ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2020-07-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-12-23
    Description: Si listano le singole sezioni in cui S.Simoncelli ha contribuito. Ogni sezione puo' essere citata separatamente dal report 1.1 Ocean temperature and salinity S. Mulet, B. Buongiorno Nardelli, S. Good, A. Pisano, E. Greiner, M. Monier E. Autret, L. Axell, F. Boberg, S. Ciliberti, M. Drévillon, R. Droghei, O. Embury, J. Gourrion, J. Høyer, M. Juza, J. Kennedy, B. Lemieux-Dudon, E. Peneva, R. Reid, S. Simoncelli, A. Storto, J. Tinker, K. von Schuckmann, S. L. Wakelin. 2.1. Ocean heat content ..K. von Schuckmann, A. Storto, S. Simoncelli, R. P. Raj, A.Samuelsen, A. de Pascual Collar, M. Garcia Sotillo, T Szerkely, M. Mayer, K. A. Peterson, H. Zuo, G. Garric, M. Monier. 3.4 Water mass formation processes in the Mediterranean Sea over the past 30 years S. Simoncelli, Nadia Pinardi, C. Fratianni, C. Dubois, G. Notarstefano. 3.5 Ventilation of the Western Mediterranean Deep Water through the Strait of Gibraltar S. Sammartino, J. García Lafuente, C. Naranjo, S. Simoncelli. 4.4 Unusual salinity pattern in the South Adriatic Sea in 2016 Z. Kokkini, G. Notarstefano P-M Poulain, E. Mauri, R. Gerin, S. Simoncelli
    Description: The oceans regulate our weather and climate from global to regional scales. They absorb over 90% of accumulated heat in the climate system (IPCC 2013 IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge: Cambridge University Press, 1535. doi: 10.1017/CBO9781107415324. [Crossref], , [Google Scholar]) and over a quarter of the anthropogenic carbon dioxide (Le Quéré et al. 2016 Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8( 2): 605– 649. doi: 10.5194/essd-8-605-2016 [Crossref], [Web of Science ®], , [Google Scholar]). They provide nearly half of the world’s oxygen. Most of our rain and drinking water is ultimately regulated by the sea. The oceans provide food and energy and are an important source of the planet's biodiversity and ecosystem services. They are vital conduits for trade and transportation and many economic activities depend on them (OECD 2016 OECD . 2016. The ocean economy in 2030. Paris : OECD Publishing. doi: 10.1787/9789264251724-en. [Crossref], , [Google Scholar]). Our oceans are, however, under threat due to climate change and other human induced activities and it is vital to develop much better, sustainable and science-based reporting and management approaches (UN 2017 UN . 2017. Report of the United Nations conference to support the implementation of sustainable development goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development (Advance unedited version). https://sustainabledevelopment.un.org/content/documents/15662FINAL_15_June_2017_RepoRe_Goal_14.pdf . [Google Scholar]). Better management of our oceans requires long-term, continuous and state-of-the art monitoring of the oceans from physics to ecosystems and global to local scales. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to address these challenges at European level. Mercator Ocean was tasked in 2014 by the European Union under a delegation agreement to implement the operational phase of the service from 2015 to 2021 (CMEMS 2014 CMEMS . 2014. Technical annex to the delegation agreement with Mercator Ocean for the implementation of the Copernicus Marine Environment Monitoring Service (CMEMS). www.copernicus.eu/sites/default/files/library/CMEM_TechnicalAnnex_PUBLIC.docx.pdf . [Google Scholar]). The CMEMS now provides regular and systematic reference information on the physical state, variability and dynamics of the ocean, ice and marine ecosystems for the global ocean and the European regional seas (Figure 0.1; CMEMS 2016 CMEMS . 2016. High level service evolution strategy, a document prepared by Mercator Ocean with the support of the CMEMS STAC. [Google Scholar]). This capacity encompasses the description of the current situation (analysis), the prediction of the situation 10 days ahead (forecast), and the provision of consistent retrospective data records for recent years (reprocessing and reanalysis). CMEMS provides a sustainable response to European user needs in four areas of benefits: (i) maritime safety, (ii) marine resources, (iii) coastal and marine environment and (iv) weather, seasonal forecast and climate.
    Description: Copernicus Marine Environment Monitoring Service
    Description: Published
    Description: S1-S142
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., Strutton, P. G., Hill, K., Sen Gupta, A., Lin, X., Takahashi, K., Chen, D., & Brunner, S. Tropical pacific observing system. Frontiers in Marine Science, 6, (2019):31, doi:10.3389/fmars.2019.00031.
    Description: This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
    Description: BD thanks LEFE-GMMC for financial support. JS participation in this study was supported by NOAA’s Global Ocean Monitoring and Observing Program through Award NA15OAR4320071. NOAA’s Ocean Observing and Monitoring Division has supported NS and WK and the TPOS 2020 Distributed Project Office.
    Keywords: Ocean observing ; Tropical Pacific ; TPOS 2020 ; User requirements ; Variable requirements ; Design ; Tropical moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-21
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tanhua, T., Pouliquen, S., Hausman, J., O'Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Wyborn, L., & Zhao, Z. Ocean FAIR data services. Frontiers in Marine Science, 6, (2019): 440, doi:10.3389/fmars.2019.00440.
    Description: Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies.
    Description: We thank the funding agencies and the data management projects that have made this work possible through dedicated funding for the data management activities and improvements. TT and JB acknowledge support from the EU Horizon 2020 project AtlantOS (grant agreement 633211). JM acknowledges support from the Integrated Oceanography and Multiple Uses of the Continental Shelf and the Adjacent Ocean Integrated Center of Oceanography (INCT-Mar COI, CNPq, Proc. 565062/2010-7). DS acknowledges support from the H2020 project SeaDataCloud (grant agreement 730960). SP acknowledges support from the EU Horizon 2020 project ENVRIplus (grant agreement 654182). AN acknowledges support from the EMODnet Physics (grant number EASME/EMFF/2016/1.3.1.2-Lot3/SI2.749411). HG acknowledges funding from the EU H2020 Ocean Data Interoperability Platform (ODIP) project (Grant No: 654310). JH acknowledges that funding came from the National Aeronautics and Space Agency as managed by the California Institute of Technology under task number 80NM0018F0848. AVdP acknowledges support from Belspo in the framework the EU Lifewatch ERIC (grant agreement FR/36/AN3). KO’B acknowledges that his publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2018-0175.
    Keywords: FAIR ; Ocean ; Data management ; Data services ; Ocean observing ; Standardization ; Interoperability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 170 (1952), S. 538-539 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The potassium compounds of this type derived from organic acids frequently have the stoichiometric composition of 1 mole acid: 1 mole salt, and are easily obtained and purified. Certain of these substances would probably prove highly suitable as primary standards in volumetric analysis; their use ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 211 (1966), S. 186-187 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The apparent pKa values for the acids (I) and (II), where R is Me, Et, Pr1 and But, respectively, and for benzoic acid, have been determined by potentiometric titration in 30 per cent v/v acetone-water. The choice of this solvent system was dictated largely by the lower solubilities of the acids ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 164 (1949), S. 1014-1015 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE bromination of veratrole proceeds more readily than that of anisole, and this comparison has led Dewar1 to propose that the former reaction employs the π-complex I rather than a complex of type II. Dewar's argument is based on the assumption that formation of II is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 155 (1945), S. 698-698 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] MANY monobasic organic acids form crystalline acid sodium or potassium salts (for example, potassium hydrogen benzoate, KC7H5O2.HC7H5O2). A solution of such a compound is equivalent to one of the acid half neutralized with a ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 31 (1995), S. 475-494 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The conceptual design of an ocean observing system for the routine, long-term gathering and processing of ocean data useful for monitoring, describing and predicting ocean climate and its variability is discussed. The ultimate aim of the system is represented by four application areas; atmospheric prediction; ocean and coupled ocean-atmosphere climate prediction; state-of-the-art ocean climate assessment; and model validation. Models are presented as the unifying glue for the system, providing a means for exploiting observed information in many different ways as well as a means for processing complicated and diverse data sets into a form which has practical applications. Monitoring, description and prediction require different supporting environments in order to exploit this potential. The overall objective of the system is broken down into a series of goals and sub-goals roughly aligned with surface, upper ocean and deep ocean applications and with modelling and information management requirements. A prioritization of these goals is presented and it is shown that ordered implementation of the elements supporting these goals will lead to a sensible, staged implementation of the observing system. The research, development and exploitation of appropriate technology is emphasised. Trade-offs and rationalisation across the elements of the ocean observing system for climate and between other climate components and ocean modules is central to the development and successful implementation. The design is presented as the first stage in a constantly evolving and maturing ocean observing system for climate applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...