ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Catalysis
  • American Association for the Advancement of Science (AAAS)  (69)
  • Cell Press  (1)
  • Institute of Physics
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2020-2024  (1)
  • 2005-2009  (69)
  • 1940-1944
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in LeClerc, H., Tompsett, G., Paulsen, A., McKenna, A., Niles, S., Reddy, C., Nelson, R., Cheng, F., Teixeira, A., & Timko, M. Hydroxyapatite catalyzed hydrothermal liquefaction transforms food waste from an environmental liability to renewable fuel. IScience, 25(9), (2022): 104916, https://doi.org/10.1016/j.isci.2022.104916.
    Description: Food waste is an abundant and inexpensive resource for the production of renewable fuels. Biocrude yields obtained from hydrothermal liquefaction (HTL) of food waste can be boosted using hydroxyapatite (HAP) as an inexpensive and abundant catalyst. Combining HAP with an inexpensive homogeneous base increased biocrude yield from 14 ± 1 to 37 ± 3%, resulting in the recovery of 49 ± 2% of the energy contained in the food waste feed. Detailed product analysis revealed the importance of fatty-acid oligomerization during biocrude formation, highlighting the role of acid-base catalysts in promoting condensation reactions. Economic and environmental analysis found that the new technology has the potential to reduce US greenhouse gas emissions by 2.6% while producing renewable diesel with a minimum fuel selling price of $1.06/GGE. HAP can play a role in transforming food waste from a liability to a renewable fuel.
    Description: This work was funded by the DOE Bioenergy Technology Office (DE-EE0008513), a DOE DBIR (DE-SC0015784) and the MassCEC. The authors thank WenWen Yao, Department of Environmental Science at WPI, for TOC analysis, Mainstream Engineering for heating value characterization of the oil and solid samples, Wei Fan for assistance in obtaining SEM images and, Julia Martin and Ronald Grimm for their assistance in collecting XPS data, and Jeffrey R. Page for his assistance with oil upgrading and analysis. HOL was partially funded for this work by NSF Graduate Research Fellowship award number 2038257. A portion of this work was performed at the National High Magnetic Field Laboratory Ion Cyclotron Resonance user facility, which is supported by the NSF Division of Materials Research and Division of Chemistry through DMR 16-44779 and the State of Florida.
    Keywords: Chemistry ; Chemical engineering ; Catalysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Albrecht, Martin -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):532-3. doi: 10.1126/science.1181553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland. martin.albrecht@ucd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900887" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Heterocyclic Compounds/chemical synthesis/*chemistry/isolation & purification ; Iron/*chemistry ; Ligands ; Methane/*analogs & derivatives/chemical synthesis/isolation & purification ; Molecular Structure ; Organometallic Compounds/*chemical synthesis/*chemistry ; Physicochemical Processes ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-04-25
    Description: Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hothorn, Michael -- Neumann, Heinz -- Lenherr, Esther D -- Wehner, Mark -- Rybin, Vladimir -- Hassa, Paul O -- Uttenweiler, Andreas -- Reinhardt, Monique -- Schmidt, Andrea -- Seiler, Jeanette -- Ladurner, Andreas G -- Herrmann, Christian -- Scheffzek, Klaus -- Mayer, Andreas -- G0500367/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):513-6. doi: 10.1126/science.1168120.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19390046" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Transport ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Membrane Proteins/*chemistry/metabolism ; Models, Molecular ; Phosphotransferases/*chemistry/metabolism ; Polyphosphates/*chemistry/metabolism ; Protein Conformation ; Saccharomyces cerevisiae/enzymology/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-10-17
    Description: Elongation factor G (EF-G) is a guanosine triphosphatase (GTPase) that plays a crucial role in the translocation of transfer RNAs (tRNAs) and messenger RNA (mRNA) during translation by the ribosome. We report a crystal structure refined to 3.6 angstrom resolution of the ribosome trapped with EF-G in the posttranslocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the guanosine triphosphate and guanosine diphosphate forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with the tRNA at the peptidyl-tRNA binding site (P site) and with mRNA shed light on the role of these elements in EF-G function. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Yong-Gui -- Selmer, Maria -- Dunham, Christine M -- Weixlbaumer, Albert -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):694-9. doi: 10.1126/science.1179709.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833919" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Catalysis ; Crystallography, X-Ray ; Fusidic Acid/chemistry/pharmacology ; Models, Molecular ; Peptide Elongation Factor G/*chemistry ; Protein Biosynthesis ; Protein Conformation ; Protein Structure, Tertiary ; Protein Synthesis Inhibitors/chemistry/pharmacology ; RNA, Bacterial/chemistry ; RNA, Messenger/chemistry ; RNA, Transfer/chemistry ; Ribosomes/*chemistry ; Thermus thermophilus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Regalbuto, John R -- New York, N.Y. -- Science. 2009 Aug 14;325(5942):822-4. doi: 10.1126/science.1174581.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Catalysis and Biocatalysis, National Science Foundation, Arlington, VA 22230, USA. jregalbu@nsf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19679801" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/genetics/metabolism ; *Biomass ; Biotechnology ; Catalysis ; *Cellulose/chemistry/metabolism ; *Energy-Generating Resources/economics ; Ethanol/metabolism ; Fermentation ; Gasoline ; Genetic Engineering ; *Hydrocarbons/chemistry/metabolism ; *Plants/metabolism ; Wood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-11
    Description: Compared with the enormous arsenal of catalysts used to produce organic compounds, complementary species that are able to mediate sophisticated organometallic transformations are virtually nonexistent. We found that stable N-heterocyclic carbenes (NHCs) can mediate unusual organometallic transformations in solution at room temperature. Depending on the choice of NHC initiator, stoichiometric or catalytic reactions of bis(cyclooctatetraene)iron [Fe(COT)2] ensue. The stoichiometric reaction leads to the isolation of a previously unknown mixed-valent species, featuring distinct and directly bonded Fe(0) and Fe(I) centers. In the catalytic process, three iron atoms are fused to afford the tri-iron cluster Fe3(COT)3, which is a hydrocarbon analog of Dewar's classic Fe3(CO)12 complex. The key step in both of these processes is proposed to involve the NHC's ability to induce metal-metal bond formation. These NHC-mediated reactions provide a foundation on which to develop future organometallic transformations that are catalyzed by organic species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841742/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841742/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lavallo, Vincent -- Grubbs, Robert H -- 5R01 GM31332/GM/NIGMS NIH HHS/ -- F32 GM085916/GM/NIGMS NIH HHS/ -- F32 GM085916-01/GM/NIGMS NIH HHS/ -- F32 GM085916-02/GM/NIGMS NIH HHS/ -- R01 GM031332/GM/NIGMS NIH HHS/ -- R01 GM031332-25/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):559-62. doi: 10.1126/science.1178919.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900894" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Crystallography, X-Ray ; Ferrous Compounds/*chemical synthesis/chemistry ; Heterocyclic Compounds/*chemistry ; Iron/*chemistry ; Ligands ; Methane/*analogs & derivatives/chemistry ; Models, Chemical ; Molecular Structure ; Organometallic Compounds/*chemical synthesis/chemistry ; Physicochemical Processes ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-05-16
    Description: Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Byungkwon -- Jiang, Majiong -- Camargo, Pedro H C -- Cho, Eun Chul -- Tao, Jing -- Lu, Xianmao -- Zhu, Yimei -- Xia, Younan -- New York, N.Y. -- Science. 2009 Jun 5;324(5932):1302-5. doi: 10.1126/science.1170377. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443738" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Electrochemistry ; Metal Nanoparticles/*chemistry ; Oxidation-Reduction ; Oxygen/*chemistry ; Palladium/*chemistry ; Platinum/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maleczka, Robert E Jr -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1572-3. doi: 10.1126/science.1172298.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. maleczka@chemistry.msu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299610" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/*chemistry ; Benzene/*chemistry ; Carbon/chemistry ; Catalysis ; Chemical Phenomena ; Copper/*chemistry ; Hydrogen/chemistry ; Isomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-08-15
    Description: Despite increasing pharmaceutical importance, fluorinated aromatic organic molecules remain difficult to synthesize. Present methods require either harsh reaction conditions or highly specialized reagents, making the preparation of complex fluoroarenes challenging. Thus, the development of general methods for their preparation that overcome the limitations of those techniques currently in use is of great interest. We have prepared [LPd(II)Ar(F)] complexes, where L is a biaryl monophosphine ligand and Ar is an aryl group, and identified conditions under which reductive elimination occurs to form an Ar-F bond. On the basis of these results, we have developed a catalytic process that converts aryl bromides and aryl triflates into the corresponding fluorinated arenes by using simple fluoride salts. We expect this method to allow the introduction of fluorine atoms into advanced, highly functionalized intermediates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watson, Donald A -- Su, Mingjuan -- Teverovskiy, Georgiy -- Zhang, Yong -- Garcia-Fortanet, Jorge -- Kinzel, Tom -- Buchwald, Stephen L -- GM46059/GM/NIGMS NIH HHS/ -- R01 GM046059/GM/NIGMS NIH HHS/ -- R37 GM046059/GM/NIGMS NIH HHS/ -- R37 GM046059-18/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1661-4. doi: 10.1126/science.1178239. Epub 2009 Aug 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19679769" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Contrast Media ; Fluorides/*chemical synthesis/*chemistry ; Fluorine/*chemistry ; Fluorine Radioisotopes ; Hydrocarbons, Fluorinated/*chemical synthesis/*chemistry ; Isomerism ; Ligands ; Mesylates/*chemistry ; Molecular Structure ; Oxidation-Reduction ; Palladium/*chemistry ; Physicochemical Processes ; Positron-Emission Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-21
    Description: For over a century, chemical transformations of benzene derivatives have been guided by the high selectivity for electrophilic attack at the ortho/para positions in electron-rich substrates and at the meta position in electron-deficient molecules. We have developed a copper-catalyzed arylation reaction that, in contrast, selectively substitutes phenyl electrophiles at the aromatic carbon-hydrogen sites meta to an amido substituent. This previously elusive class of transformation is applicable to a broad range of aromatic compounds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phipps, Robert J -- Gaunt, Matthew J -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1593-7. doi: 10.1126/science.1169975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299616" target="_blank"〉PubMed〈/a〉
    Keywords: Acetanilides/*chemistry ; Anilides/*chemistry ; Benzene/*chemistry ; Carbon/*chemistry ; Catalysis ; Chemical Phenomena ; Copper/*chemistry ; Hydrogen/*chemistry ; Isomerism ; Molecular Structure ; Oxidation-Reduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-01-31
    Description: Populations of certain unicellular organisms, such as suspensions of yeast in nutrient solutions, undergo transitions to coordinated activity with increasing cell density. The collective behavior is believed to arise through communication by chemical signaling via the extracellular solution. We studied large, heterogeneous populations of discrete chemical oscillators (approximately 100,000) with well-defined kinetics to characterize two different types of density-dependent transitions to synchronized oscillatory behavior. For different chemical exchange rates between the oscillators and the surrounding solution, increasing oscillator density led to (i) the gradual synchronization of oscillatory activity, or (ii) the sudden "switching on" of synchronized oscillatory activity. We analyze the roles of oscillator density and exchange rate of signaling species in these transitions with a mathematical model of the interacting chemical oscillators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, Annette F -- Tinsley, Mark R -- Wang, Fang -- Huang, Zhaoyang -- Showalter, Kenneth -- New York, N.Y. -- Science. 2009 Jan 30;323(5914):614-7. doi: 10.1126/science.1166253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179525" target="_blank"〉PubMed〈/a〉
    Keywords: Bromine/*chemistry ; Bromine Compounds/*chemistry ; Catalysis ; Electrochemical Techniques ; Kinetics ; Microspheres ; Models, Chemical ; Oscillometry ; Quorum Sensing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gouverneur, Veronique -- New York, N.Y. -- Science. 2009 Sep 25;325(5948):1630-1. doi: 10.1126/science.1179671.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, UK. veronique.gouverneur@chem.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19779178" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Fluorides/*chemical synthesis/*chemistry ; Fluorine/*chemistry ; Fluorine Radioisotopes ; Hydrocarbons, Fluorinated/*chemical synthesis/chemistry ; Ligands ; Palladium/*chemistry ; Positron-Emission Tomography
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-12-08
    Description: The Mizoroki-Heck reaction, which couples aryl halides with olefins, has been widely used to stitch together the carbogenic cores of numerous complex organic molecules. Given that the position-selective introduction of a halide onto an arene is not always straightforward, direct olefination of aryl carbon-hydrogen (C-H) bonds would obviate the inefficiencies associated with generating halide precursors or their equivalents. However, methods for carrying out such a reaction have suffered from narrow substrate scope and low positional selectivity. We report an operationally simple, atom-economical, carboxylate-directed Pd(II)-catalyzed C-H olefination reaction with phenylacetic acid and 3-phenylpropionic acid substrates, using oxygen at atmospheric pressure as the oxidant. The positional selectivity can be tuned by introducing amino acid derivatives as ligands. We demonstrate the versatility of the method through direct elaboration of commercial drug scaffolds and efficient syntheses of 2-tetralone and naphthoic acid natural product cores.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879878/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879878/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Dong-Hui -- Engle, Keary M -- Shi, Bing-Feng -- Yu, Jin-Quan -- 1 R01 GM084019-02/GM/NIGMS NIH HHS/ -- R01 GM084019/GM/NIGMS NIH HHS/ -- R01 GM084019-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 15;327(5963):315-9. doi: 10.1126/science.1182512. Epub 2009 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965380" target="_blank"〉PubMed〈/a〉
    Keywords: Alkenes/*chemistry ; Amino Acids/chemistry ; Carbon/*chemistry ; Carboxylic Acids/*chemical synthesis/chemistry ; Catalysis ; Hydrogen/*chemistry ; Ligands ; Molecular Structure ; Naphthalenes/*chemical synthesis/chemistry ; Oxidants/chemistry ; Oxygen/chemistry ; Palladium/chemistry ; Phenylacetates/chemistry ; Phenylpropionates/chemistry ; Physicochemical Processes ; Tetralones/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2008-04-05
    Description: Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toor, Navtej -- Keating, Kevin S -- Taylor, Sean D -- Pyle, Anna Marie -- GM50313/GM/NIGMS NIH HHS/ -- R01 GM050313/GM/NIGMS NIH HHS/ -- T15 LM07056/LM/NLM NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Apr 4;320(5872):77-82. doi: 10.1126/science.1153803.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, Bass Building, New Haven, CT 06511, USA. navtej.toor@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18388288" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacillaceae/chemistry/*genetics ; Base Pairing ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Evolution, Molecular ; *Introns ; Ligands ; Magnesium/chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Phylogeny ; *RNA Splicing ; RNA, Bacterial/*chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Spliceosomes/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2008-09-20
    Description: It is imperative to develop more efficient processes for conversion of biomass to liquid fuels, such that the cost of these fuels would be competitive with the cost of fuels derived from petroleum. We report a catalytic approach for the conversion of carbohydrates to specific classes of hydrocarbons for use as liquid transportation fuels, based on the integration of several flow reactors operated in a cascade mode, where the effluent from the one reactor is simply fed to the next reactor. This approach can be tuned for production of branched hydrocarbons and aromatic compounds in gasoline, or longer-chain, less highly branched hydrocarbons in diesel and jet fuels. The liquid organic effluent from the first flow reactor contains monofunctional compounds, such as alcohols, ketones, carboxylic acids, and heterocycles, that can also be used to provide reactive intermediates for fine chemicals and polymers markets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kunkes, Edward L -- Simonetti, Dante A -- West, Ryan M -- Serrano-Ruiz, Juan Carlos -- Gartner, Christian A -- Dumesic, James A -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):417-21. doi: 10.1126/science.1159210. Epub 2008 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18801970" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Carbohydrates/*chemistry ; Catalysis ; *Energy-Generating Resources ; Glucose/chemistry ; Hydrocarbons/*chemistry ; Hydrocarbons, Aromatic/chemistry ; Ketones/chemistry ; Pressure ; Sorbitol/chemistry ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2008-10-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renaud, Philippe -- Leong, Paul -- New York, N.Y. -- Science. 2008 Oct 3;322(5898):55-6. doi: 10.1126/science.1164403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Berne, CH-3012 Berne, Switzerland. philippe.renaud@ioc.unibe.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18832635" target="_blank"〉PubMed〈/a〉
    Keywords: 2,2'-Dipyridyl/analogs & derivatives/chemistry ; Aldehydes/*chemistry ; Alkylation ; Carbon/*chemistry ; Catalysis ; Electrons ; *Light ; Oxidation-Reduction ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2008-03-08
    Description: The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431203/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Lin -- Althoff, Eric A -- Clemente, Fernando R -- Doyle, Lindsey -- Rothlisberger, Daniela -- Zanghellini, Alexandre -- Gallaher, Jasmine L -- Betker, Jamie L -- Tanaka, Fujie -- Barbas, Carlos F 3rd -- Hilvert, Donald -- Houk, Kendall N -- Stoddard, Barry L -- Baker, David -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18323453" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/metabolism ; *Algorithms ; Binding Sites ; Catalysis ; Catalytic Domain ; Computer Simulation ; Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Protein Conformation ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ringe, Dagmar -- Petsko, Gregory A -- R37 GM032415/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 13;320(5882):1428-9. doi: 10.1126/science.1159747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA. petsko@brandeis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18556536" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Catalytic Domain ; Crystallography, X-Ray ; Enzymes/chemistry/*metabolism ; Models, Molecular ; Muramidase/chemistry/metabolism ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2008-10-18
    Description: Statistical analyses of protein families reveal networks of coevolving amino acids that functionally link distantly positioned functional surfaces. Such linkages suggest a concept for engineering allosteric control into proteins: The intramolecular networks of two proteins could be joined across their surface sites such that the activity of one protein might control the activity of the other. We tested this idea by creating PAS-DHFR, a designed chimeric protein that connects a light-sensing signaling domain from a plant member of the Per/Arnt/Sim (PAS) family of proteins with Escherichia coli dihydrofolate reductase (DHFR). With no optimization, PAS-DHFR exhibited light-dependent catalytic activity that depended on the site of connection and on known signaling mechanisms in both proteins. PAS-DHFR serves as a proof of concept for engineering regulatory activities into proteins through interface design at conserved allosteric sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeeyeon -- Natarajan, Madhusudan -- Nashine, Vishal C -- Socolich, Michael -- Vo, Tina -- Russ, William P -- Benkovic, Stephen J -- Ranganathan, Rama -- R01 EY018720/EY/NEI NIH HHS/ -- R01 EY018720-01/EY/NEI NIH HHS/ -- R01 EY018720-02/EY/NEI NIH HHS/ -- R01 EY018720-03/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):438-42. doi: 10.1126/science.1159052.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927392" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Binding Sites ; Catalysis ; Cryptochromes ; Escherichia coli/enzymology ; Flavoproteins/*chemistry/metabolism ; Kinetics ; Ligands ; Light ; Models, Molecular ; NADP/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/*chemistry/*metabolism ; Tetrahydrofolate Dehydrogenase/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2008-09-06
    Description: Photoredox catalysis and organocatalysis represent two powerful fields of molecule activation that have found widespread application in the areas of inorganic and organic chemistry, respectively. We merged these two catalysis fields to solve problems in asymmetric chemical synthesis. Specifically, the enantioselective intermolecular alpha-alkylation of aldehydes has been accomplished using an interwoven activation pathway that combines both the photoredox catalyst Ru(bpy)3Cl2 (where bpy is 2,2'-bipyridine) and an imidazolidinone organocatalyst. This broadly applicable, yet previously elusive, alkylation reaction is now highly enantioselective and operationally trivial.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicewicz, David A -- MacMillan, David W C -- F32GM076816/GM/NIGMS NIH HHS/ -- R01 GM078201/GM/NIGMS NIH HHS/ -- R01 GM078201-01-01/GM/NIGMS NIH HHS/ -- R01 GM078201-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 3;322(5898):77-80. doi: 10.1126/science.1161976. Epub 2008 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Contribution from Merck Center for Catalysis, Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772399" target="_blank"〉PubMed〈/a〉
    Keywords: 2,2'-Dipyridyl/analogs & derivatives/chemistry ; Aldehydes/*chemistry ; Alkylation ; Catalysis ; Electrons ; *Light ; Luminescence ; Oxidation-Reduction ; Photons ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2008-03-29
    Description: Type 1 pili from uropathogenic Escherichia coli are a prototype of adhesive surface organelles assembled and secreted by the conserved chaperone/usher pathway. We reconstituted type 1 pilus biogenesis from purified pilus proteins. The usher FimD acted as a catalyst to accelerate the ordered assembly of protein subunits independently of cellular energy. Its activity was highly dependent on the adhesin subunit FimH, which triggered the conversion of FimD into a high-efficiency assembly catalyst. Furthermore, a simple kinetic model adequately rationalized usher-catalyzed pilus assembly in vivo. Our results contribute to a mechanistic understanding of protein-catalyzed biogenesis of supramolecular protein complexes at the bacterial outer cell membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishiyama, Mireille -- Ishikawa, Takashi -- Rechsteiner, Helene -- Glockshuber, Rudi -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):376-9. doi: 10.1126/science.1154994. Epub 2008 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369105" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Escherichia coli/metabolism ; Bacterial Outer Membrane Proteins/*metabolism ; Catalysis ; Escherichia coli/*metabolism/ultrastructure ; Escherichia coli Proteins/genetics/*metabolism ; Fimbriae Proteins/genetics/*metabolism ; Fimbriae, Bacterial/*metabolism/ultrastructure ; Kinetics ; Models, Biological ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-06-28
    Description: Nuclear pre-messenger RNA (pre-mRNA) splicing is an essential processing step for the production of mature mRNAs from most eukaryotic genes. Splicing is catalyzed by a large ribonucleoprotein complex, the spliceosome, which is composed of five small nuclear RNAs and more than 100 protein factors. Despite the complexity of the spliceosome, the chemistry of the splicing reaction is simple, consisting of two consecutive transesterification reactions. The presence of introns in spliceosomal RNAs of certain fungi has suggested that splicing may be reversible; however, this has never been demonstrated experimentally. By using affinity-purified spliceosomes, we have shown that both catalytic steps of splicing can be efficiently reversed under appropriate conditions. These results provide considerable insight into the catalytic flexibility of the spliceosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tseng, Chi-Kang -- Cheng, Soo-Chen -- New York, N.Y. -- Science. 2008 Jun 27;320(5884):1782-4. doi: 10.1126/science.1158993.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei, Taiwan, Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18583613" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Cations, Divalent/metabolism ; Cell Nucleus/*metabolism ; DEAD-box RNA Helicases/genetics/metabolism ; Esterification ; Exons ; Introns ; Potassium Chloride/metabolism ; RNA Precursors/genetics/*metabolism ; *RNA Splicing ; RNA, Fungal/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Spliceosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2008-09-06
    Description: Gold nanocrystals absorbed on metal oxides have exceptional properties in oxidation catalysis, including the oxidation of carbon monoxide at ambient temperatures, but the identification of the active catalytic gold species among the many present on real catalysts is challenging. We have used aberration-corrected scanning transmission electron microscopy to analyze several iron oxide-supported catalyst samples, ranging from those with little or no activity to others with high activities. High catalytic activity for carbon monoxide oxidation is correlated with the presence of bilayer clusters that are approximately 0.5 nanometer in diameter and contain only approximately 10 gold atoms. The activity of these bilayer clusters is consistent with that demonstrated previously with the use of model catalyst systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herzing, Andrew A -- Kiely, Christopher J -- Carley, Albert F -- Landon, Philip -- Hutchings, Graham J -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1331-5. doi: 10.1126/science.1159639.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772433" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Monoxide/*chemistry ; Catalysis ; *Ferric Compounds ; *Gold ; *Metal Nanoparticles ; Microscopy, Electron, Scanning ; Oxidation-Reduction ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-09-22
    Description: Transannular chemical reactions are unparalleled in their ability to generate high degrees of stereochemical and architectural complexity in a single transformation. However, the successful application of this approach in synthesis depends on the ability to predict and control the outcome of the transannular reaction. Use of a chiral catalyst in this context represents an attractive, yet unused, strategy. This report describes a catalytic, asymmetric transannnular Diels-Alder (TADA) reaction that affords polycyclic products in high enantiomeric excess. This catalyst system can also alter the inherent diastereoselectivity of cyclizations with substrates containing chiral centers. Additionally, the catalytic enantioselective TADA has been used as the key step in a total synthesis of the sesquiterpene 11,12-diacetoxydrimane; this route may provide a general approach to the polycyclic carbon framework shared by many terpene natural products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balskus, Emily P -- Jacobsen, Eric N -- GM-59316/GM/NIGMS NIH HHS/ -- R01 GM059316/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 21;317(5845):1736-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17885133" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Chemistry, Organic/*methods ; Molecular Conformation ; Naphthalenes/chemical synthesis ; Polycyclic Compounds/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Ziv, Roy -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1078-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel. roy.bar-ziv@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006730" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; *Computers, Molecular ; DNA/chemistry ; Entropy ; Nanotechnology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-04-21
    Description: We report the structures of three intermediates in the O2 activation and insertion reactions of an extradiol ring-cleaving dioxygenase. A crystal of Fe2+-containing homoprotocatechuate 2,3-dioxygenase was soaked in the slow substrate 4-nitrocatechol in a low O2 atmosphere. The x-ray crystal structure shows that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. One of these is the key substrate-alkylperoxo-Fe2+ intermediate, which has been predicted, but not structurally characterized, in an oxygenase. The intermediates define the major chemical steps of the dioxygenase mechanism and point to a general mechanistic strategy for the diverse 2-His-1-carboxylate enzyme family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720167/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kovaleva, Elena G -- Lipscomb, John D -- GM24689/GM/NIGMS NIH HHS/ -- R01 GM024689/GM/NIGMS NIH HHS/ -- R01 GM024689-27/GM/NIGMS NIH HHS/ -- R01 GM024689-28/GM/NIGMS NIH HHS/ -- R37 GM024689/GM/NIGMS NIH HHS/ -- R37 GM024689-26/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):453-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446402" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Brevibacterium/*enzymology ; Catalysis ; Catechols/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dioxygenases/*chemistry/*metabolism ; Ferric Compounds/*chemistry/metabolism ; Ferrous Compounds/chemistry ; Ligands ; Models, Chemical ; Models, Molecular ; Oxygen/chemistry/metabolism ; Protein Conformation ; Protein Subunits/chemistry/metabolism ; Superoxides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilmot, Carrie M -- R01 GM066569/GM/NIGMS NIH HHS/ -- R01 GM066569-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):379-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. wilmo004@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446378" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallization ; Dioxygenases/chemistry/*metabolism ; Ferric Compounds/chemistry/metabolism ; Ferrous Compounds/*metabolism ; Hydrogen Peroxide/metabolism ; Molecular Conformation ; Oxidation-Reduction ; Oxidoreductases/chemistry/*metabolism ; Oxygen/*metabolism ; Protein Conformation ; Protons ; Spectrum Analysis, Raman ; Superoxides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joyce, Gerald F -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1507-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Chemistry and of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA. gjoyce@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363651" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Crystallization ; Crystallography, X-Ray ; Directed Molecular Evolution ; Hydrogen Bonding ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-11-17
    Description: Artificial biochemical circuits are likely to play as large a role in biological engineering as electrical circuits have played in the engineering of electromechanical devices. Toward that end, nucleic acids provide a designable substrate for the regulation of biochemical reactions. However, it has been difficult to incorporate signal amplification components. We introduce a design strategy that allows a specified input oligonucleotide to catalyze the release of a specified output oligonucleotide, which in turn can serve as a catalyst for other reactions. This reaction, which is driven forward by the configurational entropy of the released molecule, provides an amplifying circuit element that is simple, fast, modular, composable, and robust. We have constructed and characterized several circuits that amplify nucleic acid signals, including a feedforward cascade with quadratic kinetics and a positive feedback circuit with exponential growth kinetics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, David Yu -- Turberfield, Andrew J -- Yurke, Bernard -- Winfree, Erik -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1121-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Computation and Neural Systems, California Institute of Technology, MC 136-93, 1200 East California Boulevard, Pasadena, CA91125, USA. dzhang@dna.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chemical Engineering ; *Computers, Molecular ; DNA/*chemistry ; Entropy ; Equipment Design ; Feedback, Physiological ; Mice ; Nanotechnology ; Nucleic Acid Hybridization ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2007-01-06
    Description: Endoplasmic reticulum-localized protein-tyrosine phosphatase PTP1B terminates growth factor signal transduction by dephosphorylation of receptor tyrosine kinases (RTKs). But how PTP1B allows for RTK signaling in the cytoplasm is unclear. In order to test whether PTP1B activity is spatially regulated, we developed a method based on Forster resonant energy transfer for imaging enzyme-substrate (ES) intermediates in live cells. We observed the establishment of a steady-state ES gradient across the cell. This gradient exhibited robustness to cell-to-cell variability, growth factor activation, and RTK localization, which demonstrated spatial regulation of PTP1B activity. Such regulation may be important for generating distinct cellular environments that permit RTK signal transduction and that mediate its eventual termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yudushkin, Ivan A -- Schleifenbaum, Andreas -- Kinkhabwala, Ali -- Neel, Benjamin G -- Schultz, Carsten -- Bastiaens, Philippe I H -- R01 DK60838/DK/NIDDK NIH HHS/ -- R37 49152/PHS HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):115-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Cell Line, Tumor ; Cercopithecus aethiops ; Epidermal Growth Factor/metabolism/pharmacology ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Mathematics ; Microscopy, Fluorescence ; Models, Biological ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; Protein Tyrosine Phosphatases/*metabolism ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Epidermal Growth Factor/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2007-04-07
    Description: The carbon skeletons of over 55,000 naturally occurring isoprenoid compounds are constructed from four fundamental coupling reactions: chain elongation, cyclopropanation, branching, and cyclobutanation. Enzymes that catalyze chain elongation and cyclopropanation are well studied, whereas those that catalyze branching and cyclobutanation are unknown. We have catalyzed the four reactions with chimeric proteins generated by replacing segments of a chain-elongation enzyme with corresponding sequences from a cyclopropanation enzyme. Stereochemical and mechanistic considerations suggest that the four coupling enzymes could have evolved from a common ancestor through relatively small changes in the catalytic site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thulasiram, Hirekodathakallu V -- Erickson, Hans K -- Poulter, C Dale -- GM 21328/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):73-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412950" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Artemisia/enzymology ; Catalysis ; Catalytic Domain ; Chrysanthemum cinerariifolium/enzymology ; Cyclopropanes/chemistry ; Evolution, Molecular ; Geranyltranstransferase/chemistry/genetics/*metabolism ; Kinetics ; Molecular Conformation ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis, Site-Directed ; Recombinant Fusion Proteins/chemistry/metabolism ; Stereoisomerism ; Terpenes/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-12-08
    Description: Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue approximately 14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices alpha1 and alpha6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Yan, Hanchi -- Wu, Zhuoru -- Yan, Nieng -- Wang, Zhe -- Jeffrey, Philip D -- Shi, Yigong -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1608-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063795" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/*chemistry/metabolism ; Methanococcus/*enzymology ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: Achieving a fundamental understanding of the phenomena that will underpin both global stewardship and future technologies in energy calls for a thoughtful balance between large-scale immediate solutions using existing technology and the fundamental research needed to provide better solutions in the 50-year period.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitesides, George M -- Crabtree, George W -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):796-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. gwhitesides@gmwgroup.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289985" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Biotechnology ; Carbon Dioxide/chemistry ; Catalysis ; Chemical Phenomena ; Chemistry ; Electricity ; Electrodes ; *Energy-Generating Resources ; Environment ; Photosynthesis ; *Research ; Solar Energy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-01-20
    Description: Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by searching for sporadic selenocysteine-Cys pairs in sequence databases. This method is independent of protein family, structure, and taxon. We used it to selectively detect the majority of known proteins with redox-active Cys and to make additional predictions, one of which was verified. Rapid accumulation of sequence information from genomic and metagenomic projects should allow detection of many additional oxidoreductase families as well as identification of redox-active Cys in these proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fomenko, Dmitri E -- Xing, Weibing -- Adair, Blakely M -- Thomas, David J -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- GM061603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):387-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Base Sequence ; Catalysis ; Computational Biology ; Cysteine/analysis/*chemistry ; *Databases, Nucleic Acid ; *Databases, Protein ; Enzymes/*chemistry ; Eukaryotic Cells ; Evolution, Molecular ; Methyltransferases/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/chemistry ; Proteins/*chemistry ; Selenocysteine/chemistry ; Selenoproteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rauchfuss, Thomas B -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):553-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemical Sciences, University of Illinois, Urbana, IL 61801, USA. rauchfuz@uiuc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463276" target="_blank"〉PubMed〈/a〉
    Keywords: Benzaldehydes/chemistry ; Binding Sites ; *Biomimetics ; Catalysis ; Hydrogen/*chemistry ; Hydrogenase/*chemistry/*metabolism ; Iron/*chemistry ; Molecular Mimicry ; Nickel/*chemistry ; Organometallic Compounds/chemical synthesis/*chemistry ; Ruthenium/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2007-03-17
    Description: We studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fe(a3), Cu(B), and Tyr(244). To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer-coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water. This finding supports the hypothesis that, during steady-state turnover, the primary role of these redox centers is to rapidly provide all the electrons needed to reduce oxygen by four electrons, thus preventing the release of toxic partially reduced oxygen species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collman, James P -- Devaraj, Neal K -- Decreau, Richard A -- Yang, Ying -- Yan, Yi-Long -- Ebina, Wataru -- Eberspacher, Todd A -- Chidsey, Christopher E D -- GM-17880-35/GM/NIGMS NIH HHS/ -- R01 GM017880/GM/NIGMS NIH HHS/ -- R01 GM017880-35/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1565-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA. jpc@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363671" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Copper ; Electrochemistry ; Electrodes ; Electron Spin Resonance Spectroscopy ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; *Electrons ; Iron/chemistry ; Kinetics ; Models, Chemical ; Oxidation-Reduction ; Oxygen/*metabolism ; Phenol/chemistry ; Tyrosine/chemistry ; Water/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-17
    Description: Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robertson, Michael P -- Scott, William G -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1549-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Molecular Biology of RNA and Department of Chemistry and Biochemistry, Robert L. Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363667" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Directed Molecular Evolution ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-26
    Description: The industrially important coupling of aromatic compounds has generally required differential prefunctionalization of the arene coupling partners with a halide and an electropositive group. Here we report that palladium, in conjunction with a copper oxidant, can catalyze the cross-coupling of N-acetylindoles and benzenes in high yield and high regioselectivity across a range of indoles without recourse to activating groups. These reactions are completely selective for arene cross-coupling, with no products arising from indole or benzene homo-coupling detected by spectroscopic analysis. This efficient reactivity should be useful in the design of other oxidative arene cross-couplings as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stuart, David R -- Fagnou, Keith -- New York, N.Y. -- Science. 2007 May 25;316(5828):1172-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525334" target="_blank"〉PubMed〈/a〉
    Keywords: Benzene/chemistry ; Catalysis ; Hydrocarbons, Aromatic/*chemistry ; Indoles/chemistry ; Palladium/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2007-02-10
    Description: Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Himmel, Michael E -- Ding, Shi-You -- Johnson, David K -- Adney, William S -- Nimlos, Mark R -- Brady, John W -- Foust, Thomas D -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):804-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA. mike_himmel@nrel.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289988" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; *Biotechnology ; Catalysis ; Cell Wall/chemistry/metabolism ; Cellulases/genetics/*metabolism ; Cellulose/chemistry/metabolism ; *Energy-Generating Resources ; Ethanol/metabolism ; Genetic Engineering ; Plants/*chemistry/genetics/metabolism ; Polysaccharides/chemistry/metabolism ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellman, Jonathan A -- GM69559/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1131-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, CA 94720, USA. jellman@berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525322" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Hydrocarbons, Aromatic/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2007-04-28
    Description: Models of the active site in [NiFe]hydrogenase enzymes have proven challenging to prepare. We isolated a paramagnetic dinuclear nickel-ruthenium complex with a bridging hydrido ligand from the heterolytic cleavage of H2 by a dinuclear NiRu aqua complex in water under ambient conditions (20 degrees C and 1 atmosphere pressure). The structure of the hexacoordinate Ni(mu-H)Ru complex was unequivocally determined by neutron diffraction analysis, and it comes closest to an effective analog for the core structure of the proposed active form of the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ogo, Seiji -- Kabe, Ryota -- Uehara, Keiji -- Kure, Bunsho -- Nishimura, Takashi -- Menon, Saija C -- Harada, Ryosuke -- Fukuzumi, Shunichi -- Higuchi, Yoshiki -- Ohhara, Takashi -- Tamada, Taro -- Kuroki, Ryota -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):585-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan. ogo-tcm@mbox.nc.kyushu-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463285" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biomimetics ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Hydrogen/*chemistry ; Hydrogenase/*chemistry/metabolism ; Iron/*chemistry ; Ligands ; Magnetic Resonance Spectroscopy ; Molecular Mimicry ; Neutron Diffraction ; Nickel/*chemistry ; Organometallic Compounds/chemical synthesis/*chemistry ; Ruthenium/*chemistry ; Spectrometry, Mass, Electrospray Ionization ; Spectrophotometry, Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-29
    Description: Fidelity of template-dependent nucleic acid synthesis is the main determinant of stable heredity and error-free gene expression. The mechanism (or mechanisms) ensuring fidelity of transcription by DNA-dependent RNA polymerases (RNAPs) is not fully understood. Here, we show that the 3' end-proximal nucleotide of the nascent transcript stimulates hydrolysis of the penultimate phosphodiester bond by providing active groups and coordination bonds to the RNAP active center. This stimulation is much higher in the case of misincorporated nucleotide. We show that during transcription elongation, the hydrolytic reaction stimulated by misincorporated nucleotides proofreads most of the misincorporation events and thus serves as an intrinsic mechanism of transcription fidelity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zenkin, Nikolay -- Yuzenkova, Yulia -- Severinov, Konstantin -- New York, N.Y. -- Science. 2006 Jul 28;313(5786):518-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA. nicserzen@mail.ru〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16873663" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Base Pairing ; Binding Sites ; Catalysis ; Cytidine Monophosphate/metabolism ; DNA/metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Hydrogen Bonding ; Hydrolysis ; Kinetics ; Magnesium/metabolism ; Models, Genetic ; Nucleotides/metabolism ; RNA, Messenger/*metabolism ; Templates, Genetic ; Thermus/enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2006-09-02
    Description: Glycosyltransferases (GTs), an essential class of ubiquitous enzymes, are generally perceived as unidirectional catalysts. In contrast, we report that four glycosyltransferases from two distinct natural product biosynthetic pathways-calicheamicin and vancomycin-readily catalyze reversible reactions, allowing sugars and aglycons to be exchanged with ease. As proof of the broader applicability of these new reactions, more than 70 differentially glycosylated calicheamicin and vancomycin variants are reported. This study suggests the reversibility of GT-catalyzed reactions may be general and useful for generating exotic nucleotide sugars, establishing in vitro GT activity in complex systems, and enhancing natural product diversity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Changsheng -- Griffith, Byron R -- Fu, Qiang -- Albermann, Christoph -- Fu, Xun -- Lee, In-Kyoung -- Li, Lingjun -- Thorson, Jon S -- AI52218/AI/NIAID NIH HHS/ -- CA84374/CA/NCI NIH HHS/ -- GM70637/GM/NIGMS NIH HHS/ -- U19 CA113297/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 1;313(5791):1291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Group Program, University of Wisconsin (UW)-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16946071" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/biosynthesis/chemistry/*metabolism ; Carbohydrate Sequence ; Catalysis ; Enediynes ; Glucosyltransferases/*metabolism ; Glycosylation ; Glycosyltransferases/genetics/*metabolism ; Micromonospora/enzymology/genetics ; Molecular Sequence Data ; Molecular Structure ; Nucleoside Diphosphate Sugars/metabolism ; Pentoses/metabolism ; Thymine Nucleotides/metabolism ; Vancomycin/*analogs & derivatives/biosynthesis/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-05-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayes, John M -- New York, N.Y. -- Science. 2006 Jun 16;312(5780):1605-6. Epub 2006 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. jhayes@whoi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690818" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacteria/metabolism ; Carbon/*chemistry/metabolism ; Carotenoids/chemistry ; Catalysis ; Geologic Sediments/*chemistry ; Hydrocarbons/*chemistry/metabolism ; Hydrogen/chemistry/metabolism ; Hydrogen Sulfide/chemistry ; Ketones/chemistry ; Molecular Conformation ; Organic Chemicals/*chemistry/metabolism ; Oxidation-Reduction ; Stereoisomerism ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2006-05-13
    Description: Hydrogenation processes leading from biomolecules to fossil biomarkers in anoxic sediments are crucial for the preservation of organic matter. However, these processes are still poorly understood. The present identification of several reduced carotenoids in recent sediments attests that these processes operate at the earliest stages of diagenesis without structural or stereochemical specificity, implying a nonbiological reduction pathway. Sulfur species (e.g., H2S) are the hydrogen donors involved in such reduction, as demonstrated with laboratory experiments. These reactions allow the preservation of abundant organic carbon in the rock record.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hebting, Y -- Schaeffer, P -- Behrens, A -- Adam, P -- Schmitt, G -- Schneckenburger, P -- Bernasconi, S M -- Albrecht, P -- New York, N.Y. -- Science. 2006 Jun 16;312(5780):1627-31. Epub 2006 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Geochimie Bioorganique, Unite Mixte de Recherche 7509 du CNRS, Universite Louis Pasteur, Ecole de Chimie, Polymeres, Materiaux de Strasbourg, 25 rue Becquerel, 67200 Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690819" target="_blank"〉PubMed〈/a〉
    Keywords: Anaerobiosis ; Bacteria/metabolism ; Carbon/*chemistry/metabolism ; Carotenoids/chemistry ; Catalysis ; Chlorobi/chemistry/metabolism ; Cholestenones/chemistry ; Chromatiaceae/chemistry/metabolism ; Gas Chromatography-Mass Spectrometry ; Geologic Sediments/*chemistry ; Hydrogen/chemistry ; Hydrogen Sulfide/chemistry/metabolism ; Ketones/chemistry ; Magnetic Resonance Spectroscopy ; Molecular Conformation ; Molecular Structure ; Organic Chemicals/*chemistry/metabolism ; Oxidation-Reduction ; Phytoplankton/chemistry/metabolism ; Stereoisomerism ; Switzerland ; beta Carotene/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2006-04-15
    Description: We present an atomic-level description of the reaction chemistry of an enzyme-catalyzed reaction dominated by proton tunneling. By solving structures of reaction intermediates at near-atomic resolution, we have identified the reaction pathway for tryptamine oxidation by aromatic amine dehydrogenase. Combining experiment and computer simulation, we show proton transfer occurs predominantly to oxygen O2 of Asp(128)beta in a reaction dominated by tunneling over approximately 0.6 angstroms. The role of long-range coupled motions in promoting tunneling is controversial. We show that, in this enzyme system, tunneling is promoted by a short-range motion modulating proton-acceptor distance and no long-range coupled motion is required.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masgrau, Laura -- Roujeinikova, Anna -- Johannissen, Linus O -- Hothi, Parvinder -- Basran, Jaswir -- Ranaghan, Kara E -- Mulholland, Adrian J -- Sutcliffe, Michael J -- Scrutton, Nigel S -- Leys, David -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):237-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manchester Interdisciplinary Biocentre, University of Manchester, Jackson's Mill, Post Office Box 88, Manchester M60 1QD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614214" target="_blank"〉PubMed〈/a〉
    Keywords: Alcaligenes faecalis/*enzymology ; Aspartic Acid/chemistry ; Binding Sites ; Catalysis ; Chemistry, Physical ; Computer Simulation ; Crystallography, X-Ray ; Kinetics ; Models, Chemical ; Motion ; Oxidation-Reduction ; Oxidoreductases Acting on CH-NH Group Donors/*chemistry/*metabolism ; Oxygen/chemistry ; Physicochemical Phenomena ; *Protons ; Temperature ; Thermodynamics ; Tryptamines/*metabolism ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benkovic, Stephen J -- Hammes-Schiffer, Sharon -- GM24129/GM/NIGMS NIH HHS/ -- GM56207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):208-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA. sjb1@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614206" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Computer Simulation ; Hydrogen/chemistry ; Kinetics ; Models, Chemical ; Motion ; Oxidation-Reduction ; Oxidoreductases Acting on CH-NH Group Donors/*chemistry/*metabolism ; Physicochemical Phenomena ; Protein Conformation ; *Protons ; Thermodynamics ; Tryptamines/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2006-10-28
    Description: To test the theory of a chemoautotrophic origin of life in a volcanic, hydrothermal setting, we explored mechanisms for the buildup of bio-organic compounds by carbon fixation on catalytic transition metal precipitates. We report the carbon monoxide-dependent formation of carbon-fixation products, including an ordered series of alpha-hydroxy and alpha-amino acids of the general formula R-CHA-COOH (where R is H, CH3,C2H5,orHOCH2 and A is OH or NH2) by carbon fixation at 80 degrees to 120 degrees C, catalyzed by nickel or nickel,iron precipitates with carbonyl, cyano, and methylthio ligands as carbon sources, with or without sulfido ligands. Calcium or magnesium hydroxide was added as a pH buffer. The results narrow the gap between biochemistry and volcanic geochemistry and open a new gateway for the exploration of a volcanic, hydrothermal origin of life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Claudia -- Wachtershauser, Gunter -- New York, N.Y. -- Science. 2006 Oct 27;314(5799):630-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic Chemistry and Biochemistry, Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17068257" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*chemistry ; Carbon/*chemistry ; Carbon Dioxide/chemistry ; Carbon Monoxide/chemistry ; Catalysis ; Chemical Precipitation ; Cyanides/chemistry ; *Evolution, Chemical ; Hot Temperature ; Hydrogen/chemistry ; Hydrogen-Ion Concentration ; Hydroxy Acids/*chemistry ; Iron/chemistry ; Ligands ; Nickel/chemistry ; *Origin of Life ; Oxidation-Reduction ; *Volcanic Eruptions ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-09-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vendruscolo, Michele -- Dobson, Christopher M -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1586-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973868" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Enzymes/*chemistry/*metabolism ; Ligands ; Protein Binding ; *Protein Conformation ; Stochastic Processes ; Tetrahydrofolate Dehydrogenase/*chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morel, Francois M M -- Groves, John T -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences and Chemistry, Princeton University, Princeton, NJ 08544, USA. morel@princeton.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17138889" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Chemistry, Bioinorganic/history ; Enzymes/chemistry ; History, 20th Century ; History, 21st Century ; Metals/chemistry ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-10-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kundig, Peter -- New York, N.Y. -- Science. 2006 Oct 20;314(5798):430-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland. peter.kundig@chiorg.unige.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17053137" target="_blank"〉PubMed〈/a〉
    Keywords: Automation ; Biological Products/*chemical synthesis ; Catalysis ; Chemistry, Organic/*methods ; Combinatorial Chemistry Techniques ; Organic Chemicals/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2006-09-16
    Description: We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boehr, David D -- McElheny, Dan -- Dyson, H Jane -- Wright, Peter E -- GM56879/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 15;313(5793):1638-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16973882" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Escherichia coli/*enzymology ; Kinetics ; Ligands ; Models, Molecular ; NADP/metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; *Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/*metabolism ; Tetrahydrofolates/metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2006-09-23
    Description: Ribozymes are thought to have played a pivotal role in the early evolution of life, but relatively few have been identified in modern organisms. We performed an in vitro selection aimed at isolating self-cleaving RNAs from the human genome. The selection yielded several ribozymes, one of which is a conserved mammalian sequence that resides in an intron of the CPEB3 gene, which belongs to a family of genes regulating messenger RNA polyadenylation. The CPEB3 ribozyme is structurally and biochemically related to the human hepatitis delta virus (HDV) ribozymes. The occurrence of this ribozyme exclusively in mammals suggests that it may have evolved as recently as 200 million years ago. We postulate that HDV arose from the human transcriptome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salehi-Ashtiani, Kourosh -- Luptak, Andrej -- Litovchick, Alexander -- Szostak, Jack W -- GM53936/GM/NIGMS NIH HHS/ -- HL66678/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1788-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology (CCIB), 7215 Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990549" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Cations, Divalent/metabolism ; Conserved Sequence ; *Evolution, Molecular ; Expressed Sequence Tags ; *Genome, Human ; Genomic Library ; Hepatitis Delta Virus/genetics ; Humans ; Hydrogen-Ion Concentration ; *Introns ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Phosphorylation ; RNA, Catalytic/chemistry/genetics/*isolation & purification/*metabolism ; RNA-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2006-01-28
    Description: The design of enzymes with new functions and properties has long been a goal in protein engineering. Here, we report a strategy to change the catalytic activity of an existing protein scaffold. This was achieved by simultaneous incorporation and adjustment of functional elements through insertion, deletion, and substitution of several active site loops, followed by point mutations to fine-tune the activity. Using this approach, we were able to introduce beta-lactamase activity into the alphabeta/betaalpha metallohydrolase scaffold of glyoxalase II. The resulting enzyme, evMBL8 (evolved metallo beta-lactamase 8), completely lost its original activity and, instead, catalyzed the hydrolysis of cefotaxime with a (kcat/Km)app of 1.8 x 10(2) (mole/liter)(-1) second(-1), thus increasing resistance to Escherichia coli growth on cefotaxime by a factor of about 100.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Hee-Sung -- Nam, Sung-Hun -- Lee, Jin Kak -- Yoon, Chang No -- Mannervik, Bengt -- Benkovic, Stephen J -- Kim, Hak-Sung -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):535-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Daejon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439663" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Catalytic Domain ; Cefotaxime/metabolism/pharmacology ; *Directed Molecular Evolution ; Drug Resistance, Bacterial ; Escherichia coli/drug effects ; Evolution, Molecular ; Humans ; Hydrophobic and Hydrophilic Interactions ; Iron/metabolism ; Kinetics ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Point Mutation ; Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Thiolester Hydrolases/*chemistry/genetics/*metabolism ; Zinc/metabolism ; beta-Lactamases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2006-02-18
    Description: Numerous microorganisms oxidize sulfur for energy conservation and contribute to the global biogeochemical sulfur cycle. We have determined the 1.7 angstrom-resolution structure of the sulfur oxygenase reductase from the thermoacidophilic archaeon Acidianus ambivalens, which catalyzes an oxygen-dependent disproportionation of elemental sulfur. Twenty-four monomers form a large hollow sphere enclosing a positively charged nanocompartment. Apolar channels provide access for linear sulfur species. A cysteine persulfide and a low-potential mononuclear non-heme iron site ligated by a 2-His-1-carboxylate facial triad in a pocket of each subunit constitute the active sites, accessible from the inside of the sphere. The iron is likely the site of both sulfur oxidation and sulfur reduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urich, Tim -- Gomes, Claudio M -- Kletzin, Arnulf -- Frazao, Carlos -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):996-1000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Darmstadt University of Technology, Institute of Microbiology and Genetics, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484493" target="_blank"〉PubMed〈/a〉
    Keywords: Acidianus/*enzymology/physiology ; Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Hot Temperature ; Hydrophobic and Hydrophilic Interactions ; Iron/chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases Acting on Sulfur Group Donors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry ; Static Electricity ; Sulfur/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2006-09-23
    Description: The glmS ribozyme is the only natural catalytic RNA known to require a small-molecule activator for catalysis. This catalytic RNA functions as a riboswitch, with activator-dependent RNA cleavage regulating glmS messenger RNA expression. We report crystal structures of the glmS ribozyme in precleavage states that are unliganded or bound to the competitive inhibitor glucose-6-phosphate and in the postcleavage state. All structures superimpose closely, revealing a remarkably rigid RNA that contains a preformed active and coenzyme-binding site. Unlike other riboswitches, the glmS ribozyme binds its activator in an open, solvent-accessible pocket. Our structures suggest that the amine group of the glmS ribozyme-bound coenzyme performs general acid-base and electrostatic catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Daniel J -- Ferre-D'Amare, Adrian R -- GM63576/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1752-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990543" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/metabolism/pharmacology ; Glucosamine/*analogs & derivatives/metabolism ; Glucose-6-Phosphate/*analogs & derivatives/metabolism/pharmacology ; Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/*genetics/metabolism ; Hydrogen Bonding ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism ; Thermoanaerobacter/enzymology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2006-12-23
    Description: Iron(V)-oxo species have been proposed as key reactive intermediates in the catalysis of oxygen-activating enzymes and synthetic catalysts. Here, we report the synthesis of [Fe(TAML)(O)]- in nearly quantitative yield, where TAML is a macrocyclic tetraamide ligand. Mass spectrometry, Mossbauer, electron paramagnetic resonance, and x-ray absorption spectroscopies, as well as reactivity studies and density functional theory calculations show that this long-lived (hours at -60 degrees C) intermediate is a spin S = 1/2 iron(V)-oxo complex. Iron-TAML systems have proven to be efficient catalysts in the decomposition of numerous pollutants by hydrogen peroxide, and the species we characterized is a likely reactive intermediate in these reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tiago de Oliveira, Filipe -- Chanda, Arani -- Banerjee, Deboshri -- Shan, Xiaopeng -- Mondal, Sujit -- Que, Lawrence Jr -- Bominaar, Emile L -- Munck, Eckard -- Collins, Terrence J -- EB001475/EB/NIBIB NIH HHS/ -- GM-38767/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):835-8. Epub 2006 Dec 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185561" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Chemistry, Physical ; Electron Spin Resonance Spectroscopy ; Iron Compounds/*chemistry ; Ligands ; Macrocyclic Compounds/*chemistry ; Molecular Conformation ; Oxidation-Reduction ; Physicochemical Phenomena ; Spectrometry, Mass, Electrospray Ionization ; Spectroscopy, Mossbauer ; Spectrum Analysis ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2005-09-06
    Description: Twin-ribozyme introns are formed by two ribozymes belonging to the group I family and occur in some ribosomal RNA transcripts. The group I-like ribozyme, GIR1, liberates the 5' end of a homing endonuclease messenger RNA in the slime mold Didymium iridis. We demonstrate that this cleavage occurs by a transesterification reaction with the joining of the first and the third nucleotide of the messenger by a 2',5'-phosphodiester linkage. Thus, a group I-like ribozyme catalyzes an RNA branching reaction similar to the first step of splicing in group II introns and spliceosomal introns. The resulting short lariat, by forming a protective 5' cap, might have been useful in a primitive RNA world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Henrik -- Westhof, Eric -- Johansen, Steinar -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, DK-2200N Copenhagen, Denmark. hamra@imbg.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141078" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Endonucleases/biosynthesis/*genetics ; Esterification ; *Introns ; Molecular Sequence Data ; RNA Caps/*chemistry ; *RNA Splicing ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2005-05-10
    Description: Thermostabilizing an enzyme while maintaining its activity for industrial or biomedical applications can be difficult with traditional selection methods. We describe a rapid computational approach that identified three mutations within a model enzyme that produced a 10 degrees C increase in apparent melting temperature T(m) and a 30-fold increase in half-life at 50 degrees C, with no reduction in catalytic efficiency. The effects of the mutations were synergistic, giving an increase in excess of the sum of their individual effects. The redesigned enzyme induced an increased, temperature-dependent bacterial growth rate under conditions that required its activity, thereby coupling molecular and metabolic engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korkegian, Aaron -- Black, Margaret E -- Baker, David -- Stoddard, Barry L -- CA85939/CA/NCI NIH HHS/ -- CA97328/CA/NCI NIH HHS/ -- GM49857/GM/NIGMS NIH HHS/ -- GM59224/GM/NIGMS NIH HHS/ -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- T32-GM08268/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 6;308(5723):857-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Circular Dichroism ; *Computer Simulation ; Crystallography, X-Ray ; Cytosine Deaminase/*chemistry/*metabolism ; Enzyme Stability ; Escherichia coli/genetics/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Mutagenesis, Site-Directed ; Point Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Software ; Temperature ; Thermodynamics ; Transformation, Genetic ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2005-10-29
    Description: Thiolate-ligated oxoiron(IV) centers are postulated to be the key oxidants in the catalytic cycles of oxygen-activating cytochrome P450 and related enzymes. Despite considerable synthetic efforts, chemists have not succeeded in preparing an appropriate model complex. Here we report the synthesis and spectroscopic characterization of [FeIV(O)(TMCS)]+ where TMCS is a pentadentate ligand that provides a square pyramidal N4(SR)apical, where SR is thiolate, ligand environment about the iron center, which is similar to that of cytochrome P450. The rigidity of the ligand framework stabilizes the thiolate in an oxidizing environment. Reactivity studies suggest that thiolate coordination favors hydrogen-atom abstraction chemistry over oxygen-atom transfer pathways in the presence of reducing substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bukowski, Michael R -- Koehntop, Kevin D -- Stubna, Audria -- Bominaar, Emile L -- Halfen, Jason A -- Munck, Eckard -- Nam, Wonwoo -- Que, Lawrence Jr -- EB-001475/EB/NIBIB NIH HHS/ -- GM-33162/GM/NIGMS NIH HHS/ -- T32 GM-08700/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1000-2. Epub 2005 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16254150" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; Chemistry, Physical ; Cytochrome P-450 Enzyme System/*chemistry/*metabolism ; Hydrogen/chemistry ; Iron/*chemistry ; Ligands ; Molecular Structure ; Oxidants/chemistry ; Oxidation-Reduction ; Oxygen/chemistry ; Physicochemical Phenomena ; Spectroscopy, Mossbauer ; Spectrum Analysis ; Sulfhydryl Compounds/chemical synthesis/*chemistry ; Sulfur/*chemistry ; Temperature ; X-Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-06-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reedijk, Jan -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1876-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands. reedijk@chem.leidenuniv.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15976293" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Cold Temperature ; Copper/*chemistry/metabolism ; Hydroxylation ; Metals/*chemistry/metabolism ; Models, Chemical ; Molecular Mimicry ; Monophenol Monooxygenase/chemistry/*metabolism ; Oxidation-Reduction ; Oxygen/*chemistry/metabolism ; Phenol/metabolism ; Phenols/*chemistry/metabolism ; Physicochemical Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2005-10-22
    Description: Molecular evolution is moving from statistical descriptions of adaptive molecular changes toward predicting the fitness effects of mutations. Here, we characterize the fitness landscape of the six amino acids controlling coenzyme use in isopropylmalate dehydrogenase (IMDH). Although all natural IMDHs use nicotinamide adenine dinucleotide (NAD) as a coenzyme, they can be engineered to use nicotinamide adenine dinucleotide phosphate (NADP) instead. Intermediates between these two phenotypic extremes show that each amino acid contributes additively to enzyme function, with epistatic contributions confined to fitness. The genotype-phenotype-fitness map shows that NAD use is a global optimum.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunzer, Mark -- Miller, Stephen P -- Felsheim, Roderick -- Dean, Antony M -- GM060611/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):499-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BioTechnology Institute, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239478" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Isopropylmalate Dehydrogenase/*chemistry/genetics/*metabolism ; Amino Acid Substitution ; Analysis of Variance ; Catalysis ; Epistasis, Genetic ; Escherichia coli/enzymology ; *Evolution, Molecular ; Genotype ; Kinetics ; Leucine/biosynthesis ; Mathematics ; Models, Chemical ; Mutation ; NAD/*metabolism ; NADP/*metabolism ; Oxidation-Reduction ; Phenotype ; Protein Engineering ; Selection, Genetic ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2005-06-04
    Description: Liquid alkanes with the number of carbon atoms ranging from C7 to C15 were selectively produced from biomass-derived carbohydrates by acid-catalyzed dehydration, which was followed by aldol condensation over solid base catalysts to form large organic compounds. These molecules were then converted into alkanes by dehydration/hydrogenation over bifunctional catalysts that contained acid and metal sites in a four-phase reactor, in which the aqueous organic reactant becomes more hydrophobic and a hexadecane alkane stream removes hydrophobic species from the catalyst before they go on further to form coke. These liquid alkanes are of the appropriate molecular weight to be used as transportation fuel components, and they contain 90% of the energy of the carbohydrate and H2 feeds.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, George W -- Chheda, Juben N -- Barrett, Christopher J -- Dumesic, James A -- New York, N.Y. -- Science. 2005 Jun 3;308(5727):1446-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Biological Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15933197" target="_blank"〉PubMed〈/a〉
    Keywords: Acetone/chemistry ; Alkanes/chemical synthesis/*chemistry ; *Biomass ; Carbohydrates/*chemistry ; Catalysis ; *Energy-Generating Resources ; Feasibility Studies ; Furaldehyde/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2005-08-27
    Description: Adenosine triphosphate (ATP) hydrolysis in the nitrogenase complex controls the cycle of association and dissociation between the electron donor adenosine triphosphatase (ATPase) (Fe-protein) and its target catalytic protein (MoFe-protein), driving the reduction of dinitrogen into ammonia. Crystal structures in different nucleotide states have been determined that identify conformational changes in the nitrogenase complex during ATP turnover. These structures reveal distinct and mutually exclusive interaction sites on the MoFe-protein surface that are selectively populated, depending on the Fe-protein nucleotide state. A consequence of these different docking geometries is that the distance between redox cofactors, a critical determinant of the intermolecular electron transfer rate, is coupled to the nucleotide state. More generally, stabilization of distinct docking geometries by different nucleotide states, as seen for nitrogenase, could enable nucleotide hydrolysis to drive the relative motion of protein partners in molecular motors and other systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tezcan, F Akif -- Kaiser, Jens T -- Mustafi, Debarshi -- Walton, Mika Y -- Howard, James B -- Rees, Douglas C -- New York, N.Y. -- Science. 2005 Aug 26;309(5739):1377-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16123301" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Adenosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Catalysis ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Electron Transport ; Hydrogen Bonding ; Hydrolysis ; Models, Molecular ; Molybdoferredoxin/*chemistry/*metabolism ; Nitrogenase/*chemistry/*metabolism ; Oxidation-Reduction ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2005-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):212-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16223991" target="_blank"〉PubMed〈/a〉
    Keywords: Catalysis ; *Chemistry/history ; France ; History, 20th Century ; *Nobel Prize
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2005-06-25
    Description: The binuclear copper enzyme tyrosinase activates O2 to form a mu-eta2:eta2-peroxodicopper(II) complex, which oxidizes phenols to catechols. Here, a synthetic mu-eta2:eta2-peroxodicopper(II) complex, with an absorption spectrum similar to that of the enzymatic active oxidant, is reported to rapidly hydroxylate phenolates at -80 degrees C. Upon phenolate addition at extreme temperature in solution (-120 degrees C), a reactive intermediate consistent with a bis-mu-oxodicopper(III)-phenolate complex, with the O-O bond fully cleaved, is observed experimentally. The subsequent hydroxylation step has the hallmarks of an electrophilic aromatic substitution mechanism, similar to tyrosinase. Overall, the evidence for sequential O-O bond cleavage and C-O bond formation in this synthetic complex suggests an alternative intimate mechanism to the concerted or late stage O-O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mirica, Liviu M -- Vance, Michael -- Rudd, Deanne Jackson -- Hedman, Britt -- Hodgson, Keith O -- Solomon, Edward I -- Stack, T Daniel P -- DK31450/DK/NIDDK NIH HHS/ -- GM50730/GM/NIGMS NIH HHS/ -- RR01209/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 24;308(5730):1890-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15976297" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Chemistry, Physical ; Cold Temperature ; Copper/*chemistry/metabolism ; Hydroxylation ; Ligands ; Models, Chemical ; Monophenol Monooxygenase/chemistry/*metabolism ; Organometallic Compounds/*chemistry ; Oxidation-Reduction ; Oxygen/*chemistry/metabolism ; Phenols/*chemistry/metabolism ; Physicochemical Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellington, Andrew D -- Bull, J J -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):454-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Chemistry and Integrative Biology, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. .ellington@mail.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239467" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Isopropylmalate Dehydrogenase/*metabolism ; Amino Acid Substitution ; Catalysis ; *Evolution, Molecular ; Isocitrate Dehydrogenase/metabolism ; Leucine/biosynthesis ; Mutation ; NAD/*metabolism ; NADP/*metabolism ; Oxidation-Reduction ; Protein Engineering ; RNA/metabolism ; RNA, Catalytic/metabolism ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2005-12-24
    Description: Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are two major inflammatory mediators. Here we show that iNOS specifically binds to COX-2 and S-nitrosylates it, enhancing COX-2 catalytic activity. Selectively disrupting iNOS-COX-2 binding prevented NO-mediated activation of COX-2. This synergistic molecular interaction between two inflammatory systems may inform the development of anti-inflammatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangwon F -- Huri, Daniel A -- Snyder, Solomon H -- DA000266/DA/NIDA NIH HHS/ -- DA00074/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 23;310(5756):1966-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16373578" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biotin/metabolism ; Catalysis ; Cell Line ; Cyclooxygenase 2/*metabolism ; Cysteine/metabolism ; Dinoprostone/metabolism ; Enzyme Activation ; Humans ; Mice ; Nitric Oxide Donors/metabolism ; Nitric Oxide Synthase Type II/*metabolism ; Nitroso Compounds/*metabolism ; Protein Binding ; S-Nitrosoglutathione/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...