ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (289)
  • American Association for the Advancement of Science
  • Cell Press
  • 2020-2023  (317)
Collection
Years
Year
  • 101
    Publication Date: 2021-12-23
    Description: Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to create models that describe complex data and generalize well. The wealth of publicly-available seismic data nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of small, local earthquakes in areas characterized by sparsity of receivers. A similar application of machine learning, however, should be built on a large amount of labeled seismograms, which is neither immediate to obtain nor to compile. In this study we present a large dataset of seismograms recorded along the vertical, north, and east components of 1487 broad-band or very broad-band receivers distributed worldwide; this includes 629,095 3-component seismograms generated by 304,878 local earthquakes and labeled as EQ, and 615,847 ones labeled as noise (AN). Application of machine learning to this dataset shows that a simple Convolutional Neural Network of 67,939 parameters allows discriminating between earthquakes and noise single-station recordings, even if applied in regions not represented in the training set. Achieving an accuracy of 96.7, 95.3, and 93.2% on training, validation, and test set, respectively, we prove that the large variety of geological and tectonic settings covered by our data supports the generalization capabilities of the algorithm, and makes it applicable to real-time detection of local events. We make the database publicly available, intending to provide the seismological and broader scientific community with a benchmark for time-series to be used as a testing ground in signal processing.
    Description: Published
    Description: 1-10
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: N/A or not JCR
    Keywords: Physics - Geophysics; Physics - Geophysics ; dataset for machine learning in seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2021-12-23
    Description: After the 2004 Indian Ocean (IOT) and the 2011 Tohoku-oki tsunamis, new research in tsunami-related fields was strongly stimulated worldwide and also in the Mediterranean. This research growth yields substantial advancements in tsunami knowledge. Among these advancements is the “Paleotsunami” research that has marked particular progress on the reconstruction of the tsunami history of a region. As an integration of the historical documentation available in the Mediterranean and the Gulf of Cadiz areas, geological and geoarchaeological records provide the insights to define the occurrence, characteristics, and impact of tsunamis of the past. Here, we present the recent advancements done for both the onshore and offshore realms. As for the onshore, we discuss case studies dealing with recent high-resolution works based on: a) direct push in situ sensing techniques, applied to identification and characterization of typical paleotsunami deposits features; b) combined XRF- X-CT approach, implemented for the identification of fine-scale sedimentary structures useful for the definition of the causative flow dynamics; c) the geoarchaeological “new field” contribution, with the development of specific diagnostic criteria in search for tsunami impact traces in archaeological strata; d) comparison of multiple dating methods and of different modeling codes for the definition of the potential source for the displacement of boulders of exceptional dimension, identified by 3D size calculation. As for the offshore advancements, we present case studies focusing on the recognition of tsunami deposits and their sedimentary traces in the geological record from the nearshore, thanks to diver-operated coring equipment, down to the continental slope, by means of vibracorer and long gravity core sampling in deeper areas. The examples provided show a multiproxy approach with a high potential of retrieving a complete record of paleotsunami traces at least during the Holocene. This is based on the combination of multidisciplinary approaches including X-ray imaging, high-resolution measurement of physical properties, X- ray fluorescence data, grain-size analysis, micropaleontology, palynological content, isotopic and optically stimulated luminescence dating methods.
    Description: Published
    Description: 103578
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Paleotsunami deposits ; Mediterranean Sea ; High-resolution studies ; Archeology ; backwash wave ; Geology ; tsunami ; paleotsunami deposits ; Mediterranean Sea
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-02-03
    Description: This work presents the first 3D geological model of the Rome coastal area that integrates available subsurface geological, stratigraphic and geophysical data with surface geochemical data obtained both from the literature and new surveys. The model provides new insights into the stratigraphic and tectonic setting of the area and the geological factors controlling both natural and human-induced gas emissions. This sector of the Italian Tyrrhenian margin has been historically affected by natural emissions of deep CO2 and thermogenic CH4, stored in permeable layers but with local migration to the surface along buried normal faults. In addition to natural processes, human activities can also cause leakage and serious health risks, such as the abrupt gas release in August 2013, that was triggered by borehole drillings near the Rome international airport. The presented 3D reconstruction unveils the link between faults, stratigraphy, lithology and the distribution of the soil gas anomalies. It provides information about the depth of the reservoir that can potentially trap endogenous gases, and the location and geometry of the main faults along which the gas migrates towards the surface. Furthermore, reconstruction of the distribution and thickness of important clay layers better constrains the low permeable areas that prevent gas escape. The 3D model, coupled with the geochemical information, can serve as a useful tool for the local administration to perform land-use planning and manage the local geological and degassing hazards that affect this highly urbanized area near Rome. Furthermore, we estimate that the large amount of CO2 broadly released in the area also provides a contribution to the budget of natural greenhouse gases in the atmosphere.
    Description: Published
    Description: 106527
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: 3D geological model ; Soil gas ; Active faults ; Surface degassing ; Geological hazards ; Tiber delta ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-02-02
    Description: Ion temperature data recorded by Millstone Hill incoherent scatter radar (42.61 N, 288.51 E) over four full solar cycles (from 1970 to 2018) are analyzed to depict its climatological behavior in the range of altitudes between 100 and 550 km. The ion temperature dependencies on altitude, local time, month of the year, and solar activity level are studied through a climatological analysis based on binning and boxplot representation of statistical values. Binned observations of ion temperature are compared with International Reference Ionosphere (IRI) modeled values (IRI-2016 version). This comparison reveals several shortcomings in the IRI modeling of the ion temperature at ionosphere altitudes, in particular for the altitudinal, diurnal, seasonal, and solar activity description. The main finding of this study is that the overall IRI overestimation of the ion temperature can be probably ascribed to the long-term ionosphere cooling. Moreover, the study suggests that the IRI ion temperature model needs to implement the seasonal and solar activity dependence, and introduce a more refined diurnal description to allow multiple diurnal maxima seen in observations. The IRI ion temperature anchor point at 430 km is investigated in more detail to show how also a better description of the altitude dependence is desirable for modeling purposes. Some hints and clues are finally given to improve the IRI ion temperature model.
    Description: Published
    Description: 2186-2203
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-02-02
    Description: TITIPy (Topside Ionosphere Turbulence Indices with Python) is a stand-alone Python tool developed for the calculation and mapping of RODI, ROTI, and ROTEI indices, for the characterization of the turbulent state of the topside ionosphere. Data gathered by Langmuir Probes and Precise Orbit Determination antennas on-board ESA Swarm satellites constellation are used to calculate topside ionosphere indices with a high time rate and a global coverage. From the study of these topside indices, information on physical mechanisms involved in the formation of small-scale irregularities (both spatial and temporal) can be drawn, particularly at high and low latitudes. TITIPy provides outputs as time series of calculated indices in text files, and figures as maps in geographic and magnetic coordinates. TITIPy is particularly suited for the investigation of the topside ionosphere irregularities, and for the identification of peculiar spatial and temporal patterns. The paper describes the TITIPy design and code workflow along with a detailed explanation of RODI, ROTI, and ROTEI indices calculation. Furthermore, an example of application based on data collected during the St. Patrick 2015 geomagnetic storm is also shown. TITIPy is open-source and freely downloadable at https://github.com/pignalberi/TITIPy.
    Description: Published
    Description: 104675
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2021-10-13
    Description: Landslides are widespread natural phenomena that play an important role in landscape evolution and are responsible for several casualties and damages. Slope instability is linked to the combination of geological, geomorphological, and climatic factors with various triggering mechanisms; among these, seismic shaking can induce relevant changes in the landscape, leading to coseismic and post-seismic phenomena such as landslide events. The Abruzzo Region (Central Italy) is severely affected by Earthquake-Induced Landslides (EILs), linked to the geomorphological dynamics and the severe seismicity of the area. The distribution, mechanisms, and typology of landslides are strictly related to the different physiographic and geological-structural settings. This paper focuses on the realisation of an EILs susceptibility map, following a heuristic approach combined with a statistical analysis, integrated using GIS technology. This approach led to the identification of nine instability factors. These factors were analysed for the construction of thematic maps. Hence, each factor was assigned proper expert-based ranks and weights based on the critical evaluation of literature data as well as on available landslide inventories and combined in a preliminary map wherein high/low numerical values correspond to a high/low propensity of the slope to fail; furthermore, a statistical analysis of these values was performed to derive suitable susceptibility classes. Results presented herein highlight the robustness of the approach; remarkably, the applied methodology is suitable even in areas where a detailed landslide catalogue is lacking, when the same classification and weighting of available parameters is performed. The statistical analyses and the adoption of an absolute scale ranging from minimum to maximum potential values, finally, ensures the comparability of results among different study areas. Finally, this work represents a scientific and multidisciplinary tool for better defining situations that could lead to hazards (such as landslides) following an earthquake to develop sustainable territorial planning, emergency management, and loss-reduction measures.
    Description: Published
    Description: 105729
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2021-10-13
    Description: The needs of society and the emerging blue economy require access and integration of data and information for the construction of dedicated products. A “transparent and accessible ocean” is one of the key objectives of the Ocean Decade 2021–30. In this context, marine infrastructures become significant components of a global knowledge environment, enabling environmental assessment and providing the necessary data for scientifically valid actions to protect and restore ocean health, to use marine resources in a sustainable way. The data is collected, analyzed, organized, and used by people and their good use/reuse can be obtained with social practices, technological and physical agreements aimed at facilitating collaborative knowledge, decision-making, inference. The vision is a digital ocean data ecosystem made up of multiple, interoperable, and scalable components. The huge amount of data and the resulting products can drive the development of new knowledge as well as new applications and services. Predictive capabilities that derive from the digital ecosystem enable the implementation of services for real-time decision-making, multihazard warning systems, and advance marine space planning. The chapter develops following the progressive complexity and information content of products deriving from oceanic data: data cycle and data collections, data products, oceanic reanalysis. The chapter discusses the new challenges of data products and the complexity of deriving them.
    Description: Published
    Description: 197-280
    Description: 4A. Oceanografia e clima
    Keywords: 03.02. Hydrology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2021-11-26
    Description: Lava flows are recurring and widespread hazards that affect areas around active volcanoes, having the potential to cause significant social and economic loss. The ongoing demographic congestion around volcanoes increases the potential risk and leads to a growing demand for faster and more accurate systems to safeguard the population. The main mitigation action for slowing down and possibly diverting lava flows is the building of artificial barriers, that can limit their destructive effects and reduce losses. Here we present a Particle Swarm Optimization algorithm for the configuration of artificial barriers, in terms of location and geometric features. The goal is to minimize the lava flow impact based on the spatial distribution of exposed elements, using the physics-based MAGFLOW model to run the lava flow scenarios for each barrier configuration. Our algorithm has been tested on Etna (Italy), showing how it can effectively safeguard the threatened areas, diverting lava away from them.
    Description: Published
    Description: 105023
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2021-11-25
    Description: Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data. In this study, daily PM10 filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties - including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter. In urban traffic sites, the PM10 concentrations did not significantly change after the end of the lockdown, when vehicular traffic promptly returned to its usual levels; conversely, the average volume and mass magnetic susceptibilities approximately doubled, and the linear correlation between volume magnetic susceptibility and PM10 concentration became significant, pointing out the link between PM10 concentrations and the increasing levels of traffic-related magnetic emissions. Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM10 near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events. Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM10, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction. As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main particulate pollutant in traffic contexts.
    Description: Published
    Description: 118191
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Airborne particulate matter; Brakes emissions; COVID-19 lockdown; Magnetic monitoring; PM(10) filters; Urban traffic
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2021-12-06
    Description: The youngest (last 1500 years) volcanic eruptions of Lipari, within the Aeolian Archipelago, produced the prominent pumice cone of Monte Pilato and the obsidian lava flows of Rocche Rosse and Forgia Vecchia, concentrated in the north-eastern sector of the island as well as highly dispersed white-coloured, fine-grained tephra layers of rhyolitic composition in terrestrial and marine settings on the regional scale. Here we describe in detail the stratigraphy of pyroclastic successions and lava flows erupted by different vents - Monte Pilato, Forgia Vecchia, Lami, and Rocche Rosse - combining field observations, sedimentological characteristics of the tephra deposits, and major and trace element compositions of the volcanic glass. All the pyroclastic materials consist of aphyric pumice lapilli and ash with a largely homogeneous rhyolitic composition. The Monte Pilato and Forgia Vecchia deposits primarily consist of highly vesicular pumice fragments and subordinate obsidian clasts, whilst Rocche Rosse and Lami are characterized by moderately vesicular juvenile fragments with a more significant fraction of obsidian. The Lami tephra also contains peculiar pumice clasts with a fibrous texture and breadcrust bombs. Stratigraphic relationships, and paleomagnetic and 14C ages of the lava and pyroclastic deposits are combined with the archaeological information and historical reports, enabling us to provide an accurate chrono-stratigraphic framework for the youngest eruptions of Lipari. Following the 8th century CE eruption of Monte Pilato, which produced a pumice cone and a obsidian lava flow, activity resumed in the second half of 13th century CE with the explosive eruption of Forgia Vecchia that culminated in the emission of a bilobate obsidian lava flow. This eruption was shortly followed by the explosive eruptions of Lami and Rocche Rosse, the latter concluded with the emission of the widely renowned obsidian lava flow. By integrating stratigraphy and geochemistry of tephra deposits with a new chronological scheme, our work facilitates the refinement of proximal-to-distal correlation of Lipari's rhyolitic tephra in continental marine environments of the central Mediterranean area in the last 1500 years. A fine-grained, rhyolitic ash found on Stromboli (~40 km NE from Lipari) has an origin from the Monte Pilato and thus, constrains tephra dispersion towards the NE. Very similar ash beds dispersed southwards and interlayered within the near-source deposits of La Fossa, Vulcano island (~10 km from Lipari) exhibit features that are consistent with the younger activities of the Rocche Rosse eruption. A possible link between previously identified rhyolitic ash layers identified in marine cores of the Ionian Sea and the Forgia Vecchia eruption are postulated, although the age and textural characteristics of these distal tephra are not univocal in indicating a correlation to either Monte Pilato or Forgia Vecchia.
    Description: Published
    Description: 107397
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2021-11-26
    Description: Volcanic gas dispersal can be a serious threat to people living near active volcanoes since it can have short- and long-term effects on human health, and severely damage crops and agricultural land. In recent decades, reliable computational models have significantly advanced, and now they may represent a valuable tool to make quan- titative and testable predictions, supporting gas dispersal forecasting and hazard assessments for public safety. Before applying a specific modelling tool into hazard quantification, its calibration and its sensitivity to initial and boundary conditions should be carefully tested against available data, in order to produce unbiased hazard quantifications. In this study, we provided a number of prototypical tests aimed to validate the modelling of gas dispersal from a hazard perspective. The tests were carried out at La Soufrière de Guadeloupe volcano, one of the most active gas emitters in the Lesser Antilles. La Soufrière de Guadeloupe has shown quasi-permanent degassing of a low-temperature hydrothermal nature since its last magmatic eruption in 1530 CE, when the current dome was emplaced. We focused on the distribu- tion of CO2 and H2S discharged from the three main present-day fumarolic sources at the summit, using the mea- surements of continuous gas concentrations collected in the period March–April 2017. We developed a new probabilistic implementation of the Eulerian code DISGAS-2.0 for passive gas dispersion coupled with the mass-consistent Diagnostic Wind Model, using local wind measurements and atmospheric stability information from a local meteorological station and ERA5 reanalysis data. We found that model outputs were not significantly affected by the type of wind data but rather upon the relative positions of fumaroles and measurement stations. Our results reproduced the statistical variability in daily averages of observed data over the investigated period within acceptable ranges, indicating the potential usefulness of DISGAS-2.0 as a tool for reproducing the observed fumarolic degassing and for quantifying gas hazard at La Soufrière. The adopted testing procedure allows for an aware application of simulation tools for quantifying the hazard, and thus we think that this kind of testing should actually be the first logical step to be taken when applying a simulator to assess (gas) hazard in any other volcanic contexts.
    Description: Published
    Description: 107312
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Passive gas dispersion ; Numerical modelling ; ERA5 reanalysis ; Mass consistent wind model ; La Soufrière de Guadeloupe
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2021-11-29
    Description: In this work, we propose a wavelet-based filtering for soil CO2 flux time series. The filter relies on the detection of the periodic components achieved by means of the long-term time-frequency characterization of the time series. For this purpose, we exploited the vast data set coming from the monitoring network installed at Mt. Etna volcano (Italy). The network provides hourly measure of CO2 flux together with the measure of the climatic variables. These data allow to investigate the relationships between CO2 time series and the potentially influencing meteorological factors. This has been assessed calculating the wavelet coherence between CO2 time series against air temperatures, atmospheric pressure, and relative humidity in all the sites where these information were available. Results highlight the occurrence of marked cycles at about ∼1 year for the most of the sites while shorter cycles occur only at some sites. From these cycles a periodic signal can be calculated, and therefore opportunely removed from the time CO2 series to enhance the volcano-related anomalies. We found also common cycles among CO2 and the climatic variables, which synchronicity is constant over time but it is site-specific. Starting from this consideration, we calculated a reference signal for CO2 combining analytically the temperature, the pressure, and the humidity cycles: this model of the climatic effect has been used to predict the seasonal trend of the CO2 output.
    Description: Published
    Description: 107421
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Soil CO2 ; Continuous wavelet transform ; Spectral analysis ; Etna
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2021-12-14
    Description: Seismic stations are usually used to record seismic event and, therefore, they are recommended to be installed far from railways and traffic roads in order to avoid the superposition of ambient noise signals to those provoked by an earthquake. In this paper, instead, seismic stations, placed intentionally in areas near railway and traffic roads, are used to characterize the subsoil spectral properties and to assess the effect of vibrations due to trains and vehicles. A cemetery in the green countryside near Florence is chosen as a reference case study to deal with this topic. Most of the buildings in the cemetery area are affected by an extensive crack pattern. In January 2020 five seismic stations were installed in order to evaluate if the trains running in the tunnels of the regional and high-speed railway lines located below and in the vicinity of the cemetery and the vehicles traveling on the nearby A1 highway and regional road can produce vibrations in the ground that justify the observed damage pattern. Collected data are analyzed using the Nakamura technique in order to estimate the dynamic properties of the ground and compared to the limits provided by the current regulations. Furthermore, the trend of the Root Mean Square average over the entire recording period is computed as well. From the obtained results, it is possible to highlight that the average daily oscillation level increases from early morning until 7 p.m. and then it decreases, and also that the highest am­ plitudes of transients are concentrated in the late evening and during the night, when the background noise is lower. Furthermore, the computed values of the maximum and average amplitudes are lower than those that can cause damage to buildings as defined by the guidelines, the eigenfrequency of the ground falls in a range far from that ascribable to the cemetery buildings, so that the resonance effects can be excluded. In order to confirm these results, the amplitude of ground shaking due to recorded transients is compared to that produced by two earthquakes (a 3.4 Mw local earthquake at more than 100 km and a Mw 6.6 teleseism from Turkey) which occurred during the monitoring period. One can conclude that it seems unlikely that the shaking produced by nearby vehicles and trains could be responsible for the observed damage.
    Description: The study was partially funded by the Municipality of Figline-Incisa Valdarno.
    Description: Published
    Description: e00623
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Ambient vibrations ; Soil amplification
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2021-12-23
    Description: The eruptive activity of a volcano modifies its surface topography through morphological changes generated by the deposition of emitted volcanic material and resulting gravity-driven processes,which can form accumulation of material in addition to the most common erosional phenomena. Mapping and quantifying such morphological changes allow to derive new data useful to better describe and understand the eruptive history of the volcano itself. Nowadays, one of the mostly used method to identify such morphological changes consists of comparing Digital Elevation Models (DEM) of the volcanic area before and after an eruptive event. If the eruptive event is referred to periods prior to 1980's, the only method to reproduce DEMs consists of elaborating the historical cartography that is often available only in paper format. In thisworkwe aimto prove the reliability of this approach, presenting a study on the morphological changes (from 1876 to 1944) of the summit caldera of the Somma–Vesuvio volcano (Italy). For the first time, we compare DEMs derived from historical maps (1876, 1906 and1929) and a DEM dated 2012 obtained by remote sensing. The four models of the caldera, digitally reproducedat the same spatial resolution, are morphologically investigated through specific maps derived from the DEMs and a set of height profiles. In addition, further morphometric analyses and accurate quantifications in volume and surface are presented and discussed for a portion of the Somma-Vesuvio summit caldera, represented by the Gran Cono edifice. Considering the different typology of the source data used in this study, it is also provided a discussion on the respective accuracies that, especially for the historical maps, represent a crucial point for obtaining DEMs able to reproduce topographies more realistic as possible. For this reason, despite data source were processed following rigours criteria, the calculations of volume, surface and distance related to the morphological changes of the volcano are associated to an accurate quantification of the error. Following this, the main results obtained in this study are: i) the identification of several past volcanic deposits and the estimation of the related thicknesses, both in good agreement with published literature; ii) the quantification of the morphological changes of theGran Cono from 1876 to 1944 resulting in a volume and surface growth of 133 ×106m3(±5%) and ~0.14 km2, respectively; iii) the identification of a possible migration path of the centroid of the Gran Cono crater along the SW-NE preferential direction during the investigated period.
    Description: Published
    Description: 107624
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Digital Elevation Model, Historical cartography,Airborne Laser Scanning technology, Somma-Vesuvio volcano, Morphological changes quantifications
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-02-11
    Description: Prior to the 2018 lower East Rift Zone (ERZ) eruption and summit collapse of Kīlauea Volcano, Hawai‘i, continuous gravimeters operated on the vent rims of ongoing eruptions at both the summit and Pu‘u ‘Ō‘ō. These instruments captured the onset of the 2018 lower ERZ eruption and the effects of lava withdrawal from both locales, providing constraints on the timing and style of activity and the physical properties of the lava lakes at both locations. At the summit, combining gravity, lava level, and a three-dimensional model of the vent indicates that the upper ∼200 m of the lava lake had a density of about 1700 kg m−3, slightly greater than estimates from 2011–2015 and possibly indicating a gradual densification over time. At Pu‘u ‘Ō‘ō, gravity and vent geometry were used to model both the density and the rate of crater collapse, which was unknown owing to a lack of visual observations. Results suggest the withdrawal of at least m3 of lava over the course of two hours, and a material density of 1800–1900 kg m−3. In addition, gravity data at Pu‘u ‘Ō‘ō captured a transient decrease and increase about an hour prior to crater collapse and that was probably related to a small, short-lived fissure eruption on the west flank of the cone and possibly to dike intrusion beneath Pu‘u ‘Ō‘ō. The fissure was the first event in the subsequent cascade that ultimately led to the extrusion of over 1 km3 of lava from lower ERZ vents, collapse of the summit caldera floor by more than 500 m, and the destruction of over 700 homes and other structures. These results emphasize the importance of continuous gravity in operational monitoring of active volcanoes.
    Description: Published
    Description: 117003
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-02-11
    Description: Extensive geophysical and geodetic measurements were carried out to evaluate the groundwater aquifer, trace the basement relief, as well as detect the igneous intrusions and structural elements (mainly faults) that affect the occurrence of groundwater in the study area. The fieldwork included resistivity sounding, a geomagnetic survey, and Global Positioning System measurements. The magnetic results showed the presence of a group of main faults in East-west trend at the western part of the area and major fault at the northern part of the area of NW-SW trend. The findings also showed the presence of two igneous rock intrusions located in the middle of the eastern part of the valley. Pronounced differences in the depths of basement rocks have been identified, ranging between 0 and 900 m from the surface. Both high horizontal movements and high shear strain rates have been found to be concentrated at the southeast of the study area and it was noted that high stress was accumulated along the main observed faults and at the main groundwater aquifers. The geoelectrical results confirmed the presence of two aquifers; a shallow aquifer (Quaternary aquifer) that narrows northwards and a Nubian sandstone aquifer, which considered the main aquifer. The Nubian sandstone aquifer carries groundwater in the region, which overlies the last geoelectric unit represented by the basement complex layer and geological structures affecting the potential availability of groundwater in the study area, as proved by the geomagnetic survey and stress accumulation.
    Description: Researchers Supporting Project number (RSP-2021/351), King Saud University, Riyadh, Saudi Arabia
    Description: Published
    Description: 101549
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GPS ; stress ; strain ; geomagnetic ; geoelectric ; groundwater ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-02-11
    Description: This work describes the data used in the EPSL research article "Quantifying strong seismic propagation effects in the upper volcanic edifice using sensitivity kernels". The dataset is generated in order to investigate to what extent the seismic signals recorded on volcanoes are affected by near surface velocity structure. Data were calculated using the computational spectral elements scheme SPECFEM2D, where the wave propagation beneath Mount Etna volcano, Italy, was simulated in both homogeneous and heterogeneous models. The heterogeneous model comprises a low-velocity superficial structure (top several hundred meters) based on the previously published studies. Several different source mechanisms and locations were used in the simulations. The seismic wavefield was "recorded" by 15 surface receivers distributed along the surface of the volcano. The associated sensitivity kernels were also computed. These kernels highlight the region of the velocity model that affects the recorded seismogram within a desired time window. The text files describing the velocity models used in the simulations are also provided. The data may be of interest to volcano seismologists, as well as earthquake seismologists studying path effects and wave propagation through complex media.
    Description: European Union Seventh Framework Programme (FP7/2007 2013) under the project NEMOH, grand agreement no. 289976.
    Description: Published
    Description: 106673
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Near surface velocity structure; Numerical simulations; Sensitivity kernels; Specfem2d; Volcanic edifice; Volcano seismic sources
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-02-11
    Description: In volcanic environments, the correct interpretation of the signals recorded by a seismic station is critical for a determination of the internal state of the volcano. Those signals contain information about both the seismic source and the properties of the path travelled by the seismic wave. Therefore, understanding the path effect is necessary for both source inversions and geophysical investigation of the volcanoes' properties at depth. We present an application of the seismic adjoint methodology and sensitivity kernel analysis to investigate seismic wave propagation effects in the upper volcanic edifice. We do this by performing systematic numerical simulations to calculate synthetic seismograms in two-dimensional models of Mount Etna, Italy, considering different wave velocity properties. We investigate the relationship between different portions of a seismogram and different parts of the structural volcano model. In particular, we examine the influence of known near-surface low-velocity volcanic structure on the recorded seismic signals. Results improve our ability to understand path effects highlighting the importance of the shallowest velocity structure in shaping the recorded seismograms and support recent studies that show that, although long-period seismic events are commonly associated with magma movements in resonant conduits, these events can be reproduced without the presence of fluids. We conclude that edifice heterogeneities impart key signatures on volcano seismic traces that must be considered when investigating volcano seismic sources.
    Description: Published
    Description: 116683
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-02-14
    Description: High-elevation plateaus that are positioned in between topographic barriers are common orogenic features in the South American continent, formed under a range of evolving environmental conditions. For example, in the central Andes (Bolivia-Argentina), the Puna-Altiplano is arid and endorheic with a poorly developed fluvial system, while in the northern Andes (Colombia) the Chiquinquirà and Tunja highlands are characterized by a humid equatorial exorheic fluvial system. In addition to a plateau-like low-relief surface at 2500 m, the landscape of the northern Eastern Cordillera and SantanderMassif (northern Colombia) displays a lower elevation (~1500m) low-relief landscape (Mesas) comprising river captures, windgaps, and a disconnected alluvial fan that collectively record a transient state. This configuration has been achieved through a combination of compressive deformation and sub-crustal processes. The compressive shortening started to occur in the Paleogene and is still active, whereas regional surface uplift related to slab flattening andmantlewedge hydration startedintheLateMiocene/Pliocene.To disentangle the crustal vs sub-crustal forcing and to investigate the relative timing of drainage network evolutionwe combine the analysis of topography, hydrography (river longitudinal profiles, morphometric parameters, drainage divide stability), knickpoint migration (celerity model), paleo-longitudinal profile modeling, satellite images, and field observations. In particular, we show that during the development of the low-relief Mesas landscape the older Chiquinquirà highland was a closed drainage and that the lower portion of the Suárez River flowed northward into the Bucaramanga depression forced by the Los Cobardes Anticline topographic barrier. The Suárez River collected waters from the southern SantanderMassif and the upper reach of the Chicamocha River, which was draining the Tunja highland. An abandoned windgap deposit on the eastern edge of the Mesa de Barichara suggests that the lower portion of the Chicamocha Riverwas not yet formed. Subsequent to the Chiquinquirà highland drainage opening, two main tributaries of the Magdalena River, the Lebrija and Sogamoso, captured the Suárez River in a short temporal sequence. A knickpoint celerity model allows us to date the Lebrija capture of the Bucaramanga depression at ~260–270 ka and the subsequent Sogamoso capture at 190–220 ka. Only during this final stage, the lowermost Chicamocha River section formed and the drainage network developed to its present configuration. Finally,we suggest that the early Cenozoic rift inversion has controlled the drainage network pattern and the late Miocene sub-crustal-induced surface uplift has driven the main fluvial network reorganization.
    Description: Published
    Description: 107847
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-02-11
    Description: The evolution of volcanic activity observed at the New South East Crater (NSEC) and Voragine (VOR) between July 2019 and January 2020 has been deciphered by taking into account the changes of textures and chemical zoning of plagioclase and olivine crystals from the erupted lavas and tephra. The petrological observations have been integrated with analyses of the amplitude and source location of volcanic tremor and infrasound data. Characteristics of crystals erupted on July 2019 at the NSEC reflect protracted intrusions of magma into the mid-upper section of the plumbing system, approximately within 290–120 MPa, which acted as the main zone of magma accumulation and crystallization before the beginning of the eruptive activity. Textures and compositions of crystals erupted at VOR emphasize the beginning of volcanic activity driven by recharge/discharge phases that mostly affect the shallowest portion of the Mt. Etna plumbing system (〈40 MPa). At the end of 2019, mineral compositions and zoning patterns changed again in accordance with eruption dynamics. The observed changes reflect the transition from an early phase, between November and December 2019, characterized by substantial equilibrium during magma storage and transport toward higher disequilibrium conditions and eruptive frequency, in January 2020. This has been associated to episodes of deep replenishment of mafic magmas displacing the resident one. Diffusion chronometry applied to zoned olivines shows that most of the episodes of magma intrusion correlate temporally with changes in the features of both volcanic tremor and infrasonic events in terms of amplitude and source location, providing evidence that such geophysical signals are directly related to the magma dynamics in the upper plumbing system.
    Description: Published
    Description: 107350
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-02-14
    Description: Shallow water equations are widely used in the simulation of those geophysical flows for which the flow horizontal length scale is much greater than the vertical one. Inspired by the example of lava flows, we consider here a modified model with an additional transport equation for a scalar quantity (e.g., temperature), and the derivation of the shallow water equations from depth-averaging the Navier-Stokes equations is presented. The assumption of constant vertical profiles for some of the model variables is relaxed allowing the presence of vertical profiles, and it follows that the non-linearity of the flux terms results in the introduction of appropriate shape coefficients. The space discretization of the resulting system of hyperbolic partial differential equations is obtained with a modified version of the finite volume central-upwind scheme introduced by Kurganov and Petrova in 2007. The time discretization is based on an implicit-explicit Runge-Kutta method which couples properly the hyperbolic part and the stiff source terms, avoiding the use of a very small time step; the use of complex arithmetic increases accuracy in the implicit treatment of stiff terms. The whole scheme is proved to preserve the positivity of flow thickness and the stationary steady-states. Some numerical experiments are performed to validate the proposed method and to show the incidence on the numerical solutions of shape coefficients introduced in the model.
    Description: Published
    Description: 482-505
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Shallow water equations ; Viscous fluids ; Finite Volume ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-02-11
    Description: In this work, a partitioned fluid-structure interaction solver is presented. Fluid flow problem is solved with time-discontinuous deforming domain stabilized space-time finite element method. Flow is computed with pressure primitive variables which permit to use the same numerical technique for both compressible and incompressible regimes. Elastic deformation of the structure is modelled in the Lagrangian frame of reference with Saint-Venant Kirchhoff and Neo-Hookean material models - both are non-linear and valid for large deformations. Structure equations are discretized with Galerkin finite element method for space and with generalized-alpha method for the time. Mesh motion is modelled with the elastic deformation method. An implicit algorithm is presented to couple the different solvers. The details are provided on the implementation of the solvers in parallel software. The numerical code is verified and validated on several compressible and incompressible flow benchmarks widely used in the literature. The results demonstrate that the developed solver successfully detects the accurate interaction between fluid and structure.
    Description: Published
    Description: 182-195
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-02-11
    Description: The Tolhuaca hydrothermal system is one of the few attested geothermal resources in Chile. While recent investigations provided some insights into the depth and temperature of the geothermal reservoirs and the chemical and mineralogical evolution of the hydrothermal system, little is still known about the CO2 degassing of the system and the local and shallow control of fluid pathways. Here, we document the soil CO2 degassing and soil temperature distributions in the southern part of the Tolhuaca hydrothermal system and at one of its northern fumaroles, and provide a first estimate of its total CO2 release. The surveyed area is responsible for a total CO2 emission of up to 30 t d-1. Hydrothermal CO2 emissions (~ 4-27 t d-1) are mostly restricted to the thermal manifestations or generally distributed along NNW trending lineaments, sharing the same orientation as the volcanic vents and thermal springs and fumaroles. Hydrothermal CO2 fluxes, fumaroles and thermal springs are generally encountered in topographic lows, in close vicinity of streams and often in clay-rich pyroclastic units, highlighting a relation between landscape evolution and the activity of the hydrothermal system. We suggest that glacial unloading and incision of the stream inside the clay-rich units have likely enhanced locally the permeability, creating a preferential pathway for the migration of deeper fluid to the surface. As several hydrothermal systems in the Andes are found on the flank of volcanoes hosting glaciers, we propose that they could have had a similar development to that of the Tolhuaca hydrothermal system.
    Description: Published
    Description: 107316
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Tolhuaca volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-02-14
    Description: Exposure to styrene is a major safety concern in the fibreglass processing industry. This compound is classified by the International Agency for Research on Cancer as a possible human carcinogen. Several types of analytical equipment exist for detecting volatile organic compounds (VOCs) in the atmosphere; however, most of them operate ex-situ or do not provide easy discrimination between different molecules. This work introduces an improved and portable method based on FTIR spectroscopy to analyse toxic gaseous substances in working sites down to a concentration of less than 4 ppm. Styrene and a combination of VOCs typically associated with it in industrial processes, such as acetone, ethanol, xylene and isopropanol, have been used to calibrate and test the methodology. The results demonstrate that the technique offers the possibility to discriminate between different gaseous compounds in the atmosphere with a high degree of confidence and obtain very accurate quantitative information on their concentration, down to the ppm level, even when different VOCs are present in a mixture.
    Description: Published
    Description: 122510
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Environmental sensors; Infrared spectroscopy; Volatile organic compounds
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-02-14
    Description: This paper deals with the first geochemical data from an unexplored sector of the Cordón de Inacaliri Volcanic Complex (Central Andes, Chile). The site is located at ∼5,150-5,200 m a.s.l., inside the Pabelloncito graben where, at about 9 km NW of the studied area, the only currently working geothermal power plant of South America, named Cerro Pabellón, occurs. Diffuse soil CO2 and soil temperature measurements were carried out to unravel the structural control on the rising fluids and estimate the total CO2 output, the heat flow rate and the heat flux, aimed at assessing a preliminary evaluation of the geothermal potential of the area. The study area is characterized by a pervasive hydrothermal mineralogical alteration, CO2 flux values of up to ∼4,400 g m-2 d-1 and soil temperatures up to the boiling point of water at that altitude. All these features are likely related to an endogenous source. Spatial distribution of both soil CO2 flux and temperature depict an ENE-striking lineament, whose intersection with the NW-striking Pabelloncito graben forms a favourable structural setting for the discharge of hydrothermal fluids. The total CO2 output emission of the studied area (∼0.0179 km2) was ∼0.53 t d-1, with an associated discharge of steam of 6.45 t d-1 (CO2/H2O ratio = 0.08). An electric capacity potential of 1.08 MWe km-2 was computed from the heat flow rate and heat flux values. Our results suggest that this part of the Pabelloncito graben is an interesting geothermal prospect and a good candidate for further exploration studies.
    Description: Published
    Description: 101961
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-02-11
    Description: Grooves represent the evidence of tectonic activity that deformed Ganymede surface during its geologic evolution. In this work, we investigate the main characteristics of Ganymede's groove populations on four different areas located at the equatorial region of the satellite (Uruk Sulcus, Babylon Sulci, Phrygia Sulcus and Mysia Sulci). Specifically, we analyse i) the grooves length distribution to provide a framework for their evolution and ii) the grooves self-similar clustering to infer their vertical penetration inside Ganymede icy shell. For each dataset, we find that the grooves distribution is well fitted by an exponential-law and a power-law distribution depending on the structure length. This implies the presence of confined structures in a shallow layer of the icy crust (relatively shorter, exponentially-fitted structures) and crustal-scale structures that could theoretically reach the crust-ocean interface (relatively longer, power law-fitted structures). In addition, the existence of two exponential distributions for few datasets suggest that there could be two different system of structure confined within specific mechanical crust layers. The thickness of the penetrated icy shell is retrieved through the self-similar clustering analysis and ranges between 105 and 130 km for the examined datasets. This value agrees with independent estimates of the icy shell thickness, ranging between 80 and 150 km. Moreover, our results support the hypothesis that a large number of grooves penetrate the brittle icy crust, with sets of fractures vertically confined in different mechanical layers, while the penetration of few interconnected faults underlying longer grooves may interest the whole icy crust above the liquid ocean.
    Description: Published
    Description: 105140
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: GALILEAN SATELLITES ; DARK TERRAIN ; FAULT EVOLUTION ; TECTONICS ; PATTERNS GEOMETRY ; JUPITER
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Journal of Sea Research, Elsevier, 187, pp. 102245, ISSN: 13851101
    Publication Date: 2022-07-15
    Description: Foraminifera nourishing on fresh organic matter often exhibit an epibiotic or even an epizoic lifestyle. This study investigates the colonization of sponges by foraminifera. For this purpose, 12 siliceous sponges of different genera (Asconema, Geodia, Lissodendoryx and Schaudinnia) and order Haplosclerida were collected in 2018 with a ROV in water depths of 223 to 625 m in the Norwegian-Greenland Sea. Sponges were stained with a Rose Bengal/ ethanol mixture to allow a differentiation between foraminifera that had been recently alive and empty tests. Each sponge sample contained 3–42 dead and 1–10 living foraminiferal individuals per cm3 and summarizing up to 78 different taxa on one single sponge (Geodia phlegraei). Even on Geodia barretti, which is able to release barrettin (an alkaloid) to avoid colonialization by other organisms, living foraminiferal individuals (1 ind./cm3) were observed. The highest foraminiferal densities (living and dead individuals) were recorded on Haplosclerida sp. (49 ind./cm3) and Geodia sp. (45 ind./cm3). The lowest densities of foraminifera were found on G. barretti (3–14 ind./cm3) and on Lissodendoryx complicata (9 ind./cm3). The foraminiferal diversity ranges from 7.04 to 17.38 for Fisher α and from 2.40 to 3.33 (Shannon-Wiener (H)S). The highest diversity was found on G. phlegraei and the lowest one on L. complicata. This study is highlighting the ecosystem engineering role of sponges providing niche habitats for a high number of foraminifera.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-07-14
    Description: Forest destruction by ‘a‘ ̄a lava flow is common. However, mechanical and thermal interactions between the invading lava and the invaded forest are poorly constrained. We complete mapping, thermal image and sample analyses of a channel-fed ‘a‘a ̄ lava flow system that invaded forest on the NE flank of Mt. Etna (Italy) in 2002. These lava flows destroyed 231,000 trees, only 2% of which are still visible as felled trunks on the levees or at the channel-levee contact. The remaining 98% were first felled by the flow front, with the trunks then buried by the flow. Rare tree molds can be found at the rubble levee base where trees were buried by avalanching hot breccia and then burnt through, with a time scale for total combustion being a few days. Protruding trunks fell away from the flow, if felled by blocks avalanching down the levee flank, or became aligned with the flow if falling onto the moving stream. Estimated cooling rates (0.1–5.5 ◦C km− 1) are normal for well-insulated ‘a‘a ̄ flow, suggesting no thermal interaction. We find the highest phenocryst concentrations (of 50–60%, above an expected value of 30–40%) in low velocity (〈0.5 m s− 1) locations. These low velocity zones are also characterized by high trunk concentrations. Thus, the common factor behind crystal and trunk deposition is velocity. That is, when the lava slows down, crystal settling occurs and trunks are preferentially deposited. Thus, although we find no thermal or textural effects due to the presence of the forest, we do find mechanical and environmental in- teractions where the trees are consumed to become part of the flow.
    Description: This research was financed by the Agence National de la Recherche through the project LAVA (Program: DS0902 2016; Project: ANR-16 CE39-0009). We very much thank Sean I. Peters and an anonymous reviewer for their extremely constructive advice and support. This is ANR-LAVA contribution no. 23 and Laboratory of Excellence ClerVolc contribution no. 552.
    Description: Published
    Description: 107621
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Channelized ‘a‘ ̄a lava flow ; thermal imagery ; lava flows ; 2002-03 eruption ; forest destruction ; tree molds ; Etna volcano ; cooling rates ; Interaction lava and trees ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-06-10
    Description: In fold and thrust belts developing at convergent margins, the migration of the advancing wedge is accompanied by bulging of the downgoing plate, followed by the development of a foredeep basin filled by a thick succession of syn-orogenic sediments. The transition from forebulge to foredeep marks a key moment in the evolution of the orogenic system. In deep water environments, the record of this transition is typically complete and progressive. Conversely, in the shallow-water/continental environment of many collisional systems, the uplift of the forebulge area can imply emersion and erosion, obliterating the stratigraphic record of key steps of the evolution of the orogenic system. The southern Apennines constitute one of these collisional fold and thrust belts where the development of the forebulge has implied emersion and erosion, with the development of a Miocene forebulge erosional unconformity, accompanied by extensional deformation associated with the bending of the lithosphere during the forebulge stage. In this paper, we use strontium isotope stratigraphy to constrain with unprecedented time-resolution the age of the forebulge unconformity in areas presently incorporated in the northern sector of the southern Apennines fold and thrust belt. Integration of our results and those of previous studies indicates, at the regional scale, a younging toward the foreland of the forebulge unconformity across the belt. Our highresolution ages also reveal a diachronous onset of the flexural subsidence over short distances, associated with the occurrence of horst and graben structures, possibly resulting from inherited paleotopography along with forebulge extension. This work highlights how high-resolution dating is critical to unravel the evolution of foreland basin systems at different scales.
    Description: Published
    Description: 105634
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Foreland basin system ; Forebulge unconformity ; Strontium isotope stratigraphy ; Forebulge extension ; Miocene ; Southern Apennines (Italy)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-06-06
    Description: Magmatic and sub-solidus fabrics in intrusive rocks are frequently used to infer the relative timing of deformation with respect to magma emplacement and cooling. Here, we describe the relationships between strain and fabric development in leucogranite sheets (pegmatite, aplite) emplaced into shear zones that localized post-thermal peak deformation in the contact aureole of an upper crustal pluton (〈0.2 GPa) on the Island of Elba, Italy. The leucogranite sheets present igneous, mylonitic, and cataclastic fabrics. Detailed meso- and microscopic structural analysis suggests that the dykes emplaced in the shear zones behaved as competent, rigid bodies during mylonitic deformation of the host rocks. Thermal modelling indicates that emplacement and cooling of the sheets occurred very rapidly (a few days to years) compared to typical tectonic strain rates and strain accumulation timescales in the host rocks. Such a fast cooling does not allow melt or magma-induced thermal softening in the host rocks during deformation. The development of mylonitic and cataclastic fabrics in the dykes was controlled by the localized activation of fluid-controlled reaction softening mechanisms (mylonitic fabric) and embrittlement during cooling in sites of high-strain (cataclastic fabric). We show that a broad spectrum of fabrics can form in igneous sheet intrusions emplaced at the same time and crustal level. The coexistence of isotropic (non-foliated igneous) versus anisotropic (mylonitic and cataclastic) fabrics in igneous sheet intrusions should therefore be evaluated in terms of tectonic strain rates, cooling rates, thermal state of the host, distribution of heterogeneous strain, and activation of strain softening mechanisms. Our observations highlight that the concepts of pre-, syn-, late- and post-tectonic fabrics in intrusive igneous rocks should be used with caution when interpreting relative timing relationships between deformation and magmatism.
    Description: Published
    Description: 104600
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Shear zones ; Igneous sheets Magma emplacementGranite deformationPegmatite ; Magma emplacement ; Granite deformation ; Pegmatite ; Elba Island ; Emplacement of a felsic dyke swarm during progressive heterogeneous deformation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-06-16
    Description: Magnetic biomonitoring methodologies were applied at Villa Farnesina, Rome, a masterpiece of the Italian Renaissance, with loggias frescoed by renowned artists such as Raffaello Sanzio. Plant leaves were sampled in September and December 2020 and lichen transplants were exposed from October 2020 to early January 2021 at increasing distances from the main trafficked road, Lungotevere Farnesina, introducing an outdoor vs. indoor mixed sampling design aimed at assessing the impact of vehicular particulate matter (PM) on the Villa Loggias. The magnetic properties of leaves and lichens - inferred from magnetic susceptibility values, hysteresis loops and first order reversal curves - showed that the bioaccumulation of magnetite-like particles, associated with trace metals such as Cu, Ba and Sb, decreased exponentially with the distance from the road, and was mainly linked to metallic emission from vehicle brake abrasion. For the frescoed Halls, ca. 30 m from the road, the exposure to traffic-related emissions was very limited or negligible. Tree and shrub leaves of the Lungotevere and of the Villa's Gardens intercepted much traffic-derived PM, thus being able to protect the indoor cultural heritage and providing an essential conservation service. It is concluded that the joint use of magnetic and chemical analyses can profitably be used for evaluating the impact of particulate pollution on cultural heritage within complex metropolitan contexts as a preventive conservation measure.
    Description: Published
    Description: 153729
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Brake wear; Cultural heritage; Lichen transplants; Magnetic biomonitoring; Preventive conservation; Traffic-related particulate matter
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-06-09
    Description: Near-continuous monitoring both of gas emissions (CO2, CH4 and H2S) and of water temperature at Santa Venera al Pozzo thermal springs (SE foot of Mt. Etna volcano, Sicily, Italy) was conducted from December 2017 to April 2019, using a novel and cheaper Chromatography Monitoring System (CMS) coupled with a water temperature sensor. The results showed methane as predominant gas and temporal changes in gas concentrations that were in part due to daily fluctuations, which caused small amplitude variations, and in part due to non-environmental causes. These latter were correlated with the occurrence of strong earthquakes and slow tectonic events related to magmatic intrusions, but not with input of magmatic gases into the thermal aquifer, given the nonmagmatic origin of all monitored gases. Methane spikes were observed during many volcano-tectonic events and call for a deep source of this gas. H2S was detected only during the strongest local tectonic events, including a Mw 4.9 earthquake, suggesting that this gas has a common origin as CH4 (i.e., mixing between microbial and thermogenic gas), but it is released only when tectonic stress is applied for sufficiently long periods as to cause H2S oversaturation in the hydrothermal aquifer. Water temperature decreases were also observed immediately after the two strongest earthquakes in the area, which helped us produce a comprehensive model to explain the observed geochemical variations. Our approach allowed revealing the great sensitivity of gases such as CH4 and especially H2S to tectonic stress, thus making them valuable indicators of impending strong tectonic or volcanotectonic events.
    Description: Published
    Description: 229388
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Earthquakes ; Volcanic activity ; Geothermal systems ; Fluids ; Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2022-05-24
    Description: The assessment of potential radon-hazardous environments is nowadays a critical issue in planning, monitoring, and developing appropriate mitigation strategies. Although some geological structures (e.g., fault systems) and other geological factors (e.g., radionuclide content, soil organic or rock weathering) can locally affect the radon occurrence, at the basis of a good implementation of radon-safe systems, optimized modelling at territorial scale is required. The use of spatial regression models, adequately combining different types of predictors, represents an invaluable tool to identify the relationships between radon and its controlling factors as well as to construct Geogenic Radon Potential (GRP) maps of an area. In this work, two GRP maps were developed based on field measurements of soil gas radon and thoron concentrations and gamma spectrometry of soil and rock samples of the Euganean Hills (northern Italy) district. A predictive model of radon concentration in soil gas was reconstructed taking into account the relationships among the soil gas radon and seven predictors: terrestrial gamma dose radiation (TGDR), thoron (220Rn), fault density (FD), soil permeability (PERM), digital terrain model (SLOPE), moisture index (TMI), heat load index (HLI). These predictors allowed to elaborate local spatial models by using the Empirical Bayesian Regression Kriging (EBRK) in order to find the best combination and define the GRP of the Euganean Hills area. A second GRP map based on the Neznal approach (GRPNEZ) has been modelled using the TGDR and 220Rn, as predictors of radon concentration, and FD as predictor of soil permeability. Then, the two GRP maps have been compared. Results highlight that the radon potential is mainly driven by the bedrock type but the presence of fault systems and topographic features play a key role in radon migration in the subsoil and its exhalation at the soil/atmosphere boundary.
    Description: Published
    Description: 152064
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Euganean Hills ; Geogenic Radon Potential ; Geostatistics ; Natural radioactivity ; Radon ; Regression kriging ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-06-30
    Description: A full review of the 79 CE Plinian eruption of Vesuvius is presented through a multidisciplinary approach, exploiting the integration of historical, stratigraphic, sedimentological, petrological, geophysical, paleoclimatic, and modelling studies dedicated to this famous and devastating natural event. All studies have critically been reviewed and integrated with original data, spanning from proximal to ultradistal findings of the 79 CE eruption products throughout the Mediterranean. The work not only combines different investigation approaches (stratigraphic, petrological, geophysical, modelling), but also follows temporally the 79 CE eruptive and depo sitional events, from the magma chamber to the most distal tephras. This has allowed us first to compile a full database of all findings of those deposits, then to relate the products (the deposits) to the genetic thermo mechanical processes (the eruption), and lastly to better assess both the local and regional impacts of the 79 CE eruption in the environment. This information leads to a number of open issues (e.g., regional environmental impact vs. local pyroclastic current impact) that are worthy of further investigations, although the 79 CE eruption of Vesuvius is one of the best studied eruptions in volcanology. The structure of the work follows three macro-categories, the historical aspects, the products, and the processes of the 79 CE eruption. For each investigation approach (from stratigraphy to modelling), all dedicated studies and original data are discussed. The open issues are then synthesized in the discussion under a global view of Plinian eruptions, from the magma setting to its dispersion as pyroclasts flowing on the surface vs. falling from the volcanic plume. In this way, a lesson from the past, in particular from the well-studied 79 CE eruption of Vesuvius, will be of help for a better synchronization of processes and products in future developments. Lastly, various aspects for volcanic hazard assessment of Plinian eruptions are highlighted from the tephra distribution and modelling points of view, as these large natural phenomena can have a larger impact than previously thought, also at other active volcanoes.
    Description: Published
    Description: 104072
    Description: 1V. Storia eruttiva
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 79 CE eruption ; Vesuvius ; Plinian eruption ; Pompeii ; Multidisciplinary approach ; Pyroclastic succession ; Pyroclastic currents ; 79 CE tephra dispersal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, C.-Z., Dick, H. J. B., Mitchell, R. N., Wei, W., Zhang, Z.-Y., Hofmann, A. W., Yang, J.-F., & Li, Y. Archean cratonic mantle recycled at a mid-ocean ridge. Science Advances, 8(22), (2022): eabn6749, https://doi.org/10.1126/sciadv.abn6749.
    Description: Basalts and mantle peridotites of mid-ocean ridges are thought to sample Earth’s upper mantle. Osmium isotopes of abyssal peridotites uniquely preserve melt extraction events throughout Earth history, but existing records only indicate ages up to ~2 billion years (Ga) ago. Thus, the memory of the suspected large volumes of mantle lithosphere that existed in Archean time (〉2.5 Ga) has apparently been lost somehow. We report abyssal peridotites with melt-depletion ages up to 2.8 Ga, documented by extremely unradiogenic 187Os/188Os ratios (to as low as 0.1095) and refractory major elements that compositionally resemble the deep keels of Archean cratons. These oceanic rocks were thus derived from the once-extensive Archean continental keels that have been dislodged and recycled back into the mantle, the feasibility of which we confirm with numerical modeling. This unexpected connection between young oceanic and ancient continental lithosphere indicates an underappreciated degree of compositional recycling over time.
    Description: This study was financially supported by the National Science Fund for Distinguished Young Scholars 42025201 (to C.-Z.L.), the National Key Research and Development Project of China 2020YFA0714801 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDA13010106 (to C.-Z.L.), the Strategic Priority Research Program of the Chinese Academy of Sciences XDB42020301 (to C.-Z.L.), and NSF grants 2114652 and 1657983 (to H.J.B.D.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nelson, R. K., Scarlett, A. G., Gagnon, M. M., Holman, A. I., Reddy, C. M., Sutton, P. A., & Grice, K. Characterizations and comparison of low sulfur fuel oils compliant with 2020 global sulfur cap regulation for international shipping. Marine Pollution Bulletin, 180, (2022): 113791, https://doi.org/10.1016/j.marpolbul.2022.113791.
    Description: The International Marine Organization 2020 Global Sulfur Cap requires ships to burn fuels with 〈0.50% S and some countries require 〈0.10% S in certain Sulfur Emission Control Areas but little is known about these new types of fuels. Using both traditional GC–MS and more advanced chromatographic and mass spectrometry techniques, plus stable isotopic, δ13C and δ2H, analyses of pristane, phytane and n-alkanes, the organic components of a suite of three 0.50% S and three 0.10% S compliant fuels were characterized. Two oils were found to be near identical but all of the remaining oils could be forensically distinguished by comparison of their molecular biomarkers and by the profiles of the heterocyclic parent and alkylated homologues. Oils could also be differentiated by their δ13C and δ2H of n-alkanes and isoprenoids. This study provides important forensic data that may prove invaluable in the event of future oil spills.
    Description: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. CMR and RKN were supported by the National Science Foundation (OCE-1634478 and OCE-1756242). GC × GC analysis support provided by WHOI's Investment in Science Fund.
    Keywords: International Maritime Organisation ; Biomarkers ; Fuel oil ; Heterocyclics ; GC × GC ; Mass spectrometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-09-05
    Description: The chemical composition of gases emitted by active volcanoes reflects both magma degassing and shallower processes, such as fluid-rock hydrothermal interaction and mixing with atmospheric-derived fluids. Untangling the magmatic fluid endmember within surface gas emission is therefore challenging, even with the use of well-known magma degassing tracers such as noble gases. Here, we investigate the deep magmatic fluid composition at the Nisyros caldera (Aegean Arc, Greece) by measuring nitrogen and noble gas abundances and isotopes in naturally degassing fumaroles. Gas samples were collected from 32 fumarolic vents at water-boiling temperature between 2018 and 2021. These fumaroles are admixtures of magmatic fluids typical of subduction zones, groundwater (or air saturated water, ASW), and air. The N2, He, and Ar composition of the magmatic endmember is calculated by reverse mixing modeling and shows N2/He = 31.8 ± 4.5, N2/Ar = 281.6, d15N = +7 ± 3 ‰, 3He/4He = 6.2 Ra (where Ra is air 3He/4He), and 40Ar/36Ar = 551.6 ± 19.8. Although N2/He is significantly low with respect to typical values for arc volcanoes (1,000–10,000), the contribution of subducted sediments to the Aegean Arc magma generation is reflected by the positive d15N values of Nisyros fumaroles. The low N2/He ratio indicates N2-depletion due to solubility-controlled differential degassing of an upper-crustal silicic (dacitic/rhyodacitic) melt in a high-crystallinity reservoir. We compare our 2018–2021 data with N2, He, and Ar values collected from the same fumaroles during a hydrothermal unrest following the seismic crisis in 1996–1997. Results show additions of both magmatic fluid and ASW during this unrest. In the same period, fumarolic vents display an increase in magmatic species relative to hydrothermal gas, such as CO2/CH4 and He/CH4 ratios, an increase of 50 C in the equilibrium temperature of the hydrothermal system (up to 325 C), and greater amounts of vapor separation. These variations reflect an episode of magmatic fluid expulsion during the seismic crisis. The excess of heat and mass supplied by the magmatic fluid injection is then dissipated through boiling of deeper and peripheral parts of the hydrothermal system. Reverse mixing modeling of fumarolic N2-He-Ar has therefore important ramifications not only to disentangle the magmatic signature from gases emitted during periods of dormancy, but also to trace episodes of magmatic outgassing and better understand the state of the upper crustal reservoir.
    Description: Published
    Description: 68-84
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Noble gases ; Nitrogen isotope ; Mixing modeling ; Magmatic degassing ; High-crystallinity mush ; Caldera ; Unrest ; CO2 ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meaders, J. L., de Matos, S. N., & Burgess, D. R. A pushing mechanism for microtubule aster positioning in a large cell type. Cell Reports, 33(1), (2020): 108213, doi:10.1016/j.celrep.2020.108213.
    Description: After fertilization, microtubule (MT) sperm asters undergo long-range migration to accurately position pronuclei. Due to the large sizes of zygotes, the forces driving aster migration are considered to be from pulling on the astral MTs by dynein, with no significant contribution from pushing forces. Here, we re-investigate the forces responsible for sperm aster centration in sea urchin zygotes. Our quantifications of aster geometry and MT density preclude a pulling mechanism. Manipulation of aster radial lengths and growth rates, combined with quantitative tracking of aster migration dynamics, indicates that aster migration is equal to the length of rear aster radii, supporting a pushing model for centration. We find that dynein inhibition causes an increase in aster migration rates. Finally, ablation of rear astral MTs halts migration, whereas front and side ablations do not. Collectively, our data indicate that a pushing mechanism can drive the migration of asters in a large cell type.
    Description: We would like to thank Dr. Jesse Gatlin for sending us the Tau-mCherry fusion protein for imaging live MTs. We would also like to thank Dr. Timothy Mitchison, Dr. Christine Field, and Dr. James Pelletier for supplying us with CA4, p150-CC1, and EB1-GFP peptides, as well as for fruitful discussions. Finally, we would like to thank Dr. Charles Shuster and Leslie Toledo-Jacobo for constructive feedback when preparing the manuscript. We thank Bret Judson and the Boston College Imaging Core for infrastructure and support. This material is based upon work supported by NSF grant no. 124425 to D.R.B.
    Keywords: Dynein ; Aster ; Microtubule ; Centrosome ; Pronucleus ; Fertilization ; Aster position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., & Hardwick, J. M. Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization. Cell Reports, 39(2), (2022): 110647, https://doi.org/10.1016/j.celrep.2022.110647.
    Description: Unicellular eukaryotes have been suggested as undergoing self-inflicted destruction. However, molecular details are sparse compared with the mechanisms of programmed/regulated cell death known for human cells and animal models. Here, we report a molecular cell death pathway in Saccharomyces cerevisiae leading to vacuole/lysosome membrane permeabilization. Following a transient cell death stimulus, yeast cells die slowly over several hours, consistent with an ongoing molecular dying process. A genome-wide screen for death-promoting factors identified all subunits of the AP-3 complex, a vesicle trafficking adapter known to transport and install newly synthesized proteins on the vacuole/lysosome membrane. To promote cell death, AP-3 requires its Arf1-GTPase-dependent vesicle trafficking function and the kinase Yck3, which is selectively transported to the vacuole membrane by AP-3. Video microscopy revealed a sequence of events where vacuole permeability precedes the loss of plasma membrane integrity. AP-3-dependent death appears to be conserved in the human pathogenic yeast Cryptococcus neoformans.
    Description: Funding sources: National Institutes of Health, United States grants AI144373 and NS127076 (J.M.H.), AI115016 and AI153414 (K.W.C.), and AI052733, AI152078, and HL059842 (A.C.); National Natural Science Foundation of China 31970550; and the Priority Academic Program Development of the Jiangsu Higher Education Institutes (X.T.).
    Keywords: Yeast ; Programmed cell death ; Vesicle trafficking ; AP-3 ; Vacuole ; Cryptococcus ; Yck3 ; Regulated cell death ; Lysosome ; Vacuolar membrane permeabilization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Du, J., Park, K., Yu, X., Zhang, Y. J., & Ye, F. Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 704, (2019): 135364, doi: 10.1016/j.scitotenv.2019.135364.
    Description: Increasing frequency of extreme precipitation events under the future warming climate makes the storm-related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area to the adjacent Galveston Bay. 0.57 × 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and chemicals were reportly released during Harvey, which would likely deteriorate the water quality and damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated 3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-storm release than storm release due to a quick recovery in the system's flushing. More than 90% of pollutants released during the storm exited the bay within two days, while those released after the storm could stay inside the bay for up to three months. This implies that post-storm release is potentially more damaging to water quality and ecosystem health. Our results suggest that not only the amount of total pollutant load but also the release timing should be considered when assessing a storm's environmental and ecological influence, because there could be large amounts of pollutants steadily and slowly discharged after storm through groundwater, sewage systems, and reservoirs.
    Description: We like to acknowledge the Texas Coastal Management Program, the Texas General Land Office and NOAA for partial funding of this project through CMP Contract #19-040-000-B074. This work was performed using computing facilities at the College of William and Mary, which were provided by contributions from the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.
    Keywords: Storm discharge ; Retention ; Local exposure time ; Particle tracking ; SCHISM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mundl-Petermeier, A., Walker, R. J., Jackson, M. G., Blichert-Toft, J., Kurz, M. D., & Halldorsson, S. A. Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume. Chemical Geology, 525, (2019): 245-259. doi: 10.1016/j.chemgeo.2019.07.026.
    Description: Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
    Description: This study was supported by NSF grant EAR-1624587 (to RJW and AMP). AMP acknowledges FWF grant V659-N29. MJ acknowledges NSF grant EAR-1624840, and MK acknowledges OCE-1259218. We would like to thank Lotte M. Larsen and Asger K. Pedersen for providing the West Greenland samples, and Bernard Marty for the samples from East Greenland. We thank Catherine Chauvel for the editorial handling and Rita Parai, Dominique Weis, David Graham and an anonymous reviewer for the helpful and constructive comments on this and an earlier version of the manuscript.
    Keywords: μ182W ; Iceland ; Mantle plume ; 3He/4He ; Primordial reservoir
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wheat, C. G., Seewald, J. S., & Takai, K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount. Geochimica Et Cosmochimica Acta, 269, (2020): 413-428, doi: 10.1016/j.gca.2019.10.037
    Description: Natural fluids with a pH (25 °C) up to 12.3 were collected from a sub-seafloor borehole observatory (Ocean Drilling Program (ODP) Hole 1200C) on South Chamorro Seamount, a serpentinite mud volcano in the Mariana forearc. We used systematic differences in the chemical compositions of pore waters from drilling operations during ODP Leg 195 and borehole fluids collected subsequently from Hole 1200C to define two endmember solutions, one of which was a sulfate-rich fluid with a methane concentration of 50 mM that ascends from the subduction channel and the other was a low-sulfate fluid. The sequence of sample collection and fluid compositions constrain subsurface hydrologic conditions. Deep-sourced, sulfate- and methane-rich, sterile fluids from the subduction channel can reach the seafloor unchanged within the central conduit, whereas other fluid pathways likely intersect the pelagic sediment that underlies the serpentinite mud volcano, providing potentially suitable conditions and inoculum for microbial anaerobic oxidation of methane (AOM). These AOM-affected, low-sulfate fluids also make it to the seafloor where they discharge. The source of the sulfate- and methane-rich fluid in the subduction channel is attributed to abiotic methane production fueled by hydrogen production from serpentinization and carbonate dissolution. This methane production includes a mechanism to raise the pH above values from serpentinization alone. Results from South Chamorro Seamount represent an end member along a transect defined by the distance from the trench. Results from this site are applied to other serpentinite mud volcanoes along this transect to speculate on likely chemical conditions within shallower and cooler portions of the subduction channel.
    Description: The authors thank the entire shipboard parties of cruises NT09-01 and NT09-07 on the R/V Nastushima and the crews and pilots of the ROV HyperDolphin. We also thank Tom Pettigrew for removing the dummy plug and designing the insert for the borehole. This research was supported by the National Science Foundation (OCE-0727120 and 1439564 (CGW) and OCE--0725204 (JS)) and the Japan Agency for Marine-Earth Science and Technology. This is C-DEBI contribution 497.
    Keywords: Serpentinization ; Mud volcano ; Subduction ; Mariana forearc ; Dissolved gases ; Anaerobic methane oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Melle, W., Klevjer, T., Strand, E., Wiebe, P. H., Slotte, A., & Huse, G. Fine-scale observations of physical and biological environment along a herring feeding migration route. Deep-Sea Research Part II: Topical Studies in Oceanography, 180, (2020): 104845, doi:10.1016/j.dsr2.2020.104845.
    Description: We observed herring horizontal and vertical distribution during feeding migration along a 128 km transect across the Arctic front of the Norwegian and Iceland seas, in early June, in relation to its physical, chemical and biological environment, distribution of prey organisms and pelagic and mesopelagic competitors. The Norwegian Spring Spawning herring is one of the largest and economically most important stocks of pelagic fish in the world and understanding what controls its feeding migration is, and has been for centuries, a major research question that also has major implications for management. High resolution ecosystem data were obtained by hull mounted multi-frequency acoustics and a towed platform undulating between 10 and 400 m equipped with multi-frequency acoustics, temperature, salinity and fluorescence sensors, an Optical Plankton Counter and a Video Plankton Recorder. Additional sampling was done by MOCNESS, Macroplankton trawl, and CTD equipped with water bottles for temperature, salinity, nutrients and chlorophyll at discrete stations along the transect. Biological characteristics and stomach content of the herring were obtained from samples at discrete trawl stations. The Arctic front proved to be an important transitional zone in zooplankton biomass, abundance and diversity. Phenology of phyto- and zooplankton also changed across the front, being somewhat delayed on the cold side. The herring were distributed all along the transect showing a shallow distribution on the warm side and both deep and shallow on the cold side, not clearly related to light and time of the day. The herring stomach content was higher on the cold side. There was no significant pattern in average age, weight, or body length of the herring along the transect. The herring were present and fed in the area of the transect during the time when the overwintering generation of Calanus finmarchicus dominated, before the development of the new generation of the year. We suggest that the phenology of C. finmarchicus can be an important driver of the herring feeding migration. While prey-availability was higher on the Arctic side of the front, light conditions for visual feeding at depth were probably better on the Atlantic side. The herring did not show classical dial vertical migration, but its prey did, and the herring's prey were probably available within the upper 100 m during the course of a 24 h cycle. With a general westward direction of migration, the herring along the transect moved towards lower temperatures and temperature did not seem to be a probable driver for migration. We conclude that fine-scale studies of herring migration and feeding can increase our understanding of the migratory processes and add to our understanding of large-scale distributional patterns, changes therein, and herring trophodynamics and ecological role. The fine-resolution parameters can also be important as input to ecosystem models.
    Description: We would also like to acknowledge the funding from Euro-BASIN, EU FP7, Grant agreement No 264933, HARMES, Research Council of Norway project number 280546 and MEESO, EU H2020 research and innovation programme, Grant Agreement No 817669.
    Keywords: Herring ; Feeding migration ; Environment ; Prey distribution ; Fine-scale observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.
    Description: During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (〉0.8 μm) and particulate 210Po (〉0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.
    Description: We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments.
    Keywords: Polonium-210 ; Lead-210 ; 210Po ; 210Pb ; North Atlantic ; Spring bloom ; POC flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H., Tarnas, J. D., Mustard, J. F., Zhang, X., Wei, Y., Wan, W., Klein, F., & Kellner, J. R. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data. Icarus, 355, (2021): 114168, https://doi.org/10.1016/j.icarus.2020.114168.
    Description: Serpentine and carbonate are products of serpentinization and carbonation processes on Earth, Mars, and other celestial bodies. Their presence implies that localized habitable environments may have existed on ancient Mars. Factor Analysis and Target Transformation (FATT) techniques have been applied to hyperspectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to identify possible serpentine and Mg-carbonate-bearing outcrops. FATT techniques are capable of suggesting the presence of individual spectral signals in complex spectral mixtures. Applications of FATT techniques to CRISM data thus far only evaluate whether an entire analyzed image (≈ 3 × 105 pixels) may contain spectral information consistent with a specific mineral of interest. The spatial distribution of spectral signal from the possible mineral is not determined, making it difficult to validate a reported detection and also to understand the geologic context of any purported detections. We developed a method called Dynamic Aperture Factor Analysis/Target Transformation (DAFA/TT) to highlight the locations in a CRISM observation (or any similar laboratory or remotely acquired data set) most likely to contain spectra of specific minerals of interest. DAFA/TT determines the locations of possible target mineral spectral signals within hyperspectral images by performing FATT in small moving windows with different geometries, and only accepting pixels with positive detections in all cluster geometries as possible detections. DAFA/TT was applied to a hyperspectral image of a serpentinite from Oman for validation testing in a simplified laboratory setting. The mineral distribution determined by DAFA/TT application to the laboratory hyperspectral image was consistent with Raman analysis of the serpentinite sample. DAFA/TT also successfully mapped the spatial distribution of Mg-serpentine and Mg-carbonate previously detected in CRISM data using band parameter mapping and extraction of ratioed spectra. We applied DAFA/TT to CRISM images in some olivine-rich regions of Mars to characterize the spatial distribution of Mg-serpentine and Mg-carbonate-bearing outcrops.
    Description: This work was supported by the National Natural Science Foundation of China (grant no. 41671360, 41525016, 41902318). JFM and JDT acknowledge NASA support through a subcontract from the Applied Physics Lab for CRISM investigations. H. Lin also acknowledges the support from the key research Program of the Institute of Geology and Geophysics, CAS (IGGCAS-201905). The Headwall imaging spectrometer was acquired using funds to JRK from The Institute at Brown for Environment and Society and Brown University. The DAFA/TT codes are available on GitHub (https://github.com/linhoml?tab=repositories).
    Keywords: Dynamic aperture ; Factor analysis and target transformation ; Serpentine ; Carbonate ; Mars
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirst, W. G., Biswas, A., Mahalingan, K. K., & Reber, S. Differences in intrinsic tubulin dynamic properties contribute to spindle length control in Xenopus species. Current Biology, 30(11), (2020): 2184-2190.e5, doi: 10.1016/j.cub.2020.03.067.
    Description: The function of cellular organelles relates not only to their molecular composition but also to their size. However, how the size of dynamic mesoscale structures is established and maintained remains poorly understood [1, 2, 3]. Mitotic spindle length, for example, varies several-fold among cell types and among different organisms [4]. Although most studies on spindle size control focus on changes in proteins that regulate microtubule dynamics [5, 6, 7, 8], the contribution of the spindle’s main building block, the αβ-tubulin heterodimer, has yet to be studied. Apart from microtubule-associated proteins and motors, two factors have been shown to contribute to the heterogeneity of microtubule dynamics: tubulin isoform composition [9, 10] and post-translational modifications [11]. In the past, studying the contribution of tubulin and microtubules to spindle assembly has been limited by the fact that physiologically relevant tubulins were not available. Here, we show that tubulins purified from two closely related frogs, Xenopus laevis and Xenopus tropicalis, have surprisingly different microtubule dynamics in vitro. X. laevis microtubules combine very fast growth and infrequent catastrophes. In contrast, X. tropicalis microtubules grow slower and catastrophe more frequently. We show that spindle length and microtubule mass can be controlled by titrating the ratios of the tubulins from the two frog species. Furthermore, we combine our in vitro reconstitution assay and egg extract experiments with computational modeling to show that differences in intrinsic properties of different tubulins contribute to the control of microtubule mass and therefore set steady-state spindle length.
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We thank Jeff Woodruff (UT Southwestern), David Drechsel (IMP), and Marcus J. Taylor (MPI IB) for constructive criticism and comments on the manuscript and Helena Jambor for constructive comments on figure design. We thank the AMBIO imaging facility (Charité, Berlin) and Nikon at MBL for imaging support, Aliona Bogdanova and Barbara Borgonovo (MPI CBG) for their help with protein purification, and Francois Nedelec (University of Cambridge) for help with Cytosim. We are grateful to the Görlich lab (MPI BPC), in particular Bastian Hülsmann and Jens Krull, and the NXR for supply with X. tropicalis frogs. We thank Antonina Roll-Mecak (National Institute of Neurological Disorders and Stroke) for help with mass spectrometry analysis and discussions and Duck-Yeon Lee in the Biochemistry Core (National Heart, Lung and Blood Institute) for access to mass spectrometers. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank all former and current members of the Reber lab for discussion and helpful advice, in particular, Christoph Hentschel and Soma Zsoter for technical assistance and Sebastian Reusch for help with tubulin purification. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.G.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. K.K.M. was supported by funds in the Roll-Mecak lab, intramural program of the National Institute of Neurological Disorders and Stroke.
    Keywords: Spindle scaling ; Tubulin ; Microtubule dynamics ; Xenopus ; Spindle length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molines, A. T., Lemière, J., Gazzola, M., Steinmark, I. E., Edrington, C. H., Hsu, C.-T., Real-Calderon, P., Suhling, K., Goshima, G., Holt, L. J., Thery, M., Brouhard, G. J., & Chang, F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Developmental Cell, 57(4), (2022): 466-479.e6, https://doi.org/10.1016/j.devcel.2022.02.001.
    Description: The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
    Description: This work was supported by grants to F.C. (NIH GM115185, NIH GM056836, NIH GM146438), to L.J.H. (American Cancer Society RSG-19-073-01-TBE, Pershing Square Sohn Cancer Award, Chan Zuckerberg Initiative, NIH GM132447 and NIH CA240765), to G.G. (JSPS KAKENHI 17H06471 and 18KK0202), to K.S. (UK’s Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/R004803/1) and to M.T. (ERC Consolidator Grant 771599). I.E.S. was supported by King’s College London through a LIDo (London Interdisciplinary Doctoral programme) iCASE studentship.
    Keywords: Cytoskeleton dynamics ; Microtubules ; Cytoplasm ; Crowding ; Viscosity ; Diffusion ; Density ; Rheology ; Mitosis ; Fission yeast Schizosaccharomyces pombe
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jonell, T., Giosan, L., Clift, P., Carter, A., Bretschneider, L., Hathorne, E., Barbarano, M., Garzanti, E., Vezzoli, G., & Naing, T. No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 584, (2022): 117516, https://doi.org/10.1016/j.epsl.2022.117516.
    Description: The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.
    Description: TNJ was supported in initial stages of this project by a Postdoctoral Research Fellowship at UQ and software support by LSU. LG thanks support from the Andrew W. Mellon Foundation via Woods Hole Oceanographic Institution. The Charles T. McCord chair at LSU funded coring and detrital zircon U–Pb geochronology essential to the study.
    Keywords: Provenance ; Sediment ; Irrawaddy ; Zircon ; Isotope geochemistry ; Petrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-10-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Våge, K., Semper, S., Valdimarsson, H., Jónsson, S., Pickart, R., & Moore, G. Water mass transformation in the Iceland Sea: contrasting two winters separated by four decades. Deep Sea Research Part I: Oceanographic Research Papers, 186, (2022): 103824, https://doi.org/10.1016/j.dsr.2022.103824.
    Description: Dense water masses formed in the Nordic Seas flow across the Greenland–Scotland Ridge and contribute substantially to the lower limb of the Atlantic Meridional Overturning Circulation. Originally considered an important source of dense water, the Iceland Sea gained renewed interest when the North Icelandic Jet — a current transporting dense water from the Iceland Sea into Denmark Strait — was discovered in the early 2000s. Here we use recent hydrographic data to quantify water mass transformation in the Iceland Sea and contrast the present conditions with measurements from hydrographic surveys conducted four decades earlier. We demonstrate that the large-scale hydrographic structure of the central Iceland Sea has changed significantly over this period and that the locally transformed water has become less dense, in concert with a retreating sea-ice edge and diminished ocean-to-atmosphere heat fluxes. This has reduced the available supply of dense water to the North Icelandic Jet, but also permitted densification of the East Greenland Current during its transit through the presently ice-free western Iceland Sea in winter. Together, these changes have significantly altered the contribution from the Iceland Sea to the overturning in the Nordic Seas over the four decade period.
    Description: Support for this work was provided by the Trond Mohn Foundation, Norway under grant BFS2016REK01 (K.V. and S.S.), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101022251 (S.S.), the US National Science Foundation under grants OCE-1259618 and OCE- 1948505 (R.S.P), and the Natural Sciences and Engineering Research Council of Canada (G.W.K.M).
    Keywords: Iceland Sea ; Water mass transformation ; North Icelandic Jet ; Iceland–Faroe Slope Jet ; East Greenland Current ; Denmark Strait overflow water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Description: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Description: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Keywords: Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Cai, P., Eagle, M., Henderson, P., & Charette, M. Revisiting 228Th as a tool for determining sedimentation and mass accumulation rates. Chemical Geology, 607, (2022): 121006, https://doi.org/10.1016/j.chemgeo.2022.121006.
    Description: The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (〈15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation. When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th.
    Description: This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute. This project was supported by U.S. Geological Survey Coastal and Marine Hazards and Resources Program. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PC acknowledges the support of the Natural Science Foundation of China (NSFC) through Grants No. 92058205.
    Keywords: Sedimentation ; Mass accumulation ; Thorium isotopes ; Lead-210 ; Wetlands ; Sea level rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., Lindsay, K., & Wu, L. Remineralization dominating the δ13 C decrease in the mid-depth Atlantic during the last deglaciation. Earth and Planetary Science Letters, 571, (2021): 117106, https://doi.org/10.1016/j.epsl.2021.117106.
    Description: δ 13 C records from the mid-depth Atlantic show a pronounced decrease during the Heinrich Stadial 1 (HS1), a deglacial episode of dramatically weakened Atlantic Meridional Ocean Circulation (AMOC). Proposed explanations for this mid-depth decrease include a greater fraction of δ 13 C -depleted southern sourced water (SSW), a δ 13 C decrease in the North Atlantic Deep Water (NADW) end-member, and accumulation of the respired organic carbon. However, the relative importance of these proposed mechanisms cannot be quantitatively constrained from current available observations alone. Here we diagnose the individual contributions to the deglacial Atlantic mid-depth δ 13 C change from these mechanisms using a transient simulation with carbon isotopes and idealized tracers. We find that although the fraction of the low- δ 13 C SSW increases in response to a weaker AMOC during HS1, the water mass mixture change only plays a minor role in the mid-depth Atlantic δ 13 C decrease. Instead, increased remineralization due to the AMOC-induced mid-depth ocean ventilation decrease is the dominant cause. In this study, we differentiate between the deep end-members, which are assigned to deep water regions used in previous paleoceanography studies, and the surface end-members, which are from the near-surface water defined from the physical origin of deep water masses. We find that the deep NADW end-member includes additional remineralized material accumulated when sinking from the surface (surface NADW end-member). Therefore, the surface end-members should be used in diagnosing mechanisms of changes. Furthermore, our results suggest that remineralization in the surface end-member is more critical than the remineralization along the transport pathway from the near-surface formation region to the deep ocean, especially during the early deglaciation.
    Description: This work is supported by US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432), and the National Science Foundation of China No. 41630527. S.G. is supported by Shanghai Pujiang program.
    Keywords: δ13 C ; Water mass composition ; Remineralization ; End-member ; HS1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R., Barry, P., Cheng, A., Hillegonds, D., Kim, J.-H., McIntosh, J., & Ballentine, C. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth and Planetary Science Letters, 589, (2022):117580, https://doi.org/10.1016/j.epsl.2022.117580.
    Description: Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation.
    Description: This work was supported by a Natural Environment Research Council studentship to R.L. Tyne (Grant ref. NE/L002612/1). We gratefully acknowledge the William F. Keck Foundation for support of this research, and the National Science Foundation (NSF EAR #2120733). J.C. McIntosh and C.J. Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration Program. The authors would like to acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell'Oro and Mohammad Marza for help with sampling.
    Keywords: Noble gases ; Helium ; Paradox Basin ; Crustal fluid dating ; Groundwater migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Broadley, M., Byrne, D., Ardoin, L., Almayrac, M., Bekaert, D., & Marty, B. High precision noble gas measurements of hydrothermal quartz reveal variable loss rate of Xe from the Archean atmosphere. Earth and Planetary Science Letters, 588, (2022): 117577, https://doi.org/10.1016/j.epsl.2022.117577.
    Description: Determining the composition of the Archean atmosphere and oceans is vital to understanding the environmental conditions that existed on the surface of the early Earth. The analysis of atmospheric remnants in fluid inclusions trapped in Archean-aged samples has shown that the Xe isotopic signature of the Archean atmosphere progressively evolved via mass-dependent fractionation, arriving at a modern atmospheric composition around the Archean-Proterozoic transition. The mechanisms driving this evolution are however not well constrained, and it is not yet clear whether the evolution proceeded continuously or via episodic bursts. Providing further constraints on the evolution of Xe in the Archean atmosphere is hampered by the limited amounts of atmospheric gas trapped within fluid inclusions during mineral formation, which impacts the precision at which the Archean atmosphere can be determined. Here, we develop a new crush-and-accumulate extraction technique that enables the heavy noble gases (Ar, Kr and Xe) released from crushing large quantities of hydrothermal quartz to be accumulated and analysed to a higher precision than was previously possible. Using this new technique, we re-evaluate the composition of atmospheric gases trapped within fluid inclusions of 3.3 Ga quartz samples from Barberton, South Africa. We find that the Xe isotopic signature is fractionated by +10.3 ± 1.0‰u−1 (2 SE) relative to modern atmosphere, which is within uncertainty of, but slightly lower than, the previous determination of 12.9 ± 2.4‰u−1 for this sample (Avice et al., 2017). We show for the first time that the Kr/Xe ratio measured within Archean quartz samples is enriched in Xe compared to the modern atmosphere, demonstrating that the atmosphere has lost Xe since the Archean. This further reinforces the proposal of atmospheric escape as the primary mechanism for Earth's Xe loss. We further show that the atmospheric Kr/Xe and Xe isotope fractionation recorded in the Barberton quartz at 3.3 Ga is incompatible with a model describing atmospheric loss at a continuous rate under a constant fractionation factor. This gives credence to numerical models of hydrodynamic escape, which suggest that Xe was lost from the Archean atmosphere in episodic bursts rather than at a constant rate. Refining the evolution curve of atmospheric Xe isotopes using the new technique presented here has the potential to shed light on discrete atmospheric events that punctuated the evolution of the Archean Earth and accompanied the evolution of life.
    Description: This study was supported by the European Research Council (PHOTONIS project, grant agreement No. 695618). This is CRPG contribution #2820.
    Keywords: Archean atmosphere ; Noble gases ; Xenon ; Atmospheric escape
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.
    Description: Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
    Description: Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972.
    Keywords: HAB ; Harmful algal bloom ; Red tide ; Eutrophication ; Time series ; HAEDAT
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rzucidlo, C. L., Sperou, E. S., Holser, R. R., Khudyakov, J., Costa, D. P., & Crocker, D. E. Changes in serum adipokines during natural extended fasts in female northern elephant seals. General and Comparative Endocrinology, 308, (2021): 113760, https://doi.org/10.1016/j.ygcen.2021.113760.
    Description: Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.
    Description: This project was supported by a grant from the Office of Naval Research (#N00014-18-1-2822) to DPC and DEC and the Marine Life Joint Industry Program of the IAGOP. We thank the Año Nuevo State Reserve rangers for logistical support.
    Keywords: Adipokine ; Blubber ; Fasting ; Northern elephant seal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomaa, F., Utter, D. R., Powers, C., Beaudoin, D. J., Edgcomb, V. P., Filipsson, H. L., Hansel, C. M., Wankel, S. D., Zhang, Y., & Bernhard, J. M. Multiple integrated metabolic strategies allow foraminiferan protists to thrive in anoxic marine sediments. Science Advances, 7(22), (2021): eabf1586, https://doi.org/10.1126/sciadv.abf1586.
    Description: Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom’s plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among “typical” eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.
    Description: his project was funded by the U.S. NSF IOS 1557430 and 1557566. H.L.F. acknowledges support from the Swedish Research Council VR (grant number 2017-04190).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Le Roux, V., Urann, B. M., Brunelli, D., Bonatti, E., Cipriani, A., Demouchy, S., & Monteleone, B. D. Postmelting hydrogen enrichment in the oceanic lithosphere. Science Advances, 7(24), (2021): eabf6071, https://doi.org/10.1126/sciadv.abf6071.
    Description: The large range of H2O contents recorded in minerals from exhumed mantle rocks has been challenging to interpret, as it often records a combination of melting, metasomatism, and diffusional processes in spatially isolated samples. Here, we determine the temporal variations of H2O contents in pyroxenes from a 24-Ma time series of abyssal peridotites exposed along the Vema fracture zone (Atlantic Ocean). The H2O contents of pyroxenes correlate with both crustal ages and pyroxene chemistry and increase toward younger and more refractory peridotites. These variations are inconsistent with residual values after melting and opposite to trends often observed in mantle xenoliths. Postmelting hydrogen enrichment occurred by ionic diffusion during cryptic metasomatism of peridotite residues by low-degree, volatile-rich melts and was particularly effective in the most depleted peridotites. The presence of hydrous melts under ridges leads to widespread hydrogen incorporation in the oceanic lithosphere, likely lowering mantle viscosity compared to dry models.
    Description: Funding for this study was supported by NSF EAR-P&G 1524311 and 1839128 to V.L.R. and the Andrew W. Mellon Foundation Award for Innovative Research to V.L.R. A.C. and D.B. were funded by the Italian Programma di Rilevante Interesse Nazionale PRIN 20178LPCPW and PRIN2017KY5ZX8, respectively. Revisions were performed within the duration of a “Visiting Scholar at SCIENCE 2020” award to V.L.R. (University of Copenhagen, Denmark), with support from the Department of Geosciences and Natural Resource Management, Section for Geology.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foppe, K. S., Kujawinski, E. B., Duvallet, C., Endo, N., Erickson, T. B., Chai, P. R., & Matus, M. Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS. Journal of Chromatography B, 1176, (2021): 122747, https://doi.org/10.1016/j.jchromb.2021.122747.
    Description: Pharmaceutical compounds ingested by humans are metabolized and excreted in urine and feces. These metabolites can be quantified in wastewater networks using wastewater-based epidemiology (WBE) methods. Standard WBE methods focus on samples collected at wastewater treatment plants (WWTPs). However, these methods do not capture more labile classes of metabolites such as glucuronide conjugates, products of the major phase II metabolic pathway for drug elimination. By shifting sample collection more upstream, these unambiguous markers of human exposure are captured before hydrolysis in the wastewater network. In this paper, we present an HPLC-MS/MS method that quantifies 8 glucuronide conjugates in addition to 31 parent and other metabolites of prescription and synthetic opioids, overdose treatment drugs, illicit drugs, and population markers. Calibration curves for all analytes are linear (r2 〉 0.98), except THC (r2 = 0.97), and in the targeted range (0.1–1,000 ng mL−1) with lower limits of quantification (S/N = 9) ranging from 0.098 to 48.75 ng mL−1. This method is fast with an injection-to-injection time of 7.5 min. We demonstrate the application of the method to five wastewater samples collected from a manhole in a city in eastern Massachusetts. Collected wastewater samples were filtered and extracted via solid-phase extraction (SPE). The SPE cartridges are eluted and concentrated in the laboratory via nitrogen-drying. The method and case study presented here demonstrate the potential and application of expanding WBE to monitoring labile metabolites in upstream wastewater
    Description: This work was supported by the National Institute on Drug Abuse of the National Institutes of Health award number R44DA051106 to MM and PC. TE, PC and MM are funded by research grants from the Massachusetts Consortium on Pathogen Readiness and NIH R44DA051106. PRC is funded by NIH K23DA044874, independent research grants from e-ink corporation and Hans and Mavis Lopater Psychosocial Foundation.
    Keywords: HPLC-MS/MS ; Opioid ; Metabolite ; Glucuronide ; Sewage ; Wastewater-based ; Epidemiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clemens, S. C., Yamamoto, M., Thirumalai, K., Giosan, L., Richey, J. N., Nilsson-Kerr, K., Rosenthal, Y., Anand, P., & McGrath, S. M. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions. Science Advances, 7(23), (2021): eabg3848, https://doi.org/10.1126/sciadv.abg3848.
    Description: South Asian precipitation amount and extreme variability are predicted to increase due to thermodynamic effects of increased 21st-century greenhouse gases, accompanied by an increased supply of moisture from the southern hemisphere Indian Ocean. We reconstructed South Asian summer monsoon precipitation and runoff into the Bay of Bengal to assess the extent to which these factors also operated in the Pleistocene, a time of large-scale natural changes in carbon dioxide and ice volume. South Asian precipitation and runoff are strongly coherent with, and lag, atmospheric carbon dioxide changes at Earth’s orbital eccentricity, obliquity, and precession bands and are closely tied to cross-equatorial wind strength at the precession band. We find that the projected monsoon response to ongoing, rapid high-latitude ice melt and rising carbon dioxide levels is fully consistent with dynamics of the past 0.9 million years.
    Description: S.C.C. and S.M.M. were supported by U.S. NSF OCE1634774. M.Y. was funded by JSPS grants JPMXS05R2900001 and 19H05595 and JAMSTEC Exp. 353 postcruise study. K.N.-K. and P.A. were supported by UK-IODP, Open University, and NERC (NE/L002493/1), K.T. was supported by the Technology and Research Initiative Fund, Arizona Board of Regents.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., McGillicuddy Jr, D. J., Ralston, D. K., & Shankar, S. Investigating Pseudo-nitzschia australis introduction to the Gulf of Maine with observations and models. Continental Shelf Research, 228, (2021): 104493, https://doi.org/10.1016/j.csr.2021.104493.
    Description: In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations.
    Description: This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution.
    Keywords: Gulf of Maine ; Pseudo-nitzschia australis ; Harmful algal blooms ; Lagrangian particle tracking ; ROMS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A., & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chemical Geology, 581, (2021): 120405, https://doi.org/10.1016/j.chemgeo.2021.120405.
    Description: The Earth's atmosphere has continually evolved since its formation through interactions with the mantle as well as through loss of volatile species to space. Atmospheric xenon isotopes show a unique and progressive evolution during the Archean that stopped around the Archean-Proterozoic transition. The Xe isotope composition of the early atmosphere has been previously documented through the analysis of fluid inclusions trapped within quartz and barite. Whether this evolution was continuous or not is unclear, requiring additional analyses of ancient samples, which may potentially retain remnants of the ancient atmosphere. Here we present new argon, krypton and xenon isotopic data from a suite of Archean and Proterozoic barites ranging in age from 3.5 to 1.8 Ga, with the goal of providing further insights in to the evolution of atmospheric Xe, whilst also outlining the potential complications that can arise when using barites as a record of past atmospheres. Xenon released by low temperature pyrolysis and crushing of two samples which presumably formed around 2.8 and 2.6 Ga show Xe isotope mass dependent fractionation (MDF) of 11‰.u−1 and 3.4‰.u−1, respectively, relative to modern atmosphere. If trapped Xe is contemporaneous with the respective formation age, the significant difference in the degree of fractionation between the two samples provides supporting evidence for a plateau in the MDF-Xe evolution between 3.3 Ga and 2.8 Ga, followed by a rapid evolution at 2.8–2.6 Ga. This sharp decrease in MDF-Xe degree suggests the potential for a discontinuous temporal evolution of atmospheric Xe isotopes, which could have far reaching implications regarding current physical models of the early evolution of the Earth's atmosphere.
    Description: This work was funded by the ERC grant No. 695618 to B.M. We thank the S.A.R.M for providing elemental bulk analyses of the barites. We thank Laurent Zimmerman for technical mentorship and assistance.
    Keywords: Archean barite ; Noble gases ; Xenon anomalies ; Archean atmosphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Karolyte, R., Barry, P. H., Hunt, A. G., Kulongoski, J. T., Tyne, R. L., Davis, T. A., Wright, M. T., McMahon, P. B., & Ballentine, C. J. Noble gas signatures constrain oil-field water as the carrier phase of hydrocarbons occurring in shallow aquifers in the San Joaquin Basin, USA. Chemical Geology, 584, (2021): 120491, https://doi.org/10.1016/j.chemgeo.2021.120491.
    Description: Noble gases record fluid interactions in multiphase subsurface environments through fractionation processes during fluid equilibration. Water in the presence of hydrocarbons at the subsurface acquires a distinct elemental signature due to the difference in solubility between these two fluids. We find the atmospheric noble gas signature in produced water is partially preserved after hydrocarbons production and water disposal to unlined ponds at the surface. This signature is distinct from meteoric water and can be used to trace oil-field water seepage into groundwater aquifers. We analyse groundwater (n = 30) and fluid disposal pond (n = 2) samples from areas overlying or adjacent to the Fruitvale, Lost Hills, and South Belridge Oil Fields in the San Joaquin Basin, California, USA. Methane (2.8 × 10−7 to 3 × 10−2 cm3 STP/cm3) was detected in 27 of 30 groundwater samples. Using atmospheric noble gas signatures, the presence of oil-field water was identified in 3 samples, which had equilibrated with thermogenic hydrocarbons in the reservoir. Two (of the three) samples also had a shallow microbial methane component, acquired when produced water was deposited in a disposal pond at the surface. An additional 6 samples contained benzene and toluene, indicative of interaction with oil-field water; however, the noble gas signatures of these samples are not anomalous. Based on low tritium and 14C contents (≤ 0.3 TU and 0.87–6.9 pcm, respectively), the source of oil-field water is likely deep, which could include both anthropogenic and natural processes. Incorporating noble gas analytical techniques into the groundwater monitoring programme allows us to 1) differentiate between thermogenic and microbial hydrocarbon gas sources in instances when methane isotope data are unavailable, 2) identify the carrier phase of oil-field constituents in the aquifer (gas, oil-field water, or a combination), and 3) differentiate between leakage from a surface source (disposal ponds) and from the hydrocarbon reservoir (either along natural or anthropogenic pathways such as faulty wells).
    Description: This work was supported by the U.S. Geological Survey as part of the California State Water Resources Control Board's Oil and Gas Regional Monitoring Program.
    Keywords: Noble gases ; Hydrocarbons ; Oil-field water ; Reservoir ; Multi-phase fluids ; Isotope geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bandara, K., Varpe, O., Maps, F., Ji, R., Eiane, K., & Tverberg, V. Timing of Calanus finmarchicus diapause in stochastic environments. Ecological Modelling, 460, (2021): 109739, https://doi.org/10.1016/j.ecolmodel.2021.109739.
    Description: In environments with strong seasonality, many herbivorous zooplankton remain active only during the productive season and undergo a period of inactivity and suppressed development termed ‘diapause’ during the unproductive season. The ability to time the diapause entry and exit in response to the seasonality of the environment is thus essential for their survival. However, timing of diapause may become challenging when environmental conditions vary stochastically across shorter and longer timescales, and particularly when zooplankton lack external cues to predict these variations. In this study, we used a novel individual-based model to study the emerging patterns of diapause timing of the high-latitude marine herbivorous copepod Calanus finmarchicus under shorter- (6-h) and longer-term (interannual) environmental stochasticity. The model simulated growth, development, survival and reproduction (income breeding) of a C. finmarchicus population over multiple calendar years and traced the emergence of behavioral responses and life history strategies. The emergent timing of diapause entry and exit were robust to shorter-term environmental stochasticity, which was manifested through morphological (i.e., body and energy reserve sizes) and behavioral plasticity (i.e., diel vertical migration). Longer-term stochastic variations of temperature and food environments altered the timing of diapause entry, which occurred earlier in warmer years with higher growth potential and vice versa. Irrespective of the modelled environmental variability, diapause exit occurred asynchronously throughout the year. This appeared to be a consequence of a diversified bet hedging strategy, where parents spread the starvation mortality risk of ascending to the upper pelagial at food-deprived times of the year among their offspring. This was a potent strategy, particularly in simulations where the timing of the algal bloom varied stochastically between years, since a fraction of the population was present in the upper pelagial year-round and those that coincided with the emergence of the pelagic primary production survived and produced the next generation.
    Description: This work was funded by the project GLIDER, financed by The Research Council of Norway Demo2000 and ConocoPhillips Norge (Grant no. 269188/E30).
    Keywords: Environmental heterogeneity ; Bet hedging ; Phenotypic plasticity ; Overwintering ; Oversummering ; Copepods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Holliday, N. P., Johns, W. E., Le Bras, I. A., Moat, B. I., Cunningham, S. A., & de Jong, M. F. Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic. Progress in Oceanography, 197, (2021): 102640, https://doi.org/10.1016/j.pocean.2021.102640.
    Description: Continuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period.
    Description: F.L. and M.S.L. were supported by the National Science Foundation (OCE-1948335). W.E.J. was supported by the National Science Foundation grants RAPID (OCE-1332978 and OCE-1926008) and OSNAP (OCE-1756231 and OCE-1948198). I.A.L.B. was supported by the National Science Foundation (OCE-1756272 and OCE-2038481). B.M. was supported by the UK Natural Environment Research Council for the RAPID-AMOC program and the ACSIS program (NE/N018044/1). S.A.C. and N.P.H. were supported by UK NERC National Capability programmes the Extended Ellett Line and CLASS (NE/R015953/1), NERC grants UK OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1), UK OSNAP Decade (NE/T00858X/1, NE/T008938/1). S.A.C. received additional supports from the Blue-Action project (European Union’s Horizon 2020 research and innovation program, grant 727852) and the iAtlantic project (European Union’s Horizon 2020 research and innovation program, grant 210522255).
    Keywords: Oceanic heat and salinity transports ; Surface heat and freshwater exchange ; Overturning and gyre circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Menezes, V. V. Advective pathways and transit times of the Red Sea Overflow Water in the Arabian Sea from Lagrangian simulations. Progress in Oceanography, 199, (2021): 102697, https://doi.org/10.1016/j.pocean.2021.102697.
    Description: The present study investigates the advective pathways and transit times of virtual particles released in the Red Sea outflow area as a proxy for the poorly understood spreading of the Red Sea Overflow Water (RSOW) in the Arabian Sea. This work uses the Parcels toolbox, a Lagrangian framework, to simulate tens of thousands of trajectories under different initial conditions. Six different Lagrangian simulations are performed at isobaric and isopycnal surfaces within the RSOW layer. All simulations are based on the eddy-rich GLORYS12 reanalysis that merges almost all in-situ (temperature–salinity) and satellite observations collected over the last two decades into a dynamical framework. This study shows that GLORYS12 reproduces relatively well the climatological seasonal cycle of the RSOW to the Gulf of Aden and essential characteristics of the exchange at the Strait of Bab al-Mandab. Statistical comparisons between synthetic trajectories and RAFOS floats in the Gulf of Aden corroborate the quality of GLORYS12 velocity fields used for the Lagrangian simulations. Six main advective pathways are uncovered (by order of preference): Southwest, Northwest, Socotra Passage, Central, Eastern, and Southern. Trajectories from Argo floats give observational support for some of these paths. Although most particles are exported out of the Arabian Sea off Somalia, the simulations reveal robust connectivity of the RSOW to the Arabian Sea interior and its eastern boundary. The fact that particles have long trajectories in the interior increases the potential of RSOW mixing with the fresher and oxygen-poor ambient waters. Thus, these pathways may have profound implications for the salt and oxygen budgets in the Arabian Sea and beyond since the RSOW is also part of the global overturning circulation and exported out of the Indian Ocean via the Agulhas Current. Transit time distributions indicate that it takes about six months for outflow-originated particles to spread over the entire Gulf of Aden and one to three years to be exported along the western boundary, toward Somalia (Socotra Passage and Southwest pathways) and off the Yemeni–Omani coast (Northwest Pathway). In contrast, reaching the eastern boundary takes much longer. North of 14N, the most frequent time is around 10–15 years, and about 20–25 years at the southeastern Arabian Sea. Hence, the RSOW can often carry oxygen to the western boundary but not to the eastern basin. This may contribute to the eastern shift of the Arabian Sea Oxygen Minimum Zone, a subject that deserves investigation.
    Description: This research was supported by the National Science Foundation (NSF) grant number OCE-1736823.
    Keywords: Salinity ; Northwest Indian Ocean ; Parcels toolbox ; Trajectories ; Oxygen ; Particles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Burnham, K. A., Nowicki, R. J., Hall, E. R., Pi, J., & Page, H. N. Effects of ocean acidification on the performance and interaction of fleshy macroalgae and a grazing sea urchin. Journal of Experimental Marine Biology and Ecology, 547, (2022): 151662, https://doi.org/10.1016/j.jembe.2021.151662.
    Description: When predicting the response of marine ecosystems to climate change, it is increasingly recognized that understanding the indirect effects of ocean acidification on trophic interactions is as important as studying direct effects on organism physiology. Furthermore, comprehensive studies that examine these effects simultaneously are needed to identify and link the underlying mechanisms driving changes in species interactions. Using an onshore ocean acidification simulator system, we investigated the direct and indirect effects of elevated seawater pCO2 on the physiology and trophic interaction of fleshy macroalgae and the grazing sea urchin Lytechinus variegatus. Macroalgal (Dictyota spp.) biomass increased despite decreased photosynthetic rates after two-week exposure to elevated pCO2. Algal tissue carbon content remained constant, suggesting the use of alternative carbon acquisition pathways beneficial to growth under acidification. Higher C:N ratios driven by a slight reduction in N content in algae exposed to elevated pCO2 suggest a decrease in nutritional content under acidification. Urchin (L. variegatus) respiration, biomass, and righting time did not change significantly after six-week exposure to elevated pCO2, indicating that physiological stress and changes in metabolism are not mechanisms through which the trophic interaction was impacted. Correspondingly, urchin consumption rates of untreated macroalgae (Caulerpa racemosa) were not significantly affected by pCO2. In contrast, exposure of urchins to elevated pCO2 significantly reduced the number of correct foraging choices for ambient macroalgae (Dictyota spp.), indicating impairment of urchin chemical sensing under acidification. However, exposure of algae to elevated pCO2 returned the number of correct foraging choices in similarly exposed urchins to ambient levels, suggesting alongside higher C:N ratios that algal nutritional content was altered in a way detectable by the urchins under acidification. These results highlight the importance of studying the indirect effects of acidification on trophic interactions simultaneously with direct effects on physiology. Together, these results suggest that changes to urchin chemical sensing and algal nutritional quality are the driving mechanisms behind surprisingly unaltered urchin foraging behavior for fleshy macroalgae under joint exposure to ocean acidification. Consistent foraging behavior and consumption rates suggest that the trophic interaction between L. variegatus and fleshy macroalgae may be sustained under future acidification. However, increases in fleshy macroalgal biomass driven by opportunistic carbon acquisition strategies have the potential to cause ecological change, depending on how grazer populations respond. Additional field research is needed to determine the outcome of these results over time and under a wider range of environmental conditions.
    Description: This work was supported by Mote Marine Laboratory Postdoctoral Fellowships (RJN and HNP), Becker Internship Funding, and philanthropic funds to ERH.
    Keywords: Climate change ; Elevated pCO2 ; Direct effects ; Physiology ; Indirect effects ; Herbivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loranger, S., Pedersen, G., & Blomberg, A. E. A. A model for the fate of carbon dioxide from a simulated carbon storage seep. International Journal of Greenhouse Gas Control, 107, (2021): 103293, https://doi.org/10.1016/j.ijggc.2021.103293.
    Description: Offshore geological carbon storage (GCS) is a rapidly developing technology essential for meeting international climate goals. While the likelihood of leakage from a properly planned geological sequestration site is low, assurance that CO stays contained will require robust monitoring programs. While seismic imaging methods are used to monitor the geological reservoir, the ideal method for monitoring the water column above the reservoir depends on the fate and transport of CO. Whether CO is likely to be present as a rising seep of bubbles or dissolved in the water column near the seafloor will determine the appropriate monitoring technology and lead to a better understanding of the environmental impact of a potential leak. In this study, high definition video of a laboratory release of a carbon dioxide bubble seep recorded the size distribution of bubbles as a function of flow rate and orifice diameter. The transport of CO from different bubble size distributions was then modeled using the Texas A&M Oil Spill Calculator modeling suite. Model results show that the most important factor determining the rise height and transport of CO from the simulated leak was the maximum initial bubble size. For a maximum bubble radius of 5 mm, 95% of CO in the simulated seep reached a height of 17.1 m above the seafloor. When the maximum bubble radius was limited to 3 mm, 95% of CO dissolved by 7.8 m above the seafloor. The modeled results were verified during a controlled release of CO in Oslo Fjord.
    Description: This work was carried out as part of the ACT4storage project (617334) funded by Gassnova and Norwegian industry partners through the CLIMIT programme.
    Keywords: CO2, seep ; Carbon capture and storage ; Leak detection ; Numerical simulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seltzer, A. M., Bekaert, D. V., Barry, P. H., Durkin, K. E., Mace, E. K., Aalseth, C. E., Zappala, J. C., Mueller, P., Jurgens, B., & Kulongoski, J. T. Groundwater residence time estimates obscured by anthropogenic carbonate. Science Advances, 7(17), (2021): eabf3503, https://doi.org/10.1126/sciadv.abf3503.
    Description: Groundwater is an important source of drinking and irrigation water. Dating groundwater informs its vulnerability to contamination and aids in calibrating flow models. Here, we report measurements of multiple age tracers (14C, 3H, 39Ar, and 85Kr) and parameters relevant to dissolved inorganic carbon (DIC) from 17 wells in California’s San Joaquin Valley (SJV), an agricultural region that is heavily reliant on groundwater. We find evidence for a major mid-20th century shift in groundwater DIC input from mostly closed- to mostly open-system carbonate dissolution, which we suggest is driven by input of anthropogenic carbonate soil amendments. Crucially, enhanced open-system dissolution, in which DIC equilibrates with soil CO2, fundamentally affects the initial 14C activity of recently recharged groundwater. Conventional 14C dating of deeper SJV groundwater, assuming an open system, substantially overestimates residence time and thereby underestimates susceptibility to modern contamination. Because carbonate soil amendments are ubiquitous, other groundwater-reliant agricultural regions may be similarly affected.
    Description: his work was conducted as a part of the USGS National Water Quality Assessment Program (NAWQA) Enhanced Trends Project (https://water.usgs.gov/nawqa/studies/gwtrends/). Measurements at Argonne National Laboratory were supported by Department of Energy, Office of Science under contract DE-AC02-06CH11357. Measurements at Pacific Northwest National Laboratory were part of the Ultra-Sensitive Nuclear Measurements Initiative conducted under the Laboratory Directed Research and Development Program. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. This work was also partially supported by NSF award OCE-1923915 (to A.M.S. and P.H.B. at WHOI).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vera, J., & Lippmann, K. Post-stroke epileptogenesis is associated with altered intrinsic properties of hippocampal pyramidal neurons leading to increased theta resonance. Neurobiology of Disease, (2021): 105425, https://doi.org/10.1016/j.nbd.2021.105425.
    Description: Brain insults like stroke, trauma or infections often lead to blood-brain barrier-dysfunction (BBBd) frequently resulting into epileptogenesis. Affected patients suffer from seizures and cognitive comorbidities that are potentially linked to altered network oscillations. It has been shown that a hippocampal BBBd in rats leads to in vivo seizures and increased power at theta (3–8 Hz), an important type of network oscillations. However, the underlying cellular mechanisms remain poorly understood. At membrane potentials close to the threshold for action potentials (APs) a subpopulation of CA1 pyramidal cells (PCs) displays intrinsic resonant properties due to an interplay of the muscarine-sensitive K+-current (IM) and the persistent Na+-current (INaP). Such resonant neurons are more excitable and generate more APs when stimulated at theta frequencies, being strong candidates for contributing to hippocampal theta oscillations during epileptogenesis. We tested this hypothesis by characterizing changes in intrinsic properties of hippocampal PCs one week after post-stroke epileptogenesis, a model associated with BBBd, using slice electrophysiology and computer modeling. We find a higher proportion of resonant neurons in BBBd compared to sham animals (47 vs. 29%), accompanied by an increase in their excitability. In contrast, BBBd non-resonant neurons showed a reduced excitability, presented with lower impedance and more positive AP threshold. We identify an increase in IM combined with either a reduction in INaP or an increase in ILeak as possible mechanisms underlying the observed changes. Our results support the hypothesis that a higher proportion of more excitable resonant neurons in the hippocampus contributes to increased theta oscillations and an increased likelihood of seizures in a model of post-stroke epileptogenesis.
    Description: This work was supported by the Grass Foundation (MD, USA) [Grass Fellowship to Jorge Vera and Kristina Lippmann in 2017].
    Keywords: Theta resonance ; Theta oscillations ; Hippocampus ; Pyramidal cell ; BBB dysfunction ; Epilepsy ; Persistent sodium current ; M current ; Impedance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wehmiller, J. F., Brothers, L. L., Ramsey, K. W., Foster, D. S., Mattheus, C. R., Hein, C. J., & Shawler, J. L. Molluscan aminostratigraphy of the US Mid-Atlantic Quaternary coastal system: implications for onshore-offshore correlation, paleochannel and barrier island evolution, and local late Quaternary sea-level history. Quaternary Geochronology, 66, (2021): 101177, https://doi.org/10.1016/j.quageo.2021.101177.
    Description: The Quaternary record of the US Mid-Atlantic coastal system includes onshore emergent late Pleistocene shoreline deposits, offshore inner shelf and barrier island units, and paleovalleys formed during multiple glacial stage sea-level lowstands. The geochronology of this coastal system is based on uranium series, radiocarbon, amino acid racemization (AAR), and optically stimulated luminescence (OSL) methods. We report over 600 mollusk AAR results from 93 sites between northeastern North Carolina and the central New Jersey shelf, representing samples from both onshore cores or outcrops, sub-barrier and offshore cores, and transported shells from barrier island beaches. AAR age estimates are constrained by paired 14C analyses on specific shells and associated U-series coral ages from onshore sites. AAR data from offshore cores are interpreted in the context of detailed seismic stratigraphy. The distribution of Pleistocene-age shells on the island beaches is linked to the distribution of inner shelf or sub-barrier source units. Age mixing over a range of time-scales (~1 ka to ~100 ka) is identified by AAR results from onshore, beach, and shelf collections, often contributing insights into the processes forming individual barrier islands. The regional aminostratigraphic framework identifies a widespread late Pleistocene (Marine Isotope Stage 5) aminozone, with isolated records of middle and early Pleistocene deposition. AAR results provide age estimates for the timing of formation of the three major paleochannels that underlie the Delmarva Peninsula: Persimmon Point paleochannel ≥800 ka; Exmore paleochannel ~400–500 ka (MIS 12); and Eastville paleochannel 〉 125 ka (MIS 6). The results demonstrate the value of synthesizing abundant AAR chronologic data across various coastal environments, integrating multiple distinct geologic studies. The ages and elevations of the Quaternary units are important for current hypotheses about relative sea-level history and crustal dynamics in the region, which was likely influenced by the Laurentide ice sheet, the margin just ~400 km to the north.
    Description: This project was funded through a cooperative agreement with the Bureau of Ocean Energy Management of the U.S. Department of the Interior, Offshore Sand Resources for Coastal Resilience and Restoration Planning: M14AC00003 and M16AC00001. We thank J. Waldner (BOEM) for support and encouragement during this project. We also thank S. Howard and K. Luciano, South Carolina Geological Survey, and numerous colleagues in both the Mid-Atlantic and Southeast Atlantic BOEM ASAP projects, active from 2015 through 2019. This paper is contribution #3999 of the Virginia Institute of Marine Science, William & Mary. Partial support was also provided to Hein by the Mid-Atlantic Sea Grant program (NOAA) award numbers R/71856G and R/71856H and a Virginia Sea Grant (NOAA) Fellowship award NA18OAR4170083 supported Shawler. JFW acknowledges support from the University of Delaware Retired Faculty Research Program.
    Keywords: Quaternary sea-level ; Delmarva peninsula ; US Mid-Atlantic shelf ; Paleovalley ; Amino acid racemization ; Geochronology ; Age-mixing ; Seismic stratigraphy ; Mollusks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grabon, J. S., Toole, J. M., Nguyen, A. T., & Krishfield, R. A. An analysis of Atlantic water in the Arctic Ocean using the Arctic subpolar gyre state estimate and observations. Progress in Oceanography, 198, (2021): 102685, https://doi.org/10.1016/j.pocean.2021.102685.
    Description: The Atlantic Water (AW) Layer in the Arctic Subpolar gyre sTate Estimate Release 1 (ASTE R1), a data-constrained, regional, medium-resolution coupled ocean-sea ice model, is analyzed for the period 2004–2017 in combination with available hydrographic data. The study, focusing on AW defined as the waters between two bounding isopycnals, examines the time-average, mean seasonal cycle and interannual variability of AW Layer properties and circulation. A surge of AW, marked by rapid increases in mean AW Layer potential temperature and AW Layer thickness, begins two years into the state estimate and traverses the Arctic Ocean along boundary current pathways at a speed of 1–2 cm/s. The surge also alters AW circulation, including a reversal in flow direction along the Lomonosov Ridge, resulting in a new quasi-steady AW circulation from 2010 through the end of the state estimate period. The time-mean AW circulation during this latter time period indicates that a significant amount of AW spreads over the Lomonosov Ridge rather than directly returning along the ridge to Fram Strait. A three-layer depiction of the time-averaged ASTE R1 overturning circulation within the Arctic Ocean reveals that more AW is converted to colder, fresher Surface Layer water than is transformed to Deep and Bottom Water (1.2 Sv vs. 0.4 Sv). ASTE R1 also exhibits an increase in the volume of AW over the study period at a rate of 1.4 Sv, with near compensating decrease in Deep and Bottom Water volume. Observed AW properties compared to ASTE R1 output reveal increasing misfit during the simulated period with the ASTE R1 AW Layer generally being warmer and thicker than in observations.
    Description: This work is based on the dissertation of the lead author submitted in partial requirement of a M.S. degree from the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography. The lead author’s participation was funded by the United States Navy’s Civilian Institution (CIVINS) Program. The contributions to this study by the junior authors were supported by the National Science Foundation (JMT and RAK grant PLR-1603660; ATN grant NSF-OPP-1603903).
    Keywords: Arctic ocean ; Atlantic water ; Ocean circulation ; Water properties ; Temperature ; Ocean state estimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tarrant, A. M., McNamara-Bordewick, N., Blanco-Bercial, L., Miccoli, A., & Maas, A. E. Diel metabolic patterns in a migratory oceanic copepod. Journal of Experimental Marine Biology and Ecology, 545, (2021): 151643, https://doi.org/10.1016/j.jembe.2021.151643.
    Description: Diel vertical migration of zooplankton profoundly impacts the transport of nutrients and carbon through the water column. Despite the acknowledged importance of this active flux to ocean biogeochemistry, these contributions remain poorly constrained, in part because daily variations in metabolic rates are not considered or are modeled as simple functions of temperature. To address this uncertainty, we sampled the subtropical copepod Pleuromamma xiphias at 4- to 7-h intervals throughout the daily migration and measured rates of oxygen consumption, ammonium excretion, fecal pellet production and metabolic enzyme activity. No significant patterns were detected in rates of oxygen consumption or ammonium excretion for freshly caught animals over the diel cycle. Fecal pellet production was highest during mid-night, consistent with several hours of feeding near the surface. Surface feeding resulted in fecal pellet production at depth in the morning, providing direct evidence that active flux of particulate organic carbon occurs in this region. Electron transport system activity was highest during the afternoon, contrary to our prediction of reduced daytime metabolism. Activity of both glutamate dehydrogenase and citrate synthase increased during early night, reflecting higher capacity for excretion and aerobic respiration, respectively. Overall, these results show that activities of metabolic enzymes vary during diel vertical migration. The surprising observation of elevated afternoon enzyme activity coupled with daytime fecal pellet and ammonium production suggests that additional characterization of the daytime activity of migratory zooplankton is warranted.
    Description: This work was supported by the National Science Foundation [Grants OCE-1829318 to AEMand LBB, and OCE-1829378 to AMT]. Support for NM-B was provided by the Woods Hole Oceanographic Institution's Summer Student Fellows Program.
    Keywords: Active flux ; DVM ; Excretion ; Fecal pellets ; Respiration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Gazel, E., Gaetani, G. A., & Klein, F. Serpentinite-derived slab fluids control the oxidation state of the subarc mantle. Science Advances, 7(48), (2021): eabj2515, https://doi.org/10.1126/sciadv.abj2515.
    Description: Recent geochemical evidence confirms the oxidized nature of arc magmas, but the underlying processes that regulate the redox state of the subarc mantle remain yet to be determined. We established a link between deep subduction-related fluids derived from dehydration of serpentinite ± altered oceanic crust (AOC) using B isotopes and B/Nb as fluid proxies, and the oxidized nature of arc magmas as indicated by Cu enrichment during magma evolution and V/Yb. Our results suggest that arc magmas derived from source regions influenced by a greater serpentinite (±AOC) fluid component record higher oxygen fugacity. The incorporation of this component into the subarc mantle is controlled by the subduction system’s thermodynamic conditions and geometry. Our results suggest that the redox state of the subarc mantle is not homogeneous globally: Primitive arc magmas associated with flat, warm subduction are less oxidized overall than those generated in steep, cold subduction zones.
    Description: Y.Z. acknowledges funding from the National Science Foundation of China (91958213), the Chinese Academy of Sciences (XDB42020402), and the Shandong Provincial Natural Science Foundation, China (ZR2020QD068). This study was supported in part by the U.S. National Science Foundation NSF EAR 1826673 to E.G. and G.A.G. and OCE 1756349 to E.G.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kakihata, Y., Michibayashi, K., & Dick, H. Heterogeneity in texture and crystal fabric of intensely hydrated ultramylonitic peridotites along a transform fault, Southwest Indian Ridge. Tectonophysics, 823, (2022): 229206, https://doi.org/10.1016/j.tecto.2021.229206.
    Description: Microstructures and olivine crystal fabrics were studied in amphibole-bearing peridotite samples obtained from the Marion Fracture Zone of the Southwest Indian Ridge by dredge D19 of the 1984 PROTEA Expedition Leg 5 cruise of the RV Melville. The peridotites show various textures ranging from extremely fine-grained well-layered ultramylonites to heterogeneously strained tectonites. Electron back-scatter diffraction analyses revealed that olivine crystal-preferred orientations (CPOs), which are developed primarily in coarse granular peridotites in the mantle, become weaker with an increasing degree of grain-size reduction from coarser to finer grains, for both porphyroclastic and matrix olivine grains. However, two well-layered ultramylonites are characterized by bimodal CPOs of (010)[001] (B type) and (001)[100] (E type) or a strong maximum of [010] normal to the foliation and girdle patterns of both [100] and [001] on the foliation plane (i.e., an axial [010] pattern or AG type). Moreover, spinel grains within these well-layered ultramylonites have not only been broken down to form olivine and amphibole by hydrous reactions, but have also been fractured and their fragments pulled apart in the fine-grained matrix. These features indicate that shear deformation occurred as increasing stress under hydrous conditions during the final stage of deformation, which enabled the local occurrence of low-temperature plastic deformation, resulting in the development of a CPO and a foliation within the ultramylonites.
    Description: This study was supported by research grants awarded to K.M. by the Japan Society for the Promotion of Science (Kiban-A 22244062, Kiban-S 16H06347). H.J.B.D. was supported by the US National Science Foundation (NSF/MG&G) and Woods Hole Oceanographic Institution.
    Keywords: Transform fault ; Mantle ; Peridotite ; Ultramylonite ; Hydrous mineral ; Olivine CPOs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, J. E., MacLeod, D. R., Phillips, S. C., Phillips, M. P., & Divins, D. L. Primary deposition and early diagenetic effects on the high saturation accumulation of gas hydrate in a silt dominated reservoir in the Gulf of Mexico. Marine Geology, 444, (2022): 106718, https://doi.org/10.1016/j.margeo.2021.106718.
    Description: On continental margins, high saturation gas hydrate systems (〉60% pore volume) are common in canyon and channel environments within the gas hydrate stability zone, where reservoirs are dominated by coarse-grained, high porosity sand deposits. Recent studies, including the results presented here, suggest that rapidly deposited, silt-dominated channel-levee environments can also host high saturation gas hydrate accumulations. Here we present several sedimentological data sets, including sediment composition, biostratigraphic age from calcareous nannofossils, grain size, total organic carbon (TOC), C/N elemental ratio, δ13C-TOC, CaCO3, total sulfur (TS), and δ34S-TS from sediments collected with pressure cores from a gas hydrate rich, turbidite channel-levee system in the Gulf of Mexico during the 2017 UT-GOM2-1 Hydrate Pressure Coring Expedition. Our results indicate the reservoir is composed of three main lithofacies, which have distinct sediment grain size distributions (type A-silty clay to clayey silt, type B-clayey silt, and type C-sandy silt to silty sand) that are characteristic of variable turbidity current energy regimes within a Pleistocene (〈 0.91 Ma) channel-levee environment. We document that the TOC in the sediments of the reservoir is terrestrial in origin and contained within the fine fraction of each lithofacies, while the CaCO3 fraction is composed of primarily reworked grains, including Cretaceous calcareous nannofossils, and part of the detrital load. The lack of biogenic grains within the finest grained sediment intervals throughout the reservoir suggests interevent hemipelagic sediments are not preserved, resulting in a reservoir sequence of silt dominated, stacked turbidites. We observe two zones of enhanced TS at the top and bottom of the reservoir that correspond with enriched bulk sediment δ34S, indicating stalled or slowly advancing paleo-sulfate-methane transition zone (SMTZ) positions likely driven by relative decreases in sedimentation rate. Despite these two diagenetic zones, the low abundance of diagenetic precipitates throughout the reservoir allowed the primary porosity to remain largely intact, thus better preserving primary porosity for subsequent pore-filling gas hydrate. In canyon, channel, and levee environments, early diagenesis may be regulated via sedimentation rates, where high rates result in rapid progression through the SMTZ and minimal diagenetic mineralization and low rates result in the stalling of the SMTZ, enhancing diagenetic mineralization. Here, we observed some enhanced pyritization to implicate potential sedimentation rate changes, but not enough to consume primary porosity, resulting in a high saturation gas hydrate reservoir. These results emphasize the important implications of sedimentary processes, sedimentation rates, and early diagenesis on the distribution of gas hydrate in marine sediments along continental margins.
    Description: This research and the UT-GOM2-1Hydrate Pressure Coring Expedition was supported by the U.S. Department of Energy (DOE) through Project # DE-FE0023919 “Deepwater Methane Hydrate Characterization and Scientific Assessment”. Graduate Teaching Assistant support and additional research funds for co-author MacLeod were provided through the UNH Dept. of Earth Sciences and the Jonathan W. Herndon Scholarship. Co-author Phillips was supported by funding from the U.S. Geological Survey's Coastal and Marine Hazards and Resources Program and DOE Interagency Agreement89243320SFE000013.
    Keywords: Methane hydrate ; Channel levee ; Turbidites ; Anaerobic oxidation of methane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Angulo, E., Diagne, C., Ballesteros-Mejia, L., Adamjy, T., Ahmed, D. A., Akulov, E., Banerjee, A. K., Capinha, C., Dia, C. A. K. M., Dobigny, G., Duboscq-Carra, V. G., Golivets, M., Haubrock, P. J., Heringer, G., Kirichenko, N., Kourantidou, M., Liu, C., Nuñez, M. A., Renault, D., Roiz, D., Taheri, A., Verbrugge, L. N. H., Watari, Y., Xiong, W., & Courchamp, F. Non-English languages enrich scientific knowledge: the example of economic costs of biological invasions. Science of the Total Environment, 775, (2021): 144441, https://doi.org/10.1016/j.scitotenv.2020.144441.
    Description: We contend that the exclusive focus on the English language in scientific research might hinder effective communication between scientists and practitioners or policy makers whose mother tongue is non-English. This barrier in scientific knowledge and data transfer likely leads to significant knowledge gaps and may create biases when providing global patterns in many fields of science. To demonstrate this, we compiled data on the global economic costs of invasive alien species reported in 15 non-English languages. We compared it with equivalent data from English documents (i.e., the InvaCost database, the most up-to-date repository of invasion costs globally). The comparison of both databases (~7500 entries in total) revealed that non-English sources: (i) capture a greater amount of data than English sources alone (2500 vs. 2396 cost entries respectively); (ii) add 249 invasive species and 15 countries to those reported by English literature, and (iii) increase the global cost estimate of invasions by 16.6% (i.e., US$ 214 billion added to 1.288 trillion estimated from the English database). Additionally, 2712 cost entries — not directly comparable to the English database — were directly obtained from practitioners, revealing the value of communication between scientists and practitioners. Moreover, we demonstrated how gaps caused by overlooking non-English data resulted in significant biases in the distribution of costs across space, taxonomic groups, types of cost, and impacted sectors. Specifically, costs from Europe, at the local scale, and particularly pertaining to management, were largely under-represented in the English database. Thus, combining scientific data from English and non-English sources proves fundamental and enhances data completeness. Considering non-English sources helps alleviate biases in understanding invasion costs at a global scale. Finally, it also holds strong potential for improving management performance, coordination among experts (scientists and practitioners), and collaborative actions across countries. Note: non-English versions of the abstract and figures are provided in Appendix S5 in 12 languages.
    Description: This work was supported by the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for the InvaCost project that allowed the construction of the InvaCost database; the AXA Research Fund Chair of Invasion Biology of University Paris Saclay (EA and LBM contracts) and BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios – “Alien Scenarios” (the workshop where this work was initiated, and MG and CD contracts, BMBF/PT DLR 01LC1807C); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (Capes) (Finance code 001, GH contract); Russian Foundation for Basic Research (grant number 19-04-01028-a); InEE-CNRS who supports the network GdR 3647 ‘Invasions Biologiques’, the French Polar Institute Paul-Emile Victor (Project IPEV 136 ‘Subanteco’), and the national nature reserve of the French southern lands (RN-TAF); Portuguese National Funds through Fundação para a Ciência e a Tecnologia (grant numbers CEECIND/02037/2017; UIDB/00295/2020 and UIDP/00295/2020); Kuwait Foundation for the Advancement of Sciences (KFAS) (grant number PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed fund (grant number 187092).
    Keywords: Ecological bias ; Management ; Knowledge gaps ; InvaCost ; Native languages ; Stakeholders
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cuthbert, R. N., Pattison, Z., Taylor, N. G., Verbrugge, L., Diagne, C., Ahmed, D. A., Leroy, B., Angulo, E., Briski, E., Capinha, C., Catford, J. A., Dalu, T., Essl, F., Gozlan, R. E., Haubrock, P. J., Kourantidou, M., Kramer, A. M., Renault, D., Wasserman, R. J., & Courchamp, F. Global economic costs of aquatic invasive alien species. Science of the Total Environment, 775, (2021): 145238, https://doi.org/10.1016/j.scitotenv.2021.145238.
    Description: Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
    Description: The authors acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenarios project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. RNC is funded through a Humboldt Research Fellowship from the Alexander von Humboldt Foundation. DAA is funded by the Kuwait Foundation for the Advancement of Sciences (KFAS) (PR1914SM-01) and the Gulf University for Science and Technology (GUST) internal seed fund (187092). CD was funded by the BiodivERsA-Belmont Forum Project AlienScenarios (BMBF/PT DLR 01LC1807C). EA was funded by the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. CC was supported by Portuguese National Funds through Fundação para a Ciência e a Tecnologia (CEECIND/02037/2017; UIDB/00295/2020 and UIDP/00295/2020). TD acknowledges funding from National Research Foundation (NRF_ZA) (Grant Number: 117700). FE appreciates funding by the Austrian Science Foundation (FWF project no I 4011-B32). AMK was supported by the NSF Macrosystems Biology program under grant 1834548. DR thanks InEE-CNRS who supports the French national network Biological Invasions (Groupement de Recherche InvaBio, 2014–2022).
    Keywords: Brackish ; Freshwater ; Habitat biases ; InvaCost ; Marine ; Monetary impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypina, I. I., Dotzel, M. M., Pratt, L. J., Hernandez, C. M., & Llopiz, J. K. Exploring interannual variability in potential spawning habitat for Atlantic bluefin tuna in the Slope Sea. Progress in Oceanography, 192, (2021): 102514, https://doi.org/10.1016/j.pocean.2021.102514.
    Description: The Slope Sea in the Northwest Atlantic Ocean, located between the Gulf Stream and the continental shelf of the Northeast United States, is a recently-documented possible major spawning ground for Atlantic bluefin tuna (Thunnus thynnus). Larval surveys and a habitat modeling study have shown that suitable spawning habitat occurs in the Slope Sea, but the degree to which this habitat varies interannually is an open question. Here, we perform a decade-long (2009–2018) numerical modeling analysis, with simulated larvae released uniformly throughout the Slope Sea, to investigate the interannual variability in the water temperature and circulation criteria deemed necessary for successful spawning. We also quantify the influence of Gulf Stream meanders and overshoot events on larval retention and their effect on habitat suitability rates throughout the Slope Sea, defined as the percentage of simulated larvae released at a given location that satisfy criteria related to water temperature and retention near nursery habitat. Average environmental oceanographic conditions over the decade are most favorable in the western part of the Slope Sea, specifically in the Slope Gyre and away from the immediate vicinity of the Gulf Stream. Variability in domain- and summertime-averaged yearly spawning habitat suitability rates is up to 25% of the mean decadal-averaged values. Yearly habitat suitability correlates strongly with the Gulf Stream overshoot but does not correlate well with other oceanographic variables or indices, so an overshoot index can be used as a sole oceanographic proxy for predicting yearly bluefin spawning habitat suitability in the Slope Sea. Selective spawning can weaken the correlation between habitat suitability and Gulf Stream overshoot. Effort should be put towards collecting observational data against which we could validate our findings.
    Description: This work was funded by a US National Science Foundation (NSF) grant (OCE-1558806) awarded to IIR, LJP, and JKL. MMD was supported by an NSF Graduate Research Fellowship. CMH was partially supported by the Adelaide and Charles Link Foundation and the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution’s Marine Policy Center.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trembath-Reichert, E., Shah Walter, S. R., Ortiz, M. A. F., Carter, P. D., Girguis, P. R., & Huber, J. A. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids. Science Advances, 7(18), (2021): eabg0153, https://doi.org/10.1126/sciadv.abg0153.
    Description: Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment.
    Description: The Gordon and Betty Moore Foundation sponsored most of the observatory components at North Pond through grant GBMF1609. This work was supported by the National Science Foundation through grants NSF OCE-1745589, OCE-1635208, and OCE-1062006 to J.A.H. and NSF OCE-1635365 to P.R.G. and S.R.S.W.; NASA Postdoctoral Fellowship with the NASA Astrobiology Institute to E.T.-R.; L’Oréal USA For Women in Science Fellowship to E.T.-R.; and Woods Hole Partnership Education Program, sponsored by the Woods Hole Diversity Initiative to M.A.F.O. The Center for Dark Energy Biosphere Investigations (C-DEBI OCE-0939564) also supported the participation of J.A.H. and P.D.C. This is C-DEBI contribution number 564.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mazurkiewicz, M., Meyer-Kaiser, K., Sweetman, A. K., Renaud, P. E., & Wlodarska-Kowalczuk, M. Megabenthic standing stocks and organic carbon demand in a warming Arctic. Progress in Oceanography, 196, (2021): 102616, https://doi.org/10.1016/j.pocean.2021.102616.
    Description: Benthic megafauna (organisms large enough to be visible on seabed photographs) are regarded as important for carbon cycling in benthic habitats. They are a food source for many predators like fish and marine mammals and may stimulate carbon mineralization in sediment by bioturbation. However, few studies address these basic characteristics of megabenthos quantitatively. This study quantifies the spatial variability in standing stock (biomass) and functioning (secondary production, respiration and carbon demand) of benthic megafauna in fjords and on the continental shelf of Svalbard. Organisms were measured from sea bottom images to assess their biomass using length-weight relationships and volumetric methods, then respiration and production were estimated with empirical artificial neural network models. Significantly higher standing stock, secondary production, respiration, and carbon demand were found in fjords categorized as ‘cold’ (as defined by water temperature, prevailing water masses and ice-cover) than in the ‘warm’ ones. Cold fjords were dominated by Echinodermata, while in warm fjords Crustacea prevailed. All megafaunal community parameters were negatively correlated with bottom temperature. It was not possible to assess specific direct impacts of temperature, and indirect effects may be more relevant to our findings. These include temperature-driven changes in primary production, ice cover and ice-algae production or predation pressure from carnivores expanding their ranges northward. The progression of climate warming may affect megafaunal communities by reducing their biomass, production, and carbon demand and have profound effects on ecosystem functioning.
    Description: Financing was provided by the University Centre in Svalbard and Akvaplan-niva (to PER), by the National Science Centre grant number UMO-2016/23/B/NZ8/02410 (AbeFun), and statutory funds of the Institute of Oceanology, Polish Academy of Sciences (to MWK).
    Keywords: Secondary production ; Respiration ; Seabed photography ; Benthos ; Svalbard
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scarlett, A. G., Nelson, R. K., Gagnon, M. M., Holman, A. I., Reddy, C. M., Sutton, P. A., & Grice, K. MV Wakashio grounding incident in Mauritius 2020: the world’s first major spillage of very low sulfur fuel oil. Marine Pollution Bulletin, 171, (2021): 112917, https://doi.org/10.1016/j.marpolbul.2021.112917.
    Description: Very Low Sulfur Fuel Oils (VSLFO, 〈0.5% S) are a new class of marine fuel oils, introduced to meet recent International Maritime Organization regulations. The MV Wakashio was reported to have released 1000 t of VLSFO when it grounded on a reef in Mauritius on 25th July 2020. A field sample of oily residue contaminating the Mauritian coast was collected on 16th August 2020 and compared with the Wakashio fuel oil. Both oils were analyzed for organic and elemental content, and stable isotope ratios δ13C and δ2H measured. Comprehensive two-dimensional gas chromatography with high-resolution mass spectrometry was used to identify and compare biomarkers resistant to weathering. The aromatic content in the VLSFO was relatively low suggesting that the potential for ecosystem harm arising from exposure to toxic components may be less than with traditional fuel oil spills. The Wakashio oil spill is, to our knowledge, the first documented spill involving VLSFO.
    Description: The project at Curtin University was supported by the Australian Research Council (grant numbers LP170101000, LE110100119 and LE130100145. CMR and RKN were supported by the National Science Foundation (OCE-1634478 and OCE-1756242). GC × GC analysis support provided by WHOI's Investment in Science Fund.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, A. C., Ostrander, C. M., Romaniello, S. J., Reinhard, C. T., Greaney, A. T., Lyons, T. W., & Anbar, A. D. Reconciling evidence of oxidative weathering and atmospheric anoxia on Archean Earth. Science Advances, 7(40), (2021): eabj0108, https://doi.org/10.1126/sciadv.abj0108.
    Description: Evidence continues to emerge for the production and low-level accumulation of molecular oxygen (O2) at Earth’s surface before the Great Oxidation Event. Quantifying this early O2 has proven difficult. Here, we use the distribution and isotopic composition of molybdenum in the ancient sedimentary record to quantify Archean Mo cycling, which allows us to calculate lower limits for atmospheric O2 partial pressures (PO2) and O2 production fluxes during the Archean. We consider two end-member scenarios. First, if O2 was evenly distributed throughout the atmosphere, then PO2 〉 10–6.9 present atmospheric level was required for large periods of time during the Archean eon. Alternatively, if O2 accumulation was instead spatially restricted (e.g., occurring only near the sites of O2 production), then O2 production fluxes 〉0.01 Tmol O2/year were required. Archean O2 levels were vanishingly low according to our calculations but substantially above those predicted for an abiotic Earth system.
    Description: We would like to thank our funding sources, including FESD “Dynamics of Earth System Oxygenation” (NSF EAR 1338810 to A.D.A.), NASA Earth and Space Science Fellowship awarded to A.C.J. (80NSSC17K0498), NSF EAR PF to A.C.J. (1952809), and WHOI Postdoctoral Fellowship to C.M.O. C.T.R. acknowledges support from the NASA Astrobiology Institute. We also acknowledge support from the Metal Utilization and Selection across Eons (MUSE) Interdisciplinary Consortium for Astrobiology Research, sponsored by the National Aeronautics and Space Administration Science Mission Directorate (19-ICAR19_2-0007).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bekaert, D. V., Auro, M., Shollenberger, Q. R., Liu, M.-C., Marschall, H., Burton, K. W., Jacobsen, B., Brennecka, G. A., McPherson, G. J., von Mutius, R., Sarafian, A., & Nielsen, S. G. Fossil records of early solar irradiation and cosmolocation of the CAI factory: a reappraisal. Science Advances, 7(40), (2021): eabg8329, https://doi.org/10.1126/sciadv.abg8329.
    Description: Calcium-aluminum–rich inclusions (CAIs) in meteorites carry crucial information about the environmental conditions of the nascent Solar System prior to planet formation. Based on models of 50V–10Be co-production by in-situ irradiation, CAIs are considered to have formed within ~0.1 AU from the proto-Sun. Here, we present vanadium (V) and strontium (Sr) isotopic co-variations in fine- and coarse-grained CAIs and demonstrate that kinetic isotope effects during partial condensation and evaporation best explain V isotope anomalies previously attributed to solar particle irradiation. We also report initial excesses of 10Be and argue that CV CAIs possess essentially a homogeneous level of 10Be, inherited during their formation. Based on numerical modeling of 50V–10Be co-production by irradiation, we show that CAI formation during protoplanetary disk build-up likely occurred at greater heliocentric distances than previously considered, up to planet-forming regions (~1AU), where solar particle fluxes were sufficiently low to avoid substantial in-situ irradiation of CAIs.
    Description: This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. and prepared by LLNL under contract DE-AC52-07NA27344 with release number LLNL-JRNL-819045. M.C.L acknowledges the support by the NASA grant 80NSSC20K0759. The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leech, V., Hazel, J. W., Gatlin, J. C., Lindsay, A. E., & Manhart, A. Mathematical modeling accurately predicts the dynamics and scaling of nuclear growth in discrete cytoplasmic volumes. Journal of Theoretical Biology, 533, (2022): 110936, https://doi.org/10.1016/j.jtbi.2021.110936.
    Description: Scaling of nuclear size with cell size has been observed in many species and cell types. In this work we formulate a modeling framework based on the limiting component hypothesis. We derive a family of spatio-temporal mathematical models for nuclear size determination based on different transport and growth mechanisms. We analyse model properties and use in vitro experimental data to identify the most probable mechanism. This suggests that nuclear volume scales with cell volume and that a nucleus controls its import rate as it grows. We further test the model by comparing to data of early frog development, where rapid cell divisions set the relevant time scales.
    Keywords: Nuclear Growth ; Partial differential equations ; Free boundary problems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R. L., Barry, P. H., Karolyte, R., Byrne, D. J., Kulongoski, J. T., Hillegonds, D. J., & Ballentine, C. J. Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields. Chemical Geology, 584, (2021): 120540. https://doi.org/10.1016/j.chemgeo.2021.120540.
    Description: In regions where water resources are scarce and in high demand, it is important to safeguard against contamination of groundwater aquifers by oil-field fluids (water, gas, oil). In this context, the geochemical characterisation of these fluids is critical so that anthropogenic contaminants can be readily identified. The first step is characterising pre-development geochemical fluid signatures (i.e., those unmodified by hydrocarbon resource development) and understanding how these signatures may have been perturbed by resource production, particularly in the context of enhanced oil recovery (EOR) techniques. Here, we present noble gas isotope data in fluids produced from oil wells in several water-stressed regions in California, USA, where EOR is prevalent. In oil-field systems, only casing gases are typically collected and measured for their noble gas compositions, even when oil and/or water phases are present, due to the relative ease of gas analyses. However, this approach relies on a number of assumptions (e.g., equilibrium between phases, water-to-oil ratio (WOR) and gas-to-oil ratio (GOR) in order to reconstruct the multiphase subsurface compositions. Here, we adopt a novel, more rigorous approach, and measure noble gases in both casing gas and produced fluid (oil-water-gas mixtures) samples from the Lost Hills, Fruitvale, North and South Belridge (San Joaquin Basin, SJB) and Orcutt (Santa Maria Basin) Oil Fields. Using this method, we are able to fully characterise the distribution of noble gases within a multiphase hydrocarbon system. We find that measured concentrations in the casing gases agree with those in the gas phase in the produced fluids and thus the two sample types can be used essentially interchangeably. EOR signatures can readily be identified by their distinct air-derived noble gas elemental ratios (e.g., 20Ne/36Ar), which are elevated compared to pre-development oil-field fluids, and conspicuously trend towards air values with respect to elemental ratios and overall concentrations. We reconstruct reservoir 20Ne/36Ar values using both casing gas and produced fluids and show that noble gas ratios in the reservoir are strongly correlated (r2 = 0.88–0.98) to the amount of water injected within ~500 m of a well. We suggest that the 20Ne/36Ar increase resulting from injection is sensitive to the volume of fluid interacting with the injectate, the effective water-to-oil ratio, and the composition of the injectate. Defining both the pre-development and injection-modified hydrocarbon reservoir compositions are crucial for distinguishing the sources of hydrocarbons observed in proximal groundwaters, and for quantifying the transport mechanisms controlling this occurrence.
    Description: This work was supported by a Natural Environment Research Council studentship to R.L.Tyne (Grant ref. NE/L002612/1) and the U.S. Geological Survey (Grant ref. 15-080-250), as part of the California State Water Resource Control Board's Oil and Gas Regional Groundwater Monitoring Program (RMP).
    Keywords: Noble gas isotopes ; Produced fluids ; Casing gas ; Enhanced oil recovery ; Hydrocarbon systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cai, C., Kwon, Y.-O., Chen, Z., & Fratantoni, P. Mixed layer depth climatology over the northeast US continental shelf (1993-2018). Continental Shelf Research, 231, (2021): 104611 https://doi.org/10.1016/j.csr.2021.104611.
    Description: The Northeast U.S. (NEUS) continental shelf has experienced rapid warming in recent decades. Over the NEUS continental shelf, the circulation and annual cycle of heating and cooling lead to local variability of water properties. The mixed layer depth (MLD) is a key factor that determines the amount of upper ocean warming. A detailed description of the MLD, particularly its seasonal cycle and spatial patterns, has not been developed for the NEUS continental shelf. We compute the MLD using an observational dataset from the Northeast Fisheries Science Center hydrographic monitoring program. The MLD exhibits clear seasonal cycles across five eco-regions on the NEUS continental shelf, with maxima in January–March and minima in July or August. The seasonal cycle is largest in the western Gulf of Maine (71.9 ± 24.4 m), and smallest in the southern Mid-Atlantic Bight (34.0 ± 7.3 m). Spatial variations are seasonally dependent, with greatest homogeneity in summer. Interannual variability dominates long-term linear trends in most regions and seasons. To evaluate the sensitivity of our results, we compare the MLDs calculated using a 0.03 kg/m3 density threshold with those using a 0.2 °C temperature threshold. Temperature-based MLDs are generally consistent with density-based MLDs, although a small number of temperature-based MLDs are biased deep compared to density-based MLDs particularly in spring and fall. Finally, we compare observational MLDs to the MLDs from a high-resolution ocean reanalysis GLORYS12V1. While the mean values of GLORYS12V1 MLDs compare well with the observed MLDs, their interannual variability are not highly correlated, particularly in summer. These results can be a starting point for future studies on the drivers of temporal and spatial MLD variability on the NEUS continental shelf.
    Description: The authors gratefully acknowledge the support from the NOAA Modeling, Analysis, Predictions, and Projections (MAPP) Program (NA17OAR4310111) and Climate Variability and Predictability Program (NA20OAR4310482). Cassia Cai acknowledges the Woods Hole Oceanographic Institution Summer Student Fellowship program for participation, the Northwestern University (NU) Earth and Planetary Science Independent Study for supporting the writing of this manuscript, and the NU Climate Change Research Group for providing some of the technical tools to conduct analysis.
    Keywords: Mixed layer depth ; Northeast U.S. continental shelf ; Climatology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kouba, A., Oficialdegui, F. J., Cuthbert, R. N., Kourantidou, M., South, J., Tricarico, E., Gozlan, R. E., Courchamp, F., & Haubrock, P. J. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Science of the Total Environment, 813, (2022): 152325, https://doi.org/10.1016/j.scitotenv.2021.152325.
    Description: Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans — crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
    Description: This research was enabled thanks to the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. AK acknowledges the Czech Science Foundation (project no. 19-04431S). FJO is funded by the Regional Government of Andalusia in Spain (Excelencia project P12-RNM-936). RNC acknowledges funding from the Alexander von Humboldt Foundation. JS acknowledges funding from the DSI-NRF Centre of Excellence for Invasion Biology (CIB).
    Keywords: Amphipoda ; Freshwater and marine ecosystems ; Decapoda ; InvaCost ; Invasive alien species ; Invertebrates ; Monetary impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pieterek, B., Ciazela, J., Boulanger, M., Lazarov, M., Wegorzewski, A., Pańczyk, M., Strauss, H., Dick, H. J. B., Muszyński, A., Koepke, J., Kuhn, T., Czupyt, Z., & France, L. Sulfide enrichment along igneous layer boundaries in the lower oceanic crust: IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 320, (2022): 179–206, https://doi.org/10.1016/j.gca.2022.01.004.
    Description: Reactive porous or focused melt flows are common in crystal mushes of mid-ocean ridge magma reservoirs. Although they exert significant control on mid-ocean ridge magmatic differentiation, their role in metal transport between the mantle and the ocean floor remains poorly constrained. Here we aim to improve such knowledge for oceanic crust formed at slow-spreading centers (approximately half of present-day oceanic crust), by focusing on specific igneous features where sulfides are concentrated. International Ocean Discovery Program (IODP) Expedition 360 drilled Hole U1473A 789 m into the lower crust of the Atlantis Bank oceanic core complex, located at the Southwest Indian Ridge. Coarse-grained (5–30 mm) olivine gabbro prevailed throughout the hole, ranging locally from fine- (〈1 mm), to very coarse-grained (〉30 mm). We studied three distinct intervals of igneous grain size layering at 109.5–110.8, 158.0–158.3, and 593.0–594.4 meters below seafloor to understand the distribution of sulfides. We found that the layer boundaries between the fine- and coarse-grained gabbro were enriched in sulfides and chalcophile elements. On average, sulfide grains throughout the layering were composed of pyrrhotite (81 vol.%; Fe1-xS), chalcopyrite (16 vol.%; CuFeS2), and pentlandite (3 vol.%; [Ni,Fe,Co]9S8), which reflect paragenesis of magmatic origin. The sulfides were most commonly associated with Fe-Ti oxides (titanomagnetites and ilmenites), amphiboles, and apatites located at the interstitial positions between clinopyroxene, plagioclase, and olivine. Pentlandite exsolution textures in pyrrhotite indicate that the sulfides formed from high-temperature sulfide liquid separated from mafic magma that exsolved upon cooling. The relatively homogenous phase proportion within sulfides along with their chemical and isotopic compositions throughout the studied intervals further support the magmatic origin of sulfide enrichment at the layer boundaries. The studied magmatic layers were likely formed as a result of intrusion of more primitive magma (fine-grained gabbro) into the former crystal mush (coarse-grained gabbro). Sulfides from the coarse-grained gabbros are Ir-Platinum Group Element-rich (PGE; i.e., Ir, Os, Ru) but those from the fine-grained gabbros are Pd-PGE-rich (i.e., Pd, Pt, Rh). Notably, the sulfides from the layer boundaries are also enriched in Pd-PGEs, and therefore elevated sulfide contents at the boundaries were likely related to the new intruding melt. Because S concentration at sulfide saturation level is dependent on the Fe content of the melt, sulfide crystallization may have been caused by FeO loss, both via crystallization of late-precipitating oxides at the boundaries, and by exchange of Fe and Mg between melt and Fe-bearing silicates (olivine and clinopyroxene). The increased precipitation of sulfide grains at the layer boundaries might be widespread in the lower oceanic crust, as also observed in the Semail ophiolite and along the Mid-Atlantic Ridge. Therefore, this process might affect the metal budget of the global lower oceanic crust. We estimate that up to ∼20% of the Cu, ∼8% of the S, and ∼84% of the Pb of the oceanic crust inventory is accumulated at the layer boundaries only from the interaction between crystal mush and new magma.
    Description: This research was funded by National Science Centre Poland (PRELUDIUM 12 no. 2016/23/N/ST10/00288), Graduate Academy of the Leibniz Universität Hannover (60421784), and ECORD Research Grant to J. Ciazela, as well as Deutsche Forschungsgemeinschaft (KO1723/23-1) to J. Koepke and H. Strauss. J. Ciazela is additionally supported within the START program of the Foundation for Polish Science (FNP). This is CRPG contribution No. 2813.
    Keywords: Sulfides ; Chalcophile elements ; Platinum group elements ; Lower oceanic crust ; IODP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-09-26
    Description: Processing remains of brown shrimp, Crangon crangon, account for up to 60 % of the catch while only the small muscle fraction is used for human consumption. Incorporation into aquafeeds for high-valued species would reduce waste, create by-product value and promote sustainable aquaculture development. A detailed chemical characterisation of the remains from mechanically peeled brown shrimp was made and apparent nutrient digestibility coefficients in Litopenaeus vannamei were investigated. Brown shrimp processing remains (BSPR) contain substantial amounts of key nutrients (521 g⋅kg-1 crude protein, 74 g⋅kg-1 total lipid, 15 MJ⋅kg-1 gross energy) and valuable functional ingredients were detected (cholesterol, astaxanthin). Apparent energy (82 %) and protein (86 %) digestibility coefficients reveal good bioavailability of these nutrients. Dry matter digestibility was lower (64 %) presumably due to the high ash content (244 g⋅kg-1). The amino acid profile meets dietary requirements of penaeid shrimp with high apparent lysine and methionine digestibility coefficients. Analysis of macro- and micro minerals showed reasonable levels of required dietary minerals (phosphorus, magnesium, copper, manganese, selenium, zinc) and apparent copper digestibility was high (93 %). Contamination levels present in BSPR were below European standards acceptable for human consumption. Processing remains of brown shrimp have a high potential as alternative feed ingredient in sustainable diets for L. vannamei in recirculating aquaculture systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    In:  EPIC3Science, American Association for the Advancement of Science, 371(6531), pp. 811-818
    Publication Date: 2022-10-01
    Description: Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion 41 to 42 thousand years ago (ka). We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-08-26
    Description: Reconstruction of geomagnetic field changes has a strong potential to complement geodynamo modeling and improve the understanding of Earth’s core dynamics. Recent works based on geomagnetic measure-ments pointed out that over the last two decades the position of the north magnetic pole has been largely determined by the influence of two competing flux lobes under Canada and Siberia. In order to understand if the waxing and waning of magnetic flux lobes have driven the path of geo-magnetic paleopoles in the past, we present an augmented and updated record of the chronology and paleosecular variation of geomagnetic field for the last 22 kyr derived from sedimentary cores collected along the north-western margin of Barents Sea and western margin of Spitsbergen (Arctic). The path of the virtual geomagnetic pole (VGP) has been reconstructed over this time period and compared with the maps of the radial component of the geomagnetic field at the core-mantle boundary, obtained from the most recent models. The VGP path includes centuries during which the VGP position is stable and cen-turies during which its motion accelerates. We recognize both clockwise and counterclockwise VGP paths, mostly developing inside the surface projection of the inner core tangent cylinder in the Arctic region. The VGP path seems to follow the appearance of Brpatches of normal magnetic flux, especially those located under Siberia and Canada areas, but also those that may cause peculiar paleomagnetic features such as the Levantine Iron Age Anomaly.
    Description: Published
    Description: 117762
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: geomagnetic paleosecular variation ; relative paleointensit ; flux lobes ; Levantine Iron Age Anomaly ; marine sediment cores ; arctic region ; solid earth ; paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-08-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-08-30
    Description: Most tropical corals live in symbiosis with Symbiodiniaceae algae whose photosynthetic production of oxygen (O2) may lead to excess O2 in the diffusive boundary layer (DBL) above the coral surface. When flow is low, cilia-induced mixing of the coral DBL is vital to remove excess O2 and prevent oxidative stress that may lead to coral bleaching and mortality. Here, we combined particle image velocimetry using O2-sensitive nanoparticles (sensPIV) with chlorophyll (Chla)-sensitive hyperspectral imaging to visualize the microscale distribution and dynamics of ciliary flows and O2 in the coral DBL in relation to the distribution of Symbiodiniaceae Chla in the tissue of the reef building coral, Porites lutea. Curiously, we found an inverse relation between O2 in the DBL and Chla in the underlying tissue, with patches of high O2 in the DBL above low Chla in the underlying tissue surrounding the polyp mouth areas and pockets of low O2 concentrations in the DBL above high Chla in the coenosarc tissue connecting neighboring polyps. The spatial segregation of Chla and O2 is related to ciliary-induced flows, causing a lateral redistribution of O2 in the DBL. In a 2D transport-reaction model of the coral DBL, we show that the enhanced O2 transport allocates parts of the O2 surplus to areas containing less chla, which minimizes oxidative stress. Cilary flows thus confer a spatially complex mass transfer in the coral DBL, which may play an important role in mitigating oxidative stress and bleaching in corals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-08-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zitterbart, D., Bocconcelli, A., Ochs, M., & Bonnel, J. TOSSIT: a low-cost, hand deployable, rope-less and acoustically silent mooring for underwater passive acoustic monitoring. HardwareX, 11, (2022): e00304, https://doi.org/10.1016/j.ohx.2022.e00304.
    Description: Passive Acoustic Monitoring (PAM) has been used to study the ocean for decades across several fields to answer biological, geological and meteorological questions such as marine mammal presence, measures of anthropogenic noise in the ocean, and monitoring and prediction of underwater earthquakes and tsunamis. While in previous decades the high cost of acoustic instruments limited its use, miniaturization and microprocessor advances dramatically reduced the cost for passive acoustic monitoring instruments making PAM available for a broad scientific community. Such low-cost devices are often deployed by divers or on mooring lines with a surface buoy, which limit their use to diving depth and coastal regions. Here, we present a low-cost, low self-noise and hand-deployable PAM mooring design, called TOSSIT. It can be used in water as deep as 500 m, and can be deployed and recovered by hand by a single operator (more comfortably with two) in a small boat. The TOSSIT modular mooring system consists of a light and strong non-metallic frame that can fit a variety of sensors including PAM instruments, acoustic releases, additional power packages, environmental parameter sensors. The TOSSIT’s design is rope-less, which removes any risk of entanglement and keeps the self-noise very low.
    Description: The development of the TOSSIT mooring was supported by a Woods Hole Oceanographic institution Innovative Technology Award (Award number 25226). TOSSIT deployment in Argentina was supported by a Woods Hole Oceanographic Institution Mary Sears visitor award (Award number 24700) and TOSSIT deployments during SBCEX were funded by the Office of Naval Research Task Force Ocean (ONR TFO, Award number: N000141912627). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Keywords: Ocean ambient noise ; Mooring systems ; Soundscape ; Underwater sound ; Bioacoustics ; Oceanography ; Acoustical Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-05-05
    Description: After 25 years of gradual increase, volcanic unrest at La Soufrière of Guadeloupe reached its highest seismic en- ergy level on 27 April 2018, with the largest felt volcano-tectonic (VT) earthquake (ML 4.1 or MW 3.7) recorded since the 1976–1977 phreatic eruptive crisis. This event marked the onset ofa seismic swarm(180 events, 2 felt) occurring after three previous swarms on 3–6 January (70 events), 1 st February (30 events, 1 felt) and 16–17 April (140 events, 1 felt). Many events were hybrid VTs with long-period codas, located 2–4 km below the vol- cano summit and clustered within 2 km along a regional NW-SE fault cross-cutting La Soufrière. Elastic energy release increased with eachswarmwhereas inter-event time shortened. At the same time, summit fractures con- tinued to open and thermal anomalies to extend. Summit fumarolic activity increased significantly until 20 April, with a maximum temperature of111.4 °C and gas exit velocity of80 m/s, before declining to ~95 °C and ~33 m/s on 25 April. Gas compositions revealed increasing C/S and CO2/CH4 ratios and indicate hydrothermal P-T condi- tions that reached the critical point ofpure water. Repeated MultiGAS analysis of fumarolic plumes showed in- creased CO2/H2S ratios and SO2 contents associated with the reactivation of degassing fractures (T = 93 °C, H2S/SO2 ≈ 1). While no direct evidence ofupward magma migration was detected, we attribute the above phe- nomena to an increased supply ofdeepmagmatic fluids that heated and pressurized the La Soufrière hydrother- mal system, triggering seismogenic hydro-fracturing, and probable changes in deep hydraulic properties (permeability) and drainage pathways, which ultimately allowed the fumarolic fluxes to lower. Although this magmatic fluid injectionwasmodulated by the hydrothermal system, the unprecedented seismic energy release and the critical point conditions ofhydrothermal fluids suggest that the 2018 sequence ofevents can be regarded as a failed phreatic eruption. Should a similar sequence repeat, we warn that phreatic explosive activity could re- sult fromdisruption ofthe shallowhydrothermal system that is currently responsible for 3–9mm/y ofnearly ra- dial horizontal displacements within 1 km from the dome. Another potential hazard is partial collapse of the dome's SW flank, already affected by basal spreading above a detachment surface inherited from past collapses. Finally, the increased magmatic fluid supply evidenced by geochemical indicators in 2018 is compatible with magma replenishment of the 6–7 kmdeep crustal reservoir feeding La Soufrière and, therefore, with a potential evolution of the volcano's activity towards magmatic conditions.
    Description: Published
    Description: 106769
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-06-07
    Description: We present the results of an experiment taking place inside the geophysical museum of Rocca di Papa (Rome, Italy), where the high radon levels detected might pose a risk to the health of workers and of the public audience. As a first step towards the mitigation of potential exposure risk, four active sensors were installed at different floors of the building, in order to continuously monitor not only radon exhalation from the soil but also its transport from the ground up to elevated floors. Collecting more than three years of data of radon concentration enables us to identify fluctuations over both short and seasonal scales and to elucidate the relation between radon variations and changes of internal temperature and relative humidity. The analysis of such dataset reveals how the healthiness of indoor environments in terms of radon concentration is controlled by a number of factors, including the environmental conditions and the use of heating and ventilation systems. Finally, the continuous radon monitoring at different levels of the building provides a unique chance to trace the vertical radon diffusion, allowing to make a first-order estimate of upward radon velocity.
    Description: Published
    Description: 106919
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: indoor radon, gas diffusion ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-06-09
    Description: Joint analysis of high-penetration multi-channel and high-resolution single-channel seismic reflection profiles, calibrated by deep well boreholes, allowed a detailed reconstruction of the Late Miocene to Recent tectonic history of the Capo Granitola and Sciacca fault systems offshore southwestern Sicily. These two fault arrays are part of a regional system of transcurrent faults that dissect the foreland block in front of the Neogene Sicilian fold and thrust belt. The Capo Granitola and Sciacca faults are thought to reactivate inherited Mesozoic to Miocene normal faults developed on the northern continental margin of Africa. During Latest Miocene-Pliocene, the two ~NNE-SSW striking faults were active in left transpression, which inverted Late Miocene extensional half-grabens and created push-up ridges along both systems. Tectonic activity decreased during the Pleistocene, but transpressional folds deform Middle-Late Pleistocene sediments as well, suggesting that the two fault systems are active. The ~40 km long longitudinal amplitude profile of 1st order folds (Capo Granitola and Sciacca anticlines) shows ~15–20 km bell-shaped undulations that represents 2nd order folds. The length of these undulations together with the map pattern of faults allowed to divide the CGFS and SFS into two segments, northern and southern, respectively. Total uplift of the Sciacca Anticline is twice than the uplift of the Capo Granitola Anticline. Incremental fold growth rates decreased during time from 0.22 mm/yr (Capo Granitola Anticline) and 0.44 mm/yr (Sciacca Anticline) in the Pliocene, to 0.07 and 0.22 mm/yr, respectively, during the last ~1.8 Ma.
    Description: Published
    Description: 187-204
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Multiscale analysis ; Basin inversion ; Strike-slip faults ; Fold growth rates ; Pelagian foreland ; SW Sicily offshore ; 04.07. Tectonophysics ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...