition (37Cl values ≈ 0 ± 0.7‰) with gases partially overlapping with rocks. Only HT gases sampled in 2009 have been clearly affected by secondary processes (37Cl values 〉 15.9‰), resulting in partial removal of chlorine and isotopic fractionation producing a 37Cl enrichment in the residual gaseous HCl. These secondary processes also affect, although to a lesser extent, plume gases from North East Crater (NEC). Although post-magmatic processes are able to modify the chlorine isotope composition, 37Cl values are not affected by magma degassing for residual fractions ≥ 0.3 in the melt, or any effect is within our data variability. Finally, 37Cl values and Cl/K ratios of magmatic chlorine constrain the Etnean source to be compatible with depleted mantle (DMM) contaminated by altered oceanic crust (AOC), in agreement with indications from more common isotopic tracers of mantle processes.
    Description: Published
    Description: 134-142
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna ; chlorine isotope ; plume ; fumarole ; degassing ; mantle source ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: On 13 May 2008, an eruption began at Mt. Etna from an eruptive fissure that opened on the upper eastern flank of the volcano. During 12-13 May, 157 infrasonic events, together with the related seismic transients, were collected. We carried out several analyses to obtain dominant frequencies, pseudospectrograms, peak-to-peak amplitudes, source locations and time lags between infrasonic and seismic events. Spectra of the infrasonic events show two main spectral peaks in the frequency bands ~0.4-0.7 Hz and 1.5-2.0 Hz, respectively. Both infrasonic and seismic events were separately located below the North-East Crater, where no eruptive activity was observed. Moreover, significant changes in infrasound spectral content, as well as in the infrasonic-seismic lags, were found a few hours before the beginning of the eruption. On the basis of the collected information the infrasound source mechanism was modelled as a superposition of pipe and Helmholtz resonance, also leading to outline the geometry of the shallower portion of the North-East Crater plumbing system. The occurrence of these seismo-infrasonic events together with other geological and geophysical evidences, led us to inferring a direct link between North-East Crater activity and the eruptive fissure. Further, based on variations over time of both spectral features and seismicinfrasonic time lag, shallowing phenomena of the free magma column inside North-East Crater conduit were hypothesized. Such an uprise of magma was likely caused by a pressure increase inside the plumbing system occurring before the beginning of the 2008-2009 eruption.
    Description: Published
    Description: 53-68
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; Helmholtz resonator ; plumbing system geometry ; seismo-acoustic studies ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Passive samplers were used to measure the atmospheric concentrations of SO2 naturally emitted at three volcanoes in Italy (Etna, Vulcano and Stromboli) and of H2S naturally emitted at three volcanic/geothermal areas in Greece (Milos, Santorini and Nisyros). The measured concentrations and dispersion patterns varied with the strength of the source (open conduits or fumaroles), the meteorological conditions and the area topography. At Etna, Vulcano and Stromboli, SO2 concentrations reach values that are dangerous to people affected by bronchial asthma or lung diseases (〉1000 μg m−3). H2S values measured at Nisyros also exceed the limit considered safe for the same group of people (〉3000 μg m−3). The data obtained using passive samplers represent time-averaged values over periods from a few days up to 1 month, and hence concentrations probably reached much higher peak values that were potentially also dangerous to healthy people. The present study provides evidence of a peculiar volcanic risk associated with tourist exploitation of active volcanic areas. This risk is particularly high at Mt. Etna, where the elderly and people in less-than-perfect health can easily reach areas with dangerous SO2 concentrations via a cableway and off-road vehicles
    Description: Published
    Description: 1-13
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Sulphur dioxide ; Hydrogen sulphide ; Volcanic risks ; Gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Commenton “CO2 variabilityinmid-oceanridge basalts fromsyn-emplacementdegassing: Constraintsoneruptiondynamics”
    Description: Published
    Description: 251-253
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: non-equilibrium degassing, modeling, CO2, bubble growth, MORB, gas geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-10-06
    Description: Themajor elements, trace elements and Sr and Nd isotopes of selected Etnean primitive rocks (b15 ky BP) were studied in order to characterize their mantle source. The noble-gas geochemistry of fluid inclusions in minerals fromthe same lavaswas also investigated. Themajor element compositions ofwhole rocks and minerals showed that these products are among the most primitive atMt. Etna, comprising 6.3–17.5 wt.% MgO. The variable LREE (Light Rare Earth Elements) enrichment relative to MORB (Mid-Ocean Ridge Basalt) (Lan/Ybn = 11–26), togetherwith the patterns of certain trace-element ratios (i.e., Ce/Yb versus Zr/Nb and Th/Y versus La/Yb), can be attributed to varying degrees of melting of a common mantle source. Numerical simulations performed with the MELTS program allowed the melting percentages associated with each product to be estimated. This led us to recalculate the hypothetical parental trace-element content of the Etneanmantle source, whichwas common to all of the investigated rocks. The characteristics of the Sr, Nd and He isotopes confirmed the primitive nature of the rocks,with themost-depleted and primitive lava being that ofMt. Spagnolo (SPA; 143Nd/144Nd = 0.512908 87Sr/ 86Sr = 0.703317–0.703325 and 3He/4He = 7.6 Ra), and highlighted the similarity of the mantle sources feeding the volcanic activity of Mt. Etna and the Hyblean Plateau (a region to the south of Mt. Etna and characterized by oldermagmatismthan Mt. Etna). The coupling of noble gases and trace elements suggests an origin for the investigated Etnean lavas from melting of a Hyblean-like mantle, consisting of a two-component source where a peridotitic matrix is veined by 10% pyroxenite. A variable degree of mantle contamination by crustal-like fluids, probably related to subduction, is proposed to explain the higher Sr-isotope and lowerNd-isotope values in some rocks (143Nd/144Nd up to 0.512865 and 87Sr/86Sr up to 0.703707). This process probably occurred in the source prior tomagma generation, refertilizing some portions of themantle. Accordingly, the estimated degree of melting responsible for each magma appears to be related to its 87Sr/86Sr enrichment. In contrast, the decoupling between 3He/4He and 87Sr/86Sr ratios requires the occurrence in the crustal reservoirs of further processes capable of shifting the He isotope ratio towards slightly more radiogenic values, such as magma aging or a contribution of shallow fluid. Therefore, different residence times in the Etnean reservoir and/or various rates of magma ascent could be key parameters for preserving the original He isotope marker of the Etnean mantle source.
    Description: Published
    Description: 243-258
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Hyblean Plateaux ; Primitive magma ; Mantle metasomatism ; Peridotite ; Pyroxenite ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-03-01
    Description: In this work, we tackle the problem of seismic hazard at Etna deriving from the recurrent seismogenic activity of local faults, by adopting two independent methods based on probabilistic approaches. We assess the hazard in terms of macroseismic intensity and represent the occurrence probability calculated for different exposure times both on maps and at fault scale. Seismic hazard maps obtained by applying the “site approach” through the SASHA code and a new probabilistic attenuation model, indicate the eastern flank of the volcano as the most hazardous, with expected intensity (Iexp) in 50 years (i.e. the standard exposure time adopted in the seismic regulations) ranging from degrees IX to X EMS. In shorter exposure periods (20, 10, 5 years), values of Iexp up to IX are also reached in the same area, but they are clearly determined by the earthquakes generated by the Timpe fault system. In order to quantify the contribution of local seismogenic sources to the hazard of the region, we reconstruct the seismic history of each fault and calculate with SASHA the probability that earthquakes of a given intensity may be generated in different exposure times. Results confirm the high level of hazard due to the S. Tecla, Moscarello and Fiandaca faults especially for earthquakes of moderate intensity, i.e. VI≤I0≤VII, with probabilities respectively exceeding 50% and 20% in 10 years, and 30% and 10% in 5 years. Occurrence probability of major events (I0≥VIII) at the fault scale has also been investigated by statistics on intertimes. Under stationary assumptions we obtain a probability of 6.8% in 5 years for each structure; by introducing the time-dependency (time elapsed since the last event occurred on each fault) through a BPT model, we identify the Moscarello and S. Tecla faults as the most probable sources to be activated in the next 5 years (2013–2017). This result may represent a useful indication to establish priority criteria for actions aimed at reducing seismic risk at a local scale.
    Description: Published
    Description: 158-169
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Seismic history ; Occurrence probability ; Time-dependent renewal process ; Individual sources ; Seismic hazard ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-07-14
    Description: A high-resolution integrated stratigraphy is presented for the Late Quaternary in the southern-eastern Tyrrhenian Sea. It is based on calcareous plankton taxa (planktonic foraminifera and nannoplankton) distribution, d18OGlobigerinoides ruber record, tephrostratigraphy and radiometric dating methods (210Pb and 137Cs, AMS 14C) for a composite sediment core (from the top to the bottom, C90-1m, C90 and C836) from the continental shelf of the Salerno Gulf. High sedimentation rates from ca 1 cm/100 y for the early Holocene, to 3.45 cm/100 y for the middle Holocene to 8.78 cm/100 y from late Holocene and to 20 cm/100 y for the last 600 AD, make this area an ideal marine archive of secular paleoclimate changes. Quantitative distributional trend in planktonic foraminifera identify seven known (1Fe7F) eco-biozones, and several auxiliary bioevents of high potential for Mediterranean biostratigraphic correlation. Recognised were: the acme distribution of Neogloboquadrina pachyderma r.c. between 10.800 0.400 ka BP and 5.500 0.347 ka BP, a strong increase in abundance of Globorotalia truncatulinoides r.c. and l.c. at 5.500 0.347 ka BP and at 4.571 0.96 ka BP, respectively, an acme interval of Globigerinoides quadrilobatus (between 3.702 0.048 ka BP and 2.70 0.048 ka BP) and the acme/paracme intervals of T. quinqueloba (acme between 3.350 0.054 ka BP and 1.492 0.016 ka BP; paracme between 1.492 0.016 ka BP and 0.657 0.025 ka BP; acme beginning 0.657 0.025 ka BP). These results, integrated with trends of selected calcareous nannofossil species (Florisphaera profunda, Brarudosphaera bigelowii, Gephyrocapsa oceanica and Emiliania huxleyi) and d18OG. ruber signature, are consistent with the most important pre-Holocene and early Holocene paleoclimatic and paleoceanographic phases i.e., the BöllingeAllerod, the Younger Dryas and the time interval of Sapropel S1 deposition in the eastern Mediterranean Sea. These features revealed the high potential of this shallow water environment for high-resolution stratigraphy and correlation for the western Mediterranean. In addition, the chemical characterization of seven tephra layers supplied further data about the age and the dispersal area of some well-known Campi Flegrei explosive events, inferring the possible occurrence of explosive activity at Vesuvius around the middle of the 6th century, and contributing to refine the tephrostratigraphic framework for the last 15 ka in the south-eastern Tyrrhenian Sea.
    Description: Published
    Description: 71-85
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: calcareous plancton ; pollens ; dinoflagellates ; tephrostratigraphy ; stable isotopes ; Quaternary ; Mediterranean ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-03-01
    Description: In this paper, we apply a probabilistic procedure to model the attenuation of the macroseismic intensity in the Mt. Etna region, which allows estimating probabilistic seismic scenarios. Starting from the local earthquake catalogue, we select a dataset of 47 events having epicentral intensity I0 from VI to IX–X EMS, and update the model parameters previously achieved for Italy according to the Bayesian paradigm. For each class of epicentral intensity I0, we then estimate the probability distribution of the intensity at a site conditioned on the epicentre-site distance through a binomial-beta model, under the assumption of a point seismic source and isotropic decay (circular). The mode of the distribution is taken as the expected intensity Is at that site. Since the strongest earthquakes show a preferential propagation of shaking along the fault strike and a rapid decrease in the perpendicular direction, we also consider the anisotropic decay (elliptical) of the intensity due to a linear source (finite fault). We therefore transform the plane so that the ellipse has the length of the fault rupture as maximum axis and its strike as azimuth is changed into a circle with fixed diameter; then we apply the probabilistic model obtained for the isotropic case to the modified data. The entire calculation procedure is implemented in the software PROSCEN which, given the location and the epicentral intensity (and eventually the fault parameters) of the earthquake to be simulated, generates the probabilistic seismic scenario according to the isotropic and anisotropic models of attenuation. The results can be plotted on grid maps representing (1) the intensity that can be exceeded with a fixed probability, or (2) the probability of exceeding a fixed intensity value. The first representation may also find application in seismic monitoring at Etna volcano, in order to produce real-time intensity ShakeMaps based on the instrumental parameters calculated by the automatic earthquake processing system.
    Description: Published
    Description: 149-157
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Attenuation Probability distribution ; Source models ; Seismic scenario ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-03-01
    Description: An updated tectonic framework of Etna's unstable flank has been defined as a result of multidisciplinary analyses carried out by integrating geological and geophysical data. The different typologies of datasets have been analyzed and correlated in order to constrain the geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano and to better understand their complex relationship with the offshore morphostructures of the continental margin. In particular, we have considered as the main structural elements the following four fault systems: Pernicana, Ragalna, Tremestieri–Trecastagni and Timpe. Slip-rates and kinematics have been estimated in both long- and short-terms, respectively, from geological and seismotectonic/geodetic data. Data integration has allowed defining five kinematic domains in the sliding flank of Etna: (1) the NE block, bordered by the Pernicana fault and characterised by the highest deformation velocities; ground velocity progressively diminishes toward South, with a clockwise rotation of the vectors defining (2) the block embracing the central part of the Timpe system; (3) the Giarre wedge; (4) the Medium-East block, bounded by the S. Tecla and Trecastagni faults; and (5) the SE block bordered, by the hidden Belpasso-Ognina tectonic lineament. The dynamics of these blocks takes place through discontinuous movements: sudden short-term accelerations related to the magma intrusion are superimposed to a fairly constant mid-term ESE sliding. The proposed comprehensive model of the unstable flank provides the basic input parameters for applying analytical models to flank dynamics of Etna volcano.
    Description: Published
    Description: 5-15
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Faults, Seismotectonics, Ground deformation, Geodynamic model, Flank instability, Mt Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-03
    Description: The April 3, 1998 Mw=5.1 Gualdo Tadino earthquake (central Italy) was the last significant event in the 6-month-long Umbria–Marche seismic crisis. This event and its aftershocks occurred in an area where active faulting produces no striking geological and geomorphological effects. In this study, we investigated the ruptured fault using detailed seismological data and a re-processed and re-interpreted seismic reflection profile. Aftershock location and focal mechanisms were used to constrain the geometry and kinematics of the ruptured fault and a comparison was made with the subsurface image provided by the seismic profile. We found that the 1998 Gualdo Tadino earthquake occurred on a WSW-dipping, normal fault, with a length of about 8 km and a relatively gentle dip (308–408), confined between 3.5 and 7 km in depth. Kinematics of the mainshock and aftershocks revealed a NE-trending extension, in agreement with the regional stress field active in the Northern Apennines belt. The Mw = 5.1 earthquake originated above the top of the basement and ruptured within the sedimentary cover, which consists of an evaporites–carbonates multilayer. We hypothesised that the active fault does not reach the surface (blind normal fault). D 2005 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 233-247
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Aftershocks; Seismicity; Blind normal fault; Seismic reflection profile; Focal mechanisms; Umbria–Marche Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-03
    Description: Volcaniclastic-rich alluvial fans developed in the southern Campanian Plain (Italy) during the late Pleistocene and Holocene in an area eastward of the Somma-Vesuvius and Campi Flegrei volcanoes. Meanwhile, bedrock-rich alluvial fans developed in areas unaffected by pyroclastic deposition. Late Pleistocene and Holocene volcaniclastic-rich alluvial fans show some important differences: (i) late Pleistocene alluvial fans were dominated by hyperconcentrated flow deposits, whereas the Holocene ones were dominated by debris flows deposits; and (ii) late Pleistocene fans consist of several superimposed sedimentary bodies, characterized by homogeneous volcaniclastic material, whereas Holecene fans show either volcaniclastic bodies with homogenous lithology or mixed lithology (i.e., juvenile fractions eroded from different tephra layers). These differences are not related to the amount of volcaniclastic supply in time, but seem to be linked to changes in climatic condition between late Pleistocene and Holocene. Rapid remobilization of the pyroclastic material was favored by climatic and vegetation conditions of the study area during the late Pleistocene, when a semiarid setting dominated by steppe-like vegetation prevailed. During Holocene, the general increase in temperature and humidity favored vegetation and soil development and stabilization of the loose volcaniclastic materials. Thus, part of volcaniclastic material was stored in the catchments and was available for erosion a long time after an eruption. Shallow soil slips, active also today, generated volcaniclastic debris flows characterized by mixed lithology of pumice and scoria.
    Description: Published
    Description: 249–280
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Alluvial fans ; Explosive eruptions ; Somma-Vesuvius ; Campi Flegrei ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-03
    Description: Fluorine adsorption experiments were performed on 28 samples of the first 5 cm of topsoil collected on the flanks of Mt. Etna. The soil samples were equilibrated with F-rich rainwater (3.25 mg/L) at a soil/water weight ratio of 1/25. Aliquots of the supernatant were collected after 1, 7, 72, 720 and 5640 h and analysed for F content. The soil samples could be subdivided into three groups based on their F-adsorption behaviours after 1 h and at the end of the experiment: (1) negative adsorption (F released from the soil to the solution) after 1 h and negative or moderately positive adsorption at the end, (2) from negative after 1 h to strongly positive adsorption at the end, and (3) always strong positive adsorption. The adsorption capacity of the soils was positively correlated with the soil pH, the contents of finer granulometric fractions (clay and silt) and the weathering stage (as quantified by the chemical alteration index). The most F adsorbing soils are found at the periphery of the volcano where aquifers are more vulnerable to contamination due to the shallower depth of the water table. This study further evidences the importance of the Etnean soils in protecting groundwater from an excessive magmatic F input.
    Description: Published
    Description: 1179–1188
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic soils ; fluoride adsorption ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: In this paper, we report four years of soil CO2 emission data measured monthly at 130 sites in two peripheral areas of Mt Etna Volcano that are well known for their high discharge rates of volcanic gas. We remove the influence of atmospheric parameters, and by means of statistical analyses, we (i) demonstrate that variations in CO2 emissions are due mainly to CO2 of a deep origin and (ii) quantify the total amounts of CO2 derived from a deep magma source. Periods of anomalous deep degassing are identified in both areas. A comparison of the timing of these anomalies and geophysical data indicates that the periods of anomalous degassing can be mostly ascribed to intrusions of fresh magma into the Etna plumbing system, which is in agreement with many previous works. Based on the existing literature, we formulate an interpretative framework of magma migration within the plumbing system, consistent with temporal trends in the observed anomalies. Finally, we reconstruct the processes of recent magma ascent at Mt Etna based on our interpretative framework, published geophysical data, and records of volcanic activity.
    Description: Published
    Description: 218-227
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Soil CO2 flux ; Mt Etna ; Volcanic activity ; Magma transfer ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2, radon and structural field surveys were performed on Mt. Etna, in order to acquire insights into active tectonic structures in a densely populated sector of the south-eastern flank of the volcano, which is involved in the flank dynamics, as highlighted by satellite data (InSAR). The studied area extends about 150 km2, in a sector of the volcano where InSAR results detected several lineaments that were not well-defined from previous geological surveys. In order to validate and better constrain these features with ground data evidences, soil CO2 and soil radon measurements were performed along transects roughly orthogonal to the newly detected faults, with measurement points spaced about 100 m. In each transect, the highest CO2 values were found very close to the lineaments evidenced by InSAR observations. Anomalous soil CO2 and radon values were also measured at old eruptive fractures. In some portions of the investigated area soil gas anomalies were rather broad over transects, probably suggesting a complex structural framework consisting of several parallel volcano-tectonic structures, instead of a single one. Soil gas measurements proved particularly useful in areas at higher altitude on Mt. Etna (i.e. above 900 m asl), where InSAR results are not very informative/ are fairly limited, and allowed recognizing the prolongation of some tectonic lineaments towards the summit of the volcano. At a lower altitude on the volcanic edifice, soil gas anomalies define the active structures indicated by InSAR results prominently, down to almost the coastline and through the northern periphery of the city of Catania. Coupling InSARwith soil gas prospectingmethods has thus proved to be a powerful tool in detecting hidden active structures that do not show significant field evidences.
    Description: This work was funded by the DPC-INGV project “Flank”
    Description: Published
    Description: 27-40
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: CO2 ; Radon ; InSAR ; Faults ; Etna ; Volcano-tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction.
    Description: Published
    Description: 66-76
    Description: JCR Journal
    Description: open
    Keywords: OP-FTIR scanning system ; Stromboli Volcano ; Explosive activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-03
    Description: Low-angle normal faults, LANF, (dip b 30°) have been proposed as key-structures for accommodating crustal Fault mechanics blocks affected by brittle processes. LANF act as preferential channels for fluid flow and in some cases they Seismicity promoted fluid overpressure. Fluid–rock interactions along some detachments favour the development of extension. In contrast, frictional fault reactivation theory predicts that slip on LANF is extremely unlikely: this prediction is consistent with the absence of moderate-to-large earthquakes on normal faults dipping less than 30°. In order to discuss this discrepancy I will analyse and integrate: 1) geological data from 9 LANF, 2) the dip- range of earthquake-ruptures in extensional environments, and 3) frictional fault mechanics. LANF fault zone structure is represented by two end members: a) a thick mylonitic shear zone superposed by cataclastic processes and some localization; 2) a discrete fault core separating hangingwall and footwall phyllosilicates that in general are characterised by low frictional strength, μb0.4, and inherently stable, velocity-strengthening frictional behaviour. The low friction coefficient of the phyllosilicates can explain movements on LANF and the velocity strengthening behaviour of the phyllosilicates implies fault creep and therefore can be used to explain the absence of moderate-to-large earthquakes on LANF in seismological records. However in my view, the integration of the three datasets does not provide a simple mechanical solution for the LANF paradox since it leaves two important open questions. First a widespread development of phyllosilicates does not seem to be a common feature for most of the exhumed LANF that on the contrary show the typical fault rocks of the brittle and seismogenic crust. Second, although some brittle detachments reactivated pre-existing ductile shear zones, others formed as gently dipping structures within a brittle crust characterised by a vertical σ1: a well constrained mechanical explanation for this second class of structures is lacking.
    Description: Published
    Description: 253-268
    Description: JCR Journal
    Description: reserved
    Keywords: Low-angle normal faults ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: Ambrym is one of the most actively erupting basaltic volcanoes in the Vanuatu island arc. Scoria clasts collected from a fallout deposit in the inner terrace of its Benbow active crater were analyzed through series of synchrotron X-ray computed microtomographic experiments, as well as permeability measurements and simulations. Our goal was to reconstruct and visualize scoria textures in 3D and to quantify vesicularity, permeability, vesicle sizes and distributions in order to understand how gas moves in and out of Ambrym basaltic magma. We find that vesicle size distributions in the volume range between ~ 103 and 1010 μm3 define two scoria classes. Vesicle size distributions in the low-to-moderately (0.44–0.67) vesicular samples can be fit by power laws with an exponent of 1 ± 0.2; distributions in the highly vesicular (0.86–0.88) samples can be fit by power laws with a higher exponent (1.4 to 1.7), as well as by exponential fits. Highly vesicular samples exhibit a very pronounced large vesicle, consisting of networks of smaller, interconnected vesicles, that is more than three orders of magnitude larger in volume than all other vesicles in each distribution. This type of vesicle is not found in the low-to-moderately vesicular samples. In addition, vesicle number density negatively correlates with vesicularity: less vesicular samples have the highest number density and vice versa, and contain far more numerous small-to-medium-sized vesicles than highly vesicular samples. Measured and calculated viscous (Darcian) permeabilities overlap in the range 10− 13 and 10− 9 m2, with higher values in the more vesicular samples. We ascribe these differences in the textural and physical properties of the scoria clasts to their derivation from distinct magma portions in the conduit that were driven by convective overturn and underwent different vesiculation histories and gas transport dynamics. Comparing basaltic scoria clasts from Ambrym to those from mild explosive activity at Stromboli volcano (Italy) reveals that differences in their vesicle size distributions may result from the influence of different crystal contents and shapes on the vesiculation and permeability of the respective magmas. Finally, we highlight how rheological properties have a fundamental role in determining the degassing behaviour of basaltic magma at Ambrym and other volcanoes in general.
    Description: Published
    Description: 55-64
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: restricted
    Keywords: Ambrym ; Basaltic scoria ; 3D X-ray micro-tomography analysis ; Volcanic degassing ; Magma convection ; Crystal effect ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: Since January 2008, several geophysical parameters have evidenced a recharging phase at Mt. Etna volcano culminating with an effusive eruption that began on May 13, 2008. Seismic activity recorded at Mt. Etna from January 2007 to May 2008 was analyzed in order to provide seismological constraints to the volcano dynamics leading to the eruption. A total of 336 selected earthquakes, withML≥1.5, were used as data source for this study. Specifically, we calculated 3D velocity and attenuation tomography, including a 3D relocation of the events, and we computed 53 selected fault plane solutions (FPSs) that were used for stress tensor inversion. The most important result obtained from the joint analysis of VP, VP/VS and P-wave attenuation is an anomalous zone with normal to high VP (values between 3.5 and 4.5 km/s) and low VP/VS (values≤1.64), which partially overlaps with a low QP (values≤50) volume located along a NS trending channel beneath the central crater. This can be interpreted as a shallow volume characterized by high temperature where the magma is located with the presence of supercritical fluids. The analysis of seismic stress tensor evidenced an extensional regime in the depth range 3–13 km with a vertically oriented σ1. This finding may suggest an extensional stress regime, probably related to the kinematic response of the volcanic edifice to both a deep magmatic intrusion and a condition of decreased regional compressive stress facilitated by sliding processes of the eastern flank of the volcano.
    Description: Published
    Description: 50–63
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; Volcanic eruptions ; Stress Tensor ; Velocity tomography ; Attenuation tomography ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: We present a collection of pictures of the coseismic secondary geological effects produced on the environment by the 2012 Emilia seismic sequence in northern Italy. The May-June 2012 sequence struck a broad area located in the Po Plain region, causing 26 deaths and hundreds of injured, 15.000 homeless, severe damage of historical centres and industrial areas, and an estimated economic toll of ~2 billion of euros. The sequence included two mainshocks (Figure 1): the first one, with ML 5.9, occurred on May 20 between Finale Emilia, S. Felice sul Panaro and S. Martino Spino; the second one, with ML 5.8, occurred 12 km southwest of the previous mainshock on May 29. Both the mainshocks occurred on about E-W trending, S dipping blind thrust faults; the whole aftershocks area extends in an E-W direction for more than 50 km and includes five ML≥5.0 events and more than 1800 ML〉1.5 events. Ground cracks and liquefactions were certainly the most relevant coseismic geological effects observed during the Emilia sequence. In particular, extensive liquefaction was observed over an area of ~1200 km2 following the May 20 and May 29 events. We collected all the coseismic geological evidence through field survey, helicopter and powered hang-glider trike survey, and reports from local people directly checked in the field. On the basis of their morphologic and structural characteristics the 1362 effects surveyed were grouped into three main categories: a) liquefactions related to overpressure of aquifers, occurring through several aligned vents forming coalescent flat cones (485 effects); b) liquefactions with huge amounts of liquefied sand and fine sand ejected from fractures tens of meters long (768); c) extensional fractures with small vertical throws, apparently organized in an en-echelon pattern, with no effects of liquefaction (109). The photographic dataset consists of 99 pictures of coseismic geological effects observed in 17 localities concentrated in the epicentral area. The pictures are sorted and presented by locality of observation; each photo reports several information such as the name of the site, the geographical coordinates and the type of effect observed. Figure 1 shows a map of the pictures sites along with the location of the two mainshocks; Figure 2 shows a detail of the distribution of the liquefactions in the area of S. Carlo. The complete description of the coseismic geological effects induced by the Emilia sequence, their relation with the aftershock area, the InSAR deformation area and the I〉6 EMS felt area, along with the description of the technologies used for data sourcing and processing are shown in Emergeo Working Group [2012a and 2012b].
    Description: Published
    Description: 1-70
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: open
    Keywords: liquefaction features ; 2012 Emilia seismic sequence ; survey report ; EMERGEO ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: We propose a very detailed picture of the seismicity occurring in the proximity of the Alto Tiberina Low Angle Normal Fault (ATF, Northern Italian Apennines) by presenting the pattern and evolution of a seismic sequence that occurred on the hanging wall of the ATF in the first months of 2010 and that was characterized by about 1000 events with ML ranging from -0.7 to 3.8. In order to capture the rupture kinematics of the investigated area, a cross-correlation technique was at first applied to calculate very accurate time shifts among the events of the sequence and then to relocate them. Considering the many factors that can affect the accuracy of a routine event location, the whole sequence was relocated with the double-difference method, including both absolute travel-time measurements and cross-correlation differential travel-times. The new locations confirm that seismic activity is mainly arranged along a NW-SE oriented structure, ranging in depth from 4 to 6 km and dipping towards North East with an angle of about 65°. A further analysis of waveforms similarity was performed at a reference station by merging the capability of the cross-correlation technique and the bridging algorithm. The analysis allows us to group events into several earthquake families (from now on multiplets), 11 of which include at least 10 events with a cross-correlation value higher than 0.9. The detected mutiplets allow us to emphasize the spatial and temporal migration of the sequence occurred along a 307°N strike direction with an averaged propagation velocity of about 0.4 km/day. The normal focal mechanisms obtained from the events with ML≥2 validate the supposed extensional tectonic regime of the investigated area. The main nodal planes, characterized by strikes ranging in 312°±12 and dips about -90°, are consistent with the spatial evolution of the aftershocks.
    Description: Published
    Description: 91-109
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: cross-correlation ; multiplets ; double-difference ; migration ; pattern ; Alto Tiberina Fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: We performed geodetic strain rate analyses in southern Italy, using new GPS velocities. Two-dimensional strain and rotation rate fields were estimated and results show that most of the shortening is distributed in the northern Sicily offshore. Extension becomes more evident and comparable with shortening on the eastern side of the same margin, and greater in the eastern Sicily offshore. Principal shortening and extension rate axes are consistent with longterm geological features: seismic reflection profiles show both active compressive and extensional faults affecting Pleistocene strata. We show evidence for contemporaneous extension and transtension in the Cefalu` Basin. Combining geodetic data and geological features point to the coexistence of independent geodynamic processes, i.e., the active E–W backarc spreading in the hangingwall of the Apennines subduction zone and shortening along the southern margin of the Tyrrhenian backarc basin operated by the NNW-motion of Africa relative to Eurasia.
    Description: Published
    Description: 1915-1924
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Tyrrhenian Sea ; GPS-derived strain rate ; Seismic reflection profiles ; Coexisting tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Using a lava flow emplacement model and a satellite-based land cover classification, we produce a map to allow assessment of the type and quantity of natural, agricultural and urban land cover at risk from lava flow invasion. The first step is to produce lava effusion rate contours, i.e., lines linking distances down a volcano’s flank that a lava flow will likely extend if fed at a given effusion rate from a predetermined vent zone. This involves first identifying a vent mask and then running a downhill flow path model from the edge of every pixel around the vent mask perimeter to the edge of the DEM. To do this, we run a stochastic model whereby the flow path is projected 1,000 times from every pixel around the vent mask perimeter with random noise being added to the DEM with each run so that a slightly different flow path is generated with each run. The FLOWGO lava flow model is then run down each path, at a series of effusion rates, to determine likely run-out distance for channel-fed flow extending down each path. These results are used to plot effusion rate contours. Finally, effusion rate contours are projected onto a land classification map (produced from an ASTER image of Etna) to assess the type and amount of each land cover class falling within each contour. The resulting maps are designed to provide a quick look-up capability to assess the type of land at risk from lava extending from any location at a range of likely effusion rates. For our first (2,000 m) vent zone case used for Etna, we find a total of area of ~680 km2 is at risk from flows fed at 40 m3 s−1, of which ~6 km2 is urban, ~150 km2 is agriculture and ~270 km2 is grass/woodland. The model can also be run for specific cases, where we find that Etna’s 1669 vent location, if active today, would likely inundate almost 11 km2 of urban land, as well as 15.6 km2 of agricultural land, including 9.5 km2 of olive groves and 5.2 km2 of vineyards and fruit/nut orchards.
    Description: Published
    Description: 1001-1027
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Risk ; FLOWGO ; ASTER image ; Land classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-03
    Description: We report a new model of the upper mantle structure beneath Italy obtained by means of P-wave teleseismic tomography. Besides the recent and remarkable development of the Italian Seismic Network, a high model resolution has been achieved improving the inversion method upon the ACH method used in previous investigations and picking high quality arrival times with the Multi-Channel Cross-Correlation technique. The finer details of our Vp model yield new insights into the heterogeneous structure of the Adria continental lithosphere involved in the collision between the Africa and Europe plates. A wide low Vp anomaly located in the northern Adria mantle, facing the Alpine high Vp slab, supports the idea that the Adria lithosphere has been hydrated and thinned during the Alpine subduction. We argue that this mantle softening may have played a key role in favoring the subsequent delamination of the Adria lithosphere in the northern Apennines. We hypothesize that delamination of continental lithosphere previously thinned in a back-arc setting may be considered a key process to favor subduction polarity reversal and recycling of continental material into the mantle circulation. Conversely, in the central-southern Apennines, the velocity structure is consistent with the existence of a deeper oceanic slab that flattens at the base of the upper mantle, in agreement with the widely accepted geodynamic evolution of the central Mediterranean by slab retreat and back-arc spreading. The oceanic slab is discontinuously detached from the surface plate, suggesting a different structure of the Adria lithosphere, which resists subduction instead of favoring delamination.
    Description: Published
    Description: 531–543
    Description: JCR Journal
    Description: restricted
    Keywords: seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Crustal tectonic seismicity in the Southern Tyrrhenian Sea is characterized by the high occurrence rates of earthquakes to the west of the alignment of Salina, Lipari and Vulcano islands in the Aeolian archipelago. Only a few earthquakes affect the crustal region east of these islands, whereas intermediate and deep seismicity plays a relevant role. Based on this evidence, two aspects of the seismic swarm recorded at the Aeolian Island Seismic Network between June 6 and 17, 1999 looked anomalous. The first aspect concerned the number of earthquakes (78) that affected the Stromboli submarine edifice in a short time interval. Secondly, despite the low maximum magnitude Md 3.2 reached, the cumulative strain release was conspicuous in comparison with previous swarms in this region. We localized the swarm about 6 km northeast of Stromboli, at a depth between 8 and 12km. The source region was identified using standard methods of hypocentral location, as well as azimuth analysis. It is worth noting that the volcanic activity at Stromboli did not change significantly during the swarm nor throughout the following months. Therefore, the seismic swarm had no link with volcanic activity observed at the surface. Most of the earthquakes shared similar waveform and frequency content, and can be divided into families. We identified some earthquakes - with magnitude up to Md 3 - having relatively low frequency content at different seismic stations. This anomalous feature leads us to hypothesize the presence of fluid circulation and/or propagation of seismic waves in a ductile medium. Our hypothesis is in agreement with studies on marine geology, which highlight various forms of submarine volcanism in the southern basin of the Tyrrhenian Sea.
    Description: This work was financially supported by the EC project MULTIMO (Contract No. EVG1-CT-2000-00021).
    Description: Published
    Description: 121-136
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Seismic swarm ; Volcanoes ; Stromboli ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: Seismic activity, ground deformation, and soil and fumarole temperatures acquired during 2004–2007 at Vulcano (Aeolian Islands) are analysed and the time relations among the different time series are discussed. Changes in temperature of fumarolic gases took place during four ‘‘anomalous’’ periods (November 2004–March 2005; October 2005–February 2006; August–October 2006; July–December 2007) at the same time as an increasing number of volcano-seismic events. In particular, the temperatures at high temperature vents and at steam heated soil ranged in time from 180 to 440 C and from 20 to 90 C, respectively. The maximum daily number of volcano-seismic events was 57, reached during the second anomalous period. This seismicity, characterised by focal depth generally lower than 1 km below sea level (b.s.l.) and composed of different kinds of events associated to both resonance and shear failure processes, is related to the shallow dynamics of the hydrothermal system. During the analysed period, very few volcano-tectonic earthquakes took place and tilt recordings showed no sharp or important changes. In light of such observations, the increases in both temperature and volcano-seismic events number were associated to increases in the release of gas from a deep and stable magma body, without magma intrusions within the shallow hydrothermal system. Indeed, a greater release of gas from depth leads to increased fluid circulation, that can promote increases in volcano-seismic events number by both fracturing processes and resonance and vibration in cracks and conduits. The different trends observed in the measured geochemical and geophysical series during the anomalous periods can be due to either time changes in the medium permeability or a changing speed of gas release from a deep magma body. Finally, all the observed variations, together with the changing temporal distribution of the different seismic event kinds, suggest that the hydrothermal system at Vulcano can be considered unsteady and dynamic.
    Description: Published
    Description: 167–182
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Volcano seismolog ; soil and fumarole temperatures ; tilt data ; hydrothermal system ; Vulcano Island ; volcanic unrest ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-03
    Description: The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 − σ3)/(σ1 − σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64 and 0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ∼N43°E; R is high, between 0.85 and 0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently 〈0.30, indicating a sort of horizontal ‘radial’ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.
    Description: Study supported by the Project S2 funded in the framework of the 2004–2006 agreement between the Italian Department of Civil Protection and the INGV (Research Units 2.4-Burrato, 2.11-Mastronuzzi).
    Description: Published
    Description: 141-155
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Quaternary tectonics ; Brittle deformation ; Fracture ; Pleistocene ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: A 4-year geochemical survey of some fumaroles at the Voragine summit crater of Mt Etna was performed in combination with synchronous monitoring of peripheral gas emissions at the base of the volcano. This was the first geochemical study at Mt Etna to have included the abundances of Ar, He, and C isotopes. Once the effects of postmagmatic shallow processes were identified and quantitatively removed, the He–Ar–CO2 systematics of the Voragine crater fumaroles and peripheral gas emissions described the same degassing path. Combining the carbon-isotope composition with information about noble gases provided evidence that the crater fumaroles are fed from a two-endmember mixture composed of a deep member coming from pressures between 200 and 400 MPa (depending on time), and a shallower one exsolved at 130 MPa. Similar mixing processes probably also occur in gases from peripheral vents. The simultaneous assessment of d13CCO2 and He/Ar values of crater fumaroles over time has identified simple changes in the mixing proportion between the two endmembers and, moreover, periods during which the exsolution pressure of the deep fluid increased. These periods seem to be linked to pre-eruptive phases of the volcano. The identified open-system degassing processes are indicative of efficient bubble–melt decoupling at depth, whereas the mixing process requires a convective transfer of the deeply exsolved fluids toward shallower levels of magma where further vapor is exsolved. In agreement with the most recent geophysical and petrological data from Mt Etna, these observations allow inferences about a deep portion of the plumbing system (5 to 12 km b.s.l.), comprising sill-like reservoirs connected by small vertical structures, and a main reservoir at 2–3 km b.s.l. that is probably fluxed by magmatic volatiles. 2012 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 380-394
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: gas geochemistry, isotopes, degassing, modelling ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: Cuticle micromorphology together with epidermal and epistomatal wax, in both current- and first-year-old needles of conifer Pinus halepensis (Aleppo pine) trees growing under volcanic gas fumigation was analysed in Pisciarelli area, Campi Flegrei, Southern Italy. As a control, current- and first-year-old needles growing far from volcanic gas emission were also sampled. Using a multidisciplinary approach with SEM, TEM and X-ray, volcanic gases were shown to cause degradation on epicuticular and epistomatal waxes. Significant statistical variations of ultrastructural components of the cuticle, with 30 measurements, including total thickness of the cuticle, and details and proportions of all different layers, and use of confidence interval, revealed a high degree of sensitivity of Aleppo pine to this extreme environment. In the present study, non-significant thickness variations of the cell wall plus cuticle among current- and first-year-old needles of both fumigated and non fumigated trees have been found. However, at the ultrastructural level, significant variations in cell wall and total cuticle thickness, especially within the three zones of B1 fibrillar layer, revealed different equilibria for each of the four types of material. Using energy dispersive X-ray microanalysis, no sulphur was found in either cuticle or epidermal cells, but the presence of H2S in the fumarole gas is suspected to cause indirect and/or direct cuticle alterations of wax structure. Ultrastructural characters of plant cuticles related to emission of volcanic gases during the geological past are also discussed. Among these considerations, an identification key enabling distinction between non fumigated and fumigated materials with 9 characters, provides a good tool detecting the influence of volcanism for extant and fossil plants.
    Description: Published
    Description: 1–17
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei ; Volcanic gases ; Pinus halepensis ; Hydrogen sulphide (H2S) ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: The aim of this study is to determine and characterise the control exerted by parent rock texture on sand composition as a function of grain size. The sands investigated were generated from granitoid parent rocks by the Rhone, Damma and Sidelen glaciers, which drain the Aar Massif in the Central Alps (Switzerland), and were deposited in glacial and fluvio-glacial settings. Mechanical erosion, comminution (crystal breakdown and abrasion) and hydraulic sorting are the most important processes controlling the generation of sediments in this environment, whereas chemical and/or biochemical weathering plays a negligible role. By using a GIS-based Microscopic Information System (MIS), five samples from the glacier-drained portions of the Aar basement have been analysed to determine textural parameters such as modal composition, crystal size distribution and mineral interfaces (types and lengths). Petrographic data of analysed sands include traditional point counts (Gazzi-Dickinson method, minimum of 300 points) as well as textural counts to determine interface types, frequency, and polycrystallinity in phaneritic rock fragments. According to Pettijohn's classification, grain‐size dependent compositions vary from feldspathic litharenite (0φ fraction) via lithic arkose (1φ and 2φ) to arkose (3φ and 4φ). Compositional differences among our data set were compared to modern plutoniclastic sands from the Iberian Massif (Spain) and the St. Gabriel Mts. (California, USA), which allowed us to assess the role exerted by glaciers in generating sediments. By combining data from the MIS with those from petrographic analysis, we outlined the evolution of mineral interfaces from the parent rocks to the sediments.
    Description: Published
    Description: 93-107
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Textural parameters ; Grain size; ; Composition ; Glacial environment ; Sediment generation ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: The Pernicana–Provenzana Fault System is one of the most active tectonic systems of Mt. Etna and it plays an important role in the dynamic of the eastern flank of the volcano. Earthquakes occurring close to this structural trend have reached magnitudes up to 4.2, sometimes with coseismic surface faulting, and have caused severe damages to tourist resorts and villages in the vicinity of this structure. In the last decade, a large number of shocks, sometimes in the form of swarms, linked to Pernicana–Provenzana Fault System movements have been detected by the permanent local seismic network operating in eastern Sicily. In this paper, we report on the detailed study of the seismic activity occurring during the 2000–2009 time span in the Pernicana–Provenzana Fault System area. Firstly, we located 407 earthquakes using a standard location code and a 1D crustal velocity model. We then applied two different approaches to calculate precise hypocenter locations of the events. In particular, a non-linear code was adopted to obtain an estimate of the a posteriori Probability Density Function in 3D space for the hypocenter location. Moreover, a relative location of correlated event pairs was performed, using the double-difference method. These two different location approaches allowed defining with good accuracy, the most active and hazarding sectors of the structure. The results of these precise locations showed a tighter clustering in the epicenters and in focal depths, in comparison with standard locations. Earthquakes are located along the Pernicana–Provenzana Fault System, and are mainly clustered in two zones, separated by an area with very low rate of earthquakes occurrence, but characterized by the highest energy release. Depths of the foci are very shallow, ranging between the surface and about 3 km b.s.l. Kinematics of the Pernicana–Provenzana Fault System, revealed by the fault plane solutions computed for the most energetic earthquakes, highlights a predominant dip–slip and left strike movements along E–W oriented fault planes, in agreement with field observations.
    Description: Published
    Description: 16-26
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Etna volcano ; Pernicana–Provenzana Fault System ; Earthquakes ; Precise location ; Fault plane solutions ; Seismic strain release ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: The chemistry of Yellowstone fumarole gases shows the existence of two component waters, type MC, influenced by the addition of deep mantle fluid, and type CC, influenced by crustal interactions (CC). MC is high in 3He/4He (22 Ra) and low in 4He/40Ar ( 1), reflecting input of deep mantle components. The other water is characterized by 4He concentrations 3–4 orders of magnitude higher than air-saturated meteoric water (ASW). These high He concentrations originate through circulation in Pleistocene volcanic rocks, as well as outgassing of Tertiary and older (including Archean) basement, some of which could be particularly rich in uranium, a major 4He source. Consideration of CO2–CH4–CO–H2O–H2 gas equilibrium reactions indicates equilibration temperatures from 170 C to 310 C. The estimated temperatures highly correlate with noble-gas variations, suggesting that the two waters differ in temperature. Type CC is 170 C whereas the MC is hotter, at 340 C. This result is similar to models proposed by previous studies of thermal water chemistry. However, instead of mixing the deep hot component simply with cold, meteoric waters we argue that addition of a 4He-rich component, equilibrated at temperatures around 170 C, is necessary to explain the range in fumarole gas chemistry.
    Description: Published
    Description: 265–278
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: hydrothermal fluids ; Yellowstone Plateau ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-09-03
    Description: Gas hazard was evaluated in the three most important cold gas emission zones on the flanks of the quiescent Colli Albani volcano. These zones are located above structural highs of the buried carbonate basement which represents the main regional aquifer and the main reservoir for gas rising from depth. All extensional faults affecting the limestone reservoir represent leaking pathways along which gas rises to the surface and locally accumulates in shallow permeable horizons forming pressurized pockets that may produce gas blowout when reached by wells. The gas, mainly composed by CO2 (〉90 vol.%), contains appreciable quantities of H2S (0.35-6 vol.%), and both represent a potentially high local hazard. Both gases are denser than air and accumulate near ground where they may reach hazardous concentrations, and actually lethal accidents frequently occur to animals watering at local ponds. In order to evaluate the rate of degassing and the related hazard, CO2 and H2S diffuse soil flux surveys have been repeatedly carried out by accumulation chamber. The viscous gas flux of some important discrete emissions has been also evaluated and the CO2 and H2S air concentration measured by portable devises and by Tunable Diode Laser profiles. The minimum potential lethal concentration of the two gases (250 ppm for H2S and 8 vol.% for CO2) is 320 times higher for CO2, whereas the CO2/H2S concentration ratio in the emitted natural gas is significantly lower (15-159). This explains why H2S reaches hazardous, even lethal, concentrations more frequently than CO2. A relevant hazard exists for both gases in the depressed zones (channels, excavations) particularly in the non-windy early hours of the day.
    Description: Published
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: partially_open
    Keywords: gas hazard ; hydrogen sulfide ; carbon dioxide ; Colli Albani volcano ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-12-06
    Description: Major, minor and trace element analysis of volcanic glass in proximal and distal (〈 2 mm) tephra deposits underpins tephrochronology. This approach has been tested in the Aeolian Islands and the Tyrrhenian Sea using juvenile clasts in pyroclastic fall and flow deposits. Geochemical data are used to link marine tephras in the Marsili Basin (core TIR2000-C01) to explosive eruptions of (1) Lipari (Monte Pilato; 776 cal AD); (2) Vulcano; and (3) Campi Flegrei (Soccavo 1; 11,915–12,721 cal years BP). Whether a polymictic coarse grained volcaniclastic turbidite in the Marsili Basin originated from collapse on Salina remains unresolved because multi-elemental analysis raises doubt about the published correlation to the Pollara region. It is evident that correlation of proximal continental and distal marine tephras, at a high level of confidence, requires a full complement of major, minor and trace element data. In conjunction with considerations of the mineralogy and morphology of juvenile deposits these data help define petrological lineages such that precise provenance can be established. Whilst a precise proximal–distal match must be based on identical major, minor and trace element concentrations it is clear that resurgent activity from a single volcano can produce magmas with identical compositions. In such cases stratigraphic relationships must complement any geochemical study. Occasionally proximal stratigraphies may be unrepresentative of the complete eruptive history because of a lack of exposure due to burial by more recent effusive and explosive activity, or sector collapse which can remove vital stratigraphy particularly on volcanic islands.
    Description: Published
    Description: 74-94
    Description: JCR Journal
    Description: restricted
    Keywords: Marsili Basin ; Glass chemistry ; Tephra ; Trace element ; Aeolian Islands ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-06-08
    Description: Southwestern Europe is a key setting to evaluate the diversity of non-avian dinosaurs before the end of the Cretaceous (below the K–Pg boundary). The ancient Ibero-Armorican Island, encompassing the current regions of North-East Iberia and South France, provides a substantial record of sauropod fossils. The study of multiple sauropod femora from localities where upper Campanian to uppermost Maastrichtian successions are both exposed, together with the integration of the information gathered from previously known localities has allowed the biodiversity of sauropods to be reassessed within a precise and clear chronostratigraphic framework. From the studied sample several titanosaur forms have been distinguished including a gracile and small-sized titanosaur (Lirainosaurus astibiae), a robust medium-sized titanosaur (Ampelosaurus atacis), a gracile medium-sized titanosaur (Atsinganosaurus velauciensis), and five other indeterminate but distinct titanosaurs, which span the late Campanian through the entire Maastrichtian. The youngest of these occurs in the uppermost part of palaeomagnetic chron C30n in the latest Maastrichtian (~0.4–1 Ma before the K–Pg boundary), representing the youngest sauropod yet documented in Eurasia. The pattern of diversity on the Ibero-Armorican Island rules out a decline in sauropod diversity at the very end of the Cretaceous. As with other regions during the late Cretaceous, the abundance and quality of the sauropod fossil record is probably influenced by multiple biases (sampling, ecological, and environmental).
    Description: Published
    Description: 19-38
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Sauropod ; Diversity ; Late cretaceous ; Extinction ; Palaeobiogeography ; Europe ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-06-13
    Description: The Middle Pleistocene Transition (1.2-0.7 Ma) is the most recent re-organization of the global climate system which includes variations in the frequency and amplitude of glacial/interglacial cycles, increased ice sheet volume, sea surface temperature cooling and a significant drop in the CO2 atmospheric levels. Here we present high-resolution planktonic foraminifera data (mean sampling resolution of about 780 years) from core LC10 recovered in the Ionian Sea (eastern Mediterranean), between 1.2 and 0.9 Ma. Selected taxa, among them G. ruber, T. quinqueloba and G. bulloides, show significant periodicities that can be associated to orbital cycles, mainly precession and obliquity. The planktonic foraminifera based paleoclimatic curve exhibits a cooling linear trend that can be associated to similar phenomena observed in the North Atlantic. On the other hand, we refer to the influence of the North African Monsoon the occurrence of two peaks of the low-salinity tolerant species G. quadrilobatus that fall in coincidence of sapropel layers. Finally, we discuss the distribution pattern of N. pachyderma sinistral coiling, with peaks up to about 20% between MIS 30 and 28, and compare it to middle-late Quaternary records of the Sicily Channel and western Mediterranean.
    Description: Published
    Description: 303-312
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Middle Pleistocene Transition ; Planktonic foraminifera ; Ionian Sea ; Orbital climate variability ; Neogloboquadrina pachyderma sinistral coiling ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-12-15
    Description: Four sediment cores were analysed in order to determine the sedimentary processes associated with the channel-ridge depositional system that characterise the George V Land continental margin on the Wilkes Land. The sedimentary record indicates that the WEGA channel was a dynamic turbiditic system up to M.I.S. 11. After this time, the channel became a lower-energy environment with sediments delivered to the channel through high-density bottom waters that we identify to be the high salinity shelf waters (HSSW) forming on the shelf area. The HSSW entrains the fine-grained sediments of the shelf area and deliver them to the continental rise. The biostratigraphy and facies of the sediments within the WEGA channel indicate that the HSSW down flow was active also during last glacial. The change from a turbiditic system to a lowenergy bottom current system within the WEGA channel likely reflects a different ice-flow pattern, with ice-sheet reaching the continental shelf edge only within the ice trough (ice stream).
    Description: Published
    Description: 909 - 926
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: High salinity shelf water ; Turbidity currents ; Glacio-marine depositional processes ; Marine isotopic stage 11 ; Glacial dynamic changes ; 02. Cryosphere::02.02. Glaciers::02.02.05. Ice dynamics ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: Active volcanoes are thought to be important contributors to the atmospheric mercury (Hg) budget, and this chemical element is one of the most harmful atmospheric pollutants, owing to its high toxicity and long residence time in ecosystems. There is, however, considerable uncertainty over the magnitude of the global volcanic Hg flux, since the existing data on volcanogenic Hg emissions are sparse and often ambiguous. In an attempt to extend the currently limited dataset on volcanogenic Hg emissions, we summarize the results of Hg flux measurements at seven active open-conduit volcanoes; Stromboli, Asama, Miyakejima, Montserrat, Ambrym, Yasur, and Nyiragongo.. Data from the domebuilding Soufriere Hills volcano are also reported. Using our determined mercury to SO2 mass ratios in tandem with the simultaneously-determined SO2 emission rates, we estimate that the 7 volcanoes have Hg emission rates ranging from 0.2 to 18 t yr-1 (corresponding to a total Hg flux of ~41 t·yr-1). Based on our dataset and previous work, we propose that a Hg/SO2 plume ratio ~10-5 is bestrepresentative of gas emissions from quiescent degassing volcanoes. Using this ratio, we infer a global volcanic Hg flux from persistent degassing of ~95 t·yr-1
    Description: Published
    Description: 497-510
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanogenic mercury ; Mercury ; Volcanic plume ; Mercury flux ; Mercury inventories ; Atmospheric mercury ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: During 2007–2008, three CO2 flux surveys were performed on El Chichón volcanic lake, Chiapas, Mexico, with an additional survey in April 2008 covering the entire crater floor (including the lake). The mean CO2 flux calculated by sequential Gaussian simulation from the lake was 1,190 (March 2007), 730 (December 2007) and 1,134 g m−2 day−1 (April 2008) with total emission rates of 164±9.5 (March 2007), 59±2.5 (December 2007) and 109±6.6 t day−1 (April 2008). The mean CO2 flux estimated from the entire crater floor area was 1,102 g m−2 day−1 for April 2008 with a total emission rate of 144±5.9 t day−1. Significant change in CO2 flux was not detected during the period of survey, and the mapping of the CO2 flux highlighted lineaments reflecting the main local and regional tectonic patterns. The 3He/4He ratio (as high as 8.1 RA) for gases in the El Chichón crater is generally higher than those observed at the neighbouring Transmexican Volcanic Belt and the Central American Volcanic Arc. The CO2/3He ratios for the high 3He/4He gases tend to have the MORB-like values (1.41×109), and the CO2/3He ratios for the lower 3He/4He gases fall within the range for the arc-type gases. The high 3He/4He ratios, the MORB-like CO2/3He ratios for the high 3He/4He gases and high proportion of MORB-CO2 (M=25 ±15%) at El Chichón indicate a greater depth for the generation of magma when compared to typical arc volcanoes.
    Description: Published
    Description: 423-441
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichon ; CO2 soil flux ; Crater Lake ; Gas geochemistry ; He-C isotopes ; Fumarolic and bubbling gases ; Tectonics ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-02-24
    Description: On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002-2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a four-year database of summit soil CO2 flux on the basis of which we define the thresholds (Low-Medium-High) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. Noteworthy geochemical signals of volcanic unrest have been clearly identified before, during, and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.
    Description: In press
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli Volcano ; CO2 soil flux ; Geochemical monitoring ; 2007 eruption ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated at 19 t a-1. Contemporaneous CO2 flux measurements showed a moderate positive correlation between CO2 and CH4 fluxes. Comparison of the CO2/CH4 soil flux ratios with the CO2/CH4 ratio of the gases of the main gas manifestations provided evidence for methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence of methanotrophic microorganisms in soil samples collected at Sousaki. Consumption was generally in the range from –4.9 to –38.9 pmolCH4 h-1 g-1 but could sometimes reach extremely high values (–33,000 pmolCH4 h-1 g-1.). These results are consistent with recent studies on other geothermal systems that revealed the existence of thermoacidophilic bacteria exerting methanotrophic activity in hot, acid soils, thereby reducing methane emissions to the atmosphere.
    Description: Published
    Description: 97–107
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Sousaki ; accumulation chamber ; soil degassing ; hydrothermal systems ; methane output ; methanotrophic activity ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9±0.27‰ and −1.41± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work values of Etna CO2 from~ −4‰, in the 1970’s and the 1980’s, to~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: Published
    Description: 531-542
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: Long time-series of chemical and isotopic compositions of Vesuvius fumaroles were acquired in the framework of the volcanic surveillance in the 1998-2010 period. These allow the identification of processes that occur at shallow levels in the hydrothermal system, and variations that are induced by deep changes in volcanic activity. Partial condensation processes of fumarolic water under near-discharge conditions can explain the annual 18O and deuterium variabilities that are observed at Vesuvius fumaroles. Significant variations in the chemical compositions of fumaroles occurred over the 1999-2002 period, which accompanied the seismic crisis of autumn 1999, when Vesuvius was affected by the most energetic earthquakes of its last quiescence period. A continuous increase in the relative concentrations of CO2 and He and a general decrease in the CH4 concentrations are interpreted as the consequence of an increment in the relative amount of magmatic fluids in the hydrothermal system. Gas equilibria support this hypothesis, showing a PCO2 peak that culminated in 2002, increasing from values of ~40 bar in 1998 to ~55-60 bar in 2001- 2002. We propose that the seismic crisis of 1999 marked the arrival of the magmatic fluids into the hydrothermal system, which caused the observed geochemical variations that started in 1999 and culminated in 2002.
    Description: Published
    Description: 137-149
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: open
    Keywords: Vesuvius ; Hydrothermal system ; Geochemical monitoring ; Stable isotopes. ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-24
    Description: Mount Etna produces frequent eruptions from its summit craters and from fissures on its flanks. The flank fissures trend approximately radially to the summit, and are mainly concentrated in three rift zones that are located on the NE, S and W flanks. Many flank eruptions result from lateral magma transfer from the central conduit into fractures intersecting the flanks, although some eruptions are fed through newly formed conduits that are not directly linked to the central conduit. We analyzed the structural features of eruptions from 1900 to the present, one of the most active periods in the documented eruptive history of Etna, which comprised 35 summit and 33 flank events. Except for a small eruption on the W flank in 1974, all of the flank eruptions in this interval occurred on or near the NE and S rifts. Eruptions in the NE sector were generally shorter, but their fissure systems developed more rapidly and were longer than those in the S sector. In contrast, summit eruptions had longer mean durations, but generally lower effusion rates (excluding paroxysmal events characterized by very high effusion rates that lasted only a few hours). This database was examined considering the main parameters (frequency and strike) of the eruptive fissures that were active over the last ~2 ka. The distribution in time and space of summit and flank eruptions appears to be closely linked to the dynamics of the unstable E to S flank sector of Etna, which is undergoing periodic displacements induced by subvolcanic magma accumulation and gravitational pull. In this framework, magma accumulation below Etna exerts pressure against the unbuttressed E and S flanks, which have moved away from the rest of the volcano. This has caused an extension to the detachment zones, and has facilitated magma transfer from the central conduit into the flanks.
    Description: This work was sponsored by the Italian National Civil Defence Department and INGV (Istituto Nazionale di Geofisica e Vulcanologia), project V3-LAVA (RU01–Team 01C).
    Description: Published
    Description: 464-479
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: dike ; magmas ; tectonics ; structural geology ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: Studies on volcanic degassing have recently shown the important role of volatile release from active volcanoes in understanding magmatic processes prior to eruptions. Here we present and discuss the evolution of magmatic degassing that preceded and accompanied the 2008 Mt. Etna eruption. We tracked the ascent of magma bodies by high-temporal resolution measurements of SO2 emission rates and discrete sampling of SO2/HCl and SO2/HF molar ratios in the crater plume, as well as by periodic measurement of soil CO2 emission rates. Our data suggest that the first signs of upward migration of gas-rich magma before the 2008 eruption were observed in June 2007, indicated by a strong increase in soil CO2 efflux followed by a slow declining trend in SO2 flux and halogens. This degassing behavior preceded the mid-August 2007 summit activity culminated with the September 4th paroxysmal event. Five months later, a new increase in both soil CO2 and SO2 emission rates occurred before the November 23rd paroxysm, to drop down in late December. In the following months, geochemical parameters showed high variability, characterized by isolated sudden increases occurred in early December 2007 and late March 2008. In early May soil CO2, SO2 emission rates and S/Cl molar ratio gradually increased. Crater degassing peaked on May 13th marking the onset of the eruption. Eruptive activity was accompanied by a general steady-state of SO2 flux characterized by two main degassing cycles. These cycles preceded explosive activity at the eruptive vents, indicating terminal new-arrival of deep gas-rich magma bodies in the shallow plumbing system of Mt Etna. Conversely, halogens described a slight increasing trend till the end of 2008. These observations suggest an impulsive syn-eruptive dynamics of magma transfer from depth to the surface. Differently from the SO2 emission rates, the S/Cl ratio and the soil CO2 efflux values showed an increasing trend from mid-April to mid-July 2008, indicating steady-increasing input of deeper, gas-rich magma. Since August, geochemical parameters decreased, suggesting that new magma has not arrived from depth. According to our interpretation, both the CO2 efflux and the S/Cl ratio increases observed in early November may indicate a new input of fresh magma form depth. Finally, the estimated volume of degassing magma showed substantial equilibrium between degassed and erupted magma suggesting an “eruptive” steady-state of the volcano.
    Description: INGV, Sezione di Catania; INGV, Sezione di Pisa; University of Cambridge, Cambridge, UK
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; plume gases ; soil CO2 ; eruption ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Concurrent measurement of soil radon, soil thoron and soil CO2 efflux is based on the method developed by Giammanco et al. (Geochem. Geophys. Geosys., 8(10), Q 10001, doi:10.1029/2007GC001644, 2007). An empirical relationship links the 222Rn/220Rn ratio to the CO2 efflux: deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. This relationship is more constraining on the type and depth of the gas source than using the 222Rn/220Rn ratio alone.We studied the temporal variation of the ratio between CO2 efflux and (222Rn/220Rn), that we define as a Soil Gas Disequilibrium Index (SGDI). Since June 2006, periodical measurements of the SGDI were carried out in ten sites located on the flanks of Mt. Etna, with sampling frequency of about ten days. Remarkable variations in this parameter were recorded during the period 2006-2008 likely associated with changes in the activity level of Mt. Etna. In particular, one of the sites located in the area called Primoti (on the lower east flank of the volcano) has shown significant anomalous changes of the SGDI in time, possibly correlated with the eruptive/tectonic activity. For this reason, in this site we set up an automatic monitoring station made of a Radon/Thoron monitor (model RTM 2100, SARAD GmbH, Germany) coupled with a soil CO2 efflux station (model ACE, ADC BioScientific Ltd., UK). The sampling frequency was set at 30 minutes, in order to allow for a sufficient decay equilibration in the radon isotopes. Air temperature and barometric pressure were recorded as well, with the same sampling rate as for the soil gases. The site chosen for testing the monitoring station is located on the east flank of Mt. Etna at an altitude of about 520 a.s.l., in an area known for widespread diffuse emissions of CO2 and other gases of magmatic origin. The preliminary data acquired so far showed an average soil CO2 efflux of 10 g m􀀀2 d􀀀1 (std dev of about 7 g m􀀀2 d􀀀1) and average 222Rn and 220Rn activities of about 3.3 103 Bq/m3 (std dev of about 1140 Bq/m3) and about 2.0 103 Bq/m3 (std dev of about 620 Bq/m3), respectively. The corresponding values of the SGDI thus obtained varied in the range from about -1.5 to about 70.1, with an average of about 7 and standard deviation of about 6.3. The apparent baseline of the parameter is around the value of 3, and daily variations are clearly detected due to the combined influence of air temperature and barometric pressure. No clear influence from rainfall was observed. Some spikes were also detected, whose origin has to be studied by correlating the SGDI with other environmental parameters as well as with changes in the volcanic/tectonic activity of Mt. Etna.
    Description: INGV, Sezione di Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; CO2 ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Unpublished
    Description: -
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: In 2009, Mt. Etna (Italy) activity was characterised by the end of a long-lasting flank eruption started on 13 May 2008 and by the opening of a new summit degassing vent on the E flank of the South-East crater on 6 November. This was preceded by a sequence of significant anomalies in volcanic degassing, detected by periodic measurements of soil CO2 efflux on the east flank of the volcano, continuous measurements of SO2 flux from five fixed monitoring stations, and periodic FTIR measurements of the SO2/HCl and SO2/HF molar ratios in the volcanic plume. Since April 2009, soil and crater emissions showed a progressive increase marked at least by two major steps, in April-May and September-October. Increases were not observed simultaneously; in fact, they were detected first in soil CO2 emissions and then, a few days/weeks later, in crater SO2 flux. Only minor increases of HCl and HF crater fluxes were observed between November and December. The highest SO2 and halogens fluxes were recorded in coincidence with the opening of the November 6 vent. The degassing behaviour of the volcano in 2009 is consistent with the differential release of magmatic gas species, according to their different solubilities, from a magma body rising from ~5 km depth to the surface. Our results suggest the start of a new phase in Etna’s activity, in which the new vent might reflect improved efficiency in the release of magmatic gas through the main feeding system, supplied by a magma body stored at depths between 4 and 2 km. If degassing at the new vent will remain steadystate, thus forming a stable feeding system, then its opening might represent the eastward migration of the South-East crater activity with the likely formation of a new stable summit cone.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; crater degassing ; soil gases ; volcanic activity ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: Mount Etna in Sicily (973 km2), the most active European volcano, is known as one of the largest contributors of magmatic CO2 released to the atmosphere. A significant part of this gas is released in diffuse form through the volcano’s flanks, along faults and fractured zones, particularly around its summit (about 3350 m). Etna is also characterized by significant and often dramatic slope failure of its eastern flank, which is thought to trigger summit collapses and some lateral eruptions. In order to map the faulted areas near Etna’s summit and to study possible weak zones, a diffuse CO2 efflux survey was carried out at Mt. Etna in October, 2008. A total of 1442 sites were surveyed for soil CO2 efflux and soil temperature over an area of about 9 km2 that included most of the summit part of Mt. Etna above 2600 m a.s.l. The results show the presence of several degassing faults in all of the surveyed area except its west part, which seems to be structurally stable. Most of the degassing faults start from the summit craters and run parallel to the borders of the eastward collapsing sector of the volcano. Many of them are related to the development of the South-East Crater, but others seem to be related to a large buried crater rim, probably a remnant of the 1669 collapse crater formed during the largest eruption in the last 2000 years. Some degassing faults are not accompanied by thermal anomalies, thus suggesting that the gas source is too deep and/or the ground permeability is too low to allow high-enthalpy fluids to reach the surface before their condensation. These “cold” faults bound the anomalous degassing areas to the west, therefore they would be relatively new and shallow, suggesting a progressive westward shift of slope failure.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; hidden faults ; soil temperature ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-04
    Description: During the period 2007-2009, the volcanic activity of Mt. Etna (Italy) was characterized by a series of paroxysmal events in 2007 that preceded a long-lasting (419 days) flank eruption. Four months after the end of that eruption, the opening of a new summit degassing vent marked the beginning of a new phase of activity, so far characterized only by degassing phenomena. Soil radon activity and soil temperature were monitored every 15 minutes at a low-temperature fumarole near the summit craters of Etna starting from late May 2007. The temporal pattern of these parameters showed in general their significant cross-correlation, thus pointing to a common gas transport mechanism. Magmatic/ hydrothermal fluids in the sub-surface ground are convectively transported towards the surface along a major fault that runs from Etna’s summit towards SSE and partly marks the boundary of an eastward sliding sector of the volcano that is involved into phenomena of flank collapse. Both of the monitored parameters indicate the occurrence of three long-term cycles of soil degassing during the period investigated, each one characterized by high average values of temperature and radon. The first cycle started in June 2007 and lasted until early April 2008, thus accompanying the recharge of the volcano. The second cycle lasted from late April 2008 to mid-May 2009, thus preceding and accompanying the first phase of the 13 May 2008 – 5 July 2009 flank eruption. The third cycle started in mid-July 2009 and it’s still ongoing. It marked a new recharge of the volcano that culminated in the opening of the new summit degassing vent in early November 2009. Therefore, continuous monitoring of soil radon and soil temperature near the summit of Mt. Etna has proven helpful in determining states of volcanic unrest related to recharge and/or pre-eruptive magma ascent.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; active faults ; volcanic activity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: Active volcanoes can influence surrounding vegetation both through passive degassing during quiescent periods and through eruptive degassing, by introducing into the atmosphere several metals as gases and particles. The chemical composition of tree-rings has been generally used to investigate the effects of anthropogenic gas emissions and dendrochemical methods have successfully recorded variations in the pollution levels. The use of tree-rings analysis in active volcanic areas has shown that vascular plants could be used as archives of volcanogenic metals deposition. Tree cores of Pinus Nigra and Populus tremula were collected in sites located both on the downwind (Citelli and Mt. Fontane sites) and on the upwind (Mt. Intraleo site) sectors of Mt. Etna in June 2008. Individual and composited tree-rings were analyzed by inductively-coupled-plasma mass-spectrometry for the determination of several trace elements (As, Cd, Li, Mn, Mo, Ni, Se, Sr, Pb, V). Tree cores were dated dendrochronologically before analysis, and their ages date back to 1915. The preliminary results show that some elements have significant differences in concentration between the two tree species analyzed, and in general metals are more concentrated in the samples from the downwind sites, hence more exposed to crater gas emissions. Furthermore, the temporal patterns of metal contents show some evident peaks likely related to some of the major flank eruptions of the volcano, particularly those occurred after 1945. This method can be used in many active volcanoes to reconstruct their past degassing rate and recognize possible eruptive cycles, thus helping forecast their future behaviour.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; tree rings ; trace metals ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: This work reports the first estimation of total CO2 emission to the atmosphere (visible and non-visible) from Etna volcano, Sicily, by means of direct methods. Until present, only direct measurements of the CO2 emitted by the volcanic plume of Etna had been performed, and not data of direct soil CO2 efflux from surface environment of this volcano were available. To estimate the total CO2 emission, 4075 soil CO2 efflux measurements were performed by means of the accumulation chamber method in October-November 2008. Most of the study area showed background levels of soil CO2 efflux (0.53 g·m-2·d-1), while peak values (〉1725 g·m-2·d-1) were mainly identified inside the summit craters and at Torre del Filosofo area. Other zones with relatively high CO2 efflux values were identified at Paternó, Zafferana Etnea and Trecastagni-Viagrande. The total output of CO2 diffuse emission from the study area (973 km2) was computed in 20320 t·d-1, where 1671 t·d-1, about 8.3% of CO2 diffuse emission, was emitted by an area of 87 km2 which includes the summit craters and Torre del Filosofo. To evaluate the visible/diffuse CO2 emission ratio, plume CO2 emission rate was estimated by multiplying SO2 emission rate times observed CO2/SO2 plume ratio following the methodology described by Shinohara (2005). Total CO2 visible emission was estimated about 31.5 kt·d-1, value is in the range reported for Etna volcano (0.9-67.5 kt·d-1; Aiuppa et al., 2006). The total output of CO2 diffuse emission represents 39% of the total CO2 emission from Etna volcano to the atmosphere. These results agree with the observations of Allard et al. (1991), who reported that diffuse and visible CO2 emissions were in the same order of magnitude. This study demonstrates the importance of measuring diffuse CO2 emissions from active volcanoes like Mt. Etna in order to have a better approach on the global estimate of CO2 emission to the atmosphere from subaerial volcanoes
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil CO2 effluxes ; CO2 budget ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: From October 2008 to November 2009, soil CO2 and Rn surveys have been performed, in order to get insights upon active tectonic structures in a densely populated sector of the South-Eastern flank of Mt Etna, which seems to be involved in the flank dynamics, as highlighted by satellite data (INSAR). The investigated area extends about 150 km2, in an area, where INSAR data detected several lineaments not known from geological surveys. The method adopted to perform the 345 soil CO2 measurements is the “dynamic concentration” method (Gurrieri and Valenza, 1988; Camarda et al., 2006), which provides a proxy for soil CO2 fluxes. The gas measurements have been performed along transects roughly orthogonal to the lineaments, with measurement points spaced about 100m. The method appeared more efficient than a regular grid, which would have requested much more measurements and a time-consuming field work. CO2 data show the highest values, along each transect, very close to the lineaments evidenced by INSAR observations. Anomalous values also occur in correspondence of eruptive fractures. In some portions of the investigated area, rather broad anomalies are observed, and this would imply that, instead of a single well-defined lineament, a wider fault zone probably exists. A set of both CO2 and Rn measurements, performed at about 900m of altitude, are worth of note, because they allow identifying the lengthening of detected lineaments at higher elevation, where the INSAR data are poorly informative. Finally, at the base of the volcanic edifice, the soil gas anomalies strikingly define the active structures until almost the coastline through the northern periphery of Catania town. The coupling of the two methods thus revealed as a powerful tool to detect buried active structures, which conversely do not show significant field evidences.
    Description: Published
    Description: Puerto de la Cruz, Tenerife, Canary Islands, Spain
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: open
    Keywords: Mt. Etna ; soil gases ; gravitational spreading ; INSAR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of H2S to the atmosphere. Its environmental impact is often the main cause of the opposition to the development of geothermal energy exploitation programs. In this paper we analyze the air concentrations and dispersion pattern of naturally emitted H2S at the geothermal area of Sousaki (Corinthia, Greece). Measurements, made with a network of passive samplers, evidence a rapid decrease of concentration values away from the emission points. The fact that the decrease is more pronounced in the summer with respect to the winter indicates that it is not only due to a dilution effect, but also to redox reactions favoured by higher temperatures and intense sunlight typical of the summer period.
    Description: Published
    Description: 1723-1728
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Hydrogen sulphide ; Environmental impact of volcanic activity ; Gas hazard ; Passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.03. Pollution ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (*12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.
    Description: In press
    Description: N/A or not JCR
    Description: reserved
    Keywords: Mt. Etna ; Soil CO2 flux ; Volcanic tremor ; Cross-wavelet spectrum ; Wavelet coherence ; Cross correlation function ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: The simultaneous presence of SO2 and ash in a volcanic plume can lead to a significant error in the SO2 column abundance retrieval when multispectral Thermal InfraRed (TIR) data are used. The ash particles within the plume with effective radii from 1 to 10μm reduce the Top Of Atmosphere (TOA) radiance in the entire TIR spectral range, including the channels used for SO2 retrieval. The net effect is a significant SO2 overestimation. In this work the interference of ash is discussed and two correction procedures for satellite SO2 volcanic plume retrieval in the TIR spectral range are developed to achieve an higher computational speed and a better accuracy. The ash correction can be applied when the sensor spectral range includes the 7.3 and/or 8.7μm SO2 absorption bands, and the split window bands centered around 11 and 12μm required for ash retrieval. This allows the possibility of simultaneous estimation of both volcanic SO2 and ash in the same data set. The proposed ash correction procedures have been applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Spin Enhanced Visible and Infrared Imager (SEVIRI) measurements. Data collected during the 24 November 2006 Mt. Etna eruption have been used to illustrate the technique. The SO2 and ash estimation is carried out by using a best weighted least squares fit method and the Brightness Temperature Difference (BTD) procedures, respectively. The simulated TOA radiance Look-Up Table (LUT) needed for the SO2 column abundance and the ash retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. The results show the importance of the ash correction on SO2 retrievals at 8.7μm, where the corrected SO2 column abundance values are less than 50% of the uncorrected values. The ash correction on SO2 retrieval at 7.3μm is much less important and only significant for low SO2 column abundances. Results also show that the simplified and faster correction procedure underestimates the ash correction compared with the more time consuming but more accurate correction procedure. Such underestimation is greater for instruments having better ground pixel resolution, i.e. greater for MODIS than for SEVIRI.
    Description: Published
    Description: 177–191
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: N/A or not JCR
    Description: open
    Keywords: volcanic ash retrieval ; volcanic so2 retrieval ; ash correction ; remote sensing ; MODIS ; SEVIRI ; Etna volcano ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: Following the 2001 and 2002–2003 flank eruptions, activity resumed at Mt. Etna on 7 September 2004 and lasted for about 6 months. This paper presents new petrographic, major and trace element, and Sr–Nd isotope data from sequential samples collected during the entire 2004–2005 eruption. The progressive change of lava composition allowed defining three phases that correspond to different processes controlling magma dynamics inside the central volcano conduits. The compositional variability of products erupted up to 24 September is well reproduced by a fractional crystallization model that involves magma already stored at shallow depth since the 2002–2003 eruption. The progressive mixing of this magma with a distinct new one rising within the central conduits is clearly revealed by the composition of the products erupted from 24 September to 15 October. After 15 October, the contribution from the new magma gradually becomes predominant, and the efficiency of the mixing process ensures the emission of homogeneous products up to the end of the eruption. Our results give insights into the complex conditions of magma storage and evolution in the shallow plumbing system of Mt. Etna during a flank eruption. Furthermore, they confirm that the 2004–2005 activity at Etna was triggered by regional movements of the eastern flank of the volcano. They caused the opening of a complex fracture zone extending ESE which drained a magma stored at shallow depth since the 2002–2003 eruption. This process favored the ascent of a different magma in the central conduits, which began to be erupted on 24 September without any significant change in eruptive style, deformation, and seismicity until the end of eruption.
    Description: Published
    Description: 781–793
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemistry ; Isotopic compositions ; Magma feeding system ; Magma mixing ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: Mount Etna is an open conduit volcano, characterised by persistent activity, consisting of degassing and explosive phenomena at summit craters, frequent flank eruptions, and more rarely, eccentric eruptions. All eruption typologies can give rise to lava flows, which represent the greatest hazard by the volcano to the inhabited areas. Historical documents and scientific papers related to the 20th century effusive activity have been examined in detail, and volcanological parameters have been compiled in a database. The cumulative curve of emitted lava volume highlights the presence of two main eruptive periods: (a) the 1900–1971 interval, characterised by a moderate slope of the curve, amounting to 436 · 106 m3 of lava with average effusion rate of 0.2 m3/s and (b) the 1971–1999 period, in which a significant increase in eruption frequency is associated with a large issued lava volume (767 · 106 m3) and a higher effusion rate (0.8 m3/s). The collected data have been plotted to highlight different eruptive behaviour as a function of eruptive periods and summit vs. flank eruptions. The latter have been further subdivided into two categories: eruptions characterised by high effusion rates and short duration, and eruptions dominated by low effusion rate, long duration and larger volume of erupted lava. Circular zones around the summit area have been drawn for summit eruptions based on the maximum lava flow length; flank eruptions have been considered by taking into account the eruptive fracture elevation and combining them with lava flow lengths of 4 and 6 km. This work highlights that the greatest lava flow hazard at Etna is on the south and east sectors of the volcano. This should be properly considered in future land-use planning by local authorities.
    Description: Published
    Description: 407–443
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; effusive activity ; database ; lava flow length ; eruptive fractures ; vent elevation ; hazard zonation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: This study presents baseline data for future geochemical monitoring of the active Tacaná volcano–hydrothermal system (Mexico–Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500–2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal (T from 25.7°C to 63.0°C) HCO3–SO4 waters are thought to have formed by the absorption of a H2S/SO2–CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as −128 and −19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of −3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio (RA)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 RA, respectively). The L/S (5.9 ± 0.5)and (L + S)/M ratios (9.2 ± 0.7) for the same gases are almost identical to the ones calculated for gases in El Salvador, suggesting an enhanced slab contribution as far as the northern extreme of the Central American Volcanic Arc,Tacana
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Tacaná volcano ; Fluid geochemistry ; Volcano–hydrothermal system ; Bubbling gases ; Fumaroles ; Isotopes ; Volcanic surveillance ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: Kostrov's (1974) algorithm for seismic-strain tensor computations, in the version implemented by Wyss et al. (1992a) for error estimates, has been applied to shear-type earthquakes occurring beneath the Etna volcano during 1990-1996. Space-time variations of strain orientations and amplitudes have been examined jointly with ground-deformation and gravimetric data collected in the same period and reported in the literature. Taking also into account the information available from volcanological observations and structural geology, we propose a model assuming that hydraulic pressure by magma emplaced in nearly north-south vertical structures produces the E-W orientation of the maximum compressive strain found in the upper 10 km beneath the crater area. In contrast, regional tectonics deriving from the slow, north-south convergence between the African and European plates appear to play a dominant role in the generation of stress and strain fields at crustal depths deeper than 10 km below the volcano. According to our interpretation, the progressive ascent of magma through the upper crust prior to eruption produces the observed gravity changes, cone inflation and unusual seismic strain rate in the upper 10 km associated with a more sharply defined seismic deformation regime (i.e. very small confidence limits of the epsilon 1 orientation). In agreement with this model, deflation revealed by ground-deformation data during the course of the major 1991-1993 eruption was accompanied by a practically nil level of shallow seismicity.
    Description: Published
    Description: 318-330
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; Italy ; Earthquakes ; Seismic strain ; Stress inversion ; Volcanic processes ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-04
    Description: Fluorine is one of the many environmental harmful elements released by volcanic activity. The content of total, oxalate extractable and water extractable fluorine was determined in 96 topsoils of three active volcanic systems of southern Italy (Mt. Etna, Stromboli and Vulcano). Total fluorine content (FTOT) ranges from 112 to 7430 mg kg-1, F extracted with oxalate (FOX) ranges from 16 to 2320 mg kg-1 (2 – 93 % of FTOT) and F extracted with distilled water (FH2O) ranges from 1.7 to 159 mg kg-1 (0.2 – 40 % of FTOT). Fluorine in the sampled topsoils derives both from the weathering of volcanic rocks and ashes and from enhanced deposition due to volcanic gas emissions either from open-conduit passive degassing (Mt. Etna and Stromboli) or from a fumarolic field (Vulcano). Fluorine accumulation in the studied soils does generally not present particular environmental issues except for a few anomalous sites at Vulcano where measured contents could be dangerous both for vegetation and for grazing animals.
    Description: Published
    Description: 413-423
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: soil fluorine ; oxalate extractable F ; water extractable F ; environmental impact of volcanic F ; Sicily ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: Mt. Etna, in Sicily (Italy), is one of the world’s most frequent emitters of volcanic plumes. During the last ten years, Etna has produced copious tephra emission and fallout that have damaged the inhabited and cultivated areas on its slopes and created serious hazards to air traffic. Recurrent closures of the Catania International airport have often been necessary, causing great losses to the local economy. Recently, frequent episodes of ash emission, lasting from a few hours to days, occurred from July to December 2006, necessitating a look at additional monitoring techniques, such as remote sensing. The combination of a ground monitoring system, with polar satellite data represents a novel approach to monitor Etna’s eruptive activity and makes Etna one of the few volcanoes for which this surveillance combination is routinely available. In this work, ash emission information derived from an integrated approach, based on comparing ground and NOAA-AVHRR polar satellite observations, is presented. This approach permits us to define the utility of real time satellite monitoring systems for both sporadic and continuous ash emissions. Using field data (visible observations, collection of tephra samples and accounts by local inhabitants), the duration and intensity of most of the tephra fallout events were evaluated in detail and, in some cases, the order of magnitude of the erupted volume was estimated. The ground data vs. satellite data comparison allowed us to define five different categories of Etna volcanic plumes according to their extension and length, while taking into account plume height and wind intensity. Using frequent and good quality satellite data in real time, this classification scheme could prove helpful for investigations into a possible correlation between eruptive intensity and the presence and concentration of ash in the volcanic plume. The development and improvement of this approach may constitute a powerful warning system for Civil Protection, thus preventing unnecessary airport closures.
    Description: FIRB B5 Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by MIUR
    Description: Published
    Description: 135–147
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; Mt. Etna ; ground monitoring ; NOAA–AVHRR ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Istituto Nazionale di Geofisica e Vulcanologia
    Publication Date: 2017-04-04
    Description: Published
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: open
    Keywords: rock physics, geomechanics, thermo-hydro-mechanical coupling, natural hazards ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earth- quakeswithin 24 hours followed by an onemonth long aftershocks sequence. Soon after the ?rstmainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 〈 ML 〈 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks de?ne two sub-vertical dextral strike-slip fault segments in agreementwith themainshock fault plane solutions. P- and T -axes retrieved from170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T -axes, respectively. Fora small percentage of focal mechanisms (~10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and signi?cant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identi?ed. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.
    Description: Published
    Description: 487-494
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Molise seismic sequence ; strike slip fault system ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: In this article the implementation and potential of the Seismotectonic Information System of the Campania Region (SISCam) are described, in particular an application of this Web-based GIS system to the seismotectonic analysis of the Sannio area (Southern Apennines) is performed. WEB-GIS technologies greatly contribute to both the environmental monitoring and the disaster management of areas affected by high natural risks. Specifically the SISCam system has been developed with the aim of providing easy access and fast diffusion, through Internet technology, of the most significant geological, geophysical, and territorial data relative to the Campania Region. The Sannio area has been selected as our application example because it is among the most active seismic regions in Italy. This portion of the Southern Apennines which was hit by the June 5, 1688 strong earthquake (MW = 6.7, CPTI 1999) and by some low- and moderate-energy seismic sequences (1990–1992, 1997), is characterized by a complex inherited tectonic setting and low-tectonic deformation rates that hide the seismogenic sources position. Since this case study turned out to be complicated, the use of the SIScam WEB-GIS has become indispensable because it allowed us to visualize, integrate and analyze all the data available, in order to obtain an accurate and direct picture of the seismotectonic setting of the area. Moreover, a different approach of data analysis was necessary, due to the lack of up-todate neotectonic and structural data; therefore, the operation of this GIS system enabled us to process and generate some original informative layers, through image analysis, such as new structural lineaments represented on a map of the potential active faults of the area, which has been the final result of our application, as a contribution to new knowledge about the local seismic risk parameters.
    Description: Published
    Description: on line first
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: Web-based GIS ; Seismotectonic data ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2017-04-04
    Description: Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.
    Description: Published
    Description: 769-790
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; microgravity ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-02-16
    Description: The role of mud volcanoes (MVs) as a source of methane(CH4) flux to the atmosphere and the ocean has been increasingly recognised in the last several years (Milkov 2000; Dimitrov 2002, 2003; Etiope and Klusman 2002; Kopf 2002, 2003; Milkov et al. 2003; Etiope and Milkov 2004). In one of the most recent papers, Kopf (2003) claims to report a reliable estimate of the global CH4 emission from MVs. However, the significance and usefulness of the estimate presented by Kopf (2003) are rather poor. The used dataset is smaller than in previous studies (although the author makes a reverse claim), and some previously published works are misquoted and misinterpreted. Numerous arithmetic mistakes made during simple calculations and data manipulations lead to confusing results and conclusions. In this comment, we highlight some of the most significant problems with the estimates published by Kopf (2003).
    Description: Published
    Description: 490-492
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; mud volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-11-23
    Description: Abstract: The simultaneous solution of the Planck equation (involving the widely used “dual-band” technique) using two shortwave infrared (SWIR) bands allows for an estimate of the fractional area of the hottest part of an active lava flow (fh), and the background temperature of the cooler crust (Tc). The use of a high spectral and spatial resolution imaging spectrometer with a wide dynamic range of 15 bits (DAIS 7915) in the wavelength range from 0.501 to 12.67 µm resulted in the identification of crustal temperature and fractional areas for an intra-crater hot spot at Mount Etna, Italy. This study indicates the existence of a relationship between these Tc and fh extracted from DAIS and Landsat TM data. When the dual band equation system is performed on a lava flow, a logarithmic distribution is obtained from a plot of the fractional area of the hottest temperature versus the temperature of the cooler crust. An entirely different distribution is obtained over active degassing vents, where increases in Tc occur without any increase in fh. This result indicates that we can use scatter plots of Tc vs. fh to discriminate between different types of volcanic activity, in this case between degassing vents and lava flows, using satellite thermal data.
    Description: Published
    Description: 641–651
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mount Etna ; remote-sensing ; lava-flow ; degassing vent ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1347669 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-04-04
    Description: The Monte Nuovo eruption is the most recent event that occurred at Phlegrean Fields (Italy) and lasted from 29 September to 6 October 1538. It was characterized by 2 days of quasi-sustained phreatomagmatic activity generating pumice-bearing pyroclastic density currents and forming a 130-m-high tuff cone (Lower Member deposits). The activity resumed after a pause of 2 days with two discrete Vulcanian explosions that emplaced radially distributed, scoria-bearing pyroclastic flows (Upper Member deposits). The juvenile products of Lower and Upper Members are, respectively, phenocryst-poor, light-coloured pumice and dark scoria fragments with K-phonolitic bulk compositions, identical in terms of both major and trace elements. Groundmass is formed by variable proportions of K-feldspar and glass, along with minor sodalite and Fe-Ti oxide present in the most crystallized samples. Investigations of groundmass compositions and textures were performed to assess the mechanisms of magma ascent, degassing and fragmentation along the conduit and implications for the eruptive dynamics. In pumice of the Lower Member groundmass crystal content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the Upper Member consist of clasts with a groundmass crystal content between 30 and 40 vol% and of totally crystallized fragments. Crystal size distributions of groundmass feldspars shift from a single population at the base of the Lower Member to a double population in the remaining part of the sequence. The average size of both populations regularly increases from the Lower to the Upper Member. Crystal number density increases by two orders of magnitude from the Lower to the Upper Member, suggesting that nucleation dominated during the second phase of the eruption. The overall morphological, compositional and textural data suggest that the juvenile components of the Monte Nuovo eruption are likely to record variations of the magma properties within the conduit. The different textures of pumice clasts from the Lower Member possibly reflect horizontal gradients of the physical properties (P, T) of the ascending magma column, while scoriae from the second phase are thought to result from the disruption of a slowly rising plug crystallizing in response to degassing. In particular, crystal size distribution data point to syn-eruptive degassing-induced crystallization as responsible for the transition in eruptive style from the first to the second phase of the eruption. This mechanism not only has been proved to profoundly affect the dynamics of dome-forming calc-alkaline eruptions, but may also have a strong influence in driving the eruption dynamics of alkaline magmas of intermediate to evolved compositions.
    Description: Published
    Description: 601-621
    Description: reserved
    Keywords: Phlegrean Fields ; Vulcanian explosion ; Degassing ; Groundmass crystallization ; Eruption dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1175329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2017-04-04
    Description: A modelling of the observed macroseismic intensity of historical and instrumental earthquakes in southern Spain is proposed, with the aim of determining the macroseismic parameters for seismic hazard evaluation in a region in which the characterization of intensity distribution of seismic events shows different levels of difficulty referable to the complex faults system of the area in study. The adopted procedure allows an analytical determination of epicenters and principal attenuation directions of earthquakes with a double level of verification with reference to the maximum shaking area and structural lineaments of the region, respectively. The analyses, carried out on a suitable number of events, highlight, therefore, some elements for a preliminary characterization of a seismic zonation on the basis of the consistency between seismic intensity distribution of earthquakes and corresponding structural framework.
    Description: Published
    Description: 747-760
    Description: partially_open
    Keywords: Attenuation directions ; southern Spain ; macroseismic intensity ; virtual intensity ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 477378 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-04-04
    Description: Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the EW-trending Pernicana Fault System (PFS). During the 20022003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (11.9 cm/year), only slightly lower than those calculated for the western portion (1.42.3 cm/year). After an initial rapid motion during the first days of the 20022003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNWSSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep décollement for the moving mass. The collected data thus suggests a significant movement (volume 〉1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.
    Description: Published
    Description: 417-430
    Description: partially_open
    Keywords: Volcano spreading ; Fracturing ; Mt. Etna ; Pernicana Fault System ; NE Rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 523 bytes
    Format: 998206 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...