ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Description / Table of Contents: Faults are primary focuses of both fluid migration and deformation in the upper crust. The recognition that faults are typically heterogeneous zones of deformed material, not simple discrete fractures, has fundamental implications for the way geoscientists predict fluid migration in fault zones, as well as leading to new concepts in understanding seismic/aseismic strain accommodation. This book captures current research into understanding the complexities of fault-zone internal structure, and their control on mechanical and fluid-flow properties of the upper crust. A wide variety of approaches are presented, from geological field studies and laboratory analyses of fault-zone and fault-rock properties to numerical fluid-flow modelling, and from seismological data analyses to coupled hydraulic and rheological modelling. The publication aims to illustrate the importance of understanding fault-zone complexity by integrating such diverse approaches, and its impact on the rheological and fluid-flow behaviour of fault zones in different contexts.
    Pages: Online-Ressource (VI, 367 Seiten)
    ISBN: 9781862392533
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-02
    Description: The influx of fluids into fault zones can trigger two main types of weakening process that operate over different timescales and facilitate fault movement and earthquake nucleation. Short- and long-term weakening mechanisms along faults require a continuous fluid supply near the base of the brittle crust, a condition satisfied in the extended/extending area of the Northern Apennines of Italy. Here carbon mass balance calculations, coupling aquifer geochemistry to isotopic and hydrological data, define the presence of a large flux (c. 12 160 t/day) of deep-seated CO2 centred in the extended sector of the area. In the currently active extending area, CO2 fluid overpressures at [~]85% of the lithostatic load have been documented in two deep (4-5 km) boreholes. In the long-term, field studies on an exhumed regional low-angle normal fault show that, during the entire fault history, fluids reacted with fine-grained cataclasites in the fault core to produce aggregates of weak, phyllosilicate-rich fault rocks that deform by fluid assisted frictional-viscous creep at sub-Byerlee friction values ({micro}〈0.3). In the short term, fluids can be stored in structural traps, such as beneath mature faults, and stratigraphical traps such as Triassic evaporites. Both examples preserve evidence for multiple episodes of hydrofracturing induced by short-term cycles of fluid pressure build-up and release. Geochemical data on the regional-scale CO2 degassing process can therefore be related to field observations on fluid rock interactions to provide new insights into the deformation processes responsible for active seismicity in the Northern Apennines.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-12-19
    Description: We propose a theoretical model, supported by a field study, to describe the patterns of fault/fracture meshes formed within dilational stepovers developed along faults accommodating regional scale wrench-dominated transtension. The geometry and kinematics of the faulting in the dilational stepovers is related to the angle of divergence ({alpha}), and differs from the patterns traditionally predicted in dilation zones associated with boundary faults accommodating strike-slip displacements (where {alpha} = 0{degrees}). For low values of oblique divergence ({alpha}〈30{degrees}) and low strain, the faultfracture mesh comprises interlinked tensile fractures and shear-extensional planes, consistent with wrench-dominated transtension. At higher values of strain, a switch occurs from wrench- to extension-dominated transtension, leading to the reactivation and/or disruption of the early-formed structures. These structural processes lead to the development of a geometrically complex and kinematically heterogeneous fault pattern, which may affect and/or perturb the development of a through-going fault linking and facilitating the slip transfer between the two overlapping fault segments. As a result, dilational stepover zones will tend to form long-lived sites of localized extension and subsidence in regional transtensional tectonic settings. Cyclic increases/decreases of structural permeability will be related to slip on the major boundary faults that control the distribution of fluid-flow paths and, consequently, the long- and short-term structural evolution of these sites. Our model also predicts complex and more realistic subsurface fluid migration pathways relevant to our current understanding of hydrothermal ore deposits and hydrocarbon migration and storage.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-07-02
    Description: Faults are important controls on hydrocarbon migration and ore mineralization and, in areas of active deformation, are the most important source of seismic hazard. However, faults are rarely discrete surfaces and the internal structure of fault zones (e.g., the thickness, nature and continuity of the fault rocks, the distribution and segmentation of slip surfaces, and the orientation, distribution and connectivity of subsidiary faults and fractures) is a key control on their bulk fluid flow and mechanical properties. This Special Publication was inspired by two sessions held at the European Geosciences Union General Assembly in Vienna during 2005 and 2006 and contains 19 original papers divided into three sections. Part I addresses the controls on fault zone evolution, whilst Parts II and III focus, respectively, on the mechanical behaviour and fluid flow properties of fault zones. The introductory paper (Wibberley et al.) addresses each theme of the Special Publication: fault zone evolution, the permeability structure of ancient and active fault zones, the impact of faults on hydrocarbon sealing and migration, and the implications of fault zone geometry and material heterogeneity for seismogenic processes. In each section, Wibberley et al. identify important recent findings and suggest areas in which new conceptual advances in our understanding of fault zones are likely to occur. A key theme highlighted by many of the papers in Part I is the importance of pre-existing mechanical heterogeneities (e.g., bedding, joints) in controlling the internal structure of faults in sedimentary sequences. Johanssen & Fossen consider the control of bed thickness and fault displacement on the geometry, orientation and distribution of minor fractures and deformation bands (i.e., the ‘damage zone’) that surround faults cutting aeolian sandstones, siltstones and shales in the western United States. They conclude that the highest concentrations of deformation bands occur close to the main ...
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-07-02
    Description: Previously hypothesized fault weakening mechanisms include faults lined by low-friction clay gouges, elevated pore pressures within fault cores and/or the operation of dynamic weakening during seismic slip. Geological studies to support dynamic weakening are still in their infancy and there is little geological evidence for the widespread occurrence of low-friction gouges. The cores of some ancient faults exhumed from 〈5 km depth contain sheared syntectonic mineral veins. This observation is consistent with elevated pore pressures, but the implications for long-term fault weakening are unclear. Experimental data and microphysical modelling suggest that frictional-viscous flow within phyllosilicate-rich fault rocks (phyllonites, some foliated cataclasites) can cause sufficient weakening of crustal faults to satisfy published heat flow constraints. These predictions are consistent with the common occurrence of phyllonite in the cores of large-displacement faults exhumed from 〉5 km depth. Comparison with seismological data suggests that some faults with phyllonitic cores are likely to generate large earthquakes. Future studies should establish the geological evidence for seismic slip within phyllonitic fault cores and quantify the partitioning between seismic slip and frictional-viscous flow. Further geological observations are also required to test the hypothesized mechanisms by which earthquakes can nucleate and propagate along phyllosilicate-rich faults.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-03
    Description: The core of the Zuccale low-angle normal fault contains a distinctive fault-rock zonation that developed during exhumation, composed of a diversity of fault rocks derived from lithologically heterogeneous wall rocks. Field and microstructural analyses indicate that deformation mechanisms active within the fault core, including brittle fracture, dissolution–precipitation creep and crystal-plasticity, were active broadly contemporaneously. Initially, deformation was accommodated within frictionally weak and inherently stable talc-phyllonites. Although the talc-phyllonites can account for slip at low angles, grain-scale weakening effects were limited by changes over time to the structure of the fault core, resulting from interactions with subsidiary footwall faults. Ultimately, the talc-phyllonites were dismembered into a series of isolated lenses incapable of transmitting grain-scale weakening up to the fault scale. Following this, deformation was accommodated within well-connected units of dolomite-, quartz- and calcite-bearing cataclasite, fault breccia, and foliated fault gouge. Deformation progressively migrated through this latter sequence as a result of precipitation-hardening due to the widespread growth of dolomite. The complexity of fault-zone structure, combined with changes to fault-rock distribution over time, may have resulted in fundamental changes in fault-slip behaviour, an important point to consider given the recent spectrum of slip mechanisms identified along many tectonic faults.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-08
    Description: During the past 18 Ma extensional tectonism has migrated from the Tyrrhenian sea eastward into the Northern Apennines of Italy. The extension is due in part to lowangle east-dipping normal faults, that are now exhumed in the Tyrrhenian islands and Tuscany, while additional extension is still occurring in the Apennine chain (Umbria region, c. 200 km eastward). This tectonic framework is an example where active extensional processes affecting the Umbria region can be studied in exhumed faults that are no longer active. Here a comparison between the Zuccale Fault (ZF), cropping out in the Isle of Elba, and the Altotiberina Fault (ATF), revealed by geophysical data, seismology and seismic profiles crossing the Umbria region, provide insights into the processes affecting low-angle normal fault development and evolution. Recorded microseismicity suggests that the ATF is presently active under a vertical {sigma}1. Structural analysis of the ZF depict a comparable scenario with fluid involvement during the activity. The comparison of these two structures suggests movements with fluid involvement along gently dipping planes under a vertical {sigma}1, implying that these faults are mechanically weak.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-15
    Description: The strength, shape, and ultimately seismic behavior of many thin-skinned fold and thrust belts, including marine accretionary wedges, are strongly controlled by large-scale faults that develop from weak, clay-rich sedimentary horizons (décollements). The increase of temperature with depth along clay-rich faults promotes the so-called smectite-illite transition, which may influence the fault strength, fluid distribution, and possibly the onset of seismicity. Here we report on the frictional properties of intact fault rocks retrieved from two large décollements, which were exhumed from depths above and below the smectite-illite transition. We find that all tested rocks are characterized by very low friction (μ = 0.17–0.26), velocity-strengthening behavior, and low rates of frictional healing, suggesting long-term fault weakness. Combining our experimental results with the critical taper theory, we computed the effective friction, F , of megathrusts beneath several accretionary wedges around the world; the result was extremely low (0.03 〈 F 〈 0.14), and in agreement with other independent estimates. Our analysis indicates a long-term weakness that can explain the shape of several tectonic wedges worldwide without invoking diffuse near-lithostatic fluid overpressures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈p〉Faults can slip seismically or aseismically depending on their hydromechanical properties, which can be measured in the laboratory. Here, we demonstrate that fault slip induced by fluid injection in a natural fault at the decametric scale is quantitatively consistent with fault slip and frictional properties measured in the laboratory. The increase in fluid pressure first induces accelerating aseismic creep and fault opening. As the fluid pressure increases further, friction becomes mainly rate strengthening, favoring aseismic slip. Our study reveals how coupling between fault slip and fluid flow promotes stable fault creep during fluid injection. Seismicity is most probably triggered indirectly by the fluid injection due to loading of nonpressurized fault patches by aseismic creep.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-03
    Description: The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behaviour of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. To better understand the behaviour of calcite, under loading conditions relevant to earthquake nucleation, we sheared powdered gouge of Carrara Marble, 〉98 per cent CaCO 3 , at constant normal stresses between 1 and 100 MPa under water-saturated conditions at room temperature. We performed slide-hold-slide tests, 1–3000 s, to measure the amount of static frictional strengthening and creep relaxation, and velocity-stepping tests, 0.1–1000 μm s –1 , to evaluate frictional stability. We observe that the rates of frictional strengthening and creep relaxation decrease with increasing normal stress and diverge as shear velocity is increased from 1 to 3000 μm s –1 during slide-hold-slide experiments. We also observe complex frictional stability behaviour that depends on both normal stress and shearing velocity. At normal stresses less than 20 MPa, we observe predominantly velocity-neutral friction behaviour. Above 20 MPa, we observe strong velocity-strengthening frictional behaviour at low velocities, which then evolves towards velocity-weakening friction behaviour at high velocities. Microstructural analyses of recovered samples highlight a variety of deformation mechanisms including grain size reduction and localization, folding of calcite grains and fluid-assisted diffusion mass transfer processes promoting the development of calcite nanograins in the highly deformed portions of the experimental fault. Our combined analyses indicate that calcite fault gouge transitions from brittle to semi-brittle behaviour at high normal stress and slow sliding velocities. This transition has important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.
    Keywords: Mineral Physics, Rheology, Heat Flow and Volcanology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...