ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7,100)
  • Lunar and Planetary Science and Exploration  (3,309)
  • Meteorology and Climatology  (2,974)
  • Composite Materials
  • Statistical physics
  • 2015-2019  (3,072)
  • 2010-2014  (4,028)
Collection
Source
Years
Year
  • 101
    Publication Date: 2017-05-11
    Description: An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN41915 , Geophysical Research Letters (ISSN 0094-8276); Volume 43; No. 20; 11,089–11,097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2017-03-22
    Description: We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 6080) than previous solutions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40220 , ICARUS (ISSN 0019-1035 ; e-ISSN 1090-2643); Volume 272; 228–245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2018-08-10
    Description: Cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, have a significant impact on the accuracy of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in non-ideal conditions to determine cloud type and optical depth. Statistics and trends of these optical parameters were analyzed for four years, 2003-2007, of Cloud Physics Lidar data during five projects of varying geographic locations. Extinction-to-backscatter ratio (at 532 nm) was derived by calculating the transmission loss through the cloud layer, while depolarization ratio was computed using the parallel and perpendicular polarized 1064 nm channels. The majority of the cloud layers yielded an S-ratio between 10 and 40 sr with the S-ratio frequency distribution centered at 25 sr for ice clouds, 21 sr for mixed phase clouds, and 11 sr for water clouds. On average for ice clouds, S ratio slightly decreased with decreasing temperature, while depolarization ratio increased significantly as temperatures decreased. Trends for water and mixed phase clouds were also observed. Ultimately, these observed trends in optical properties as a function of temperature and geographic location will improve current parameterizations of extinction-to-backscatter ratio, which consequently increases accuracy in cloud optical depth and radiative forcing estimates.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2018-08-10
    Description: Current trends show rise in Arctic surface and air temperatures, including over the Greenland ice sheet where rising temperatures will contribute to increased sea-level rise through increased melt. We aim to establish the uncertainties in using satellite-derived surface temperature for measuring Arctic surface temperature, as satellite data are increasingly being used to assess temperature trends. To accomplish this, satellite-derived surface temperature, or land-surface temperature (LST), must be validated and limitations of the satellite data must he assessed quantitatively. During the 2008/09 boreal winter at Summit, Greenland, we employed data from standard US National Oceanic and Atmospheric Administration (NOAA) air-temperature instruments, button-sized temperature sensors called thermochrons and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument to (1) assess the accuracy and utility of thermochrons in an ice-sheet environment and (2) compare MODIS-derived LSTs with thermochron-derived surface and air temperatures. The thermochron-derived air temperatures were very accurate, within 0.1+/-0.3 C of the NOAA-derived air temperature, but thermochron-derived surface temperatures were approx. 3 C higher than MODIS-derived LSTs. Though the surface temperature is largely determined by air temperature, these variables can differ significantly. Furthermore, we show that the winter-time mean air temperature, adjusted to surface temperature was approx. 11 C higher than the winter-time mean MODIS-derived LST. This marked difference occurs largely because of satellite-derived LSTs cannot be measured through cloud cover, so caution must be exercised in using time series of satellite LST data to study seasonal temperature trends.
    Keywords: Meteorology and Climatology
    Type: Journal of Glaciology; Volume 56; No. 198; 735-741
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2018-08-10
    Description: The Brewer-Dobson circulation (BDC) is the mean transport circulation in the stratosphere. It consists of an upwelling branch in the tropics, poleward flows from the tropics to the extratropics, and downward flows in the extratropics. The BDC plays a crucial role in the distribution of important stratospheric trace gases, such as ozone and water vapor. Therefore changes in the strength of the BDC under global warming could have significant impact on stratospheric ozone depletion and recovery. For example, all climate models that are used by the World Meteorological Organization to predict ozone evolution in the 21 st century project a strengthening of the BDC that leads to ozone superrecovery in the mid-latitudes. On the other hand, ozone changes could also affect the strength of the BDC. This work investigates an outstanding question: whether and how changes in the Brewer-Dobson circulation are connected to climate change in the troposphere, in particular, the annular modes. The annular modes are the leading variability in the extratropical troposphere, which describes a seesaw pattern of circulation fluctuations between the polar and middle latitudes. Using simulations from the Goddard Earth Observing System Coupled Chemistry Climate Model (GEOS CCM), we found the strengthening of the BDC in the summer Southern Hemisphere is strongly correlated with a shift of the Southern Hemisphere Annular Mode (SAM) toward its positive phase for the last 4 decades of the 20th century. This relationship is only present in model runs that simulate the stratospheric ozone depletion. Therefore it is concluded that the BDC-SAM relationship is driven by Antarctic ozone depletion. The ozone hole significantly cools the Antarctic stratosphere in late spring/early summer, which leads to a delayed breakdown of the polar vortex: strong circumpolar eastward flows that usually shift to westward winds in late spring. The prolonged persistence of stratospheric eastward flow enhances upward propagation of tropospheric waves into the stratosphere and strengthens the BDC. The increased wave flux in the stratosphere in turn drives a SAM trend toward its positive phase. Our results also show that the BDC-SAM relationship is robust on the interannual timescale
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2017-06-28
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-39709 , Dust in the Atmosphere of Mars and Its Impact on Human Exploration Workshop; 13-15 Jun. 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-05-24
    Description: Subseasonal forecast skill of the global hydrostatic atmospheric Flow-Following Icosahedral Model (FIM) coupled to an icosahedral-grid version of the Hybrid Coordinate Ocean Model (iHYCOM) is evaluated through 32-day predictions initialized weekly using a four-member time-lagged ensemble over the 16-yr period 19992014. Systematic biases in forecasts by the coupled system, referred to as FIMiHYCOM, are described in a companion paper (Part I). This present study (Part II) assesses probabilistic and deterministic model skill for predictions of surface temperature, precipitation, and 500-hPa geopotential height in different seasons at different lead times ranging from 1 to 4 weeks. The coupled model appears to have reasonable agreement with reanalysis in terms of simulated weekly variability in sea surface temperatures, except in extratropical regions because the ocean model cannot explicitly resolve eddies there. This study also describes the ability of the model to simulate midlatitude tropospheric blocking frequency, MaddenJulian oscillation patterns, and sudden stratospheric warming eventsall of which have been shown to be relevant on subseasonal time scales. The metrics used here indicate that the subseasonal forecast skill of the model is comparable to that of several operational models, including the National Oceanic and Atmospheric Administrations (NOAAs) operational Climate Forecast System version 2 and the European Centre for Medium-Range Weather Forecasts model. Therefore, FIMiHYCOMas a participant in NOAAs Subseasonal Experimentis expected to add value to multimodel ensemble forecasts produced through this effort.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN55246 , Monthly Weather Review (ISSN 0027-0644) (e-ISSN 1520-0493); 146; 5; 1619-1639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-05-25
    Description: The solar tide in an ancient Venusian ocean is simulated using a dedicated numerical tidal model. Simulations with varying ocean depth and rotational periods ranging from minus 243 to 64 sidereal Earth days are used to calculate the tidal dissipation rates and associated tidal torque. The results show that the tidal dissipation could have varied by more than 5 orders of magnitude, from 0.001 to 780 gigawatts (GW), depending on rotational period and ocean depth. The associated tidal torque is about 2 orders of magnitude below the present day Venusian atmospheric torque, and could change the Venusian daylength by up to 72 days per million years depending on rotation rate. Consequently, an ocean tide on ancient Venus could have had significant effects on the rotational history of the planet. These calculations have implications for the rotational periods of similarly close-in exoplanetary worlds and the location of the inner edge of the liquid water habitable zone.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68852 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 876; 2; L22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-05-22
    Description: The north polar cap (NPC) on Mars is the major reservoir of atmospheric water (H2O) currently on Mars. The retrieval and monitoring of atmospheric water vapor abundance are crucial for tracking the cycle of water above the NPC. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) has provided a wealth of data that extend over 5 + Martian years, covering the time period between 2006 and 2016. CRISM is ideally suited for spring and summer observations of the north polar region (latitudes poleward of 60 N). The retrievals of water vapor column abundances over this extended period of time were performed over both ice-free and water ice covered surfaces, extending the coverage of the water vapor maps to include the permanent cap, where a maximum value of 90 precipitable micrometers (prm) is retrieved, as compared to 60 prm over ice-free regions in the North Polar Region. Away from summertime maximum, modest interannual variability in the water vapor abundance is observed. Zonal averages over all the observed Martian years combined show a developing water front that shifts northward towards summer, before dissipating over the permanent cap during mid-summer. A prominent feature at latitudes around 75 N shows large abundances of water vapor, indicating a water vapor annulus encircling the retreating edge of the seasonal polar cap during late spring. Meridional transport of water modeled here show that the annulus may be a result of the convergence of water vapor from both south and north along the retreating edge of the NPC.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67997 , Icarus (ISSN 0019-1035); 321; 722-735
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-06-29
    Description: The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet's surface. Substantially more CO2 than present in Earth's modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70116 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 878; 1; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-06-29
    Description: Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (〉 140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/cu.m, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/cu.m. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~50% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift; however, understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN69978 , Icarus (ISSN 0019-1035); 331; 192-208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-02
    Description: While devoid of an active magnetic dynamo field today, Mars possesses a remanent magnetic field that may reach several thousand nanoteslas locally. The exact origin and the events that have shaped the crustal magnetization remain largely enigmatic. Three magnetic field data sets from two spacecraft collected over 13 cumulative years have sampled the Martian magnetic field over a range of altitudes from 90 up to 6,000 km: (a) Mars Global Surveyor (MGS) magnetometer (19972006), (b) MGS Electron Reflectometer (19992006), and (c) Mars Atmosphere and Volatile EvolutioN (MAVEN) magnetometer (2014 to today). In this paper we combine these complementary data sets for the first time to build a new model of the Martian internal magnetic field. This new model improves upon previous ones in several aspects: comprehensive data coverage, refined data selection scheme, modified modeling scheme, discrete-to-continuous transformation of the model, and increased model resolution. The new model has a spatial resolution of 160 km at the surface, corresponding to spherical harmonic degree 134. It shows small scales and well-defined features, which can now be associated with geological signatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70068 , Journal of Geophysical Research: Planets
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-06
    Description: This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. A dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN23029 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 42; 13; 5485-5492
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-06-29
    Description: We analyze the atmospheric processes that explain the large changes in radiative feed-backs between the two latest climate configurations of the Hadley Centre Global Environmental model. We use a large set of atmosphere-only climate-change simulations (amip and amip-p4K) to separate the contributions to the differences in feedback parameter from all the atmospheric model developments between the two latest model configurations. We show that the differences are mostly driven by changes in the shortwave cloud radiative feedback in the midlatitudes, mainly over the Southern Ocean. Two new schemes explain most of the differences: the introduction of a new aerosol scheme; and the development of a new mixed-phase cloud scheme. Both schemes reduce the strength of the pre-existing shortwave negative cloud feedback in the midlatitudes. The new aerosol scheme dampens a strong aerosol-cloud interaction, and it also suppresses a negative clear-sky shortwave feedback. The mixed-phase scheme increases the amount of cloud liquid water path (LWP) in the present-day, thereby reducing the radiative effciency of the increase of LWP in the warmer climate. It also enhances a strong, pre-existing, positive cloud fraction feedback. We assess the realism of the changes by comparing present-day simulations against observations, and discuss avenues that could help constrain the relevant processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70134 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-05-15
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M19-7317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2018-06-06
    Description: This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 115; D19109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2018-06-06
    Description: The simulation of changes in the Earth's climate due to solar and thermal radiative processes with global climate models (GCMs) is highly complex, depending on the parameterization of a multitude of nonlinearly coupled physical processes. In contrast, the germ of global climate change, the radiative forcing from enhanced abundances of greenhouse gases, is relatively well understood. The impressive agreement between detailed radiation calculations and highly resolved spectral radiation measurements in the thermal infrared under cloudless conditions (see, for example, Fig. 1) instills confidence in our knowledge of the sources of gaseous absorption. That the agreement spans a broad range of temperature and humidity regimes using instruments mounted on surface, aircraft, and satellite platforms not only attests to our capability to accurately calculate radiative fluxes under present conditions, but also provides confidence in the spectroscopic basis for computation of fluxes under conditions that might characterize future global climate (e.g., radiative forcing). Alas, the computational costs of highly resolved spectral radiation calculations cannot be afforded presently in GCMs. Such calculations have instead been used as the foundation for approximations implemented in fast but generally less accurate algorithms performing the needed radiative transfer (RT) calculations in GCMs. Credible climate simulations by GCMs cannot be ensured without accurate solar and thermal radiative flux calculations under all types of sky conditions: pristine cloudless, aerosol-laden, and cloudy. The need for accuracy in RT calculations is not only important for greenhouse gas forcing scenarios, but is also profoundly needed for the robust simulation of many other atmospheric phenomena, such as convective processes.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 91; Issue 3; 305?310
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2018-06-06
    Description: The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 10; 4359-4375
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2018-06-06
    Description: The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) is intended to provide a "best" estimate of quasi-global precipitation from the wide variety of modern satellite-borne precipitation-related sensors. Estimates are provided at relatively fine scales (0.25 deg x 0.25 deg. 3-h) in both real and post-real time to accommodate a wide range of researchers. However, the errors inherent in the finest scale estimates are large. The most successful use of the TMPA data is when the analysis takes advantage of the fine-scale data to create time/space averages appropriate to the user fs application. We review the conceptual basis for the TMPA, summarize the processing sequence, and focus on two new activities. First, a recent upgrade for the real-time version incorporates several additional satellite data sources and employs monthly climatological adjustments to approximate the bias characteristics of the research quality post-real-time product. Second, an upgrade for the research quality post-real-time TMPA from Versions 6 to 7 (in beta test at press time) is designed to provide a variety of improvements that increase the list of input data sets and correct several issues. Future enhancements for the TMPA will include improved error estimation, extension to higher latitudes, and a shift to a Lagrangian time interpolation scheme.
    Keywords: Meteorology and Climatology
    Type: Satellite Rainfall Applications for Surface Hydrology; 3-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2018-06-06
    Description: The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
    Keywords: Meteorology and Climatology
    Type: Reports on Progress in Physics (ISSN 0034-4885); Volume 73; No. 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2018-06-06
    Description: This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.
    Keywords: Meteorology and Climatology
    Type: JOurnal of Geophysical Research (ISSN 0148-0227); Volume 115; D00H30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2018-06-06
    Description: This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate (ISSN 0894-8755); Volume 23; Issue 3; 504?518
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2018-06-06
    Description: NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Earth, Moon, and Planets; Volume 107; No. 1; 87-93
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2018-06-06
    Description: Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2018-06-06
    Description: We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum dries appear to have increased in strength during this time interval, tvhich likely correlates with the oval's return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 210; Issue 1; 202-210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2018-06-06
    Description: Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2018-06-06
    Description: Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 deg S to 45 deg N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 deg S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) 10(exp -10) for C4H2 and of (1.1 +/- 0.3) 10(exp -9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 209; 2; 682-695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2018-06-06
    Description: The solar reflectance bi-spectral (SRBS) and infrared split-window (IRSpW) methods are two of the most popular techniques for passive ice cloud property retrievals from multispectral imagers. Ice clouds are usually assumed to be vertically homogeneous in global operational algorithms based on these methods, although significant vertical variations of ice particle size are typically observed in ice clouds. In this Study we investigate uncertainties in retrieved optical thickness, effective particle size, and ice water path introduced by a homogeneous cloud assumption in both the SRBS and IRSpW methods, and focus on whether the assumption can lead to significant discrepancies between the two methods. The study simulates the upwelling spectral radiance associated with vertically structured clouds and passes the results through representative SRBS and IRSpW retrieval algorithms. Cloud optical thickness is limited to values for which IRSpW retrievals are possible (optical thickness less than about 7). When the ice cloud is optically thin and yet has a significant ice particle size vertical variation, it is found that both methods tend to underestimate the effective radius and ice water path. The reason for the underestimation is the nonlinear dependence of ice particle scattering properties (extinction and single scattering albedo) on the effective radius. Because the nonlinearity effect is stronger in the IRSpW than the SRBS method, the IRSpW-based IWP tends to be smaller than the SRBS counterpart. When the ice cloud is moderately optically thick, the IRSpW method is relatively insensitive to cloud vertical structure and effective radius retrieval is weighted toward smaller ice particle size, while the weighting function makes the SRBS method more sensitive to the ice particle size in the upper portion of the cloud. As a result, when ice particle size increases monotonically toward cloud base, the two methods are in qualitative agreement; in the event that ice particle size decreases toward cloud base, the effective radius and ice water path retrievals based on the SRBS method are substantially larger than those from the IRSpW. The main findings of this Study Suggest that the homogenous cloud assumption can affect the SRBS and IRSpW methods to different extents and, consequently, can lead to significantly different retrievals. Therefore caution should be taken when comparing and combining the ice cloud property retrievals from these two methods.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research - Atmospheres (ISSN 0148-0227); Volume 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2018-06-06
    Description: We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2018-06-06
    Description: Several multisensor simulator packages are being developed by different research groups across the world. Such simulator packages [e.g., COSP , CRTM, ECSIM, RTTO, ISSARS (under development), and SDSU (this article), among others] share overall aims, although some are targeted more on particular satellite programs or specific applications (for research purposes or for operational use) than others. The SDSU or Satellite Data Simulator Unit is a general-purpose simulator composed of Fortran 90 codes and applicable to spaceborne microwave radiometer, radar, and visible/infrared imagers including, but not limited to, the sensors listed in a table. That shows satellite programs particularly suitable for multisensor data analysis: some are single satellite missions carrying two or more instruments, while others are constellations of satellites flying in formation. The TRMM and A-Train are ongoing satellite missions carrying diverse sensors that observe clouds and precipitation, and will be continued or augmented within the decade to come by future multisensor missions such as the GPM and Earth-CARE. The ultimate goals of these present and proposed satellite programs are not restricted to clouds and precipitation but are to better understand their interactions with atmospheric dynamics/chemistry and feedback to climate. The SDSU's applicability is not technically limited to hydrometeor measurements either, but may be extended to air temperature and humidity observations by tuning the SDSU to sounding channels. As such, the SDSU and other multisensor simulators would potentially contribute to a broad area of climate and atmospheric sciences. The SDSU is not optimized to any particular orbital geometry of satellites. The SDSU is applicable not only to low-Earth orbiting platforms as listed in Table 1, but also to geostationary meteorological satellites. Although no geosynchronous satellite carries microwave instruments at present or in the near future, the SDSU would be useful for future geostationary satellites with a microwave radiometer and/or a radar aboard, which could become more feasible as engineering challenges are met. In this short article, the SDSU algorithm architecture and potential applications are reviewed in brief.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 91; Iss. 12; 1625-1632
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2018-06-06
    Description: The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2018-06-06
    Description: The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2018-06-06
    Description: Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.
    Keywords: Meteorology and Climatology
    Type: Quarterly Journal of the Royal Meteorological Society; Volume 136; Issue 647; 382-399
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2018-06-06
    Description: To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered Cl, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultrahigh performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (C11), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from -1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the gamma- and delta-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by a-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, a-aminoisobutyric acid ((alpha-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, non-racemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2018-06-06
    Description: Over the past several decades, there has been a growing awareness that climate changes in substantial ways, that human activities are having an impact on climate change, and that climate change can have major consequences for human societies. Unfortunately, along with this realization has come a strong polarization within the scientific community and outside of it regarding what if anything should be done to reduce negative human impacts and/or to attempt to control climate. This book places recent climate change in the context of the very long term history of change on planet Earth and warns that our understanding of climate change remains sufficiently incomplete that we should be extremely cautious about implementing proposed massive geoengineering schemes intended to alter future climate conditions. The book treats with respect the various viewpoints in the highly polarized discussions regarding climate change, following a basic assumption that the major scientists on each side of the issues have valuable points to bring to the table. The topic is too important to become endlessly mired in contentious polarization.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2018-06-06
    Description: The Normalized-Difference Snow Index (NDSI) has a long history. 'The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data In this section we provide a brief history of the use of the NDSI for mapping snow cover.
    Keywords: Meteorology and Climatology
    Type: Encyclopedia of Snow, Ice and Glaciers
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2018-06-06
    Description: Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an ensemble of opportunity of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for 10 ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21 st century, up-to and after the time when ozone concentrations 15 return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2018-06-06
    Description: Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2018-06-06
    Description: Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2018-06-06
    Description: In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2018-06-06
    Description: Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2018-06-06
    Description: With NASA's commitment to the International Space Station (ISS) now all but certain for at least through the coming decade, serious consideration may be given to extended US in-space operations in the 2020s, when presumably the ISS will exceed its sell by date. Indeed, both ESA and Roscosmos, in addition to their unambiguous current commitment to ISS, have published early concept studies for extended post-ISS habitation (e.g., http://www.esa.int/esaHS/index.html, http://www.russianspaceweb.com/opsek.html and references therein). In the US, engineers and scientists have for a decade been working both within and outside NASA to assess one consistent candidate for long-term post-ISS habitation and operations, although interrupted by changing priorities for human space flight, Congressional direction, and constrained budgets. The evolving work of these groups is described here, which may have renewed relevance with the recent completion of a major review of the nation s human space flight program.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2018-06-06
    Description: In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar windmagnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approximately 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2018-06-06
    Description: Components of the atmospheric energy budget from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are evaluated in polar regions for the period 1979-2005 and compared with previous estimates, in situ observations, and contemporary reanalyses. Closure of the energy budget is reflected by the analysis increments term, which results from virtual enthalpy and latent heating contributions and averages -11 W/sq m over the north polar cap and -22 W/sq m over the south polar cap. Total energy tendency and energy convergence terms from MERRA agree closely with previous study for northern high latitudes but convergence exceeds previous estimates for the south polar cap by 46 percent. Discrepancies with the Southern Hemisphere transport are largest in autumn and may be related to differences in topography with earlier reanalyses. For the Arctic, differences between MERRA and other sources in TOA and surface radiative fluxes maximize in May. These differences are concurrent with the largest discrepancies between MERRA parameterized and observed surface albedo. For May, in situ observations of the upwelling shortwave flux in the Arctic are 80 W/sq m larger than MERRA, while the MERRA downwelling longwave flux is underestimated by 12 W/sq m throughout the year. Over grounded ice sheets, the annual mean net surface energy flux in MERRA is erroneously non-zero. Contemporary reanalyses from the Climate Forecast Center (CFSR) and the Interim Re-Analyses of the European Centre for Medium Range Weather Forecasts (ERA-I) are found to have better surface parameterizations, however these collections are also found to have significant discrepancies with observed surface and TOA energy fluxes. Discrepancies among available reanalyses underscore the challenge of reproducing credible estimates of the atmospheric energy budget in polar regions.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2018-06-06
    Description: We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2018-06-06
    Description: While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be beyond the range of current capacity because an extreme event might cause flooding and inundation beyond the planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation approach and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder-scientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.
    Keywords: Meteorology and Climatology
    Type: Radio Science Bulletin; No. 333; 24-44
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2018-06-06
    Description: Major uncertainties exist for observing and modeling ice content inside deep convective clouds (DCC). One of the difficulties has been the lack of characterization of vertical profiles of cloud hydrometeor phase. Here we propose a technique to estimate the DCC glaciation temperature using passive remote sensing data. It is based on a conceptual model of vertical hydrometeor size profiles inside DCCs. Estimates from the technique agree well with our general understanding of the problem. Furthermore, the link between vertical profiles of cloud particle size and hydrometeor thermodynamic phase is confirmed by a 3-13 cloud retrieval technique. The technique is applied to aircraft measurements of cloud side reflectance and the result was compared favorably with an independent retrieval of thermodynamic phase based on different refractive indices at 2.13 micron and 2.25 micron. Possible applications of the technique are discussed.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2018-06-06
    Description: As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2018-06-06
    Description: Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2018-06-06
    Description: In Asian monsoon countries, such as China and India, human health and safety problems caused by air pollution are becoming increasingly serious, due to the increased loading of atmospheric pollutants from waste gas emissions and from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash floods or prolonged drought, has caused major loss of human life and damage to crops and.property with devastating societal impacts. Historically, air-pollution and monsoons research are treated as separate problems. However recent studies have suggested that the two problems may be intrinsically linked and need to be studied jointly. Fundamentally, aerosols can affect precipitation through radiative effects cif suspended particles in the atmosphere (direct effect) and/or by interfering and changing: the cloud and precipitation formation processes (indirect effect). Based on their optical properties, aerosols can be classified into two types.: those that absorb solar radiation, and those that do not. Both types of aerosols scatter sunlight and reduce the amount of solar radiation from reaching the Earth's surface, causing it to cool. The surface cooling increases atmospheric stability and reduces convection potential, Absorbing aerosols, however, in addition to cooling the surface, can heat the atmosphere. The heating of the atmosphere may reduce the amount of low clouds by increased evaporation in cloud drops. The heating, however, may induce rising motion, enhance low-level moisture, convergence and, hence, increases rainfall, The latent heating from enhanced rainfall may excite feedback processes in the large-scale circulation, further amplify.the initial response to aerosol heating and producing more rain. Additionally, aerosols can increase the concentration of cloud condensation nuclei (CCN), increase cloud amount and decrease coalescence and collision rates, leading to reduced precipitation. However, in the presence of increasing moist and warm air, the reduced coalescence/collision may lead to supercooled drops at higher altitudes where ice precipitation falls and melts. The latent heat release from freezing aloft and melting below implies greater upward heat transport in polluted clouds and invigorate deep convection. In this way, aerosols may lead to increased local convection. Hence, depending on the ambient large-scale conditions and dynamical feedback processes, aerosols' effect on precipitation can be positive, negative or mixed. In the Asian monsoon and adjacent regions, the aerosol forcing and responses of the water cycle are even more complex, Both direct and indirect effects may take place locally and simultaneously, interacting with each other. in addition to local effects, monsoon rainfall may be affected by aerosols transported from other regions and intensified through large-scale circulation and moisture feedback. Thus, dust transported by the large-scale circulation from the adjacent deserts to northern India may affect rainfall over the Bay of Bengal; sulphate and black carbon front industrial pollution in central, southern China and northern India may affect the rainfall regime over the Korean peninsula and Japan; organic and black carbon front biomass burning from Indo-China may modulate the pre-monsoon rainfall regime over southern China and coastal regions, contributing to variability in differential heating and cooling of the atmosphere and to the land-sea thermal contrast. During the pre-monsoon season and monsoon breaks, it has been suggested that radiative forcing by absorbing aerosols have nearly the same order of magnitude as the forcing due to latent heating from convection and surface fluxes. The magnitude of the total aerosol radiative cooling due to sulphates and soot is of the order of 20-40 W/m2 over the Asian monsoon land region in the pre-monsoon season, compared to about 1-2 W/m2 for global warng. However, the combined forcing at the surface and in the atmosphere, including all species. if aerosols, and details of aerosol mixing, and impacts on the energy and water cycles in the monsoon land regions, are not well known.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2018-06-06
    Description: In their recent paper Nigam and Bollasina [2010, hereafter NB] claimed to have found observational evidences that are at variance with the Elevated Heat Pump (EHP) hypothesis regarding the possible impacts of absorbing aerosols on the South Asian summer monsoon [Lau et al., 2006; Lau and Km 2006). We found NB's arguments and inferences against the EHP hypothesis flawed, stemming from a lack of understanding and an out-of-context interpretation of the hypothesis. It was argued that the simultaneous negative correlation of aerosol with rainfall, and correlations with other quantities in May as evidences against the EHP hypothesis. They cannot be more wrong in that argument. First, Lau and Kim [2006, hereafter, LKO6] never stated that the main rainfall response to EHP is in May. Second, the EHP is about responses of the entire Indian monsoon system that are non-local in space and time with respect to the aerosol forcing. Third, the correlation maps shown in NB, including the increased convection over the Bay of Bengal is not the response to EHP but rather represents the large-scale circulation that provides the build-up of the aerosols, before the onset of the monsoon rainfall over India. Because aerosol can only accumulate where there is little or no wash-out by rain, the negative correlation is a necessary condition for increased atmospheric loading of aerosols.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2018-06-06
    Description: The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large-scale subsidence is the major factor suppressing the deep convection. Therefore, representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and resultant large-scale circulation.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate; Volume 23; No. 8; 2030-2046
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2018-06-06
    Description: The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air that frequently moves westward off of the Saharan desert of Africa and over the tropical Atlantic Ocean, has long been appreciated. As air moves over the desert, it is strongly heated from below, producing a very hot air mass at low levels. Because there is no moisture source over the Sahara, the rise in temperature causes a sharp drop in relative humidity, thus drying the air. In addition, the warm air produces a very strong jet of easterly flow in the middle troposphere called the African easterly jet that is thought to play a critical role in hurricane formation. In recent years, there has been an increased focus on the impact that the SAL has on the formation and evolution of hurricanes in the Atlantic. However, the nature of its impact remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The argument for positively influencing hurricane development is based upon the fact that the African easterly jet provides an energy source for the waves that eventually form hurricanes and that it leads to rising motion south of the jet that favors the development of deep thunderstorm clouds. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm SAL air aloft, which increases thermodynamic stability and suppresses cloud development; and 3) dry air, which produces cold downdrafts in precipitating regions, thereby removing energy needed for storm development. As part of this recent focus on the SAL and hurricanes (which motivated a 2006 NASA field experiment), there has been little emphasis on the SAL s potential positive influences and almost complete emphasis on its possible negative influences, almost to the point of claims that the SAL is the major suppressing influence on hurricanes in the Atlantic. In this study, multiple NASA satellite data sets (TRMM, MODIS, CALIPSO, and AIRS/AMSU) and National Centers for Environmental Prediction global analyses are used to see if the proposed negative influences deserve all of the attention they have recently received. The results show that storms generally form on the southern side of the African jet, where favorable background rotation is high. The jet often helps to form the northern side of the storms and is typically stronger in storms that intensify than those that weaken, suggesting that jet-induced vertical wind shear is not a negative influence on developing storms. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. A comparison of the environments of strongly strengthening storms and of weakening storms shows no differences in SAL structure, indicating that the SAL has little influence on whether storms weaken or intensify. The large-scale flow at upper levels above the SAL was found to be most important, with the environment of strengthening storms having very little vertical wind shear and also favoring more expansive outflow from the storm. The SAL is shown to occur in a large-scale environment that is already characteristically dry as a result of large-scale subsidence (sinking air motions). Strong surface heating and deep dry convective mixing enhance dryness at low levels, but moisten the air at midlevels. Therefore, mid-to-upper-level dryness is not a defining characteristic of the SAL, but is instead a signature of subsidence. As a result, we conclude that the SAL is not the major negative influence on hurricanes that recent studies have emphasized. It is just one of many possible influences and can be both positive and negative.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review; Volume 138; 2007-2037
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2018-06-06
    Description: Reanalyses, retrospectively analyzing observations over climatological time scales, represent a merger between satellite observations and models to provide globally continuous data and have improved over several generations. Balancing the Earth s global water and energy budgets has been a focus of research for more than two decades. Models tend to their own climate while remotely sensed observations have had varying degrees of uncertainty. This study evaluates the latest NASA reanalysis, called the Modern Era Retrospective-analysis for Research and Applications (MERRA), from a global water and energy cycles perspective. MERRA was configured to provide complete budgets in its output diagnostics, including the Incremental Analysis Update (IAU), the term that represents the observations influence on the analyzed states, alongside the physical flux terms. Precipitation in reanalyses is typically sensitive to the observational analysis. For MERRA, the global mean precipitation bias and spatial variability are more comparable to merged satellite observations (GPCP and CMAP) than previous generations of reanalyses. Ocean evaporation also has a much lower value which is comparable to observed data sets. The global energy budget shows that MERRA cloud effects may be generally weak, leading to excess shortwave radiation reaching the ocean surface. Evaluating the MERRA time series of budget terms, a significant change occurs, which does not appear to be represented in observations. In 1999, the global analysis increments of water vapor changes sign from negative to positive, and primarily lead to more oceanic precipitation. This change is coincident with the beginning of AMSU radiance assimilation. Previous and current reanalyses all exhibit some sensitivity to perturbations in the observation record, and this remains a significant research topic for reanalysis development. The effect of the changing observing system is evaluated for MERRA water and energy budget terms.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2018-06-06
    Description: The perennial ice area was drastically reduced to 38% of its climatological average in 2007 but recovered somewhat in 2008, 2009 and 2010 with the areas being 10%, 24%, and 11% higher than in 2007, respectively. However, the trends in the extent and area remain strongly negative at -12.2% and -13.5 %/decade, respectively. The thick component of the perennial ice, called multiyear ice, as detected by satellite data in the winters of 1979 to 2011 was studied and results reveal that the multiyear ice extent and area are declining at an even more rapid rate of -15.1% and -17.2 % per decade, respectively, with record low value in 2008 followed by higher values in 2009, 2010 and 2011. Such high rate in the decline of the thick component of the Arctic ice cover means a reduction in average ice thickness and an even more vulnerable perennial ice cover. The decline of the multiyear ice area from 2007 to 2008 was not as strong as that of the perennial ice area from 2006 to 2007 suggesting a strong role of second year ice melt in the latter. The sea ice cover is shown to be strongly correlated with surface temperature which is increasing at about three times global average in the Arctic but appears weakly correlated with the AO which controls the dynamics of the region. An 8 to 9-year cycle is apparent in the multiyear ice record which could explain in part the slight recovery in the last three years.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2018-06-06
    Description: Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2018-06-06
    Description: Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research - Atmospheres; Volume 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-05-25
    Description: The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68850 , Dendrochronologia (ISSN 1125-7865); 55; 119-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-05-29
    Description: The intent of this white paper is to inform WMO projects and working groups, together with the broader weather research and general meteorology and oceanography communities, regarding the use of Observing System Simulation Experiments (OSSEs). This paper is not intended to be either a critical or cursory review of past OSSE efforts. Instead, it describes some fundamental, but often neglected, aspects of OSSEs and prescribes important caveats regarding their design, validation, and application. Well designed, properly validated, and carefully conducted OSSEs can be invaluable for examining, understanding, and estimating impacts of proposed observing systems and new data assimilation techniques. Although significant imperfections and limitations should be expected, OSSEs either profoundly complement or uniquely provide both qualitative and quantitative characterizations of potential analysis of components of the earth system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN69069 , World Weather Research Programme
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-05-21
    Description: The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was selected by NASA as part of the Earth Venture-Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate better than 60 min for the baseline mission) which can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm life cycle. TROPICS comprises six Cube-Sats in three low-Earth orbital planes. Each CubeSat will host a high-performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapour profiles using three channels near the 183 GHz water vapour absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher-resolution water vapour channels), and a single channel near 205 GHz which is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale and is a major leap forward in the temporal resolution of several key parameters needed for assimilation into advanced data assimilation systems capable of utilizing rapid-update radiance or retrieval data.Launch readiness is currently projected for late 2019.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67992 , Quarterly Journal of the Royal Meteorlogical Society (ISSN 0035-9009) (e-ISSN 1477-870X); 144; s1; 16-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-05-18
    Description: Amorphous solid water (ASW) is found on icy dust grains in the interstellar medium (ISM), as well as on comets and other icy objects in the outer solar system. The optical properties of ASW are thus relevant for many astrophysical environments, but in the ultravioletvisible (UVvis), its refractive index is not well constrained. Here, we introduce a new method based on UVvis broadband interferometry to measure the wavelength dependent refractive index n() of amorphous water ice from 10 to 130 K, i.e., for different porosities, in the wavelength range of 210757 nm. We also present n() for crystalline water ice at 150 K, which allows us to compare our new method with literature data. Based on this, a method to calculate n(, ) as a function of wavelength and porosity is reported. This new approach carries much potential and is generally applicable to pure and mixed ice, both amorphous and crystalline. The astronomical and physicalchemical relevance and future potential of this work are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68160 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 875; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-05-18
    Description: The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) obtains pole-to-pole observations (i.e., full MRO orbits) of vertical profiles for visible/near-IR spectra (=0.44.0 m), which are ideally suited to identifying the composition and particle sizes of Mars ice and dust aerosols over 50100 km altitudes in the Mars mesosphere. Within the coverage limitations of the CRISM limb data set, a distinct compositional dichotomy is found in Mars mesospheric ice aerosols. CO2 ice clouds appear during the aphelion period of Mars orbit (Solar Longitudes, Ls0160) at low latitudes (20S10N) over specific longitude regions (Meridiani, Valles Marineris) and at typical altitudes of 5575 km. Apart from faint water ice hazes below 55 km, mesospheric H2O ice clouds are primarily restricted to the perihelion orbital range (Ls160 350) at northern and southern mid-to-low latitudes with less apparent longitudinal dependences. Mars mesospheric CO2 clouds are presented in CRISM spectra with a surprisingly large range of particle sizes (cross section weighted radii, Reff=0.3 to 2.2 m). The smaller particle sizes (Reff 1 m) appear concentrated near the spatial (latitude and altitude) boundaries of their global occurrences. CRISM spectra of mesospheric CO2 clouds also show evidence of iridescence, indicating very narrow particle size distributions (effective variance, Veff0.03) and so very abrupt CO2 cloud nucleation. Furthermore, these clouds are sometimes accompanied by altitude coincident peaks in 1.27 m O2 dayglow, which indicates very dry, cold regions of formation. Mesospheric water ice clouds generally exhibit small particle sizes (Reff=0.10.3 m), although larger particle sizes (Reff=0.40.7 m) appear infrequently. On average, water ice cloud particle sizes decrease with altitude over 5080 km in the perihelion mesosphere. Water ice mass appears similar in clouds over a large range of observed cloud particle sizes, with particle number densities increasing to 10 cm3 for Reff=0.2 m. Near coincident Mars Climate Sounder (MCS) temperature and aerosol profile measurements for a subset of CRISM mesospheric aerosol measurements indicate near saturation (H2O and CO2) conditions for ice clouds and distinct mesospheric temperature increases associated with mesospheric dust loading. Dayside (3 pm) mesospheric CO2 clouds with larger particle sizes (Reff 0.5 m) scatter surface infrared emission in MCS limb infrared radiances, as well as solar irradiance in the MCS solar band channel. Scattering of surface infrared emission is most strikingly presented in nighttime (3 am) MCS observations at 5560 km altitudes, indicating extensive mesospheric nighttime CO2 clouds with considerably larger particle sizes (Reff7 m). Mesospheric CO2 ice clouds present cirrus-like waveforms over extensive latitude and longitude regions (1010), as revealed in coincident Mars Color Imager (MARCI) nadir imaging. Solar tides, gravity waves, and the large orbital variation of the extended thermal structure of the Mars atmosphere influence all of these behaviors. Mesospheric dust aerosols appear infrequently over the non-global (planet encircling) dust storm era of the CRISM limb data set (20092016), and exhibit smaller particle sizes (Reff=0.20.7 m) relative to dust in the lower atmosphere. One isolated case of an aphelion (Ls=96) mesospheric dust layer with large dust particle sizes (Reff 2 m) over Syria Planum may reflect high altitude, non-local transport of dust over elevated regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68079 , Icarus (ISSN 0019-1035); 328; 246-273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019-05-18
    Description: The surface of Mars exhibits strong evidence for a widespread and long-lived cryosphere. Observations of the surface have identified phases produced by water-rock interactions, but the contribution of glaciers to the observed alteration mineralogy is unclear. To characterize the chemical alteration expected on an icy early Mars, we collected water and rock samples from terrestrial glaciated volcanics. We related geochemical measurements of meltwater to the mineralogy and chemistry of proglacial rock coatings. In these terrains, water is dominated by dissolved silica relative to other dissolved cations, particularly at mafic sites. Rock coatings associated with glacial striations on mafic boulders include a silica-rich component, indicating that silica precipitation is occurring in the subglacial environment. We propose that glacial alteration of volcanic bedrock is dominated by a combination of high rates of silica dissolution and precipitation of opaline silica. On Mars, cryosphere-driven chemical weathering could be the origin of observed silica-enriched phases.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN59509 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 15; 7371-7381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-05-18
    Description: Vertical variability in the raindrop size distribution (RSD) can disrupt the basic assumption of a constant rain profile that is customarily parameterized in radar-based quantitative precipitation estimation (QPE) techniques. This study investigates the utility of melting layer (ML) characteristics to help prescribe the RSD, in particular the mass-weighted mean diameter (Dm), of stratiform rainfall. We utilize ground-based polarimetric radar to map the ML and compare it with Dm observations from the ground upwards to the bottom of the ML. The results show definitive proof that a thickening, and to a lesser extent a lowering, of the ML causes an increase in raindrop diameter below the ML that extends to the surface. The connection between rainfall at the ground and the overlying microphysics in the column provide a means for improving radar QPE at far distances from a ground-based radar or close to the ground where satellite-based radar rainfall retrievals can be ill-defined.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN60219 , Atmosphere (e-ISSN 2073-4433); 9; 8; 319
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2018-06-05
    Description: Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 116; D21118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-06-27
    Description: Photometry from the Helios and STEREO spacecraft revealed regions of enhanced sky surface-brightness suggesting a narrow circumsolar ring of dust associated with Venus's orbit. We model this phenomenon by integrating the orbits of 10,000,000+ dust particles subject to gravitational and non-gravitational forces, considering several different kinds of plausible dust sources. We find that only particles from a hypothetical population of Venus co-orbital asteroids can produce enough signal in a narrow ring to match the observations. Previous works had suggested such objects would be dynamically unstable. However, we re-examined the stability of asteroids in 1:1 resonance with Venus and found that ~8% should survive for the age of the solar system, enough to supply the observed ring.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67865 , The Astrophysical Journal Letters,; 2; 873; L16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-06-27
    Description: Infrared excesses due to dusty disks have been observed orbiting white dwarfs with effective temperatures between 7200 and 25,000 K, suggesting that the rate of tidal disruption of minor bodies massive enough to create a coherent disk declines sharply beyond 1 Gyr after white dwarf formation. We report the discovery that the candidate white dwarf LSPM J0207+3331, via the Backyard Worlds: Planet 9 citizen science project and Keck Observatory follow-up spectroscopy, is hydrogen dominated with a luminous compact disk (L IR/L star = 14%) and an effective temperature nearly 1000 K cooler than any known white dwarf with an infrared excess. The discovery of this object places the latest time for large-scale tidal disruption events to occur at ~3 Gyr past the formation of the host white dwarf, making new demands of dynamical models for planetesimal perturbation and disruption around post-main-sequence planetary systems. Curiously, the mid-infrared photometry of the disk cannot be fully explained by a geometrically thin, optically thick dust disk as seen for other dusty white dwarfs, but requires a second ring of dust near the white dwarf's Roche radius. In the process of confirming this discovery, we found that careful measurements of WISE source positions can reveal when infrared excesses for white dwarfs are co-moving with their hosts, helping distinguish them from confusion noise.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67863 , The Astrophysical Journal Letters; 2; 872; L25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-06-27
    Description: This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman- wavelength and to wave forcings according to the multivariate ENSO index (MEI). The zonal-averaged responses are for latitudes from 60S to 60N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained by multiple linear regression (MLR) analyses of time series of H2O from the Halogen Occultation Experiment (HALOE) for July 1992 to November 2005. The solar responses change from strong negative H2O values in the upper mesosphere to very weak, positive values in the tropical lower mesosphere. Those response profiles at the low latitudes agree reasonably with published results for H2O from the Microwave Limb Sounder (MLS). The distribution of seasonal H2O amplitudes corresponds well with that for temperature and is in accord with the seasonal net circulation. In general, the responses of H2O to MEI are anti-correlated with those of temperature. H2O responses to MEI are negative in the upper mesosphere and largest in the northern hemisphere; responses in the lower mesosphere are more symmetric with latitude. The H2O trends from MLR for the lower mesosphere agree with those reported from time series of microwave observations at two ground-based network stations.
    Keywords: Meteorology and Climatology
    Type: NF1676L-28727 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 7; 3830-3843
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-06-13
    Description: Mercury is surrounded by a tenuous exosphere in which particles travel on ballistic trajectories under the influence of a combination of gravity and solar radiation pressure. The densities are so small that the surface forms the exobase and particles in the exosphere are more likely to collide with it rather than with each other. For a planet with a more substantial collision-dominated atmosphere, a population of particles that enters from below the exobase supplies the exosphere. In contrast Mercury's exosphere is supplied both by incoming sources including the solar wind (hydrogen and helium), micrometeoroids (dust), meteoroids and cornets, and by particles released from the surface through a variety of processes that include sputtering by solar wind ions, desorption by solar photons and electrons, impacts by micrometeoroids, and thermal desorption of surface materials. These source processes are balanced by loss processes, which include impact with and sticking to the surface, Jeans (or thermal) escape, ionization followed by transport along magnetic field lines, and acceleration by solar radiation pressure to escape velocity. Ground-based attempts to detect an atmosphere around Mercury before Mariner 10 first visited the planet in 1974 were unsuccessful and led only to increasingly tight upper limits, culminating in a limiting value for surface atmospheric pressure of 0.015 Pascal (Pa) determined by Fink et al. (1974).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN66712 , Mercury: The View After MESSENGER; 371-406
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-06-11
    Description: Isolating and observing the damage mechanisms associated with low-velocity impact in composites using traditional experiments can be challenging, due to damage process complexity and high strain rates. In this work, a new test method is presented that provides a means to study, in detail, the interaction of common impact damage mechanisms, namely delamination, matrix cracking, and delamination-migration, in a context less challenging than a real impact event. Carbon fiber reinforced polymer specimens containing a thin insert in one region were loaded in a biaxial-bending state of deformation. As a result, three-dimensional damage processes, involving delaminations at no more than three different interfaces that interact with one another via transverse matrix cracks, were observed and documented using ultrasonic testing and X-ray computed tomography. The data generated by the test is intended for use in numerical model validation. Simulations of this test are included in Part II of this paper.
    Keywords: Composite Materials
    Type: NF1676L-26155 , Composites Part A: Applied Science and Manufacturing (ISSN 1359-835X); 103; 314-326
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-08-05
    Description: The Mars Reconnaissance Orbiter (MRO) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low-altitude science orbit. The spacecraft has been on station in its 255 x 320 km, sun-synchronous (~3 am-pm), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0909 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-05
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0864 , MEPAG Meeting; Mar 02, 2016 - Mar 03, 2016; Silver Spring, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-08-03
    Description: A paradoxical negative greenhouse effect has been found over the Antarctic Plateau, indicating that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the effect varies seasonally and spectrally. A previous explanation attributes this effect solely to stratospheric CO2; however, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A recently developed principle-based concept is used to provide a complete account of the Antarctic Plateaus negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption. Our findings indicate that unique climatological conditions over the Antarctic Plateaua strong surface-based temperature inversion and scarcity of free tropospheric water vaporcause the negative greenhouse effect.
    Keywords: Meteorology and Climatology
    Type: NF1676L-27576 , npj Climate and Atmospheric Science (e-ISSN 2397-3722); 1; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-02
    Description: GPM (Global Precipitation Measurement) Products. Includes information on these two programs that integrate GPM data: Multi-Radar/Multi-Sensor (MRMS) and Integrated Multi-satellitE Retrievals for GPM (IMERG).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71369 , Weather and Air Quality Forecasting Applications Workshop; Jul 22, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-31
    Description: Phenolic Impregnated Carbon Ablator (PICA) is a low-density ablator that has been used as the planetary entry heatshield for several NASA missions since 1999. Due to the obsolescence of the input fiber source, new PICA materials were developed using Lyocell, a domestic rayon fiber source. Results are presented from this effort. Manufacturing included fiber conversion, fabrication of tile component and near net shaped heatshield preforms, and conversion to PICA materials. Thermal, mechanical, and representative environment arc-jet testing have been conducted. Initial testing indicates comparable performance with respect to heritage PICA material, and likely "drop-in" replacement for future NASA mission needs.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN70190 , National Space and Missile Materials Symposium (NSMMS); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-27
    Description: Statistical measures of patterns (textures) in surface roughness are used to quantitatively differentiate regional geomorphic units on the Moon and Mars (e.g. cratered highlands, volcanic terrains and planar lowlands). The existence of vastly distinct crustal types on Mars and the Moon is well established [e.g. 1, 2, 3, & 4]. Here, a new methodology developed for differentiating terrestrial volcanic deposits using ~1 m resolution topography data [5], is tested on two global data sets where roughness pixels are much larger (1/4 of a degree).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CP.00118.2012 , Lunar and Planetary Science 2011; 7011 Nar, 2911; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-27
    Description: The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AAS 11-478 , M11-0458 , M11-0894 , M11-0895 , 2011 AAS/AIAA Astrodynamics Specialists Conference; 31 Jul. 4 Aug. 2011; Girdwood, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-27
    Description: In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 41st Lunar and Planetary Science Conference; 28 Feb. 5 Mar. 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-27
    Description: Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
    Keywords: Composite Materials
    Type: NF1676L-16376 , ASME 2013 Conference on Smart Material, Adaptive Structures and Intelligent Systems; 16-18 Sept. 2013; Snowbird, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-27
    Description: Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M12-2125 , 12th International Symposium on Materials in the Space Environment; 24-28 Sept. 20112; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-27
    Description: We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN5365 , Concepts and Approaches for Mars Exploration; 12 Hyb, 2912; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-27
    Description: The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.7383.2012 , Aura Science Team Meeting; 1--3 Oct. 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Composite Materials
    Type: JSC-CN-26776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-27
    Description: AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6383.2012 , GSFC.CP.6786.2012 , GSFC.CPR.6944.2012 , SPIE Optics + Photonics 2012 Conference; Aug 08, 2012 - Aug 19, 2012; San Diego, CA; United States|SPIE Optics and Photonics 2012; 16-Dec; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-06-26
    Description: Found on all terrestrial planets, wrinkle ridges are anticlines formed by thrust faulting and folding resulting from crustal shortening. The MErcury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft's orbital phase returned high resolution images and topographic data of the previously unimaged northern high latitudes of Mercury where there are large expanses of smooth plains deformed by wrinkle ridges. Concurrently, the Lunar Reconnaissance Orbiter (LRO) is obtaining high resolution images and topographic data covering lunar mare wrinkle ridges. These data allow quantitative comparison of the scale of wrinkle ridges in smooth plains volcanic units on Mercury with mare wrinkle ridges. We evaluate the topographic relief of 300 wrinkle ridges within and outside of mascon basins on the Moon and Mercury. Measured wrinkle ridges range from ~112 to 776 m in relief with a mean of ~350 m (median = ~340 m, n = 150) on Mercury and from ~47 to 678 m in relief with a mean of ~198 m (median = ~168 m, n = 150) on the Moon. Wrinkle ridges on Mercury thus are approximately twice as large in mean relief compared to their counterparts on the Moon. The larger scale of Mercury's wrinkle ridges suggests that their formation can be attributed, in part, to global contraction. As global contraction on the Moon is estimated to be an order of magnitude smaller than on Mercury, the smaller scale of lunar wrinkle ridges suggests they most likely form primarily by load induced subsidence of the mare basalt. Wrinkle ridges located in lunar mascon basins and in the Caloris mascon on Mercury are not statistically significantly different in relief than ridges in non-mascon regions, suggesting comparable levels of contractional strain. The fact that mascon basins do not host wrinkle ridges with greater structural relief relative to non-mascon units may indicate the critical role lithospheric thickness plays in controlling subsidence and contraction of thick volcanic sequences on the Moon and Mercury.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70101 , Icarus (e-ISSN 0019-1035); 331; 226-237
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-06-25
    Description: A high-fidelity approach for simulating the aerothermodynamic environments of meteor entries was developed, which allows the commonly assumed heat transfer coefficient of 0.1 to be assessed. This model uses chemically reacting computational fluid dynamics (CFD), coupled with radiation transport and surface ablation. Coupled radiation accounts for the impact of radiation on the flowfield energy equations, while coupled ablation explicitly models the injection of ablation products within the flowfield and radiation simulations. For a meteoroid with a velocity of 20 km/s, coupled radiation is shown to reduce the stagnation point radiative heating by over 60%. The impact of coupled ablation (with coupled radiation) is shown to provide at least a 70% reduction in the radiative heating relative to cases with only coupled radiation. This large reduction is partially the result of the low ionization energies of meteoric ablation products relative to air species. The low ionization energies of ablation products, such as Mg and Ca, provide strong photoionization and atomic line absorption in regions of the spectrum that air species do not. MgO and CaO are also shown to provide significant absorption. Turbulence is shown to impact the distribution of ablation products through the shock-layer, which results in up to a 100% increase in the radiative heating downstream of the stagnation point. To create a database of heat transfer coefficients, the developed model was applied to a range of cases. This database considered velocities ranging from 14 to 20 km/s, altitudes ranging from 20 to 50 km, and nose radii ranging from 1 to 100 m. The heat transfer coefficients from these simulations are below 0.045 for the range of cases, for both laminar and turbulent, which is significantly lower than the canonical value of 0:1. When the new heat transfer model is applied to a Tunguska-like 15 Mt entry, the effect of the new model is to lower the height of burst by up to 2 km, depending on assumed entry angle. This, in turn, results in a significantly larger ground damage footprint than when the canonical heating assumption is used.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NF1676L-28086 , Icarus (ISSN 0019-1035); 309; 25-44
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-06-25
    Description: We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (+/-20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new 10 CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1- uncertainty of 2043-2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039-2050), and at Northern Hemisphere mid-latitudes in 2032 (2020-2044). In the Polar Regions, the return dates are 2060 (2055-2066) in the Antarctic in October and 2034 (2025-2043) in the Arctic in March. The earlier return dates in the NH reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5-17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, at around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10-20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ~15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ~15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model-model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more important to have multi-member (at least 3) ensembles for each scenario from every established participating model, rather than a large number of individual models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN61684 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 11; 8409-8438
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-06-25
    Description: One of the main goals of the Tropical Composition, Cloud and Climate Coupling Experiment (TC(sup 4)) during July and August 2007 was to gain a better understanding of the formation and life cycle of cirrus clouds in the upper troposphere and lower stratosphere and how their presence affects the exchange of water vapor between these layers. Additionally, it is important to compare in situ measurements taken by aircraft instruments with products derived from satellite observations and find a meaningful way to interpret the results. In this study, cloud properties derived using radiance measurements from the Geostationary Operational Environmental Satellite (GOES) imagers are compared to similar quantities from aircraft in situ observations and are examined for meaningful relationships. A new method using dual \angle satellite measurements is used to derive the ice water content (IWC) for the top portion of deep convective clouds and anvils. The results show the in situ and remotely sensed mean microphysical properties agree to within approx.10 microns in the top few kilometers of thick anvils despite the vastly different temporal and spatial resolutions of the aircraft and satellite instruments. Mean particle size and IWC are shown to increase with decreasing altitude in the top few kilometers of the cloud. Given these relationships, it may be possible to derive parameterizations for effective particle size and IWC as a function of altitude from satellite observations
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN2945 , Journal of Geophysical Research - Atmospheres (ISSN 0148-0227); 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-06-22
    Description: Some aerosols absorb solar radiation, altering cloud properties, atmospheric stability and circulation dynamics, and the water cycle. Here we review recent progress towards global and regional constraints on aerosol absorption from observations and modeling, considering physical properties and combined approaches crucial for understanding the total (natural and anthropogenic) influences of aerosols on the climate. We emphasize developments in black carbon absorption alteration due to coating and ageing, brown carbon characterization, dust composition, absorbing aerosol above cloud, source modeling and size distributions, and validation of high-resolution modeling against a range of observations. Both observations and modeling of total aerosol absorption, absorbing aerosol optical depths and single scattering albedo, as well as the vertical distribution of atmospheric absorption, still suffer from uncertainties and unknowns significant for climate applications. We offer a roadmap of developments needed to bring the field substantially forward.
    Keywords: Meteorology and Climatology
    Type: NF1676L-29026 , Current Climate Change Reports (e-ISSN 2198-6061); 4; 2; 65-83
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-06-22
    Description: Recent studies have found that flight through deep convective storms and ingestion of high mass concentrations of ice crystals, also known as high ice water content (HIWC), into aircraft engines can adversely impact aircraft engine performance. These aircraft engine icing events caused by HIWC have been documented during flight in weak reflectivity regions near convective updraft regions that do not appear threatening in onboard weather radar data. Three airborne field campaigns were conducted in 2014 and 2015 to better understand how HIWC is distributed in deep convection, both as a function of altitude and proximity to convective updraft regions, and to facilitate development of new methods for detecting HIWC conditions, in addition to many other research and regulatory goals. This paper describes a prototype method for detecting HIWC conditions using geostationary (GEO) satellite imager data coupled with in situ total water content (TWC) observations collected during the flight campaigns. Three satellite-derived parameters were determined to be most useful for determining HIWC probability: 1) the horizontal proximity of the aircraft to the nearest overshooting convective updraft or textured anvil cloud, 2) tropopause-relative infrared brightness temperature, and 3) daytime-only cloud optical depth. Statistical fits between collocated TWC and GEO satellite parameters were used to determine the membership functions for the fuzzy logic derivation of HIWC probability. The products were demonstrated using data from several campaign flights and validated using a subset of the satellite-aircraft collocation database. The daytime HIWC probability was found to agree quite well with TWC time trends and identified extreme TWC events with high probability. Discrimination of HIWC was more challenging at night with IR only information. The products show the greatest capability for discriminating TWC 0.5 g m(exp -3). Product validation remains challenging due to vertical TWC uncertainties and the typically coarse spatio-temporal resolution of the GEO data.
    Keywords: Meteorology and Climatology
    Type: NF1676L-28430 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 3; 1615-1637
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-06-22
    Description: The influence of monomer functionality on the mechanical properties of epoxies is studied using Molecular Dynamics (MD) with the Reax Force Field (ReaxFF). From deformation simulations, the Youngs modulus, yield point, and Poissons ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Youngs moduli. Therefore, ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies.
    Keywords: Composite Materials
    Type: NF1676L-27359 , Journal of Polymer Science Part B: Polymer Physics (ISSN 0887-6266) (e-ISSN 1099-0488); 56; 3; 255-264
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-06-22
    Description: Unusually deep wintertime cirrus clouds at altitudes exceeding 13.0 km above mean sea level (AMSL) were observed at Fairbanks, Alaska (64.86 N, 147.85 W, 0.300 km AMSL) over a twelve hour period, beginning near 1200 UTC 1 January 2017. Such elevated cirrus cloud heights are far more typical of warmer latitudes, and in many instances associated with convective outflow, as opposed to early winter over the sub-Arctic on a day featuring barely four hours of local sunlight. In any other context, they could have been confused for polar stratospheric clouds, which are a more common regional/seasonal occurrence at elevated heights. The mechanics of this unique event are documented, including the thermodynamic and synoptic environments that nurtured and sustained cloud formation. The impact of an unusually deep and broad anticyclone over the wintertime Alaskan sub-Arctic is described. Comparisons with climatological datasets illustrate how unusual these events are regionally and seasonally. The event proves a relatively uncharacteristic confluence of circulatory and dynamic features over the wintertime Alaskan sub-Arctic. Our goal is to document the occurrence of this event within the context of a growing understanding for how cirrus cloud incidence and their physical characteristics vary globally. Cirrus clouds are unique within the earth-atmosphere system. Formed by the freezing of submicron haze particles in the upper troposphere, they are the last primary cloud mechanism contributing to the large scale exchange of the terrestrial water cycle. Accordingly, cirrus clouds are observed globally at all times of the year, exhibiting an instantaneous global occurrence rate near 40%. Radiatively, however, they are even more distinct. During daylight hours, cirrus are the only cloud genus that can induce either positive or negative top-of-the-atmosphere forcing (i.e., heating or cooling; all other clouds induce a negative sunlit cooling effect). Though diffuse compared with low-level liquid water clouds, their significance radiatively and thus within climate, is borne out of their overwhelming relative occurrence rate. This emerging recognition makes understanding cirrus cloud occurrence and physical cloud properties an innovative and exciting element of current climate study. The observations described here contribute to this knowledge, and the apparent potential for anomalous wintertime radiative characteristics exhibited along sub-Arctic latitudes.
    Keywords: Meteorology and Climatology
    Type: NF1676L-27475 , Bulletin of the American Meteorological Society (ISSN 0003-0007) (e-ISSN 1520-0477); 99; 1; 27–32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-06-21
    Description: The growing use of composite materials for aerospace applications has resulted in a need for quantitative nondestructive evaluation (NDE) methods appropriate for characterizing damage in composite components. NDE simulation tools, such as ultrasound models, can aid in enabling optimized inspection methods and establishing confidence in inspection capabilities. In this paper, a mathematical approach using the Lebedev Finite Difference (LFD) method is presented for ultrasonic wave simulation in composites. Boundary condition equations for implementing stress-free boundaries (necessary for simulation of NDE scenarios) are also presented. Quantitative comparisons between LFD guided wave ultrasound simulation results, experimental guided wave data, and dispersion curves are described. Additionally, stability tests are performed to establish the LFD code behavior in the presence of stress-free boundaries and low-symmetry anisotropy. Results show that LFD is an appropriate approach for simulating ultrasound in anisotropic composite materials and that the method is stable in the presence of low-symmetry anisotropy and stress-free boundaries. Studies presented in this paper include guided wave simulation in hexagonal, monoclinic, triclinic and layered composite laminates.
    Keywords: Composite Materials
    Type: NF1676L-28065 , Ultrasonics (ISSN 0041-624X) (e-ISSN 1874-9968); 86; 28-40
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-06-21
    Description: Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools.
    Keywords: Composite Materials
    Type: NF1676L-27377 , Ultrasonics (ISSN 0041-624X) (e-ISSN 1874-9968); 84; 187-200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-06-21
    Description: Adhesive bonding of composite materials requires reliable monitoring and detection of surface contaminants as part of a vigorous quality control process to assure robust and durable bonded structures. Surface treatment and effective monitoring prior to bonding are essential in order to obtain a surface which is free from contaminants that may lead to inferior bond quality. In this study, the focus is to advance the laser induced breakdown spectroscopy (LIBS) technique by using pulse energies below 100 J (LIBS) for the detection of low levels of silicone contaminants in carbon fiber reinforced polymer (CFRP) composites. Various CFRP surface conditions were investigated by LIBS using 10 ps, 355 nm laser pulses with pulse energies below 30 J. Time-resolved analysis was conducted to optimize the gate delay and gate width for the detection of the C I emission line at 247.9 nm to monitor the epoxy resin matrix of CFRP composites and the Si I emission line at 288.2 nm for detection of silicone contaminants in CFRP. To study the surface sensitivity to silicone contamination, CFRP surfaces were coated with polydimethylsiloxane (PDMS), the active ingredient in many mold release agents. The presence of PDMS was studied by inspecting the Si I emission lines at 251.6 nm and 288.2 nm. The measured PDMS areal densities ranged from 0.15 to 2 g/cm(sup 2). LIBS measurements were performed before and after laser surface ablation. The results demonstrate the successful detection of PDMS thin layers on CFRP using picosecond LIBS.
    Keywords: Composite Materials
    Type: NF1676L-27086 , Spectrochimica Acta Part B: Atomic Spectroscopy (ISSN 0584-8547) (e-ISSN 1873-3565); 140; 5-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-06-20
    Description: This document describes the trajectory and atmosphere reconstruction of the Mars Phoenix Entry, Descent, and Landing using the New Statistical Trajectory Estimation Program. The approach utilizes a Kalman filter to blend inertial measurement unit data with initial conditions and radar altimetry to obtain the inertial trajectory of the entry vehicle. The nominal aerodynamic database is then used in combination with the sensed accelerations to obtain estimates of the atmosphere-relative state. The reconstructed atmosphere pro le is then blended with pre-flight models to construct an estimate of the as-flown atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM–2019–220282 , L-21028 , NF1676L-33202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...