ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (218)
  • Frontiers  (173)
  • American Chemical Society
  • American Physical Society
  • Annual Reviews
  • 2020-2023  (8)
  • 2015-2019  (201)
  • 2005-2009  (9)
  • 1980-1984
  • 1930-1934
Collection
Source
Years
Year
  • 101
    Publication Date: 2021-02-08
    Description: Wind, chemical enhancement, phytoplankton activity, and surfactants are potential factors driving the air-sea gas exchange of carbon dioxide (CO2). We investigated their effects on the gas transfer velocity of CO2 in a large annular wind-wave tank filled with natural seawater from the North Atlantic Ocean. Experiments were run under 11 different wind speed conditions (ranging from 1.5 ms−1 to 22.8 ms−1), and we increased the water pCO2 concentration twice by more than 950 μatm for two of the seven experimental days. We develop a conceptual box model that incorporated the thermodynamics of the marine CO2 system. Surfactant concentrations in the sea surface microlayer (SML) ranged from 301 to 1015 μgL−1 (as Triton X-100 equivalents) with enrichments ranged from 1.0 to 5.7 in comparison to the samples from the underlying bulk water. With wind speeds up to 8.5 ms−1, surfactants in the SML can reduce the gas transfer velocity by 54%. Wind-wave tank experiments in combination with modeling are useful tools for obtaining a better understanding of the gas transfer velocities of CO2 across the air-sea boundary. The tank allowed for measuring the gas exchange velocity under extreme low and high wind speeds; in contrast, most previous parametrizations have fallen short because measurements of gas exchange velocities in the field are challenging, especially at low wind conditions. High variability in the CO2 transfer velocities suggests that gas exchange is a complex process not solely controlled by wind forces, especially in low wind conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2020-01-02
    Description: The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (〉100 nm and 〈5 mm) or nanoplastics (〈100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-12-03
    Description: Noninvasive diagnostic by imaging combined with a contrast agent (CA) is by now the most used technique to get insight into human bodies. X-ray and magnetic resonance imaging (MRI) are widely used technologies providing complementary results. Nowadays, it seems clear that bimodal CAs could be an emerging approach to increase the patient compliance, accessing different imaging modalities with a single CA injection. Owing to versatile designs, targeting properties, and high payload capacity, nanocarriers are considered as a viable solution to reach this goal. In this study, we investigated efficient superparamagnetic iron oxide nanoparticle (SPION)-loaded iodinated nano-emulsions (NEs) as dual modal injectable CAs for X-ray imaging and MRI. The strength of this new CA lies not only in its dual modal contrasting properties and biocompatibility, but also in the simplicity of the nanoparticulate assembling: iodinated oily core was synthesized by the triiodo-benzene group grafting on vitamin E (41.7% of iodine) via esterification, and SPIONs were produced by thermal decomposition during 2, 4, and 6 h to generate SPIONs with different morphologies and magnetic properties. SPIONs with most anisotropic shape and characterized by the highest r2/r1 ratio once encapsulated into iodinated NE were used for animal experimentation. The in vivo investigation showed an excellent contrast modification because of the presence of the selected NEs, for both imaging techniques explored, that is, MRI and X-ray imaging. This work provides the description and in vivo application of a simple and efficient nanoparticulate system capable of enhancing contrast for both preclinical imaging modalities, MRI, and computed tomography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-10-30
    Description: At the Black Sea chemocline, oxygen- and sulfide-rich waters meet and form a niche for thiotrophic pelagic bacteria. Here we investigated an area of the Northwestern Black Sea off Crimea close to the shelf break, where the chemocline reaches the seafloor at around 150–170 m water depth, to assess whether thiotrophic bacteria are favored in this zone. Seafloor video transects were carried out with the submersible JAGO covering 20 km2 on the region between 110 and 200 m depth. Around the chemocline we observed irregular seafloor depressions, covered with whitish mats of large filamentous bacteria. These comprised 25–55% of the seafloor, forming a belt of 3 km width around the chemocline. Cores from the mats obtained with JAGO showed higher accumulations of organic matter under the mats compared to mat-free sediments. The mat-forming bacteria were related to Beggiatoa-like large filamentous sulfur bacteria based on 16S rRNA sequences from the mat, and visual characteristics. The microbial community under the mats was significantly different from the surrounding sediments and enriched with taxa affiliated with polymer degrading, fermenting and sulfate reducing microorganisms. Under the mats, higher organic matter accumulation, as well as higher remineralization and radiotracer-based sulfate reduction rates were measured compared to outside the mat. Mat-covered and mat-free sediments showed similar degradability of the bulk organic matter pool, suggesting that the higher sulfide fluxes and subsequent development of the thiotrophic mats in the patches are consequences of the accumulation of organic matter rather than its qualitative composition. Our observations suggest that the key factors for the distribution of thiotrophic mat-forming communities near to the Crimean shelf break are hypoxic conditions that (i) repress grazers, (ii) enhance the accumulation and degradation of labile organic matter by sulfate-reducers, and (iii) favor thiotrophic filamentous bacteria which are adapted to exploit steep gradients in oxygen and sulfide availability; in addition to a specific seafloor topography which may relate to internal waves at the shelf break.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-02-01
    Description: Several legal and administrative instruments aimed to reduce the spread of non-indigenous species, that may pose harm to the environment, economy and/or human health, were developed in recent years at international and national levels, such as the International Convention for the Control and Management of Ship's Ballast Water and Sediments, the International Council for the Exploration of the Sea Code of Practice on the Introductions and Transfers of Marine Organisms, the EU Regulation on Invasive Alien Species and the Marine Strategy Framework Directive, the US Invasive Species Act, the Biosecurity Act of New Zealand, etc. The effectiveness of these instruments can only be measured by successes in the prevention of new introductions. We propose an indicator, the arrival of new non-indigenous species (nNIS), which helps to assess introduction rates, especially in relation to pathways and vectors of introduction, and is aimed to support management. The technical precondition for the calculation of nNIS is the availability of a global, continuously updated and verified source of information on aquatic non-indigenous species. Such a database is needed, because the indicator should be calculated at different geographical scales: (1) for a particular area, such as port or coast of a country within a Large Marine Ecosystem (LME); (2) for a whole LME; and (3) for a larger biogeographical region, including two or more neighboring LMEs. The geographical scale of nNIS helps to distinguish between a primary introduction and secondary spread, which may involve different pathways and vectors. This, in turn, determines the availability of management options, because it is more feasible to prevent a primary introduction than to stop subsequent secondary spread. The definition of environmental target, size of assessment unit and possible limitations of the indicator are also discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-02-01
    Description: Combining the existing knowledge on links between functional characteristics of phytoplankton taxa and food web functioning with the methods from long-term data analysis, we present an approach for using phytoplankton monitoring data to draw conclusions on potential effects of phytoplankton taxonomic composition on the next trophic level. This information can be used as a part of marine food web assessments required by the Marine Strategy Framework Directive of the European Union. In this approach, both contemporary taxonomic composition and recent trends of changes are used to assess their potential consequences for food web functioning. The approach consists of four steps: (1) long-term trend analysis of class-level and total phytoplankton biomass using generalized additive models (GAMs) and calculating average biomass share of each phytoplankton class from the total phytoplankton biomass, (2) comparing the current phytoplankton community composition and its long-term changes with non-metric ordination analysis (NMDS) of genus-level biomass, (3) describing which taxa (the most accurate taxonomic level) are primarily responsible for forming the biomass and for causing the possible changes, and (4) interpretation of the phytoplankton results to assess the potential effects on the next trophic level. Within step 4, special attention is given to the following characteristic of taxa: potential suitability or quality as food for grazers, harmfulness, size, and trophy. These characteristics are selected based on existing scientific knowledge on their relevance to the higher trophic levels. In this article, we present the concept of the suggested approach and demonstrate the phytoplankton analyses with multi-decadal monitoring data from the northern Baltic Sea. We also discuss the future development of the approach toward a food web index by combining or replacing the taxonomic analyses with functional trait-based approaches.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-02-01
    Description: High Nature Value Farmland (HNVF) is commonly associated with low intensity agricultural systems. HNVFs cover ~32% of the agricultural land in Europe and are of strategic importance for the European Union policy since they are reservoirs of biodiversity and provide several ecosystem services. Carbon sequestration is an important service that can be supplied by HNVFs as addressed in this study. Considering soil carbon content as a proxy for soil carbon storage, we compare HNVFs with soils that undergo more conventional land management (nHNVFs) and study the consequences of diverse land uses and geographic regions as additional explanatory variables. The results of our research show that, at the European level, organic carbon content is higher in HNVF than in nHNVF. However, this difference is strongly affected by the type of land use and the geographic region. Rather than seeing HNVF and nHNVF as two sharply distinct categories, as for carbon storage potential, we provide indications that the interplay between soil type (HNVF or nHNVF), land use, and geographic region determines carbon content in soils.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2020-12-02
    Description: The exploration and proposed mining of sulfide massive deposits in deep-sea environments and increased use deep-sea tailings placement (DSTP) in coastal zones has highlighted the need to better understand the fate and effects of mine-derived materials in marine environments. Metal sulfide ores contain high concentrations of metal(loid)s, of which a large portion exist in highly mineralized or sulfidised forms and are predicted to exhibit low bioavailability. In this study, sediments were spiked with a range of natural sulfide minerals (including chalcopyrite, chalcocite, galena, sphalerite) to assess the bioavailability and toxicity to benthic invertebrates (bivalve survival and amphipod survival and reproduction). The metal sulfide phases were considerably less bioavailable than metal contaminants introduced to sediment in dissolved forms, or in urban estuarine sediments contaminated with mixtures of metal(loid)s. Compared to total concentrations, the dilute-acid extractable metal(loid) (AEM) concentrations, which are intended to represent the more oxidized and labile forms, were more effective for predicting the toxicity of the sulfide mineral contaminated sediments. The study indicates that sediment quality guidelines based on AEM concentrations provide a useful tool for assessing and monitoring the risk posed by sediments impacted by mine-derived materials in marine environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-02-01
    Description: Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, clustered regularly interspaced short palindromic repeats, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-09-23
    Description: Marine imaging is transforming into a sensor technology applied for high throughput sampling. In the context of habitat mapping, imaging establishes thereby an important bridge technology regarding the spatial resolution and information content between physical sampling gear (e.g., box corer, multi corer) on the one end and hydro-acoustic sensors on the other end of the spectrum of sampling methods. In contrast to other scientific imaging domains, such as digital pathology, there are no protocols and reports available that guide users (often referred to as observers) in the non-trivial process of assigning semantic categories to whole images, regions, or objects of interest (OOI), which is referred to as annotation. These protocols are crucial to facilitate image analysis as a robust scientific method. In this article we will review the past observations in manual Marine Image Annotations (MIA) and provide (a) a guideline for collecting manual annotations, (b) definitions for annotation quality, and (c) a statistical framework to analyze the performance of human expert annotations and to compare those to computational approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Agricultural and Food Chemistry, 67 (18). pp. 5135-5146.
    Publication Date: 2021-01-08
    Description: UPLC–TOF/MS profiling, followed by the recently reported differential off-line LC–NMR (DOLC–NMR) and quantitative 1H NMR spectroscopy (qHNMR), led to the differential qualitative analysis and accurate quantitation of l-tryptophan-induced metabolome alterations of Penicillium roqueforti, which is typically used in making blue-mold cheese. Among the 24 metabolites identified, two tetrapeptides, namely, d-Phe-l-Val-d-Val-l-Tyr and d-Phe-l-Val-d-Val-l-Phe, as well as cis-bis(methylthio)silvatin, are reported for the first time as metabolites of P. roqueforti. Antimicrobial activity tests showed strong effects of the catabolic l-tryptophan metabolites 3-hydroxyanthranilic acid, anthranilic acid, and 3-indolacetic acid against Saccharomyces cerevisiae, with IC50 values between 15.6 and 24.0 μg/mL, while roquefortine C and cis-bis(methylthio)silvatin inhibited the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis with IC50 values between 30.0 and 62.5 μg/mL.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology Letters, 2 (4). pp. 84-88.
    Publication Date: 2020-04-24
    Description: Viruses play important roles in microbial ecology and some infectious diseases, but relatively little is known about the concentrations, sources, transformation, and fate of viruses in the atmosphere. We have measured total airborne concentrations of virus-like and bacterium-like particles (VLPs between 0.02 and 0.5 μm in size and BLPs between 0.5 and 5 μm) in nine locations: a classroom, a daycare center, a dining facility, a health center, three houses, an office, and outdoors. Indoor concentrations of both VLPs and BLPs were ∼105 particles m–3, and the virus:bacteria ratio was 0.9 ± 0.1 (mean ± standard deviation across different locations). There were no significant differences in concentration between different indoor environments. VLP and BLP concentrations in outdoor air were 2.6 and 1.6 times higher, respectively, than in indoor air. At the single outdoor site, the virus:bacteria ratio was 1.4.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-09-02
    Description: Marine plastic debris is a global environmental problem. Surveys have shown that 〈5 mm plastic particles, known as microplastics, are significantly more abundant in surface seawater and on shorelines than larger plastic particles are. Nevertheless, quantification of microplastics in the environment is hampered by a lack of adequate high-throughput methods for distinguishing and quantifying smaller size fractions (〈1 mm), and this has probably resulted in an underestimation of actual microplastic concentrations. Here we present a protocol that allows high-throughput detection and automated quantification of small microplastic particles (20–1000 μm) using the dye Nile red, fluorescence microscopy, and image analysis software. This protocol has proven to be highly effective in the quantification of small polyethylene, polypropylene, polystyrene, and nylon-6 particles, which frequently occur in the water column. Our preliminary results from sea surface tows show a power-law increase in small microplastics (i.e., 〈1 mm) with a decreasing particle size. Hence, our data help to resolve speculation about the “apparent” loss of this fraction from surface waters. We consider that this method presents a step change in the ability to detect small microplastics by substituting the subjectivity of human visual sorting with a sensitive and semiautomated procedure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2021-02-08
    Description: To enable successful management of marine bioinvasions, timely and robust scientific advice is required. This knowledge should inform managers and stakeholders on the magnitude of a pressure (rate of human-mediated introductions), the environmental state of an ecosystem (impacts of non-indigenous species), and the success of management response (prevention, eradication, mitigation). This advice often relies on baseline biodiversity information in the form of measureable parameters (metrics). This can be derived from conventional approaches such as visual surveys, but also by utilizing environmental DNA/RNA-based molecular techniques, which are increasingly being touted as promising tools for assessing biodiversity and detecting rare or invasive species. Depending on the stage of incursion, each approach has merits and limitations. In this review we assess the performance of biosecurity-relevant biodiversity parameters derived from eDNA/eRNA samples and discuss the results in relation to different stages of invasion and management applications. The overall performance of considered methods ranged between 42 and 90% based on defined criteria, with target-specific approaches scoring higher for respective biosecurity applications, followed by eDNA metabarcoding. Caveats are discussed along with avenues which may enhance these techniques and their successful uptake for marine biosecurity surveillance and management. To facilitate and encourage uptake of these techniques, there is a need for an international collaborative framework aimed at unifying molecular sampling and analysis methodologies. Improvement of quantitative capacity and cost-efficiency will also enhance their integration in biosecurity programmes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Marine Science, 5 . Art.Nr. 408.
    Publication Date: 2021-02-08
    Description: Little is known about the ecosystem effects of locally adapted populations. The filter feeding copepod Eurytemora affinis is an abundant and important zooplankton in coastal waters that consist of a cryptic species complex with locally adapted populations. We used a mesocosm setup to investigate population and ecosystem interactions of two populations from the Baltic Sea with different morphology and life history traits. One population is laterally wider, larger-sized, more fecund, and have higher growth rate than the other. The experimental ecosystems varied in algae community (pelagic algae, and pelagic algae + benthic diatoms) with two resource supply scenarios. Results showed that the large-sized population is a more effective grazer. In low resource supply the small-sized population starved, whereas the large-sized population was unaffected, resulting in a larger population increase of both nauplii and copepodites than for the small-sized population. Addition of benthic diatoms to the pelagic algae community had much more negative effects on the reproduction of the large-sized population. This suggests that the large-sized population feeds near benthic to a greater extent than the small-sized population, and that filamentous benthic diatoms interfere with the grazing process. Despite the negative effects of benthic diatoms, the large-sized population could maintain similar or higher reproduction than the small-sized population. In addition, the high grazing efficiency of the large-sized population resulted in a different community composition of algae. Specifically, flagellated species and small sized benthic diatoms were more grazed upon by the large-sized population. Our results show that morphologically divergent, yet phylogenetically closely related zooplankton populations can have different ecosystem functions, and in turn have different population increase in response to resource supply and algae community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology, 39 (23). pp. 9009-9015.
    Publication Date: 2020-06-19
    Description: A critical examination of published data obtained primarily from recent nuclear magnetic resonance spectroscopy, X-ray absorption near-edge structure spectroscopy, electrospray ionization-mass spectrometry, and pyrolysis studies reveals an evolving new view of the molecular structure of soil humic substances. According to the new view, humic substances are collections of diverse, relatively low molecular mass components forming dynamic associations stabilized by hydrophobic interactions and hydrogen bonds. These associations are capable of organizing into micellar structures in suitable aqueous environments. Humic components display contrasting molecular motional behavior and may be spatially segregated on a scale of nanometers. Within this new structural context, these components comprise any molecules intimately associated with a humic substance, such that they cannot be separated effectively by chemical or physical methods. Thus biomolecules strongly bound within humic fractions are by definition humic components, a conclusion that necessarily calls into question key biogeochemical pathways traditionally thought to be required for the formation of humic substances. Further research is needed to elucidate the intermolecular interactions that link humic components into supramolecular associations and to establish the pathways by which these associations emerge from the degradation of organic litter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2021-02-08
    Description: Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 μg/ml) and biofilm formation (sub-MIC range: 1.95–〈31.25 μg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2021-03-09
    Description: The impacts of biochemicals driving food web processes are under investigation for just the last few decades. In addition, as jellyfish are drawing increasing attentions because of their mass developments and of their potential capacity of driving food web structures and energy flow by ‘top-down’ and ‘bottom-up’ controls. We here show that the provision with the biochemical complex thiamin (vitamin B1) to the common phytoplankton Rhodomonas baltica altered its fatty acid (FA) pattern towards 3-highly-unsaturated FAs (3-HUFA) and that this pattern was further transferred up to the zooplankton consumer, the copepod Acartia tonsa. However, polyps of the Jellyfish Aurelia aurita feeding on A. tonsa only had a low relative 3-HUFA content, especially due to a reduction in 22:63 (DHA), but elevated levels of 20:46 (ARA). The high proportion of the -6 HUFA, ARA in polyps may provide evidence for preferential conversion of ARA in polyps, eventually from DHA in a so far unknown pathway. In contrast to A. tonsa, newly hatched A. salina nauplii used as food for A. aurita polyps were almost devoid of HUFA, but contained high levels of C18 polyunsaturated FAs (C18-PUFA). Consequently, polyps feeding on them contained few HUFA, while high levels of C18-PUFA predominated. This suggests that A. aurita polyps cannot efficiently convert 3 C18-PUFA to 3-HUFA. In addition, besides a decrease in saturated FAs, especially an increase in HUFA in A. aurita polyps with decreasing temperature was observed, for which the dietary provision with HUFA seemed to be critical. Altering the FA pattern as a response of temperature reflects an adaptation to seasonal changes and may be related to their life history plasticity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2021-02-08
    Description: Long-term time series data show that ocean acidification is occurring in the subtropical oceans. As a component of an in situ mesocosm experiment carried out offGran Canaria in the subtropical North Atlantic, we examined the influence of ocean acidification on the net production of dimethylsulfide (DMS). Over 23 days under oligotrophic conditions, time-integrated DMS concentrations showed an inverse relationship of -0.21 ± 0.02 nmol DMS nmol-1 H+ across the gradient of H+ concentration of 8.8-23.3 nmol l-1, equivalent to a range of pCO2 of 400-1,252 atm. Proportionally similar decreases in the concentrations of both dissolved and particulate dimethylsulfoniopropionate (DMSP) were observed in relation to increasing H+ concentration between the mesocosms. The reduced net production of DMSP with increased acidity appeared to result from a decrease in abundance of a DMSP-rich nanophytoplankton population. A 35S-DMSP tracer approach was used to determine rates of dissolved DMSP catabolism, including DMS production, across the mesocosm treatments. Over a phase of increasing DMS concentrations during the experiment, the specific rates of DMS production were significantly reduced at elevated H+ concentration. These rates were closely correlated to the rates of net DMS production indicating that transformation of dissolved DMSP to DMS by bacteria was a major component of DMS production. It was not possible to resolve whether catabolism of DMSP was directly influenced by H+ concentrations or was an indirect response in the bacterial community composition associated with reduced DMSP availability. There is a pressing need to understand how subtropical planktonic communities respond to the predicted gradual prolonged ocean acidification, as alterations in the emission of DMS from the vast subtropical oceans could influence atmospheric chemistry and potentially climate, over a large proportion of the Earth's surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2021-04-23
    Description: The subtropical oceans are home to one of the largest ecosystems on Earth, contributing to nearly one third of global oceanic primary production. Ocean warming leads to enhanced stratification in the oligotrophic ocean but also intensification in cross-shore wind gradients and thus in eddy kinetic energy across eastern boundary regions of the subtropical gyres. Phytoplankton thriving in a future warmer oligotrophic subtropical ocean with enhanced CO2 levels could therefore be patchily fertilized by increased mesoscale and submesoscale variability inducing nutrient pumping into the surface ocean. Under this premise, we have tested the response of three size classes (0.2-2, 2-20, and 〉 20 μm) of subtropical phytoplankton communities in terms of primary production, chlorophyll and cell biomass, to increasing CO2 concentrations and nutrient fertilization during an in situ mesocosm experiment in oligotrophic waters offof the island of Gran Canaria. We found no significant CO2-related effect on primary production and biomass under oligotrophic conditions (phase I). In contrast, primary production, chlorophyll and biomass displayed a significant and pronounced increase under elevated CO2 conditions in all groups after nutrient fertilization, both during the bloom (phase II) and post-bloom (phase III) conditions. Although the relative increase of primary production in picophytoplankton (250%) was 2.5 higher than in microphytoplankton (100%) after nutrient fertilization, comparing the high and low CO2 treatments, microphytoplankton dominated in terms of biomass, contributing 〉 57% to the total. These results contrast with similar studies conducted in temperate and cold waters, where consistently small phytoplankton benefitted after nutrient additions at high CO2, pointing to different CO2-sensitivities across plankton communities and ecosystem types in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2021-03-19
    Description: Fungi represent a rich source of bioactive metabolites and some are marketed as alternatives to synthetic agrochemicals against plant pathogens. However, the culturability of fungal strains in artificial laboratory conditions is still limited and the standard mono-cultures do not reflect their full spectrum chemical diversity. Phytopathogenic fungi and bacteria have successfully been used in the activation of cryptic biosynthetic pathways to promote the production of new secondary metabolites in co-culture experiments. The aim of this study was to map the fungal diversity of Windebyer Noor, a brackish lake connected to Baltic Sea (Germany), to induce the chemical space of the isolated marine-adapted fungi by co-culturing with phytopathogens, and to assess their inhibitory potential against six commercially important phytopathogens. Out of 123 marine-adapted fungal isolates obtained, 21 were selected based on their phylogenetic and metabolite diversity. They were challenged with two phytopathogenic bacteria (Pseudomonas syringae and Ralstonia solanacearum) and two phytopathogenic fungi (Magnaporthe oryzae and Botrytis cinerea) on solid agar. An in-depth untargeted metabolomics approach incorporating UPLC–QToF–HRMS/MS-based molecular networking (MN), in silico MS/MS databases, and manual dereplication was employed for comparative analysis of the extracts belonging to nine most bioactive co-cultures and their respective mono-cultures. The phytopathogens triggered interspecies chemical communications with marine-adapted fungi, leading to the production of new compounds and enhanced expression of known metabolites in co-cultures. MN successfully generated a detailed map of the chemical inventory of both mono- and co-cultures. We annotated overall 18 molecular clusters (belonging to terpenes, alkaloids, peptides, and polyketides), 9 of which were exclusively produced in co-cultures. Several clusters contained compounds, which could not be annotated to any known compounds, suggesting that they are putatively new metabolites. Direct antagonistic effects of the marine-adapted fungi on the phytopathogens were observed and anti-phytopathogenic activity was demonstrated.The untargeted metabolomics approach combined with bioactivity testing allowed prioritization of two co-cultures for purification and characterization of marine fungal metabolites with crop-protective activity. To our knowledge, this is the first study employing plant pathogens to challenge marine-adapted fungi.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2021-04-21
    Description: Developing enduring capacity to monitor ocean life requires investing in people and their institutions to build infrastructure, ownership, and long-term support networks. International initiatives can enhance access to scientific data, tools and methodologies, and develop local expertise to use them, but without ongoing engagement may fail to have lasting benefit. Linking capacity development and technology transfer to sustained ocean monitoring is a win-win proposition. Trained local experts will benefit from joining global communities of experts who are building the comprehensive Global Ocean Observing System (GOOS). This two-way exchange will benefit scientists and policy makers in developing and developed countries. The first step toward the GOOS is complete: identification of an initial set of biological Essential Ocean Variables (EOVs) that incorporate the Group on Earth Observations (GEO) Essential Biological Variables (EBVs), and link to the physical and biogeochemical EOVs. EOVs provide a globally consistent approach to monitoring where the costs of monitoring oceans can be shared and where capacity and expertise can be transferred globally. Integrating monitoring with existing international reporting and policy development connects ocean observations with agreements underlying many countries' commitments and obligations, including under SDG 14, thus catalyzing progress toward sustained use of the ocean. Combining scientific expertise with international capacity development initiatives can help meet the need of developing countries to engage in the agreed United Nations (UN) initiatives including new negotiations for the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction, and the needs of the global community to understand how the ocean is changing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-09-23
    Description: Significant changes have occurred in the anthropogenic emissions of many compounds related to the Kyoto and Montreal Protocols within the past 20 years and many of their atmospheric abundances have responded dramatically. Additionally, there are a number of related natural compounds with underdetermined source or sink budgets. A new instrument, Medusa, was developed to make the high frequency in situ measurements required for the determination of the atmospheric lifetimes and emissions of these compounds. This automated system measures a wide range of halocarbons, hydrocarbons, and sulfur compounds involved in ozone depletion and/or climate forcing, from the very volatile perfluorocarbons (PFCs, e.g., CF4 and CF3CF3) and hydrofluorocarbons (HFCs, e.g., CH3CF3) to the higher-boiling point solvents (such as CH3CCl3 and CCl2CCl2) and CHBr3. A network of Medusa systems worldwide provides 12 in situ ambient air measurements per day of more than 38 compounds of part per trillion mole fractions and precisions up to 0.1% RSD at the five remote field stations operated by the Advanced Global Atmospheric Gases Experiment (AGAGE). This custom system couples gas chromatography/mass spectrometry (GC/MSD) with a novel scheme for cryogen-free low-temperature preconcentration (−165 °C) of analytes from 2 L samples in a two-trap process using HayeSep D adsorbent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2021-02-08
    Description: Anthropogenic Marine Debris (AMD) in the SE Pacific has primarily local origins from land-based sources, including cities (coastal and inland), beach-goers, aquaculture, and fisheries. The low frequency of AMD colonized by oceanic biota (bryozoans, lepadid barnacles) suggests that most litter items from coastal waters of the Humboldt Current System (HCS) are pulled offshore into the South Pacific Subtropical Gyre (SPSG). The highest densities of floating micro- and macroplastics are reported from the SPSG. An extensive survey of photographic records, unpublished data, conference proceedings, and published studies revealed interactions with plastics for 97 species in the SE Pacific, including 20 species of fish, 5 sea turtles, 53 seabirds, and 19 marine mammals. Sea turtles are most affected by interactions with plastics, underlined by the fact that 4 of the 5 species suffer both from entanglement and ingestion. Reports gathered in this review suggest that interactions along the continental coast are mostly via entanglement. High frequencies of microplastic ingestion have been reported from planktivorous fish and seabirds inhabiting the oceanic waters and islands exposed to high densities of microplastics concentrated by oceanic currents in the SPSG. Our review also suggests that some species from the highly productive HCS face the risk of negative interactions with AMD, because food and plastic litter are concentrated in coastal front systems. In order to improve the conservation of marine vertebrates, especially of sea turtles, urgent measures of plastic reduction are needed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2018-12-17
    Description: The Ignik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for C02 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure C02 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of C02 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of C02, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and ( 3) an extended ( 30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of C02 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for uncontrolled destabilization; (2) gas hydrate test wells must be carefully designed to enable rapid remediation of wellbore blockages that will occur during any cessation in operations; (3) sand production during hydrate production likely can be managed through standard engineering controls; and ( 4) reservoir heat exchange during depressurization was more favorable than expected-mitigating concerns for near-wellbore freezing and enabling consideration of more aggressive pressure reduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2021-03-09
    Description: Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6oC heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition towards pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Microbiology, 7 (99).
    Publication Date: 2019-02-01
    Description: Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumption ability and the presence of group 1 [NiFe]-hydrogenase genes (enzyme catalyzes H2↔2H+ + 2e-) for sixteen different Thiomicrospira species. Seven of these Thiomicrospira species encoded group 1 [NiFe]-hydrogenase genes and five of these species could also consume hydrogen. All Thiomicrospira species exhibiting hydrogen consumption were from hydrothermal vents along the Mid-Atlantic ridge or Eastern Pacific ridges. The tested Thiomicrospira from Mediterranean and Western Pacific vents could not consume hydrogen. The [NiFe]-hydrogenase genes were categorized into two clusters: those resembling the hydrogenase from Hydrogenovibrio are in cluster I and are related to those from Alpha- and other Gammaproteobacteria. In cluster II, hydrogenases found exclusively in Thiomicrospira crunogena strains are combined and form a monophyletic group with those from Epsilonproteobacteria suggesting they were acquired through horizontal gene transfer. Hydrogen consumption appears to be common among some Thiomicrospira, given that five of the tested sixteen strains carried this trait. The hydrogen consumption ability expands their competitiveness within an environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2020-11-23
    Description: Greenland’s ice sheet is the second largest on Earth, and is under threat from a warming Arctic climate. An increase in freshwater discharge from Greenland has the potential to strongly influence the composition of adjacent water masses with the largest impact on marine ecosystems likely to be found within the glaciated fjords. Here we demonstrate that physical and chemical estuarine processes within a large Greenlandic fjord are critical factors in determining the fate of meltwater derived nutrients and particles, especially for non-conservative elements such as Fe. Concentrations of Fe and macronutrients in surface waters along Godthåbsfjord, a southwest Greenlandic fjord with freshwater input from 6 glaciers, changed markedly between the onset and peak of the meltwater season due to the development of a thin (〈10 m), outflowing, low-salinity surface layer. Dissolved (〈0.2 µm) Fe concentrations in meltwater entering Godthåbsfjord (200 nM), in freshly melted glacial ice (mean 38 nM) and in surface waters close to a land terminating glacial system (80 nM) all indicated high Fe inputs into the fjord in summer. Total dissolvable (unfiltered at pH 〈2.0) Fe was similarly high with concentrations always in excess of 100 nM throughout the fjord and reaching up to 5.0 µM close to glacial outflows in summer. Yet, despite the large seasonal freshwater influx into the fjord, Fe concentrations near the fjord mouth in the out-flowing surface layer were similar in summer to those measured before the meltwater season. Furthermore, turbidity profiles indicated that sub-glacial particulate Fe inputs may not actually mix into the outflowing surface layer of this fjord. Emphasis has previously been placed on the possibility of increased Fe export from Greenland as meltwater fluxes increase. Here we suggest that in-fjord processes may be effective at removing Fe from surface waters before it can be exported to coastal seas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 32 (8). pp. 8167-8174.
    Publication Date: 2020-07-31
    Description: Methane recovery from artificial hydrate-bearing sandstones by simulated flue gas swapping was tested using a core flooding experimental setup. Seven groups of experiments were conducted to investigate the effect of hydrate saturation as well as the initial porosity and permeability of sandstones on methane production and carbon dioxide capture. The results show that the CH4 recovery efficiency and the amount of CO2 captured increase with the increase of hydrate saturation at the same initial porosity and permeability of sandstone. The highest CH4 recovery obtained is 51.6% and 99.4% of CO2 in simulated flue gas is sequestered in the hydrate phase after swapping at 9.2 MPa and 277.15 K. Hydrate saturation was 82.5% and the initial porosity and permeability of sandstone are 25.1% and 49 mD, respectively. With the increase of initial porosity and permeability of sandstone, the CH4 recovery efficiency and the amount of CO2 captured increase when other conditions (the hydrate saturation and reaction time) are similar. For investigating the CH4-flue gas swapping mechanism, a micro-differential scanning calorimetry was used to test the heat changes in the whole reaction. No noticeable endothermic or exothermic phenomenon was detected in the CH4-flue gas swapping, which indicates that CH4 hydrate would form mixed hydrates directly instead of going through a dissociation and reformation process. Based on the observed experimental results, a CH4-flue gas swapping mechanism is proposed and the reaction process is found to be essentially controlled by mass transfer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Microbiology, 9 . Art.Nr. 2112.
    Publication Date: 2021-03-19
    Description: Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The magnitude of its inventory results from the balance of N input and N loss, the latter largely occurring in regionally well-defined low-oxygen waters and sediments (denitrification and anammox). The rate and distribution of N input by biotic N2 fixation, the dominant N source, is not well known. Here we compile N2 fixation estimates from experimental measurements, tracer-based geochemical and modelling approaches, and discuss their limitations and uncertainties. The lack of adequate experimental data coverage and the unsufficient understanding of the controls of marine N2 fixation result in high uncertainties, which make the assessment of the current N-balance a challenge. We suggest that a more comprehensive understanding of the environmental and ecological interaction of marine N2 fixers is required to advance the field towards robust N2 fixation rates estimates and predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2021-04-23
    Description: The subtropical oceans are home to the largest phytoplankton biome on the planet. Yet, little is known about potential impacts of ocean acidification (OA) on phytoplankton community composition in the vast oligotrophic ecosystems of the subtropical gyres. To address this question, we conducted an experiment with 9 in situ mesocosms (~35 m3) off the coast of Gran Canaria in the eastern subtropical North Atlantic over a period of 9 weeks. By establishing a gradient of pCO2 ranging from ~350 to 1025 µatm, we simulated carbonate chemistry conditions as projected until the end of the 21st century. Furthermore, we injected nutrient-rich deep water into the mesocosms halfway through the experiment to simulate a natural upwelling event, which regularly leads to patchy nutrient fertilization in the study region. The temporal developments of major taxonomic groups of phytoplankton were analyzed by flow cytometry, pigment composition and microscopy. We observed distinct shifts in phytoplankton community structure in response to high CO2, with markedly different patterns depending on nutrient status of the system. Phytoplankton biomass during the oligotrophic phase was dominated by picocyanobacteria (Synechococcus), which constituted 60-80% of biomass and displayed significantly higher cell abundances at elevated pCO2. The addition of deep water triggered a substantial bloom of large, chain-forming diatoms (mainly Guinardia striata and Leptocylindrus danicus) that dominated the phytoplankton community during the bloom phase (70-80% of biomass) and until the end of the experiment. A CO2 effect on bulk diatom biomass became apparent only in the highest CO2 treatments (〉800 µatm), displaying elevated concentrations especially in the stationary phase after nutrient depletion. Notably, these responses were tightly linked to distinct interspecific shifts within the diatom assemblage, particularly favoring the largest species Guinardia striata. Other taxonomic groups contributed less to total phytoplankton biomass, but also displayed distinct responses to OA treatments. For instance, higher CO2 favored the occurrence of prymnesiophyceae (Phaeocystis globosa) and dictyochophyceae, whereas dinoflagellates were negatively affected by increasing CO2. Altogether, our findings revealed considerable shifts in species composition in response to elevated CO2 and indicated that phytoplankton communities in the subtropical oligotrophic oceans might be profoundly altered by ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2021-02-08
    Description: This work presents two new methods to estimate oceanic alkalinity (AT), dissolved inorganic carbon (CT), pH, and pCO2 from temperature, salinity, oxygen, and geolocation data. “CANYON-B” is a Bayesian neural network mapping that accurately reproduces GLODAPv2 bottle data and the biogeochemical relations contained therein. “CONTENT” combines and refines the four carbonate system variables to be consistent with carbonate chemistry. Both methods come with a robust uncertainty estimate that incorporates information from the local conditions. They are validated against independent GO-SHIP bottle and sensor data, and compare favorably to other state-of-the-art mapping methods. As “dynamic climatologies” they show comparable performance to classical climatologies on large scales but a much better representation on smaller scales (40–120 d, 500–1,500 km) compared to in situ data. The limits of these mappings are explored with pCO2 estimation in surface waters, i.e., at the edge of the domain with high intrinsic variability. In highly productive areas, there is a tendency for pCO2 overestimation due to decoupling of the O2 and C cycles by air-sea gas exchange, but global surface pCO2 estimates are unbiased compared to a monthly climatology. CANYON-B and CONTENT are highly useful as transfer functions between components of the ocean observing system (GO-SHIP repeat hydrography, BGC-Argo, underway observations) and permit the synergistic use of these highly complementary systems, both in spatial/temporal coverage and number of observations. Through easily and robotically-accessible observations they allow densification of more difficult-to-observe variables (e.g., 15 times denser AT and CT compared to direct measurements). At the same time, they give access to the complete carbonate system. This potential is demonstrated by an observation-based global analysis of the Revelle buffer factor, which shows a significant, high latitude-intensified increase between +0.1 and +0.4 units per decade. This shows the utility that such transfer functions with realistic uncertainty estimates provide to ocean biogeochemistry and global climate change research. In addition, CANYON-B provides robust and accurate estimates of nitrate, phosphate, and silicate. Matlab and R code are available at https://github.com/HCBScienceProducts/. Introduction
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2021-02-08
    Description: The Paris Agreement target of limiting global surface warming to 1.5–2∘C compared to pre-industrial levels by 2100 will still heavily impact the ocean. While ambitious mitigation and adaptation are both needed, the ocean provides major opportunities for action to reduce climate change globally and its impacts on vital ecosystems and ecosystem services. A comprehensive and systematic assessment of 13 global- and local-scale, ocean-based measures was performed to help steer the development and implementation of technologies and actions toward a sustainable outcome. We show that (1) all measures have tradeoffs and multiple criteria must be used for a comprehensive assessment of their potential, (2) greatest benefit is derived by combining global and local solutions, some of which could be implemented or scaled-up immediately, (3) some measures are too uncertain to be recommended yet, (4) political consistency must be achieved through effective cross-scale governance mechanisms, (5) scientific effort must focus on effectiveness, co-benefits, disbenefits, and costs of poorly tested as well as new and emerging measures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2021-03-19
    Description: In coastal temperate regions such as the Baltic Sea, calcifying bivalves dominate benthic communities playing a vital ecological role in maintaining biodiversity and nutrient recycling. At low salinities, bivalves exhibit reduced growth and calcification rates which is thought to result from physiological constraints associated with osmotic stress. Calcification demands a considerable amount of energy in calcifying molluscs and estuarine habitats provide sub-optimal conditions for calcification due to low concentrations of calcification substrates and large variations in carbonate chemistry. Therefore, we hypothesize that slow growth rates in estuarine bivalves result from increased costs of calcification, rather than costs associated with osmotic stress. To investigate this, we estimated the cost of calcification for the first time in benthic bivalve life stages and the relative energy allocation to calcification in three Mytilus populations along the Baltic salinity gradient. Our results indicate that calcification rates are significantly reduced only in 6 psu populations compared to 11 and 16 psu populations, coinciding with ca. 2–3-fold higher calcification costs at low salinity and temperature. This suggests that reduced growth of Baltic Mytilus at low salinities results from increased calcification costs rather than osmotic stress related costs. We also reveal that shell growth (both calcification and shell organic production) demands 31–60% of available assimilated energy from food, which is significantly higher than previous estimates. Energetically expensive calcification represents a major constraint on growth of mytilids in the estuarine and coastal seas where warming, acidification and desalination are predicted over the next century.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2021-03-18
    Description: Planktonic Foraminifera and thecosome pteropods are major producers of calcite and aragonite in the ocean and play an important role for pelagic carbonate flux. The responses of planktonic foraminifers to ocean acidification (OA) are variable among the species tested and so far do not allow for reliable conclusion. Thecosome pteropods respond with reduced calcification and shell dissolution to OA and are considered at high risk especially at high latitudes. The present investigation was part of a large-scale in situ mesocosm experiment in the oligotrophic waters of the eastern subtropical North Atlantic. Over 62 days, we measured the abundance and vertical flux of pelagic foraminifers and thecosome pteropods as part of a natural plankton community over a range of OA scenarios. A bloom phase was initiated by the introduction of deep-water collected from approx. 650 m depth simulating a natural up-welling event. Foraminifers occurred throughout the entire experiment in both the water column and the sediment traps. Pteropods were present only in small numbers and disappeared after the first two weeks of the experiment. No significant CO2 related effects were observed for foraminifers, but cumulative sedimentary flux was reduced at the highest CO2 concentrations. This flux reduction was most likely accompanying an observed flux reduction of particulate organic matter (POM) so that less foraminifers were intercepted and transported downward.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2021-02-08
    Description: The enzymatic electron transport system (ETS) assay is frequently used as a proxy of respiratory activity in planktonic communities. It is thought to estimate the maximum overall activity of the enzymes associated with the respiratory ETS systems in both eukaryotic and prokaryotic organisms. Thus, in order to derive actual respiration rates (R) from ETS it is necessary to determine empirical R/ETS conversion algorithms. In this study we explore the temporal development of R and ETS activity in natural plankton communities (from bacteria to large phytoplankton) enclosed in mesocosms, treated with different CO2 concentrations. The experiment lasted 30 days, during which abrupt changes in community structure and biomass occurred through a sharp transition from oligotrophy (phase I) to highly eutrophic conditions (phase II) after nutrient-induced fertilization (day 18). R and ETS did not show any response to CO2 under oligotrophic conditions, but R increased significantly more in the two high CO2 mesocosms after fertilization, coinciding with a sharp rise in large phytoplankton (mostly diatoms). R and ETS were significantly correlated only during the eutrophic phase. The R/ETS ranged more than threefold in magnitude during the experiment, with phase-averaged values significantly higher under oligotrophic conditions (0.7-1.1) than after nutrient fertilization (0.5-0.7). We did not find any significant relationship between R/ETS and community structure or biomass, although R correlated significantly with total biomass after fertilization in the four mesocosms. Multiple stepwise regression models show that large phytoplankton explains most of the variance in R during phases I (86%) and II (53%) and of ETS (86%) during phase II, while picophytoplankton contributes up to 73% to explain the variance in the ETS model during phase I. Our results suggest that R/ETS may be too variable in the ocean as to apply constant values to different communities living under contrasting environmental conditions. Controlled experiments with natural communities, like the present one, would help to constrain the range of variability of the R/ETS ratio, and to understand the factors driving it.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2021-02-08
    Description: Submarine volcanic eruptions are difficult to detect because they are hidden from view at the bottom of the ocean and far from land-based sensors. However, most of Earth’s volcanic activity is in the oceans along tectonic plate boundaries, and modern tools of oceanography now allow us to find and study recent eruptions in the deep sea. The first known historical eruption on the Mariana back-arc spreading center was discovered in December 2015 during exploration of the southern back-arc for new hydrothermal vent sites. A water-column survey along the axis of the back-arc showed hydrothermal plumes over the site characterized by low particle concentrations and relatively high reduced chemical anomalies. A dive with the autonomous underwater vehicle Sentry collected high-resolution (1 m) multibeam sonar bathymetry over the site, followed by a near-bottom photographic survey of a smaller area. The photo survey revealed the presence of a pristine, dark, glassy lava flow on the seafloor with no sediment cover. Venting of milky hydrothermal fluid indicated that the lava flow was still warm and therefore very young. A comparison of multibeam sonar bathymetry collected by R/V Falkor in December 2015, to the most recent previous survey of the area by R/V Melville in February 2013, revealed large depth changes in the same area, effectively bracketing the timing of the eruption within a window of less than 3 years. The bathymetric comparison shows the eruption produced a string of lava flows with maximum thicknesses of 40–138 m along a distance of 7.3 km (from latitude 15∘22.3′ to 15∘26.3′N) between depths of 4050–4450 m bsl (meters below sea level), making this the deepest known historical submarine volcanic eruption on Earth. The cross-axis width of the lava flows is 200–800 m. The Sentry bathymetry shows that the new lava flows are constructed of steep-sided hummocky pillow mounds and are surrounded by older flows with similar morphology. In April and December 2016, two dives were made on the new lava flows by remotely operated vehicles Deep Discoverer and SuBastian. The pillow lavas have many small glassy buds on the steep flanks of the mounds, locally thick accumulations of hydrothermal sediment near the tops of mounds, and small cones of radiating pillows at their summits. The 2015–2016 observations show a rapidly declining hydrothermal system on the lava flows, suggesting that the eruption had occurred only months before its discovery in December 2015. The morphology of the pillow lavas is similar to other historical eruption sites, so the greater depth and ambient pressure of this site had no apparent effect on the processes of lava extrusion and emplacement. This study reveals that some segments of the Mariana back-arc have active magmatic systems despite the relatively low spreading rate, and that other eruptions are possible in the near future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2021-02-08
    Description: Digestive system functionality of fish larvae relies on the onset of genetically pre-programmed and extrinsically influenced digestive functions. This study explored how algal supplementation (green-water) until 14 days post hatch (dph) and the ingestion of food [enriched rotifer (Brachionus plicatilis) paste] from 15 dph onward affects molecular maturation and functionality of European eel larval ingestion and digestion mechanisms. For this, we linked larval biometrics to expression of genes relating to appetite [ghrelin (ghrl), cholecystokinin (cck)], food intake [proopiomelanocortin (pomc)], digestion [trypsin (try), triglyceride lipase (tgl), amylase (amyl)], energy metabolism [ATP synthase F0 subunit 6 (atp6), cytochrome-c-oxidase 1 (cox1)], growth [insulin-like growth factor (igf1)] and thyroid metabolism [thyroid hormone receptors (thrαA, thrβB)]. Additionally, we estimated larval nutritional status via nucleic acid analysis during transition from endogenous and throughout the exogenous feeding stage. Results showed increased expression of ghrl and cck on 12 dph, marking the beginning of the first-feeding window, but no benefit of larviculture in green-water was observed. Moreover, expression of genes relating to protein (try) and lipid (tgl) hydrolysis revealed essential digestive processes occurring from 14 to 20 dph. On 16 dph, a molecular response to initiation of exogenous feeding was observed in the expression patterns of pomc, atp6, cox1, igf1, thrαA and thrβB. Additionally, we detected increased DNA contents, which coincided with increased RNA contents and greater body area, reflecting growth in feeding compared to non-feeding larvae. Thus, the here applied nutritional regime facilitated a short-term benefit, where feeding larvae were able to sustain growth and better condition than their non-feeding conspecifics. However, RNA:DNA ratios decreased from 12 dph onward, indicating a generally low larval nutritional condition, probably leading to the point-of-no-return and subsequent irreversible mortality due to unsuccessful utilization of exogenous feeding. In conclusion, this study molecularly identified the first-feeding window in European eel and revealed that exogenous feeding success occurs concurrently with the onset of a broad array of enzymes and hormones, which are known to regulate molecular processes in feeding physiology. This knowledge constitutes essential information to develop efficient larval feeding strategies and will hopefully provide a promising step toward sustainable aquaculture of European eel.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2021-11-04
    Description: We elaborate the need for a quality-controlled chemical speciation model for seawater and related natural waters, work which forms the major focus of SCOR Working Group 145. Model development is based on Pitzer equations for the seawater electrolyte and trace components. These equations can be used to calculate activities of dissolved ions and molecules and, in combination with thermodynamic equilibrium constants, chemical speciation. The major tasks to be addressed are ensuring internal consistency of the Pitzer model parameters (expressing the interactions between pairs and triplets of species, which ultimately determines the calculated activities), assessing uncertainties, and identifying important data gaps that should be addressed by new measurements. It is recognized that natural organic matter plays an important role in many aquatic ecosystems, and options for including this material in a Pitzer-based model are discussed. The process of model development begins with the core components which include the seawater electrolyte and the weak acids controlling pH. This core model can then be expanded by incorporating additional chemical components, changing the standard seawater composition and/or broadening the range of temperature and pressure, without compromising its validity. Seven important areas of application are identified: open ocean acidification; micronutrient biogeochemistry and geochemical tracers; micronutrient behavior in laboratory studies; water quality in coastal and estuarine waters; cycling of nutrients and trace metals in pore waters; chemical equilibria in hydrothermal systems; brines and salt lakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-01-07
    Description: The female flowers (“cones”) of the hop plant (Humulus L.) produce compounds that contribute to the flavor and other properties of beer. Hop leaves and cones produce many of the same compounds, which also confer agronomic traits such as insect and disease resistance. Targeted and untargeted ultraperformance liquid chromatography-quadrupole time-of-flight–mass spectrometry with Waters MSE technology (UPLC-QTof-MSE) metabolomics were used to compare leaf phytochemical compositions of greenhouse-grown southwestern American wild Humulus neomexicanus (A. Nelson and Cockerell) Rydb. against a group of commercial hop cultivars consisting of both pure European Humulus lupulus L. and European–North American hybrids. Principal component analysis showed a clear distinction in chemical profiles between the two groups. H. neomexicanus leaves had a significantly higher content of total α acids (p = 4.4 × 10–9), total bitter acids (p = 2.6 × 10–6), cohumulone (p = 1.0 × 10–13), humulone + adhumulone (p = 9.1 × 10–4), and the prenylflavonoids xanthohumol (p = 0.013) and desmethylxanthohumol (p = 0.029) as well as significantly higher densities of glandular trichomes (p = 1.3 × 10–6), the biosynthetic site of those compounds. Most flavonol glycosides measured were also significantly more abundant in H. neomexicanus (p = 1.5 × 10–22 to 0.0027), whereas phenolic acids were consistently, but generally nonsignificantly (p 〉 0.05), more abundant in the cultivars. The higher bitter acid, prenylflavonoid, and flavonol glycoside content of H. neomexicanus leaves may help to confer more favorable insect and disease-resistance properties.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-01-07
    Description: Marine macroalgae, seaweeds, are exceptionally prolific producers of halogenated natural products. Biosynthesis of halogenated molecules in seaweeds is inextricably linked to reactive oxygen species (ROS) signaling as hydrogen peroxide serves as a substrate for haloperoxidase enzymes that participate in the construction these halogenated molecules. Here, using red macroalga Asparagopsis taxiformis, a prolific producer of the ozone depleting molecule bromoform, we provide the discovery and biochemical characterization of a ROS-producing NAD(P)H oxidase from seaweeds. This discovery was enabled by our sequencing of Asparagopsis genomes, in which we find the gene encoding the ROS-producing enzyme to be clustered with genes encoding bromoform-producing haloperoxidases. Biochemical reconstitution of haloperoxidase activities establishes that fatty acid biosynthesis can provide viable hydrocarbon substrates for bromoform production. The ROS production haloperoxidase enzymology that we describe here advances seaweed biology and biochemistry by providing the molecular basis for decades worth of physiological observations in ROS and halogenated natural product biosyntheses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-01-07
    Description: Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-01-07
    Description: Fusarium oxysporum is a destructive root-infecting plant pathogen that causes significant yield losses in many economically important crop species. Hence, a deeper understanding of pathogen infection strategies is needed. With liquid chromatography-tandem mass spectrometry and gas chromatography-time of flight mass spectrometry platforms, we analyzed the metabolic changes in a time-course experiment with Arabidopsis accessions either resistant (Col-0) or susceptible (Ler-0) to isolates of Fusarium oxysporum forma specialis matthioli infection. We showed a concurrent effect of Fusarium-derived polyols and the mycotoxin beauvericin in the suppression of the immune response of susceptible hosts. A significant increase in oxidized glutathione in the resistant host was probably associated with effective reactive oxygen species-mediated resistance responses. Through a combination of targeted and untargeted metabolomics, we demonstrated the concurrent action of several Arabidopsis defense systems as well as the concurrent action of several virulence systems in the fungal attack of susceptible Arabidopsis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-01-07
    Description: While thousands of environmental metagenomes have been mined for the presence of novel biosynthetic gene clusters, such computational predictions do not provide evidence of their in vivo biosynthetic functionality. Using fluorescent in situ enzyme assay targeting carrier proteins common to polyketide (PKS) and nonribosomal peptide synthetases (NRPS), we applied fluorescence-activated cell sorting to tunicate microbiome to enrich for microbes with active secondary metabolic capabilities. Single-cell genomics uncovered the genetic basis for a wide biosynthetic diversity in the enzyme-active cells and revealed a member of marine Oceanospirillales harboring a novel NRPS gene cluster with high similarity to phylogenetically distant marine and terrestrial bacteria. Interestingly, this synthase belongs to a larger class of siderophore biosynthetic gene clusters commonly associated with pestilence and disease. This demonstrates activity-guided single-cell genomics as a tool to guide novel biosynthetic discovery.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-01-17
    Description: Earth's climate can be understood as a dynamical system that changes due to external forcing and internal couplings. Essential climate variables, such as surface air temperature, describe this dynamics. Our current interglacial, the Holocene (11 700 yr ago to today), has been characterized by small variations in global mean temperature prior to anthropogenic warming. However, the mechanisms and spatiotemporal patterns of fluctuations around this mean, called temperature variability, are poorly understood despite their socioeconomic relevance for climate change mitigation and adaptation. Here we examine discrepancies between temperature variability from model simulations and paleoclimate reconstructions by categorizing the scaling behavior of local and global surface air temperature on the timescale of years to centuries. To this end, we contrast power spectral densities (PSD) and their power-law scaling using simulated and observation-based temperature series of the last 6000 yr. We further introduce the spectral gain to disentangle the externally forced and internally generated variability as a function of timescale. It is based on our estimate of the joint PSD of radiative forcing, which exhibits a scale break around the period of 7 yr. We find that local temperature series from paleoclimate reconstructions show a different scaling behavior than simulated ones, with a tendency towards stronger persistence (i.e., correlation between successive values within a time series) on periods of 10 to 200 yr. Conversely, the PSD and spectral gain of global mean temperature are consistent across data sets. Our results point to the limitation of climate models to fully represent local temperature statistics over decades to centuries. By highlighting the key characteristics of temperature variability, we pave a way to better constrain possible changes in temperature variability with global warming and assess future climate risks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2022-01-31
    Description: Ocean acidification (OA) is affecting marine ecosystems through changes in carbonate chemistry that may influence consumers of phytoplankton, often via trophic pathways. Using a mesocosm approach, we investigated OA effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from ∼400 to ∼1480 μatm). Furthermore, we simulated an upwelling event by adding 650 m-depth nutrient-rich water to the mesocosms, which initiated a phytoplankton bloom. No effects of pCO2 on the zooplankton community were visible in the oligotrophic conditions before the bloom. The zooplankton community responded to phytoplankton bloom by increased abundances in all treatments, although the response was delayed under high-pCO2 conditions. Microzooplankton was dominated by small dinoflagellates and aloricate ciliates, which were more abundant under medium- to high-pCO2 conditions. The most abundant mesozooplankters were calanoid copepods, which did not respond to CO2 treatments during the oligotrophic phase of the experiment but were found in higher abundance under medium- and high-pCO2 conditions toward the end of the experiment, most likely as a response to increased phyto- and microzooplankton standing stocks. The second most abundant mesozooplankton taxon were appendicularians, which did not show a response to the different pCO2 treatments. Overall, CO2 effects on zooplankton seemed to be primarily transmitted through significant CO2 effects on phytoplankton and therefore indirect pathways. We conclude that elevated pCO2 can change trophic cascades with significant effects on zooplankton, what might ultimately affect higher trophic levels in the future.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2022-01-31
    Description: Rapid mass loss from the Greenland Ice Sheet (GrIS) is affecting sea level and, through increased freshwater and sediment discharge, ocean circulation, sea-ice, biogeochemistry, and marine ecosystems around Greenland. Key to interpreting ongoing and projecting future ice loss, and its impact on the ocean, is understanding exchanges of heat, freshwater, and nutrients that occur at the GrIS marine margins. Processes governing these exchanges are not well understood because of limited observations from the regions where glaciers terminate into the ocean and the challenge of modeling the spatial and temporal scales involved. Thus, notwithstanding their importance, ice sheet/ocean exchanges are poorly represented or not accounted for in models used for projection studies. Widespread community consensus maintains that concurrent and long-term records of glaciological, oceanic, and atmospheric parameters at the ice sheet/ocean margins are key to addressing this knowledge gap by informing understanding, and constraining and validating models. Through a series of workshops and documents endorsed by the community-at-large, a framework for an international, collaborative, Greenland Ice sheet-Ocean Observing System (GrIOOS), that addresses the needs of society in relation to a changing GrIS, has been proposed. This system would consist of a set of ocean, glacier, and atmosphere essential variables to be collected at a number of diverse sites around Greenland for a minimum of two decades. Internationally agreed upon data protocols and data sharing policies would guarantee uniformity and availability of the information for the broader community. Its development, maintenance, and funding will require close international collaboration. Engagement of end-users, local people, and groups already active in these areas, as well as synergy with ongoing, related, or complementary networks will be key to its success and effectiveness.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-01-31
    Description: The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-01-31
    Description: Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their impact on the diversity and connectivity of benthic deep-sea microbial assemblages is poorly understood, especially for hydrothermally inactive, magma-starved ridges. We investigated bacterial and archaeal diversity in sediments collected from an amagmatic segment (10∘–17∘E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern and southern abyssal zones of similar water depths within one biogeochemical province of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA) gene sequencing. Our results show significant differences in microbial communities between stations outside and inside the SWIR, which were mostly explained by environmental selection. Community similarity correlated significantly with differences in chlorophyll a content and with the presence of upward porewater fluxes carrying reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource availability is a main driver for changes in microbial community composition. At the stations in the SWIR axial valley (3,655–4,448 m water depth), microbial communities were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota) and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations outside the SWIR communities (3,760–4,869 m water depth) were dominated by OM1 clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow spreading ridges create a unique environmental setting in sedimented segments without distinct hydrothermal activity, and play an important role in shaping microbial communities and promoting diversity, but also in connectivity among deep-sea habitats.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-01-31
    Description: Oceanic oxygen decline due to anthropogenic climate change is a matter of growing concern. A quantitative oxygen proxy is highly desirable in order to identify and monitor recent dynamics as well as to reconstruct pre-Anthropocene changes in amplitude and extension of oxygen depletion. Geochemical proxies like foraminiferal I/Ca ratios seem to be promising redox proxies. Nevertheless, recent studies on microanalyses of benthic foraminiferal I/Ca ratios at the Peruvian oxygen minimum zone (OMZ) measured with secondary-ion mass spectrometry (SIMS) revealed a possible association of iodine with organic accumulations within the test. Here, we present a new study on the micro-distribution of nitrogen, sulfur, and iodine within the test walls of Uvigerina striata from the Peruvian OMZ measured with Nano-SIMS. A quantification of the foraminiferal I/Ca ratios from our NanoSIMS study is in good agreement with quantitative results from a previous SIMS study. Additionally, we compared uncleaned specimens with specimens that have been treated with an oxidative cleaning procedure. Both nitrogen and sulfur, which are used as tracer for organic matter, show a patchy distribution within the test walls of the uncleaned specimens and a statistically significant correlation with the iodine distribution. This patchy organic-rich phase has a different geochemical signature than the pristine calcitic parts of the test and another phase that shows a banding-like structure and that is characterized by a strong sulfur enrichment. All three elements, sulfur, nitrogen, and iodine, are strongly depleted in the cleaned specimens, even within the massive parts of the test walls that lack the connection with the test pores. These results indicate that the organic parts of the test walls are located inside a microporous framework within the foraminiferal calcite. This has to be considered in the interpretation of geochemical proxies on foraminiferal calcite, especially for microanalytical methods, since the chemical signature of these organic parts likely alters some element-to-calcium ratios within the foraminiferal test.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-01-31
    Description: Marine sponges (Phylum Porifera) are globally distributed within marine and freshwater ecosystems. In addition, sponges host dense and diverse prokaryotic communities, which are potential sources of novel bioactive metabolites and other complex compounds. Those sponge-derived natural products can span a broad spectrum of bioactivities, from antibacterial and antifungal to antitumor and antiviral compounds. However, most analyses concerning sponge-associated prokaryotes have mainly focused on conveniently accessible relatively shallow sampling locations for sponges. Hence, knowledge of community composition, host-relatedness and biotechnological potential of prokaryotic associations in temperate and cold-water sponges from greater depths (mesophotic to mesopelagic zones) is still scarce. Therefore, we analyzed the prokaryotic community diversity of four phylogenetically divergent sponge taxa from mesophotic to mesopelagic depths of Antarctic shelf at different depths and locations in the region of the South Shetland Islands using 16S rRNA gene amplicon-based sequencing. In addition, we predicted functional profiles applying Tax4Fun from metagenomic 16S rRNA gene data to estimate their biotechnological capability and possible roles as sources of novel bioactive compounds. We found indications that cold and deep-water sponges exhibit host-specific prokaryotic communities, despite different sampling sites and depths. Functional prediction analysis suggests that the associated prokaryotes may enhance the roles of sponges in biodegradation processes of xenobiotics and their involvement in the biosynthesis of secondary metabolites.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-01-31
    Description: N2-fixing cyanobacteria mediate H2 fluxes through the opposing processes of H2 evolution, which is a by-product of the N2 fixation reaction, and H2 uptake, which is driven by uptake hydrogenases. Here, we used microelectrodes to characterize H2 and O2 dynamics in single natural colonies of the globally important N2 fixer Trichodesmium collected from the Gulf of Eilat. We observed gradually changing H2 dynamics over the course of the day, including both net H2 evolution and net H2 uptake, as well as large differences in H2 fluxes between individual colonies. Net H2 uptake was observed in colonies amended with H2 in both light and dark. Net H2 evolution was recorded in the light only, reflecting light-dependent N2 fixation coupled to H2 evolution. Both net H2 evolution and H2 uptake rates were higher before 2 pm than later in the day. These pronounced H2 dynamics in the morning coincided with strong net O2 uptake and the previously reported diel peak in N2 fixation. Later in the afternoon, when photosynthesis rates determined by O2 measurements were highest, and N2 fixation rates decrease according to previous studies, the H2 dynamics were also less pronounced. Thus, the observed diel variations in H2 dynamics reflect diel changes in the rates of O2 consumption and N2 fixation. Remarkably, the presence of H2 strongly stimulated the uptake of mineral iron by natural colonies. The magnitude of this effect was dependent on the time of day, with the strongest response in incubations that started before 2 pm, i.e., the period that covered the time of highest uptake hydrogenase activity. Based on these findings, we propose that by providing an electron source for mineral iron reduction in N2-fixing cells, H2 may contribute to iron uptake in Trichodesmium colonies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-01-31
    Description: Heme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (〈1 pmol L-1) in iron limited phytoplankton in cultures and in the field. Here, we determined heme b in marine particulate material (〉0.7 μm) from the North Atlantic Ocean (GEOVIDE cruise – GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L-1 (median = 2.0 pmol L-1, n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L-1, n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 μmol L-1, n = 25; chlorophyll a: median = 2.0 nmol L-1, n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L-1, n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L-1, n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology, 53 (9). pp. 5151-5158.
    Publication Date: 2022-01-31
    Description: Microplastics (MPs) in aquatic organisms are raising increasing concerns regarding their potential damage to ecosystems. To date, Raman and Fourier transform infrared spectroscopy techniques have been widely used for detection of MPs in aquatic organisms, which requires complex protocols of tissue digestion and MP separation and are time- and reagentconsuming. This novel approach directly separates, identifies, and characterizes MPs from the hyperspectral image (HSI) of the intestinal tract content in combination with a support vector machine classification model, instead of using the real digestion/separation protocols. The procedures of HSI acquisition ( 1 min) and data analysis (5 min) can be completed within 6 min plus the sample preparation and drying time (30 min) where necessary. This method achieved a promising efficiency (recall 〉98.80%, precision 〉96.22%) for identifying five types of MPs (particles 〉0.2 mm). Moreover, the method was also demonstrated to be effective on field fish from three marine fish species, revealing satisfying detection accuracy (particles 〉0.2 mm) comparable to Raman analysis. The present technique omits the digestion protocol (reagent free), thereby significantly reducing reagent consumption, saving time, and providing a rapid and efficient method for MP analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-01-31
    Description: Our civilization needs a clean, resilient, productive, safe, well-observed, documented and predicted ocean. “The ocean we need for the future we want” was the motto of the Intergovernmental Oceanographic Commission proposal to the United Nations to consider the merit of an Ocean Science Decade. By proclaiming the Decade, the UN General Assembly offered the oceanographic community a unique, once in a life-time, opportunity to change the way we do things, make oceanography fit for purpose of effectively supporting sustainable development, and energize the ocean sciences for future generations. The Decade is the chance to put in place a more complete and sustainable observing system and feed the resulting data into a science-based informed decision-making system allowing increased reliance of our civilization on the ocean, its ecosystem services and, at the same time, preserving ocean health. Strong and proactive engagement of the oceanographic community in the design of the Decade and its observing component and subsequent energetic implementation of the ideas are sought. Participants in OceanObs’19 are invited to consider the additional possibilities and requirements associated with the Decade in their contributions to and brainstorming at the Conference. It is essential to use collective wisdom of OceanObs’19 to help developing an ambitious and also realistic implementation plan for the Decade, with a strong observational component.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2022-01-31
    Description: Climate change and variability are major societal challenges, and the ocean is an integral part of this complex and variable system. Key to the understanding of the ocean's role in the Earth's climate system is the study of ocean and sea-ice physical processes, including its interactions with the atmosphere, cryosphere, land and biosphere. These processes include those linked to ocean circulation; the storage and redistribution of heat, carbon, salt and other water properties; and air-sea exchanges of heat, momentum, freshwater, carbon and other gasses. Measurements of ocean physics variables are fundamental to reliable earth prediction systems for a range of applications and users. In addition, knowledge of the physical environment is fundamental to growing understanding of the ocean's biogeochemistry and biological/ecosystem variability and function. Through the progress from OceanObs'99 to OceanObs'09, the ocean observing system has evolved from a platform centric perspective to an integrated observing system. The challenge now is for the observing system to evolve to respond to an increasingly diverse end user group. The Ocean Observations Physics and Climate panel (OOPC), formed in 1995, has undertaken many activities that led to observing system-related agreements. Here, OOPC will explore the opportunities and challenges for the development of a fit-for-purpose, sustained and prioritized ocean observing system, focusing on physical variables that maximize support for fundamental research, climate monitoring, forecasting on different timescales, and society. OOPC recommendations are guided by the Framework for Ocean Observing (Lindstrom et al. 2012) which emphasizes identifying user requirements by considering time and space scales of the Essential Ocean Variables. This approach provides a framework for reviewing the adequacy of the observing system, looking for synergies in delivering an integrated observing system for a range of applications and focusing innovation in areas where existing technologies do not meet these requirements
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-01-31
    Description: The pelagic ocean receives terrigenous inputs of a range of organic compounds; however, the role that this terrigenous material plays in the ocean carbon cycle and biological pump is not entirely understood, and questions remain as to how oceanic cycles of terrigenous and autochthonous carbon interact. A significant portion of organic carbon that cannot be utilized by marine microbes in the epipelagic ocean escapes microbial remineralization to be sequestered in the deep ocean as refractory dissolved organic matter (DOM). Lignin, a “model” terrigenous compound, is thought to be refractory in the open ocean unless chemically altered. However, in this study, incubation experiments performed using lignin-amended oligotrophic seawater from the Sargasso Sea exhibited bacteria and archaea growth that doubled compared to unamended control treatments. The increase in bacteria and archaea cell abundance in lignin-amended treatments coincided with a 21–25% decrease in absorbance (250–400 nm) of chromophoric dissolved organic matter (CDOM), suggesting that certain microbes may be capable of altering fractions of this ostensibly recalcitrant organic matter. Furthermore, the microbial response to the lignin-amended treatments appears to be taxon-specific. Two phyla of Archaea, Euryarchaeota and Thaumarchaeota, exhibited an increase in abundance of 7-fold and 28-fold (from 2.42 × 106 cells L–1 to 1.72 × 107 cells L–1, and from 1.60 × 106 cells L–1 to 4.54 × 107 cells L–1, respectively), over 4 days of incubation in lignin-amended treatments. Additionally, an increase of 11-fold and 13-fold (from 2.93 × 106 cells L–1 to 3.30 × 107 cells L–1, and from 3.26 × 106 cells L–1 to 4.28 × 107 cells L–1, respectively), was observed in the abundance of these phyla in treatments containing lignin with added nitrogen and phosphorus, thus raising questions regarding primary and/or secondary responses to lignin degradation. Our findings indicate that marine bacteria and archaea play a role in the transformation of the optical properties of lignin in the open ocean and that they may serve as a potential sink for a portion of the lignin macromolecule.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2022-01-31
    Description: Multidisciplinary ocean observing activities provide critical ocean information to satisfy ever-changing socioeconomic needs and require coordinated implementation. The upper oxycline (transition between high and low oxygen waters) is fundamentally important for the ecosystem structure and can be a useful proxy for multiple observing objectives connected to eastern boundary systems (EBSs) that neighbor oxygen minimum zones (OMZs). The variability of the oxycline and its impact on the ecosystem (VOICE) initiative demonstrates how societal benefits drive the need for integration and optimization of biological, biogeochemical, and physical components of regional ocean observing related to EBS. In liaison with the Global Ocean Oxygen Network, VOICE creates a roadmap toward observation-model syntheses for a comprehensive understanding of selected oxycline-dependent objectives. Local to global effects, such as habitat compression or deoxygenation trends, prompt for comprehensive observing of the oxycline on various space and time scales, and for an increased awareness of its impact on ecosystem services. Building on the Framework for Ocean Observing (FOO), we present a first readiness level assessment for ocean observing of the oxycline in EBS. This was to determine current ocean observing design and future needs in EBS regions (e.g., the California Current System, the Equatorial Eastern Pacific off Ecuador, the Peru–Chile Current system, the Northern Benguela off Namibia, etc.) building on the FOO strategy. We choose regional champions to assess the ocean observing design elements proposed in the FOO, namely, requirement processes, coordination of observational elements, and data management and information products and the related best practices. The readiness level for the FOO elements was derived for each EBS through a similar and very general ad hoc questionnaire. Despite some weaknesses in the questionnaire design and its completion, an assessment was achievable. We found that fisheries and ecosystem management are a societal requirement for all regions, but maturity levels of observational elements and data management and information products differ substantially. Identification of relevant stakeholders, developing strategies for readiness level improvements, and building and sustaining infrastructure capacity to implement these strategies are fundamental milestones for the VOICE initiative over the next 2–5 years and beyond.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-01-31
    Description: Corals exert a strong biological control over their calcification processes, but there is a lack of knowledge on their capability of long-term acclimatization to ocean acidification (OA). We used a dual geochemical proxy approach to estimate the calcifying fluid pH (pHcf) and carbonate chemistry of a Mediterranean coral (Balanophyllia europaea) naturally growing along a pH gradient (range: pHTS 8.07–7.74). The pHcf derived from skeletal boron isotopic composition (δ11B) was 0.3–0.6 units above seawater values and homogeneous along the gradient (mean ± SEM: Site 1 = 8.39 ± 0.03, Site 2 = 8.34 ± 0.03, Site 3 = 8.34 ± 0.02). Also carbonate ion concentration derived from B/Ca was homogeneous [mean ± SEM (μmol kg–1): Site 1 = 579 ± 34, Site 2 = 541 ± 27, Site 3 = 568 ± 30] regardless of seawater pH. Furthermore, gross calcification rate (GCR, mass of CaCO3 deposited on the skeletal unit area per unit of time), estimated by a “bio-inorganic model” (IpHRAC), was homogeneous with decreasing pH. The homogeneous GCR, internal pH and carbonate chemistry confirm that the features of the “building blocks” – the fundamental structural components – produced by the biomineralization process were substantially unaffected by increased acidification. Furthermore, the pH up-regulation observed in this study could potentially explain the previous hypothesis that less “building blocks” are produced with increasing acidification ultimately leading to increased skeletal porosity and to reduced net calcification rate computed by including the total volume of the pore space. In fact, assuming that the available energy at the three sites is the same, this energy at the low pH sites could be partitioned among fewer calicoblastic cells that consume more energy given the larger difference between external and internal pH compared to the control, leading to the production of less building blocks (i.e., formation of pores inside the skeleton structure, determining increased porosity). However, we cannot exclude that also dissolution may play a role in increasing porosity. Thus, the ability of scleractinian corals to maintain elevated pHcf relative to ambient seawater might not always be sufficient to counteract declines in net calcification under OA scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-01-31
    Description: The presence of optically active water constituents is known to attenuate the light penetration in the ocean and impact the ocean heat content. Here, we investigate the influence of colored dissolved organic matter (CDOM) and total suspended matter (TSM) on the radiative heating of the Laptev Sea shelf waters. The Laptev Sea region is heavily influenced by the Lena River, one of the largest river systems in the Arctic region. We simulate the radiative heating by using a coupled atmosphere-ocean radiative transfer model (RTM) and in situ measurements from the TRANSDRIFT XVII expedition carried out in September 2010. The results indicate that CDOM and TSM have significant influence on the energy budget of the Laptev Sea shelf waters, absorbing most of the solar energy in the first 2 m of the water column. In the station with the highest CDOM absorption (aCDOM(443) = 1.77 m−1) ~43% more energy is absorbed in the surface layer compared to the station with the lowest aCDOM(443) (~0.2 m−1), which translates to an increased radiative heating of ~0.6°C/day. The increased absorbed energy by the water constituents also implies increased sea ice melt rate and changes in the surface heat fluxes to the atmosphere. By using satellite remote sensing and RTM we quantify the spatial distribution of the radiative heating in the Laptev Sea for a typical summer day. The combined use of satellite remote sensing, RT modeling and in situ observations can be used to improve parameterization schemes in atmosphere-ocean circulation models to assess the role of the ocean in the effect of Arctic amplification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-01-31
    Description: We investigated how future ocean conditions, and specifically the interaction between temperature and CO2, might affect marine aggregate formation and physical properties. Initially, mesocosms filled with coastal seawater were subjected to three different treatments of CO2 concentration and temperature: (1) 750 ppm CO2, 16°C, (2) 750 ppm CO2, 20°C, and (3) 390 ppm CO2, 16°C. Diatom-dominated phytoplankton blooms were induced in the mesocosms by addition of nutrients. In aggregates produced in roller tanks using seawater taken from the mesocosms during different stages of the bloom, we measured sinking velocity, size, chlorophyll a, particulate organic carbon and nitrogen, and exopolymer particle content; excess density and mass were calculated from the sinking velocity and size of the aggregates. As has been seen in previous experiments, no discernable differences in overall nutrient uptake, chlorophyll-a concentration, or exopolymer particle concentrations could be related to the acidification treatment in the mesocosms. In addition, in the aggregates formed during the roller tank experiments (RTEs), we observed no statistically significant differences in chemical composition among the treatments during Pre-Bloom, Bloom, and Post-Bloom periods. However, physical characteristics were different and showed a synergistic effect of warmer temperature and higher CO2 during the Pre-Bloom period; at this time, temperature had a larger effect than CO2 on aggregate sinking velocity. In RTEs with warmer and acidified treatment (future conditions), aggregates were larger, heavier, and settled faster than aggregates formed at present-day or only acidified conditions. During the Post-Bloom, however, aggregates formed under present and future conditions had similar physical properties. In acidified tanks at ambient temperature, aggregates were slower, smaller and less dense than those formed at the same temperature but under present CO2 or under warmer and acidified conditions. Thus, the sinking velocity of aggregates formed in acidified tanks at ambient temperature was slower than the other two cases. Our findings point out the potential of ocean acidification and warming to modify physical properties of sinking aggregates but also emphasize the need of future experiments investigating multiple environmental stressors to clarify the importance of each factor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-01-31
    Description: Marine transform faults and associated fracture zones (MTFFZs) cover vast stretches of the ocean floor, where they play a key role in plate tectonics, accommodating the lateral movement of tectonic plates and allowing connections between ridges and trenches. Together with the continental counterparts of MTFFZs, these structures also pose a risk to human societies as they can generate high magnitude earthquakes and trigger tsunamis. Historical examples are the Sumatra-Wharton Basin Earthquake in 2012 (M8.6) and the Atlantic Gloria Fault Earthquake in 1941 (M8.4). Earthquakes at MTFFZs furthermore open and sustain pathways for fluid flow triggering reactions with the host rocks that may permanently change the rheological properties of the oceanic lithosphere. In fact, they may act as conduits mediating vertical fluid flow and leading to elemental exchanges between Earth’s mantle and overlying sediments. Chemicals transported upward in MTFFZs include energy substrates, such as H2 and volatile hydrocarbons, which then sustain chemosynthetic, microbial ecosystems at and below the seafloor. Moreover, up- or downwelling of fluids within the complex system of fractures and seismogenic faults along MTFFZs could modify earthquake cycles and/or serve as “detectors” for changes in the stress state during interseismic phases. Despite their likely global importance, the large areas where transform faults and fracture zones occur are still underexplored, as are the coupling mechanisms between seismic activity, fluid flow, and life. This manuscript provides an interdisciplinary review and synthesis of scientific progress at or related to MTFFZs and specifies approaches and strategies to deepen the understanding of processes that trigger, maintain, and control fluid flow at MTFFZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-01-31
    Description: We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-01-31
    Description: The translocation of non-indigenous species around the world, especially in marine systems, is a matter of concern for biodiversity conservation and ecosystem functioning. While specific traits are often recognized to influence establishment success of non-indigenous species, the impact of the associated microbial community for the fitness, performance and invasion success of basal marine metazoans remains vastly unknown. In this study we compared the microbiota community composition of the invasive ctenophore Mnemiopsis leidyi in different native and invasive sub-populations along with characterization of the genetic structure of the host. By 16S rRNA gene amplicon sequencing we showed that the sister group to all metazoans, namely ctenophores, harbored a distinct microbiota on the animal host, which significantly differed across two major tissues, namely epidermis and gastrodermis. Additionally, we identified significant differences between native and invasive sub-populations of M. leidyi, which indicate, that the microbiota community is likely influenced by the genotypic background of the ctenophore. To test the hypothesis that the microbiota is genotypically selected for by the ctenophore host, experiments under controlled environments are required.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-01-31
    Description: Apicomplexans are a group of microbial eukaryotes that contain some of the most well-studied parasites, including the causing agents of toxoplasmosis and malaria, and emergent diseases like cryptosporidiosis or babesiosis. Decades of research have illuminated the pathogenic mechanisms, molecular biology, and genomics of model apicomplexans, but we know little about their diversity and distribution in natural environments. In this study we analyze the distribution of apicomplexans across a range of both host-associated and free-living environments. Using publicly available small subunit (SSU) rRNA gene databases, high-throughput environmental sequencing (HTES) surveys, and our own generated HTES data, we developed an apicomplexan reference database, which includes the largest apicomplexan SSU rRNA tree available to date and encompasses comprehensive sampling of this group and their closest relatives. This tree allowed us to identify and correct incongruences in the molecular identification of apicomplexan sequences. Analyzing the diversity and distribution of apicomplexans in HTES studies with this curated reference database also showed a widespread, and quantitatively important, presence of apicomplexans across a variety of free-living environments. These data allow us to describe a remarkable molecular diversity of this group compared with our current knowledge, especially when compared with that identified from described apicomplexan species. This is most striking in marine environments, where potentially the most diverse apicomplexans apparently exist, but have not yet been formally recognized. The new database will be useful for microbial ecology and epidemiological studies, and provide valuable reference for medical and veterinary diagnosis especially in cases of emerging, zoonotic, and cryptic infections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Marine Science, 6 . Art.Nr. 741.
    Publication Date: 2022-01-31
    Description: In the Peruvian upwelling system, the mesopelagic oxygen minimum zone (OMZ) is the main vertically structuring feature of the pelagic habitat. Several zooplankton and nekton species undertake diel vertical migrations (DVMs) into anoxic depths. It has been argued that these migrations contribute substantially to the oxygen consumption and release of dissolved compounds (in particular ammonium) in subsurface waters. However, metabolic suppression as a response to low ambient oxygen partial pressure (pO2) has not been accounted for in these estimates. Here, we present estimates of zooplankton- and nekton-mediated oxygen consumption and ammonium release based on vertically stratified net hauls (day/night, upper 1,000 m). Samples were scanned, followed by image analysis and size-/taxon-specific estimation of metabolic rates of all identified organisms as a function of their biomass as well as ambient temperature and pO2. The main crustacean migrants were euphausiids (mainly E. mucronata) on offshore stations and the commercially exploited squat lobster Pleuroncodes monodon on the upper shelf, where it often undertakes migration to the seafloor during the day. Correction for metabolic suppression results in a substantial reduction of both respiration and ammonium excretion within the OMZ core. Ignoring this mechanism leads to a 10-fold higher estimate of DVM-mediated active export of carbon by respiration to below 100 m depth at deep-water stations. The DVM-mediated release of ammonium by euphausiids into the 200–400 m depth layer ranges between 0 and 36.81 μmol NH4 m−2 d−1, which is insufficient to balance published estimates of ammonium uptake rates due to anammox. It seems critical to account for the modulation of zooplankton metabolic activity at low oxygen in order to correctly represent the contribution of migrating species to the biological pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-01-31
    Description: The ecological impacts of meltwater produced by icebergs and sea ice in the waters around Greenland are poorly understood, due in part to limited observations. Current field sampling methods are resource and labor-intensive, and not without significant risk. We developed a small, unoccupied, and robotic platform to retrieve ice samples, while simultaneously eliminating safety risks to scientists and their support infrastructure. The IceDrone consists of a modified commercial hexcopter that retrieves ice samples. We describe the design requirements, construction, and testing of the IceDrone. IceDrone's capabilities were validated in the laboratory and during a field test in January 2019 near Nuuk (southwest Greenland). IceDrone retrieved samples in hard and dry glacial ice in harsh winter conditions. The field test led to modifications in the drilling head design and drilling process that enable it to retrieve samples in thin sea ice. All design files and software are provided in an attempt to rapidly enhance our collective understanding of ice-ocean interactions while improving the safety and productivity of field sampling campaigns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-01-31
    Description: While burial diagenetic processes of tropical corals are well investigated, current knowledge about factors initiating early diagenesis remains fragmentary. In the present study, we focus on recent Porites microatolls, growing in the intertidal zone. This growth form represents a model organism for elevated sea surface temperatures (SSTs) and provides important but rare archives for changes close to the seawater/atmosphere interface with exceptional precision on sea level reconstruction. As other coral growth forms, microatolls are prone to the colonization by endolithic green algae. In this case, the algae can facilitate earliest diagenetic alteration of the coral skeleton. Algae metabolic activity not only results in secondary coral porosity due to boring activities, but may also initiate reprecipitation of secondary aragonite within coral pore space, a process not exclusively restricted to microatoll settings. In the samples of this initial study, we quantified a mass transfer from primary to secondary aragonite of around 4% within endolithic green algae bands. Using δ18O, δ13C, Sr/Ca, U/Ca, Mg/Ca, and Li/Mg systematics suggests that the secondary aragonite precipitation followed abiotic precipitation principles. According to their individual distribution coefficients, the different isotope and element ratios showed variable sensitivity to the presence of secondary aragonite in bulk samples, with implications for microatoll-based SST reconstructions. The secondary precipitates formed on an organic template, presumably originating from endolithic green algae activity. Based on laboratory experiments with the green algae Ostreobium quekettii, we propose a conceptual model that secondary aragonite formation is potentially accelerated by an active intracellular calcium transport through the algal thallus from the location of dissolution into coral pore spaces. The combined high-resolution imaging and geochemical approach applied in this study shows that endolithic algae can possibly act as a main driver for earliest diagenesis of coral aragonite starting already during a coral’s life span.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-01-31
    Description: A realistic estimation of uncertainty is an essential requirement for all analytical measurements. It is common practice, however, for the uncertainty estimate of a chemical measurement to be based on the instrumental precision associated with the analysis of a single or multiple samples, which can lead to underestimation. Within the context of chemical oceanography such an underestimation of uncertainty could lead to an over interpretation of the result(s) and hence impact on, e.g., studies of biogeochemical cycles, and the outputs from oceanographic models. Getting high quality observational data with a firm uncertainty assessment is therefore essential for proper model validation. This paper describes and compares two recommended approaches that can give a more holistic assessment of the uncertainty associated with such measurements, referred to here as the “bottom up” or modeling approach and the “top down” or empirical approach. “Best practice” recommendations for the implementation of these strategies are provided. The “bottom up” approach combines the standard uncertainties associated with each stage of the entire measurement procedure. The “top down” approach combines the uncertainties associated with day to day reproducibility and possible bias in the complete data set and is easy to use. For analytical methods that are routinely used, laboratories will have access to the information required to calculate the uncertainty from archived quality assurance data. The determination of trace elements in seawater is a significant analytical challenge and iron is used as an example for the implementation of both approaches using real oceanographic data. Relative expanded uncertainties of 10 – 20% were estimated for both approaches compared with a typical short term precision (rsd) of≤5%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-01-31
    Description: Trace metal micronutrients are integral to the functioning of marine ecosystems and the export of particulate carbon to the deep ocean. Although much progress has been made in mapping the distributions of metal micronutrients throughout the ocean over the last 30 years, there remain information gaps, most notable during seasonal transitions and in remote regions. The next challenge is to develop in situ sensing technologies necessary to capture the spatial and temporal variabilities of micronutrients characterized with short residence times, highly variable source terms, and sub-nanomolar concentrations in open ocean settings. Such an effort will allow investigation of the biogeochemical processes at the necessary resolution to constrain fluxes, residence times, and the biological and chemical responses to varying metal inputs in a changing ocean. Here, we discuss the current state of the art and analytical challenges associated with metal micronutrient determinations and highlight existing and emerging technologies, namely in situ chemical analyzers, electrochemical sensors, passive preconcentration samplers, and autonomous trace metal clean samplers, which could form the basis of autonomous observing systems for trace metals within the next decade. We suggest that several existing assets can already be deployed in regions of enhanced metal concentrations and argue that, upon further development, a combination of wet chemical analyzers with electrochemical sensors may provide the best compromise between analytical precision, detection limits, metal speciation, and longevity for autonomous open ocean determinations. To meet this goal, resources must be invested to: (1) improve the sensitivity of existing sensors including the development of novel chemical assays; (2) reduce sensor size and power requirements; (3) develop an open-source “Do-It-Yourself” infrastructure to facilitate sensor development, uptake by end-users and foster a mechanism by which scientists can rapidly adapt commercially available technologies to in situ applications; and (4) develop a community-led standardized protocol to demonstrate the endurance and comparability of in situ sensor data with established techniques. Such a vision will be best served through ongoing collaborations between trace metal geochemists, analytical chemists, the engineering community, and commercial partners, which will accelerate the delivery of new technologies for in situ metal sensing in the decade following OceanObs’19.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-01-31
    Description: The Arctic Ocean plays a key role in regulating the global climate, while being highly sensitive to climate change. Temperature in the Arctic increases faster than the global average, causing a loss of multiyear sea-ice and affecting marine ecosystem structure and functioning. As a result, Arctic primary production and biogeochemical cycling are changing. Here, we investigated inter-annual changes in the concentrations of particulate and dissolved organic carbon (POC, DOC) together with biological drivers, such as phyto- and bacterioplankton abundance in the Fram Strait, the Atlantic gateway to the Central Arctic Ocean. Data have been collected in summer at the Long-Term Ecological Research observatory HAUSGARTEN during eight cruises from 2009 to 2017. Our results suggest that the dynamic physical system of the Fram Strait induces strong heterogeneity of the ecosystem that displays considerable intra-seasonal as well as inter-annual variability. Over the observational period, DOC concentrations were significantly negatively related to temperature and salinity, suggesting that outflow of Central Arctic waters carrying a high DOC load is the main control of DOC concentration in this region. POC concentration was not linked to temperature or salinity but tightly related to phytoplankton biomass as estimated from chlorophyll-a concentrations (Chl-a). For the years 2009–2017, no temporal trends in the depth-integrated (0–100 m) amounts of DOC and Chl-a were observed. In contrast, depth-integrated (0–100 m) amounts of POC, as well as the ratio [POC]:[TOC], decreased significantly over time. This suggests a higher partitioning of organic carbon into the dissolved phase. Potential causes and consequences of the observed changes in organic carbon stocks for food-web structure and CO2 sequestration are discussed.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-01-31
    Description: Detailed knowledge of the shape of the seafloor is crucial to humankind. Bathymetry data is critical for safety of navigation and is used for many other applications. In an era of ongoing environmental degradation worldwide, bathymetry data (and the knowledge derived from it) play a pivotal role in using and managing the world’s oceans in a way that is in accordance with the United Nations Sustainable Development Goal 14 - conserve and sustainably use the oceans, seas and marine resources for sustainable development. However, the vast majority of our oceans is still virtually unmapped, unobserved, and unexplored. Only a small fraction of the seafloor has been systematically mapped by direct measurement. The remaining bathymetry is predicted from satellite altimeter data, providing only an approximate estimation of the shape of the seafloor. Several global and regional initiatives are underway to change this situation. This paper presents a selection of these initiatives as best practice examples for bathymetry data collection, compilation and open data sharing as well as the Nippon Foundation-GEBCO (The General Bathymetric Chart of the Oceans) Seabed 2030 Project that complements and leverages these initiatives and promotes international collaboration and partnership. Several non-traditional data collection opportunities are looked at that are currently gaining momentum as well as new and innovative technologies that can increase the efficiency of collecting bathymetric data. Finally, recommendations are given towards a possible way forward into the future of seafloor mapping and towards achieving the goal of a truly global ocean bathymetry.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-01-31
    Description: Marine infectious diseases can have large-scale impacts when they affect foundation species such as seagrasses and corals. Interactions between host and disease, in turn, may be modulated by multiple perturbations associated with global change. A case in point is the infection of the foundation species Zostera marina (eelgrass) with endophytic net slime molds (Labyrinthula zosterae), the putative agent of eelgrass wasting disease that caused one of the most severe marine pandemics across the North-Atlantic in the 1930s. The contemporary presence of L. zosterae in many eelgrass meadows throughout Europe raises the question whether such a pandemic may re-appear if coastal waters become more eutrophic, warmer and less saline. Accordingly, we exposed uninfected Baltic Sea Z. marina plants raised from seeds to full factorial combinations of controlled L. zosterae inoculation, heat stress, light limitation (mimicking one consequence of eutrophication) and two salinity levels. We followed eelgrass wasting disease dynamics, along with several eelgrass responses such as leaf growth, mortality and carbohydrate storage, as well as the ability of plants to chemically inhibit L. zosterae growth. Contrary to our expectation, inoculation with L. zosterae reduced leaf growth and survival only under the most adverse condition to eelgrass (reduced light and warm temperatures). We detected a strong interaction between salinity and temperature on L. zosterae abundance and pathogenicity. The protist was unable to infect eelgrass under high temperature (27°C) in combination with low salinity (12 psu). With the exception of a small positive effect of temperature alone, no further effects of any of the treatment combinations on the defense capacity of eelgrass against L. zosterae were detectable. This work supports the idea that contemporary L. zosterae isolates neither represent an immediate risk for eelgrass beds in the Baltic Sea, nor a future one under the predicted salinity decrease and warming of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-01-31
    Description: Methane (CH4) is the second-most important greenhouse gas in the atmosphere having a significant effect on global climate. The ocean-particularly the coastal regions-have been recognized to be a net source of CH4, however, the constraints on temporal and spatial resolution of CH4 measurements have been the limiting factor to estimate the total oceanic contributions. In this study, the viability of micrometeorological methods for the analysis of CH4 fluxes in the marine environment was evaluated. We present 1 year of semi-continuous eddy covariance measurements of CH4 atmospheric dry mole fractions and air-sea CH4 flux densities at the Ostergarnsholm station at the east coast of the Gotland Island in the central Baltic Sea. The mean annual CH4 flux density was positive, indicating that the region off Gotland is a net source of CH4 to the atmosphere with monthly mean flux densities ranging between -0.1 and 36 nmol m(-2)s(-1). Both the air-water concentration gradient and the wind speed were found to be crucial parameters controlling the flux. The results were in good agreement with other measurements in the Baltic Sea reported in the MEMENTO database. Our results suggest that the eddy covariance technique is a useful tool for studying CH4 fluxes and improving the understanding of air-sea gas exchange processes with high-temporal resolution. Potentially, the high resolution of micrometeorological data can increase the understanding of the temporal variability and forcing processes of CH4 flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-01-31
    Description: Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA\QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-01-31
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-01-31
    Description: The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-01-31
    Description: Within the context of global climate change and overfishing of fish stocks, there is some evidence that cephalopod populations are benefiting from this changing setting. These invertebrates show enhanced phenotypic flexibility and are found from polar regions to the tropics. Yet, the global patterns of species richness in coastal cephalopods are not known. Here, among the 370 identified-species, 164 are octopuses, 96 are cuttlefishes, 54 are bobtails and bottletails, 48 are inshore squids and 8 are pygmy squids. The most diverse ocean is the Pacific (with 213 cephalopod species), followed by the Indian (146 species) and Atlantic (95 species). The least diverse are the Southern (15 species) and the Arctic (12 species) Oceans. Endemism is higher in the Southern Ocean (87%) and lower in the Arctic (25%), which reflects the younger age and the "Atlantification" of the latter. The former is associated with an old lineage of octopuses that diverged around 33 Ma. Within the 232 ecoregions considered, the highest values of octopus and cuttlefish richness are observed in the Central Kuroshio Current ecoregion (with a total of 64 species), followed by the East China Sea (59 species). This pattern suggests dispersal in the Central Indo-Pacific (CIP) associated with the highly productive Oyashio/Kuroshio current system. In contrast, inshore squid hotspots are found within the CIP, namely in the Sunda Shelf province, which may be linked to the occurrence of an ancient intermittent biogeographic barrier: a land bridge formed during the Pleistocene which severely restricted water flow between the Pacific and Indian Oceans, thereby facilitating squid fauna differentiation. Another marked pattern is a longitudinal richness cline from the Central (CIP) towards the Eastern Indo-Pacific (EIP) realm, with central Pacific archipelagos as evolutionary dead ends. In the Atlantic Ocean, closure of the Atrato Seaway (at the Isthmus of Panama) and Straits of Gibraltar (Mediterranean Sea) are historical processes that may explain the contemporary Caribbean octopus richness and Mediterranean sepiolid endemism, respectively. Last, we discuss how the life cycles and strategies of cephalopods may allow them to adapt quickly to future climate change and extend the borealization of their distribution.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-01-31
    Description: Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analysing the multi-variable arrays provided by the integrated observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Environmental Science & Technology, 53 (12). pp. 7068-7074.
    Publication Date: 2022-01-31
    Description: Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved. Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake. The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored. Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples. Evaluating approximately 15% of Americans’ caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water. These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-01-31
    Description: The calcium (Ca) isotopic composition in urine during bed rest has been demonstrated to be systematically light, indicating a negative bone mineral balance (i.e., bone loss). Here we present new Ca isotope data on urine during the “nutritional countermeasures” (NUC) bed rest study. We analyzed the Ca isotopic composition of 24 h pooled urine samples from seven healthy male subjects during baseline data collection (BDC), head-down-tilt bed rest and recovery. Additionally, we analyzed urine from two follow-up examinations after the regeneration phase. We observed a change in Ca isotopic composition during the bed rest phase, indicative of bone loss with a time delay of 10 to 21 days. We also observe that the Ca isotopic composition of urine is strongly dependent on the individual Ca metabolism and varies between subjects. We relate this individuality in Ca metabolism to differences in the amounts of Ca being recycled in the kidneys. Previous studies have shown that the more Ca is reabsorbed in the kidneys the more enriched the urine becomes in heavy isotopes of calcium. The Ca isotopic composition of urine is thus modified by more than one process and cannot be used in a straightforward manner to monitor net bone mineral balance. To overcome this problem, we propose a new baseline approach for using Ca isotopes, which effectively cancels out the effects of individual renal Ca reabsorption. This allows us to detect bone loss in patients without ambiguity by combining measurements of the Ca isotopic composition of urine and daily Ca excretion rate and comparing these to data collected on healthy individuals with a normal steady-state bone balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-01-31
    Description: Diatoms are silicifying phytoplankton contributing about one quarter to primary production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set up a plankton community experiment at the coast of Gran Canaria (Canary Islands, Spain) to investigate the response of subtropical diatom assemblages to elevated seawater pCO2. Therefore, natural plankton communities were enclosed for 32 days in in situ mesocosms (∼8 m3 volume) with a pCO2 gradient ranging from 380 to 1140 μatm. Halfway through the study we added nutrients to all mesocosms (N, P, Si) to simulate injections through eddy-induced upwelling which frequently occurs in the region. We found that the total diatom biomass remained unaffected during oligotrophic conditions but was significantly positively affected by high CO2 after nutrient enrichment. The average cell volume and carbon content of the diatom community increased with CO2. CO2 effects on diatom biomass and species composition were weak during oligotrophic conditions but became quite strong above ∼620 μatm after the nutrient enrichment. We hypothesize that the proliferation of diatoms under high CO2 may have been caused by a fertilization effect on photosynthesis in combination with reduced grazing pressure. Our results suggest that OA in the subtropics may strengthen the competitiveness of (large) diatoms and cause changes in diatom community composition, mostly under conditions when nutrients are injected into oligotrophic systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-01-31
    Description: Nitrous oxide (N2O) is an important atmospheric trace gas involved in tropospheric warming and stratospheric ozone depletion. Estimates of the global ocean contribution to N2O emissions average 21% (range: 10 to 53%). Ongoing environmental changes such as warming, deoxygenation and acidification are affecting oceanic N2O cycling and emissions to the atmosphere. International activities over the last decades aimed at improving estimates of global N2O emissions, including (i) the MarinE MethanE and NiTrous Oxide database (MEMENTO) for archiving of quality-controlled data, and (ii) a recent large-scale inter-laboratory comparison by Working Group 143 of the Scientific Committee on Ocean Research (SCOR). To reduce uncertainties in oceanic N2O emission estimates and to characterize the spatial and temporal variability in N2O distributions in a changing ocean, we propose the establishment of a harmonized N2O Observation Network (N2O-ON) combining discrete and continuous data from various platforms. The network will integrate observations obtained by calibrated techniques, using time series measurements at fixed stations and repeated hydrographic sections on voluntary observing ships and research vessels. In addition to exploiting existing oceanographic infrastructure, we propose the establishment of central calibration facilities in selected international laboratories to improve accuracy, and ensure standardization and comparability of N2O measurements. Final data products will include a harmonized global N2O concentration and emission fields for use in model validation and projections of future oceanic N2O emissions, to inform the global research community and policy makers.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-01-31
    Description: Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-01-31
    Description: The Sea surface KInematics Multiscale monitoring (SKIM) satellite mission is designed to explore ocean surface current and waves. This includes tropical currents, notably the unknown patterns of divergence and their impact on the ocean heat budget near the Equator, monitoring of the emerging Arctic up to 82.5$(\circ)$N. SKIM will also make unprecedented direct measurements of strong currents, from boundary currents to the Antarctic circumpolar current, and their interaction with ocean waves with expected impacts on air-sea fluxes and extreme waves. For the first time, SKIM will directly measure the ocean surface current vector from space. The main instrument on SKIM is a Ka-band conically scanning, multi-beam Doppler radar altimeter/wave scatterometer that includes a state-of-the-art nadir beam comparable to the Poseidon-4 instrument on Sentinel 6. The well proven Doppler pulse-pair technique will give a surface drift velocity representative of the top two meters of the ocean, after subtracting a large wave-induced contribution. Horizontal velocity components will be obtained with an accuracy better than 7 cm/s for horizontal wavelengths larger than 80~km and time resolutions larger than 15 days, with a mean revisit time of 4 days for of 99\% of the global oceans. This will provide unique and innovative measurements that will further our understanding of the transports in the upper ocean layer, permanently distributing heat, carbon, plankton, and plastics. SKIM will also benefit from co-located measurements of water vapor, rain rate, sea ice concentration, and wind vectors provided by the European operational satellite MetOp-SG(B), allowing many joint analyses. SKIM is one of the two candidate satellite missions under development for ESA Earth Explorer 9. The other candidate is the Far infrared Radiation Understanding and Monitoring (FORUM). The final selection will be announced by September 2019, for a launch in the coming decade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-01-31
    Description: In this paper we review on the technologies available to make globally quantitative observations of particles, in general, and plankton, in particular, in the world oceans, and for sizes varying from sub-micron to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical, acoustical methods and analysis using particles counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next ten years to move towards our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries, and carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-01-31
    Description: Careful definition and illustrative case studies are fundamental work in developing a Blue Economy. As blue research expands with the world increasingly understanding its importance, policy makers and research institutions worldwide concerned with ocean and coastal regions are demanding further and improved analysis of the Blue Economy. Particularly, in terms of the management connotation, data access, monitoring, and product development, countries are making decisions according to their own needs. As a consequence of this lack of consensus, further dialogue including this cases analysis of the blue economy is even more necessary. This paper consists of four chapters: (I) Understanding the concept of Blue Economy, (II) Defining Blue economy theoretical cases, (III) Introducing Blue economy application cases and (IV) Providing an outlook for the future. Chapters (II) and (III) summarizes all the case studies into nine aspects, each aiming to represent different aspects of the blue economy. This paper is a result of knowledge and experience collected from across the global ocean observing community, and is only made possible with encouragement, support and help of all members. Despite the blue economy being a relatively new concept, we have demonstrated our promising exploration in a number of areas. We put forward proposals for the development of the blue economy, including shouldering global responsibilities to protect marine ecological environment, strengthening international communication and sharing development achievements, and promoting the establishment of global blue partnerships. However, there is clearly much room for further development in terms of the scope and depth of our collective understanding and analysis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-01-31
    Description: The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26 degrees N, 11 degrees S, SAMBA 34.5 degrees S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16 degrees N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-01-31
    Description: The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet’s ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into “Ocean Best Practices.” While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-01-31
    Description: Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-01-31
    Description: The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-01-31
    Description: Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-01-31
    Description: Latest knowledge on the reactivity of charged nanoparticulate complexants toward aqueous metal ions is discussed in mechanistic detail. We present a rigorous generic description of electrostatic and chemical contributions to metal ion binding by nanoparticulate complexants, and their dependence on particle size, particle type (i.e., reactive sites distributed within the particle body or confined to the surface), ionic strength of the aqueous medium, and the nature of the metal ion. For the example case of soft environmental particles such as fulvic and humic acids, practical strategies are delineated for determining intraparticulate metal ion speciation, and for evaluating intrinsic chemical binding affinities and heterogeneity. The results are compared with those obtained by popular codes for equilibrium speciation modeling (namely NICA-Donnan and WHAM). Physicochemical analysis of the discrepancies generated by these codes reveals the a priori hypotheses adopted therein and the inappropriateness of some of their key parameters. The significance of the characteristic time scales governing the formation and dissociation rates of metal−nanoparticle complexes in defining the relaxation properties and the complete equilibration of the metal− nanoparticulate complex dispersion is described. The dynamic features of nanoparticulate complexes are also discussed in the context of predictions of the labilities and bioavailabilities of the metal species.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-01-31
    Description: The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. The stations operate in a harmonized and standardized way based on community-proven protocols and methods for ocean GHG observations, improving operational conformity as well as quality control and assurance of the data. This enables the network to focus on long term research into the marine carbon cycle and the anthropogenic carbon sink, while preparing the network to include other GHG fluxes. ICOS data are processed on a near real-time basis and will be published on the ICOS Carbon Portal (CP), allowing monthly estimates of CO2 air-sea exchange to be quantified for European waters. ICOS establishes transparent operational data management routines following the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles allowing amongst others reproducibility, interoperability, and traceability. The ICOS-Oceans network is actively integrating with the atmospheric (e.g., improved atmospheric measurements onboard SOOP lines) and ecosystem (e.g., oceanic direct gas flux measurements) domains of ICOS, and utilizes techniques developed by the ICOS Central Facilities and the CP. There is a strong interaction with the international ocean carbon cycle community to enhance interoperability and harmonize data flow. The future vision of ICOS-Oceans includes ship-based ocean survey sections to obtain a three-dimensional understanding of marine carbon cycle processes and optimize the existing network design.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-01-31
    Description: The Global Ocean Observing System (GOOS) and its partners have worked together over the past decade to break down barriers between open-ocean and coastal observing, between scientific disciplines, and between operational and research institutions. Here we discuss some GOOS successes and challenges from the past decade, and present ideas for moving forward, including highlights of the GOOS 2030 Strategy, published in 2019. The OceanObs' 09 meeting in Venice in 2009 resulted in a remarkable consensus on the need for a common set of guidelines for the global ocean observing community. Work following the meeting led to development of the Framework for Ocean Observing (FOO) published in 2012 and adopted by GOOS as a foundational document that same year. The FOO provides guidelines for the setting of requirements, assessing technology readiness, and assessing the usefulness of data and products for users. Here we evaluate successes and challenges in FOO implementation and consider ways to ensure broader use of the FOO principles. The proliferation of ocean observing activities around the world is extremely diverse and not managed, or even overseen by, any one entity. The lack of coherent governance has resulted in duplication and varying degrees of clarity, responsibility, coordination and data sharing. GOOS has had considerable success over the past decade in encouraging voluntary collaboration across much of this broad community, including increased use of the FOO guidelines and partly effective governance, but much remains to be done. Here we outline and discuss several approaches for GOOS to deliver more effective governance to achieve our collective vision of fully meeting society's needs. What would a more effective and well-structured governance arrangement look like? Can the existing system be modified? Do we need to rebuild it from scratch? We consider the case for evolution versus revolution. Community-wide consideration of these governance issues will be timely and important before, during and following the OceanObs' 19 meeting in September 2019.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-01-31
    Description: The air–sea interface is a key gateway in the Earth system. It is where the atmosphere sets the ocean in motion, climate/weather-relevant air–sea processes occur, and pollutants (i.e., plastic, anthropogenic carbon dioxide, radioactive/chemical waste) enter the sea. Hence, accurate estimates and forecasts of physical and biogeochemical processes at this interface are critical for sustainable blue economy planning, growth, and disaster mitigation. Such estimates and forecasts rely on accurate and integrated in situ and satellite surface observations. High-impact uses of ocean surface observations of essential ocean/climate variables (EOVs/ECVs) include (1) assimilation into/validation of weather, ocean, and climate forecast models to improve their skill, impact, and value; (2) ocean physics studies (i.e., heat, momentum, freshwater, and biogeochemical air–sea fluxes) to further our understanding and parameterization of air–sea processes; and (3) calibration and validation of satellite ocean products (i.e., currents, temperature, salinity, sea level, ocean color, wind, and waves). We review strengths and limitations, impacts, and sustainability of in situ ocean surface observations of several ECVs and EOVs. We draw a 10-year vision of the global ocean surface observing network for improved synergy and integration with other observing systems (e.g., satellites), for modeling/forecast efforts, and for a better ocean observing governance. The context is both the applications listed above and the guidelines of frameworks such as the Global Ocean Observing System (GOOS) and Global Climate Observing System (GCOS) (both co-sponsored by the Intergovernmental Oceanographic Commission of UNESCO, IOC–UNESCO; the World Meteorological Organization, WMO; the United Nations Environment Programme, UNEP; and the International Science Council, ISC). Networks of multiparametric platforms, such as the global drifter array, offer opportunities for new and improved in situ observations. Advances in sensor technology (e.g., low-cost wave sensors), high-throughput communications, evolving cyberinfrastructures, and data information systems with potential to improve the scope, efficiency, integration, and sustainability of the ocean surface observing system are explored.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-01-31
    Description: West Mata is a submarine volcano located in the SW Pacific Ocean between Fiji and Samoa in the NE Lau Basin. West Mata was discovered to be actively erupting at its summit in September 2008 and May 2009. Water-column chemistry and hydrophone data suggest it was probably continuously active until early 2011. Subsequent repeated bathymetric surveys of West Mata have shown that it changed to a style of frequent but intermittent eruptions away from the summit since then. We present new data from ship-based bathymetric surveys, high-resolution bathymetry from an autonomous underwater vehicle, and observations from remotely operated vehicle dives that document four additional eruptions between 2012 and 2018. Three of those eruptions occurred between September 2012 and March 2016; one near the summit on the upper ENE rift, a second on the NE flank away from any rift zone, and a third at the NE base of the volcano. The latter intruded a sill into a basin with thick sediments, uplifted them, and then extruded lava onto the seafloor around them. The most recent of the four eruptions occurred between March 2016 and November 2017 along the middle ENE rift zone and produced pillow lava flows with a shingled morphology and tephra as well as clastic debris that mantled the SE slope. ROV dive observations show that the shallower recent eruptions at West Mata include a substantial pyroclastic component, based on thick (〉1 m) tephra deposits near eruptive vents. The deepest eruption sites lack these near-vent tephra deposits, suggesting that pyroclastic activity is minimal below ∼2500 mbsl. The multibeam sonar re-surveys constrain the timing, thickness, area, morphology, and volume of the new eruptions. The cumulative erupted volume since 1996 suggests that eruptions at West Mata are volume-predictable with an average eruption rate of 7.8 × 106 m3/yr. This relatively low magma supply rate and the high frequency of eruptions (every 1–2 years) suggests that the magma reservoir at West Mata is relatively small. With its frequent activity, West Mata continues to be an ideal natural laboratory for the study of submarine volcanic eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-01-31
    Description: The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP) provides a globally coordinated network and oversight of 55 sustained decadal repeat hydrographic reference lines. GO-SHIP is part of the global ocean/climate observing systems (GOOS/GCOS) for study of physical oceanography, the ocean carbon, oxygen and nutrient cycles, and marine biogeochemistry. GO-SHIP enables assessment of the ocean sequestration of heat and carbon, changing ocean circulation and ventilation patterns, and their effects on ocean health and Earth's climate. Rapid quality control and open data release along with incorporation of the GO-SHIP effort in the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) in situ Observing Programs Support Center (JCOMMOPS) have increased the profile of, and participation in, the program and led to increased data use for a range of efforts. In addition to scientific discovery, GO-SHIP provides climate quality observations for ongoing calibration of measurements from existing and new autonomous platforms. This includes biogeochemical observations for the nascent array of biogeochemical (BGC)-Argo floats; temperature and salinity for Deep Argo; and salinity for the core Argo array. GO-SHIP provides the relevant suite of global, full depth, high quality observations and co-located deployment opportunities that, for the foreseeable future, remain crucial to maintenance and evolution of Argo's unique contribution to climate science. The evolution of GO-SHIP from a program primarily focused on physical climate to increased emphasis on ocean health and sustainability has put an emphasis on the addition of essential ocean variables for biology and ecosystems in the program measurement suite. In conjunction with novel automated measurement systems, ocean color, particulate matter, and phytoplankton enumeration are being explored as GO-SHIP variables. The addition of biological and ecosystem measurements will enable GO-SHIP to determine trends and variability in these key indicators of ocean health. The active and adaptive community has sustained the network, quality and relevance of the global repeat hydrography effort through societally important scientific results, increased exposure, and interoperability with new efforts and opportunities within the community. Here we provide key recommendations for the continuation and growth of GO-SHIP in the next decade.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-01-31
    Description: The ocean plays a vital role in the global climate system and biosphere, providing crucial resources for humanity including water, food, energy and raw materials. There is a compelling need to develop an integrated basin-scale ocean observing system to support of ocean management. We articulate a vision for basin-scale ocean observing - A comprehensive All-Atlantic Ocean Observing Systems that benefits all of us living, working and relying on the ocean. Until now, basin-scale ocean observation has been conducted through loosely-aligned arrangements of national and international efforts. The All-Atlantic Ocean Observing System (AtlantOS) is an ntegrated concept for a forward-looking framework and basin-scale partnership to establish a comprehensive ocean observing system for the Atlantic Ocean as a whole. The system will be sustainable, multi-disciplinary, multi-thematic, efficient, and fit-for-purpose. Platforms, networks, and systems do already exist that operate at various maturity levels. AtlantOS will go beyond the status quo by bringing together the observing communities and countries of the Atlantic basin, providing the opportunity to join and support the system. AtlantOS will build upon the coordinated work of the Global Ocean Observing System (GOOS) and the Group on Earth Observations (GEO), two international bodies that support and coordinate global ocean observing. AtlantOS will complement those efforts and offers a new approach to organizing ocean observing at the basin-scale. The new SystemAtlantOS will focus not only on the physics but also the biology, ecology and biogeochemistry of the ocean and seafloor and will enhance new partnerships among between governments, science, civil society and the private sector.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...