ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-13
    Description: Mercury is surrounded by a tenuous exosphere in which particles travel on ballistic trajectories under the influence of a combination of gravity and solar radiation pressure. The densities are so small that the surface forms the exobase and particles in the exosphere are more likely to collide with it rather than with each other. For a planet with a more substantial collision-dominated atmosphere, a population of particles that enters from below the exobase supplies the exosphere. In contrast Mercury's exosphere is supplied both by incoming sources including the solar wind (hydrogen and helium), micrometeoroids (dust), meteoroids and cornets, and by particles released from the surface through a variety of processes that include sputtering by solar wind ions, desorption by solar photons and electrons, impacts by micrometeoroids, and thermal desorption of surface materials. These source processes are balanced by loss processes, which include impact with and sticking to the surface, Jeans (or thermal) escape, ionization followed by transport along magnetic field lines, and acceleration by solar radiation pressure to escape velocity. Ground-based attempts to detect an atmosphere around Mercury before Mariner 10 first visited the planet in 1974 were unsuccessful and led only to increasingly tight upper limits, culminating in a limiting value for surface atmospheric pressure of 0.015 Pascal (Pa) determined by Fink et al. (1974).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN66712 , Mercury: The View After MESSENGER; 371-406
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-14
    Description: The observations of Mercury's exosphere described in Chapter 14 have led to many modeling efforts. Early models were based upon a few simple assumptions and primarily explored the dynamics of sodium atoms pushed anti-sunward by radiation pressure [Ip, 1986; Smyth and Marconi, 1995]. More recently, these early models have been superseded by simulations with an increasing number of interdependent source processes [Leblanc and Johnson, 2003; Mura et al., 2009; Leblanc and Johnson, 2010; Burger et al., 2010, 2012, 2014]. We briefly summarize the source and loss processes before describing the published exosphere models, first for the three species observed almost continuously during the MESSENGER mission by the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition2Spectrometer (MASCS), (Na, Mg and Ca), and then more briefly for other species that have been observed or for which new upper limits have been derived.15.1 Overview of Source and Loss Processes15.1.1 Source Processes15.1.1.1 Thermal DesorptionThermal desorption (or thermal evaporation) is the release of adsorbed atoms from a surface via heating. Thermal desorption is related to the binding energy of the atom on the surface and the vibrational frequency of the bound atom, such that the rate of thermal desorption is given by, (15.1)where TD,
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN66670 , Mercury: The View after MESSENGER; 407-429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),
    Keywords: Space Sciences (General)
    Type: GSFC.ABS.7429.2012 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7441 , Journal of Geophysical Research; 117; E-12; E00L11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Ultraviolet and Visible Spectrometer aboard the MESSENGER spacecraft has been making routine observations of Mercury's exosphere since March 29, 2011. Correlations of the spatial distributions of Ca, Mg, and Na with MESSENGER magnetic field and energetic particle distribution data provide insight into the processes that populate the neutral exosphere
    Keywords: Astrophysics
    Type: GSFC.ABS.5253.2011 , EPSC Abstracts; 6; 266|EPSC-DPS Joint Meeting (EPSC-DPS2011); Oct 02, 2011 - Oct 07, 2011; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4599.2011 , Science; 329; 672-675
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4592.2011 , Icarus (ISSN 0019-1035); 209; 1; 75-87
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury's sodium exosphere, The distribution of sodium in Mercury's exosphere during the period January 12-15. 2008. was mapped using the McMath-Pierce solar telescope with the 5" X 5" image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury's anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD. but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization, We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 x 10(exp 6) sq cm/s, The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4590.2011 , Icarus; 211; 1; 21-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN18236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The Mercury Atmospheric and Surface Composition Spectrometer on the MESSENGER spacecraft has observed calcium emission in Mercury's exosphere on a near-daily basis since March 2011. During MESSENGER's primary and first extended missions (March 2011 - March 2013) the dayside calcium exosphere was measured over eight Mercury years. We have simulated these data with a Monte Carlo model of exospheric source processes to show that (a) there is a persistent source of energetic calcium located in the dawn equatorial region, (b) there is a seasonal dependence in the calcium source rate, and (c) there are no obvious year-to-year variations in the near-surface dayside calcium exosphere. Although the precise mechanism responsible for ejecting the calcium has not yet been determined, the most likely process is the dissociation of Ca-bearing molecules produced in micrometeoroid impact plumes to form energetic, escaping calcium atoms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN14891 , GSFC-E-DAA-TN18233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...