ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9/M 07.0421(299)
    In: Geological Society special publication
    Type of Medium: Monograph available for loan
    Pages: vi, 367 S.
    ISBN: 9781862392533
    Series Statement: Geological Society special publication 299
    Classification:
    Tectonics
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: Faults are primary focuses of both fluid migration and deformation in the upper crust. The recognition that faults are typically heterogeneous zones of deformed material, not simple discrete fractures, has fundamental implications for the way geoscientists predict fluid migration in fault zones, as well as leading to new concepts in understanding seismic/aseismic strain accommodation. This book captures current research into understanding the complexities of fault-zone internal structure, and their control on mechanical and fluid-flow properties of the upper crust. A wide variety of approaches are presented, from geological field studies and laboratory analyses of fault-zone and fault-rock properties to numerical fluid-flow modelling, and from seismological data analyses to coupled hydraulic and rheological modelling. The publication aims to illustrate the importance of understanding fault-zone complexity by integrating such diverse approaches, and its impact on the rheological and fluid-flow behaviour of fault zones in different contexts.
    Pages: Online-Ressource (VI, 367 Seiten)
    ISBN: 9781862392533
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Melbourne, Australia : Blackwell Science Pty
    The @island arc 10 (2001), S. 0 
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: It is increasingly apparent that faults are typically not discrete planes but zones of deformed rock with a complex internal structure and three-dimensional geometry. In the last decade this has led to renewed interest in the consequences of this complexity for modelling the impact of fault zones on fluid flow and mechanical behaviour of the Earth’s crust. A number of processes operate during the development of fault zones, both internally and in the surrounding host rock, which may encourage or inhibit continuing fault zone growth. The complexity of the evolution of a faulted system requires changes in the rheological properties of both the fault zone and the surrounding host rock volume, both of which impact on how the fault zone evolves with increasing displacement. Models of the permeability structure of fault zones emphasize the presence of two types of fault rock components: fractured conduits parallel to the fault and granular core zone barriers to flow. New data presented in this paper on porosity–permeability relationships of fault rocks during laboratory deformation tests support recently advancing concepts which have extended these models to show that poro-mechanical approaches (e.g., critical state soil mechanics, fracture dilatancy) may be applied to predict the fluid flow behaviour of complex fault zones during the active life of the fault. Predicting the three-dimensional heterogeneity of fault zone internal structure is important in the hydrocarbon industry for evaluating the retention capacity of faults in exploration contexts and the hydraulic behaviour in production contexts. Across-fault reservoir juxtaposition or non-juxtaposition, a key property in predicting retention or across-fault leakage, is strongly controlled by the three-dimensional complexity of the fault zone. Although algorithms such as shale gouge ratio greatly help predict capillary threshold pressures, quantification of the statistical variation in fault zone composition will allow estimations of uncertainty in fault retention capacity and hence prospect reserve estimations. Permeability structure in the fault zone is an important issue because bulk fluid flow rates through or along a fault zone are dependent on permeability variations, anisotropy and tortuosity of flow paths. A possible way forward is to compare numerical flow models using statistical variations of permeability in a complex fault zone in a given sandstone/shale context with field-scale estimates of fault zone permeability. Fault zone internal structure is equally important in understanding the seismogenic behaviour of faults. Both geometric and compositional complexities can control the nucleation, propagation and arrest of earthquakes. The presence and complex distribution of different fault zone materials of contrasting velocity-weakening and velocity-strengthening properties is an important factor in controlling earthquake nucleation and whether a fault slips seismogenically or creeps steadily, as illustrated by recent studies of the San Andreas Fault. A synthesis of laboratory experiments presented in this paper shows that fault zone materials which become stronger with increasing slip rate, typically then get weaker as slip rate continues to increase to seismogenic slip rates. Thus the probability that a nucleating rupture can propagate sufficiently to generate a large earthquake depends upon its success in propagating fast enough through these materials in order to give them the required velocity kick. This propagation success is hence controlled by the relative and absolute size distributions of velocity-weakening and velocity- strengthening rocks within the fault zone. Statistical characterisation of the distribution of such contrasting properties within complex fault zones may allow for better predictive models of rupture propagation in the future and provide an additional approach to earthquake size forecasting and early warnings.
    Description: Published
    Description: 5-33
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: N/A or not JCR
    Description: reserved
    Keywords: fault zone ; earthquake ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-11-05
    Description: Excellent quarry exposures have been studied to examine the controls on the growth of fault networks in Cretaceous high-porosity sands. An inverse correlation is found at any one locality between the frequency of faults of an earlier tectonic event and the frequency of later faults. The early faults are cataclastic deformation bands with displacements typically up to 300 mm, and have thicknesses approaching their displacements. Later faults are also deformation bands except where present within a high-frequency array of earlier faults, where they are typically clustered high-displacement ultracataclasite zones that are narrower (smaller width/displacement ratios) than for the deformation band faults. A mechanical model using critical state soil mechanics explains the observed distributions and fault zone characteristics in terms of strength changes in the deforming sand unit and the stress path by which the material is subjected to clastic'plastic yielding. Localized faulting by constant-volume cataclastic flow at the critical state line will result in deviatoric stress reduction as Coulomb plasticity softening occurs within the fault zone. Elastic unloading of the walls will suppress the continued formation of deformation bands. The point at which the stress state reaches the critical state line, governed by the stress state and position of the clastic'plastic yield envelope, is therefore crucial in controlling the final distribution of deformation bands and larger faults in the system. Within this framework, the field and microstructural data suggest that earlier deformation became distributed by hardening processes such as compaction and grain-size reduction, resulting in a higher bulk yield strength. In a later tectonic event, the unit behaves in a stronger manner and deformation quickly localizes by fault zone softening processes into fewer fault zones that individually grow larger.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-07-02
    Description: Faults are important controls on hydrocarbon migration and ore mineralization and, in areas of active deformation, are the most important source of seismic hazard. However, faults are rarely discrete surfaces and the internal structure of fault zones (e.g., the thickness, nature and continuity of the fault rocks, the distribution and segmentation of slip surfaces, and the orientation, distribution and connectivity of subsidiary faults and fractures) is a key control on their bulk fluid flow and mechanical properties. This Special Publication was inspired by two sessions held at the European Geosciences Union General Assembly in Vienna during 2005 and 2006 and contains 19 original papers divided into three sections. Part I addresses the controls on fault zone evolution, whilst Parts II and III focus, respectively, on the mechanical behaviour and fluid flow properties of fault zones. The introductory paper (Wibberley et al.) addresses each theme of the Special Publication: fault zone evolution, the permeability structure of ancient and active fault zones, the impact of faults on hydrocarbon sealing and migration, and the implications of fault zone geometry and material heterogeneity for seismogenic processes. In each section, Wibberley et al. identify important recent findings and suggest areas in which new conceptual advances in our understanding of fault zones are likely to occur. A key theme highlighted by many of the papers in Part I is the importance of pre-existing mechanical heterogeneities (e.g., bedding, joints) in controlling the internal structure of faults in sedimentary sequences. Johanssen & Fossen consider the control of bed thickness and fault displacement on the geometry, orientation and distribution of minor fractures and deformation bands (i.e., the ‘damage zone’) that surround faults cutting aeolian sandstones, siltstones and shales in the western United States. They conclude that the highest concentrations of deformation bands occur close to the main ...
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-02
    Description: This paper presents case studies of producing fields where faults heavily influence fluid-flow behaviour. In a first case, faults show no evidence of barrier behaviour prior to production but, nevertheless, demonstrate strongly compartmentalized field behaviour once production starts. Analytical modelling suggests that short-term pressure differences between faulted panels can be predictable owing to the permeability contrast between fault zone and reservoir: fault permeability, however, is not low enough to prevent dissipation on the geological timescale. Faults in a second case acted as baffles during production, supporting significant pressure differences, with salinity data suggesting that, as a network, they channelled sweep through relays and around fault tips. The third case examines a fault acting as a vertical drain, causing early water breakthrough through proven intermediate seals and depleting non-produced aquifers above. The fault permeability required to explain these depletion rates is estimated from an analytical model. Estimates of 0.02 – 0.2 mD compare well with predictions from a new algorithm calibrated using measurements on natural fault rocks from seismic-scale faults. Experience from case studies such as these can improve the way in which we use limited data from exploration wells when considering fault behaviour in development scenarios and in conditioning reservoir models for production forecasting.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-03
    Description: Outcrops of the Cretaceous high-porosity sandstone of the Southeast Basin, France, show two main types of deformation structures: a large number of small-offset, shear-enhanced cataclastic deformation bands (DBs); and a small number of large (meters to decameters)-offset ultracataclastic fault zones. Microstructural analyses of the cataclastic DBs show that fragmentation produces strands of cataclastic fragment-supported matrix, separated by weakly fractured host rock, which cluster to form the DBs. The ultracataclastic fault zones, however, are composed of a matrix-supported ultracataclasite material. Permeability data show that the DBs reduce host-rock permeability by 0.5 to 2 orders of magnitude, whereas the ultracataclasites reduce permeability by approximately 4 orders. Simple calculations considering the structural frequency, thickness, and permeability of these faults suggest that, although the DBs may have an impact on single-phase flow, it is most likely to be less than a 50% reduction in flow rate in extensional contexts, but it may be more severe in the most extreme cases of structural density in tectonic shortening contexts. The larger ultracataclastic faults, however, despite their much lower frequency, will have a more significant reduction in flow rate, probably of approximately 90 to 95%. Hence, although they are commonly at or below the limit of seismic resolution, the detection and/or prediction of such ultracataclastic faults is likely to be more important for single-phase flow problems than DBs (although important two-phase questions remain). The study also suggests that it is inappropriate to use the petrophysical properties of core-scale DB structures as analogs to larger seismic-scale faults.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-01-01
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...