ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-26
    Description: Solidified frictional melts, or pseudotachylytes, remain the only unambiguous indicator of seismic slip in the geological record. However, pseudotachylytes form at 〉5 km depth, and there are many rock types in which they do not form at all. We performed low- to high-velocity rock friction experiments designed to impose realistic coseismic slip pulses on calcite fault gouges, and report that localized dynamic recrystallization may be an easy-to-recognize microstructural indicator of seismic slip in shallow, otherwise brittle fault zones. Calcite gouges with starting grain size 〈250 μm were confined up to 26 MPa normal stress using a purpose-built sample holder. Slip velocities were between 0.01 and 3.4 m s−1, and total displacements between 1 and 4 m. At coseismic slip velocities ≥0.1 m s−1, the gouges were cut by reflective principal slip surfaces lined by polygonal grains 〈1 μm in size. The principal slip surfaces were flanked by 〈300 μm thick layers of dynamically recrystallized calcite (grain size 1–10 μm) containing well-defined shape- and crystallographic-preferred orientations. Dynamic recrystallization was accompanied by fault weakening and thermal decomposition of calcite to CO2 + CaO. The recrystallized calcite aggregates resemble those found along the principal slip surface of the Garam thrust, South Korea, exhumed from 〈5 km depth. We suggest that intense frictional heating along the experimental and natural principal slip surfaces resulted in localized dynamic recrystallization, a microstructure that may be diagnostic of seismic slip in the shallow crust.
    Description: Published
    Description: 63-66
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Rock mechanics ; shallow earthquales ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-17
    Description: Earthquakes occur along faults in response to plate tectonic movements, but paradoxically, are not widely recognized in the geological record, severely limiting our knowledge of earthquake physics and hampering accurate assessments of seismic hazard. Light-reflective (so-called mirror like) fault surfaces are widely observed geological features, especially in carbonate-bearing rocks of the shallow crust. Here we report on the occurrence of mirror-like fault surfaces cutting dolostone gouges in the Italian Alps. Using friction experiments, we demonstrate that the mirror-like surfaces develop only at seismic slip rates (∼1 m/s) and for applied normal stresses and sliding displacements consistent with those estimated on the natural faults. Under these experimental conditions, the frictional power density dissipated in the samples is comparable to that estimated for natural earthquakes (1–10 MW/m2). Our results indicate that mirror-like surfaces in dolostone gouges are a signature of seismic faulting, and can be used to estimate power dissipation during ancient earthquake ruptures.
    Description: Published
    Description: 1175-1178
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Faults ; Carbonates ; Rock Mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Using a case study from the island of Elba, Italy, we seek to test the hypothesis that 7 the presence of minerals with low frictional strengths can explain prolonged slip on 8 low-angle normal faults. The central core of the Zuccale low-angle normal fault 9 contains a distinctive fault rock zonation that developed during progressive exhumation. 10 Most fault rock components preserve microstructural evidence for having accommodated 11 deformation entirely, or partly, by frictional mechanisms. One millimeter thick sample 12 powders of all the major fault rock components were deformed in a triaxial deformation 13 apparatus under water-saturated conditions, at room temperature, and at constant effective 14 normal stresses of 25, 50, and 75 MPa. Pore fluid pressure was maintained at 50 MPa 15 throughout. Overall, the coefficient of friction (m) of the fault rocks varies between 16 0.25 and 0.8, emphasizing the marked strength heterogeneity that may exist within 17 natural fault zones. Also, m is strongly dependent on fault rock mineralogy and is 18 〈0.45 for fault rocks containing talc, chlorite, and kaolinite and 〉0.6 for fault rocks 19 dominated by quartz, dolomite, calcite, and amphibole. Localization of frictional slip 20 within talc-rich portions of the fault core can potentially explain movements along the 21 Zuccale fault over a wide range of depths within the upper crust, although the 22 mechanical importance of the talc-bearing fault rocks likely decreased following their 23 dismemberment into a series of poorly connected fault rock lenses. Additionally, slip 24 within clay-bearing fault gouges with m between 0.4 and 0.5 may have facilitated 25 movements in the uppermost (〈2 km) crust. For several other fault rock components, 26 m varies between 0.5 and 0.8, and mineralogical weakening alone is insufficient to 27 account for low-angle slip. In the latter fault rock components, other weakening 28 mechanisms such as the development of high fluid pressures, or dissolution-precipitation 29 creep, may have been particularly important in reducing fault strength.
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Friction ; Low-Angle Normal Faults ; Experiments ; Weakening ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The influx of fluids into fault zones can trigger two main types of weakening processes that operate over different timescales and facilitate fault movement and earthquake nucleation. Short-term and long-term weakening mechanisms along faults require a continuous fluid supply near the base of the brittle crust, a condition satisfied in the extended/extending area of the Northern Apennines of Italy. Here carbon mass balance calculations, coupling aquifer geochemistry to isotopic and hydrological data, define the presence of a large flux (∼12,160 t d-1) of deep-seated CO2 centred in the extended sector of the area. In the currently active extending area, CO2 fluid overpressures at ∼85% of the lithostatic load have been documented in two deep (4-5 km) boreholes. In the long-term, field studies on an exhumed regional low-angle normal fault show that during the entire fault history, fluids reacted with fine-grained cataclasites in the fault core to produce aggregates of weak, phyllosilicate-rich fault rocks that deform by fluid assisted frictional-viscous creep at sub-Byerlee friction values (μ 〈 0.3). In the short-term, fluids can be stored in structural traps, such as beneath mature faults, and stratigraphical traps such as Triassic evaporites. Both examples preserve evidence for multiple episodes of hydrofracturing induced by short-term cycles of fluid pressure build-up and release. Geochemical data on the regional-scale CO2 degassing process can therefore be related to field observations on fluid rock interactions to provide new insights into the deformation processes responsible for active seismicity in the Northern Apennines.
    Description: Submitted
    Description: 4.5. Degassamento naturale
    Description: N/A or not JCR
    Description: open
    Keywords: Northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Fault zones that slip when oriented at large angles to the maximum compressive stress, i.e., weak faults, represent a signifi cant mechanical problem. Here we document fault weakening induced by dissolution of dolomite and subsequent precipitation of calcite + abundant talc along a low-angle normal fault. Within the fault core, talc forms an interconnected foliated network that deforms by frictional sliding along 50–200-nm-thick talc lamellae. The low frictional strength of talc, combined with dissolution-precipitation creep, can explain slip on low-angle normal faults. In addition, the stable sliding behavior of talc is consistent with the absence of strong earthquakes along such structures. The development of phyllosilicates such as talc by fl uid-assisted processes within fault zones cutting Mg-rich carbonate sequences may be widespread, leading to profound and long-term fault weakness.
    Description: Published
    Description: 567-570
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Fault ; Weakening ; Low-Angle ; Talc ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The influx of fluids into fault zones can trigger two main types of weakening process that operate over different timescales and facilitate fault movement and earthquake nucleation. Short- and long-term weakening mechanisms along faults require a continuous fluid supply near the base of the brittle crust, a condition satisfied in the extended/extending area of the Northern Apennines of Italy. Here carbon mass balance calculations, coupling aquifer geochemistry to isotopic and hydrological data, define the presence of a large flux (c. 12 160 t/day) of deep-seated CO2 centred in the extended sector of the area. In the currently active extending area, CO2 fluid overpressures at 85% of the lithostatic load have been documented in two deep (4–5 km) boreholes. In the long-term, field studies on an exhumed regional low-angle normal fault show that, during the entire fault history, fluids reacted with fine-grained cataclasites in the fault core to produce aggregates of weak, phyllosilicate-rich fault rocks that deform by fluid assisted frictional–viscous creep at sub-Byerlee friction values (m , 0.3). In the short term, fluids can be stored in structural traps, such as beneath mature faults, and stratigraphical traps such as Triassic evaporites. Both examples preserve evidence for multiple episodes of hydrofracturing induced by short-term cycles of fluid pressure build-up and release. Geochemical data on the regional-scale CO2 degassing process can therefore be related to field observations on fluid rock interactions to provide new insights into the deformation processes responsible for active seismicity in the Northern Apennines
    Description: Published
    Description: 175-194
    Description: 4.5. Degassamento naturale
    Description: N/A or not JCR
    Description: reserved
    Keywords: CO2 degassing ; Northern Apennines ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The San Andreas Fault Observatory at Depth (SAFOD) in Parkfield, central California, has been drilled through a fault segment that is actively deforming through creep and microearthquakes. Creeping is accommodated in two fault strands, the Southwest and Central Deforming Zones, embedded within a damaged zone of deformed shale and siltstone. During drilling, no pressurized fluids have been encountered, even though the fault zone acts as a permeability barrier to fluid circulation between the North American and Pacific plates. Microstructural analysis of sheared shales associated with calcite and anhydrite-bearing veins found in SAFOD cores collected at 1.5m from the Southwest Deforming Zone, suggests that transient increases of pore fluid pressure have occurred during the fault activity, causing mode I fracturing of the rocks. Such build-ups in fluid pressure may be related to permeability reduction during fault creep and pressure-solution processes, resulting in localized failure of small fault zone patches and providing a potential mechanism for the initiation of some of the microearthquakes registered in the SAFOD site.
    Description: Published
    Description: L03301
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: friction ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-04
    Description: The 600 m-thick Gole Larghe Fault Zone (GLFZ) is hosted in jointed crystalline basement and exposed across glacier-polished outcrops in the Italian Alps. Ancient seismicity is attested by the widespread occurrence of cataclasites associated with pseudotachylytes (solidified frictional melts) formed at 9–11 km depth and ambient temperatures of 250–300 °C. Previous work focused on the southern part of the fault zone; here we quantitatively document fault zone structure across the full width of the GLFZ and surrounding tonalite host rocks by using a combination of structural line transects and image analysis of samples collected across fault strike. These new datasets indicate that the GLFZ has a broadly symmetric across-strike damage structure and contains distinct southern, central and northern zones distinguished by large variations in fracture density, distribution of pseudotachylytes, volume of fault rock materials, and microfracture sealing characteristics. The c. 100 m wide central zone is bound by two thick (~ 2 m) and laterally continuous (〉 1 km) protocataclastic to ultracataclastic horizons. Within and immediately surrounding the central zone, fracture density is relatively high due to cataclastic fault–fracture networks that reworked earlier-formed pseudotachylytes. The fault–fracture networks were associated with pervasive microcracking and fluid–rock interaction, resulting in the development of a c. 200 m thick alteration zone delimited by lobate fluid infiltration fronts. In the c. 250 m thick southern and northern zones, fracture densities are much lower and pseudotachylytes systematically overprint cataclastic faults that exploited pre-existing magmatic cooling joints. Analysis of the structure of the GLFZ suggests that it shares certain characteristics with the seismogenic source responsible for the 2002 Au Sable Forks intraplate earthquake sequence in the northeastern USA, including seismicity distributed across a fault zone 500–1000 m thick and large (〉 100 MPa) static stress drops associated with frictional melting.
    Description: Published
    Description: 29-44
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Fault structure ; Fluid flow ; Fracture damage ; Alteration ; Cataclasite ; Adamello ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-16
    Description: Laboratory experiments reproducing seismic slip conditions show extreme frictional weakening due to the activation of lubrication processes. Due to a substantial variability in the details of the weakening transient, generalization of experimental results and comparison to seismic observations have not been possible so far. Here we show that during the weakening, shear stress τ is generally well matched by a power law of slip u in the form τu-α (with 0.35 〈 α 〈 0.6). The resulting fracture energy Gf can be approximated by a power law in some aspects in agreement with the seismological estimates G′. It appears that Gf and G′ are comparable in the range 0.01 〈 u 〈 0.3 m. However, G′ surpasses Gf at larger slips: at u≈10 m, G′≈108 and Gf≈106. Possible interpretations of this misfit involve the complexity of damage and weakening mechanisms within mature fault zone structures. ©2016. American Geophysical Union. All Rights Reserved.
    Description: Published
    Description: 1504–1510
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-09
    Description: Rapidly developing methods of digital acquisition, visualization and analysis allow highly detailed outcrop models to be constructed, and used as analogues to provide quantitative information about sedimentological and structural architectures from reservoir to subseismic scales of observation. Terrestrial laser-scanning (lidar) and high precision Real-Time Kinematic GPS are key survey technologies for data acquisition. 3D visualization facilities are used when analysing the outcrop data. Analysis of laser-scan data involves picking of the point-cloud to derive interpolated stratigraphic and structural surfaces. The resultant data can be used as input for object-based models, or can be cellularized and upscaled for use in grid-based reservoir modelling. Outcrop data can also be used to calibrate numerical models of geological processes such as the development and growth of folds, and the initiation and propagation of fractures.
    Description: Published
    Description: 87–98
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: N/A or not JCR
    Description: reserved
    Keywords: Laser-Scanning ; Outcrop analogues ; Reservoirs ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...