ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (541,458)
  • Wiley  (265,037)
  • Springer Nature  (221,103)
  • Copernicus  (55,318)
  • 2020-2022  (112,655)
  • 2010-2014  (309,817)
  • 1980-1984  (70,538)
  • 1950-1954  (26,305)
  • 1945-1949  (22,143)
Collection
Years
Year
  • 1
    Publication Date: 2020-09-01
    Description: Establishing sustainable and responsible speleotourism development is a major challenge and involves complex activities. Adequate theoretical starting point is the application of geoethical values related to the conservation and protection of the caves to be used for touristic purposes. Positive and negative cases of human behaviors towards speleological geoheritage are discussed, in order to highlight what should be done in cave management to avoid malpractices and on what elements could be founded adequate strategies aimed at promoting sustainable speleotourism. This is important to tourism management organizations involved in the promotion of caves and in creating economic opportunities for local populations, while respecting cave ecosystems. Modern cave management must be focused on the protection of the cave ecosystems, finding ways to achieve at the same time an economic development of local communities. But this approach needs the adoption of a geoethical framework of values to be shared by all stakeholders involved so that successful cooperation can be achieved despite differences in interests and expectations. The aim of this paper is to raise the awareness about the need to apply the values of geoethics to speleotourism, stimulating new fields of discussion within the scientific and technical communities involved in studies and activities related to geotourism and geoheritage. The possibilities of developing new ways to manage caves, in order to promote a sustainable socio-economic development of local communities, have to be balanced with the protection of natural environments as much as possible. The proposed theoretical frameworks have the goal to increase the discussion on the best ways of connecting speleotourism to sustainable and responsible cave management, presenting two case studies, and pointing out potential solutions.
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement
    Description: Published
    Description: id 73
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: Geoethics ; Responsibility ; Sustainability ; Caves ; Speleotourism ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-22
    Description: Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
    Description: Published
    Description: 49-75
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: climate change; land surface; precipitation; radiative forcing; water cycle
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-20
    Description: Multivariate analysis of the elemental composition of hemipelagic sedimentary successions has provided invaluable information about palaeoenvironmental evolution, including records of short-lived Eocene hyperthermal events. However, few studies have analyzed the sedimentary record of these climatic events in turbidite-rich continental margin successions. In order to test the usefulness of multivariate statistical techniques (factor and cluster analysis) in palaeonvironmental and palaeoclimatic research on turbiditic successions, the lowermost Eocene Solondota section, which accumulated on the North Iberian continental margin, was studied. A prominent negative carbon isotope excursion from Solondota was correlated with the Ypresian (early Eocene) hyperthermal event J, also known as C24n.2rH1. High-resolution sedimentological, geochemical (stable isotopes, major and trace elements) and mineralogical (bulk and clay mineralogy) data show that multivariate statistical analysis helps to manage large-sized quantitative datasets objectively, avoiding arbitrary choice of representative elements and identifying environmental factors (virtual variables) that may not be evident otherwise. Variations in major and minor elements from hemipelagic carbonates across the Solondota carbon isotope excursion suggest a temporarily more humid continental climate, which caused increased terrigenous material input into the marine environment. The finer grained fraction boosted hemipelagic carbonate dilution, whereas the coarser grained sediment was transported by temporarily more frequent and voluminous turbidity currents. Thus, the results from the Solondota carbon isotope excursion revealed similarities with deep marine records of other early Eocene minor hyperthermal events. This demonstrates the validity of deep-marine turbiditic successions for providing reliable sedimentological, mineralogical and geochemical records of global palaeoclimatic significance, complementing the information obtained from other sedimentary environments. Furthermore, the generally expanded nature of turbiditic successions can potentially provide palaeoclimatic information at very high resolution, enriching, and perhaps improving, the commonly condensed and sometimes discontinuous record of hemipelagic- only successions.
    Description: Published
    Description: 881-904
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-07
    Description: This paper compares stable isotope (δ18O and δ13C) records of early–middle Holocene land snail shells from the archaeological deposits of Grotta di Latronico 3 (LTR3; southern Italy) with modern shell isotopic data. No substantial interspecific variability was observed in shell δ18O (δ18Os) of modern specimens (Pomatias elegans, Cornu aspersum, Eobania vermiculata, Helix ligata and Marmorana fuscolabiata). In contrast, interspecific shell δ13C (δ13Cs) variability was significant, probably due to different feeding behaviour among species. The δ18Os values of living land snails suggest that species hibernate for a long period during colder months, so that the signal of 18O-depleted winter rainfall in their δ18Os is lost. This suggests that δ18Os and δ13Cs values of Pomatias elegans from this archaeological succession provide valuable clues for seasonal (spring–autumn) climatic conditions during the early–middle Holocene. The δ18Os values of fossil specimens are significantly lower than in modern shells and in agreement with other palaeoclimatic records, suggesting a substantial increase of precipitation and/or persistent changes in air mass source trajectories over this region between ca. 8.8 cal ka BP and 6.2–6.7 ka ago. The δ13Cs trend suggests a transition from a slightly 13C-enriched to a 13C-depleted diet between early and middle Holocene compared to present conditions. We postulate that this δ13Cs trend might reflect changes in the C3 vegetation community, potentially combined with other environmental factors such as regional moisture increase and the progressive decrease of atmospheric CO2 concentration. Copyright © 2010 John Wiley & Sons, Ltd.
    Description: Published
    Description: 1347-1359
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: central Mediterranean ; archaeological succession ; land snail shells ; stable isotopes ; palaeoclimate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: We introduce a mathematical model for the composting process in biocells. The model includes several phenomena, like the aerobic biodegradation of the soluble substrate by means of a bacterial population, the hydrolysis of insoluble substrate, and the biomass decay. We investigate the best strategies to reduce substrate components in minimal time by controlling the effects of cell oxygen concentration on the degradation phenomenon. It is shown that singular controls are not optimal for this model and the optimal control time profiles are of bang or bang-bang type. The occurrence of switching curves is discussed. In the case of a bang-bang control we prove that optimal control profiles have a unique switching time and the corresponding switching curve is determined.
    Description: Published
    Description: 1251-1266
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-18
    Description: This paper provides a new methodological framework to generate empirical ground shaking scenarios, designed for engineering applications and civil protection planning. The methodology is useful both to reconstruct the ground motion pattern of past events and to generate future shaking scenarios, in regions where strong-motion datasets from multiple events and multiple stations are available. The proposed methodology combines (1) an ad-hoc nonergodic ground motion model (GMM) with (2) a spatial correlation model for the source region-, site-, and path-systematic residual terms, and (3) a model of the remaining aleatory error to take into account for directivity effects. The associated variability is a function of the type of scenario generated (bedrock or site, past or future event) and it is minimal for source areas where several events have occurred and for sites where recordings are available. In order to develop the region-specific fully nonergodic GMM and to compute robust estimation of the residual terms, the approach is calibrated on a highly dense dataset compiled for the area of central Italy. Example tests demonstrate the validity of the approach, which allows to simulate acceleration response spectra at unsampled sites, as well as to capture peculiar physical features of ground motion patterns in the region. The proposed approach could be usefully adopted for data-driven simulations of ground shaking maps, as alternative or complementary tool to physic-based and stochastic-based approaches.
    Description: Published
    Description: 60-80
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-03
    Description: The present work aims to study the main chemical and physical water parameters in the upper and middle Volturno river catchment (southern Italy), between the Capo Volturno springs and the confluence with the Calore river. This study makes use of morphology, geolithology, tectonic, land use, and physico‐chemical (pH, electrical conductivity, redox potential, temperature, major ions, and 222Rn) data for the identification of the main sources of surface and groundwaters in the Volturno catchment and of their evolution and mixing both in base flow and peak flow conditions. The study was also performed to assess whether the alteration due to potential anthropogenic contamination may hamper the identification of natural “primitive” sources of surface waters, especially in the populated and farmed plains far from the river headwaters. Our data suggest that water chemistry of this stretch of the Volturno river is dominated mainly by lithology and, only marginally, by the intense exogenous activities and that this trend is appreciable in both base flow and peak flow conditions. The proposed simple geochemical approach based on easy‐to‐sample matrices and on cost‐effective standard methods is a valuable tool to address catchment functionality especially in upland areas, where complex geologic and structural settings, heterogeneous groundwater flow, and logistical issues are the rule rather than the exception. Because the upper and middle Volturno catchment is comparable with numerous valleys of the Mediterranean area, this study could be a reference for analogous applications.
    Description: Published
    Description: 627–638
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-03
    Description: Large earthquakes occurring worldwide have long been recognized to be non Poisson distributed, so involving some large scale correlation mechanism, which could be internal or external to the Earth. Till now, no statistically significant correlation of the global seismicity with one of the possible mechanisms has been demonstrated yet. In this paper, we analyze 20 years of proton density and velocity data, as recorded by the SOHO satellite, and the worldwide seismicity in the corresponding period, as reported by the ISC-GEM catalogue. We found clear correlation between proton density and the occurrence of large earthquakes (M 〉 5.6), with a time shift of one day. The significance of such correlation is very high, with probability to be wrong lower than 10-5. The correlation increases with the magnitude threshold of the seismic catalogue. A tentative model explaining such a correlation is also proposed, in terms of the reverse piezoelectric effect induced by the applied electric field related to the proton density. This result opens new perspectives in seismological interpretations, as well as in earthquake forecast.
    Description: Published
    Description: 11495
    Description: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Description: JCR Journal
    Keywords: correlation ; solar activity ; large earthquakes worldwide
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-02
    Description: El Chichon is an active volcano located in the north-western Chiapas, southern Mexico. The crater hosts a lake, a spring, named Soap Pool, emerging from the underlying volcanic aquifer and several mud pools/hot springs on the internal flanks of the crater which strongly interact with the current fumarolic system (steam-heated pools). Some of these pools, the crater lake and a cold spring emerging from the 1982 pumice deposits, have been sampled and analysed. Water–volcanic gas interactions determine the heating (43–99°C) and acidification (pH 2–4) of the springs, mainly by H2S oxidation. Significantly, in the study area, a significant NH3 partial pressure has been also detected. Such a geochemically aggressive environment enhances alteration of the rock in situ and strongly increases the mineralization of the waters (and therefore their electrical conductivity). Two different mineralization systems were detected for the crater waters: the soap pool-lake (Na+/Cl = 0.4, Na/Mg〉10) and the crater mud pools (Na+/Cl 〉 10, Na/Mg 〈 4). A deep boiling, Na+-K+-Cl -rich water reservoir generally influences the Soap Pool-lake, while the mud pool is mainly dominated by water-gas–rock interactions. In the latter case, conductivity of sampled water is directly proportional to the presence of reactive gases in solution. Therefore, chemical evolution proceeds through neutralization due to both rock alteration and bacterial oxidation of ammonium to nitrate. The chemical compositions show that El Chichon aqueous fluids, within the crater, interact with gases fed by a geothermal reservoir, without clear additions of deep magmatic fluids. This new geochemical dataset, together with previously published data, can be used as a base line with which to follow-up the activity of this deadly volcano.
    Description: Published
    Description: 331–343
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-09-07
    Description: This study presents and discusses horizontal and vertical geodetic velocities for a low strain rate region of the south Alpine thrust front in northeastern Italy obtained by integrating GPS, interferometric synthetic aperture radar (InSAR) and leveling data. The area is characterized by the presence of subparallel, south-verging thrusts whose seismogenic potential is still poorly known. Horizontal GPS velocities show that this sector of the eastern Southern Alps is undergoing ∼1 mm a−1 of NW–SE shortening associated with the Adria–Eurasia plate convergence, but the horizontal GPS velocity gradient across the mountain front provides limited constraints on the geometry and slip rate of the several subparallel thrusts. In terms of vertical velocities, the three geodetic methods provide consistent results showing a positive velocity gradient, of ∼ 1.5 mm a−1, across the mountain front, which can hardly be explained solely by isostatic processes. We developed an interseismic dislocation model whose geometry is constrained by available subsurface geological reconstructions and instrumental seismicity. While a fraction of the measured uplift can be attributed to glacial and erosional isostatic processes, our results suggest that interseismic strain accumulation at the Montello and the Bassano–Valdobbiadene thrusts it significantly contributing to the measured uplift. The seismogenic potential of the Montello thrust turns out to be smaller than that of the Bassano–Valdobbiadene fault, whose estimated parameters (locking depth equals 9.1 km and slip rate equals 2.1 mm a−1) indicate a structure capable of potentially generating a Mw〉6.5 earthquake. These results demonstrate the importance of precise vertical ground velocity data for modeling interseismic strain accumulation in slowly deforming regions where seismological and geomorphological evidence of active tectonics is often scarce or not conclusive.
    Description: Published
    Description: 1681–1698
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Southern Alps ; Vertical Velocities ; GPS and InSAR integration ; Interseismic Deformation ; Dislocation Model ; Seismic Potential ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-01-15
    Description: We reconstruct the composite dynamics of Mt. Vesuvius volcano in the period 2012–2019 from the study of ground deformation, seismicity, and geofluid (groundwater and fumarolic fluids) circulation and recognize complex spatio-temporal variations in these observables at medium (years) and short (months) time-scales. We interpret the observed patterns as the combined effect of structural changes affecting the volcanic edifice and variations of the dynamics of the hydrothermal system. In particular, we identify a change in the activity state of Mt. Vesuvius. After the activity reached minimum levels in 2014, the centroid of the surface manifestations migrated towards the SE. Episodic variations of co-seismic and aseismic deformation and fluid release, if analysed separately, would likely have been interpreted as pseudo-random oscillations of the background geophysical and geochemical signals. When organised in a comprehensive, multiparametric fashion, they shed light on the evolution of the volcano in 4D (x,y,z, time) space. These inferences play a crucial role in the formulation of civil protection scenarios for Mt. Vesuvius, a high risk, densely urbanized volcanic area which has never experienced unrest episodes in the modern era of instrumental volcanology.
    Description: Published
    Description: 965
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: recent dynamics ; Mt. Vesuvius ; investigations ; ground deformation ; seismicity ; geofluid circulation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-03
    Description: Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
    Description: Published
    Description: 976190
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: geochemistry ; Atmosphere ; 03. Hydrosphere ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-06-07
    Description: The diagnosis of the conservation state of monumental structures from constraints to the spatial distribution of their physical properties on shallow and inner materials represents one of the key objectives in the application of non-invasive techniques. In situ, CRP and 3D ultrasonic tomography can provide an effective coverage of stone materials in space and time. The intrinsic characteristics of the materials that make up a monumental structure and affect the two properties (i.e., reflectivity, longitudinal velocity) through the above methods substantially differ. Consequently, the content of their information is mainly complementary rather than redundant. In this study we present the integrated application of different non-destructive techniques i.e., Close Range Photogrammetry (CRP), and low frequency (24 KHz) ultrasonic tomography complemented by petrographycal analysis based essentially on Optical Microscopy (OM). This integrated methodology has been applied to a Carrara marble column of the Basilica of San Saturnino, in Byzantine-Proto-Romanesque style, which is part of the Paleo Christian complex of the V-VI century. This complex also includes the adjacent Christian necropolis in the square of San Cosimo in the city of Cagliari, Sardinia, Italy. The column under study is made of bare material dating back probably to the first century A.D., it was subjected to various traumas due to disassembly and transport to the site, including damage caused by the close blast of a WWII fragmentation bomb. High resolution 3D modelling of the studied artifact was computed starting from the integration of proximal sensing techniques such as CRP based on Structure from Motion (SfM), with which information about the geometrical anomalies and reflectivity of the investigated marble column surface was obtained. On the other hand, the inner parts of the studied body were successfully inspected in a non-invasive way by computing the velocity pattern of the ultrasonic signal through the investigated materials using 3D ultrasonic tomography. This technique gives information on the elastic properties of the material related with mechanical properties and a number of factors, such as presence of fractures, voids, and flaws. Extracting information on such factors from the elastic wave velocity using 3D tomography provides a non-invasive approach to analyse the property changes of the inner material of the ancient column. The integrated application of in situ CRP and ultrasonic techniques provides a full 3D high resolution model of the investigated artifact. This model enhanced by the knowledge of the petrographic characteristics of the materials, improves the diagnostic process and affords reliable information on the state of conservation of the materials used in the construction processes of the studied monumental structure. The integrated use of the non-destructive techniques described above also provides suitable data for a possible restoration and future preservation.
    Description: Copernicus
    Description: Published
    Description: On line
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Cultural Heritage ; Monumental Structures ; Non-Destructive Testing ; Close Range Photogrammetry ; 3D Ultrasonic Tomography ; High resolution 3D modelling ; Restoration ; Conservation ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-03-05
    Description: In this study MODerate resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to sun-photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in-situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model (NorESM1-M)/ CAM4-Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to one order of magnitude are found for the Coupled Model Intercomparison Project (CMIP5) model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-16
    Description: Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Ecology and Evolution, Wiley, 4(16), pp. 3147-3161, ISSN: 2045-7758
    Publication Date: 2014-09-24
    Description: Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. Southern Ocean. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-07-21
    Description: Eulimnogammarus verrucosus is an amphipod endemic to the unique ecosystem of Lake Baikal and serves as an emerging model in ecotoxicological studies. We report here on a survey sequencing of its genome as a first step to establish sequence resources for this species. From a single lane of paired-end sequencing data, we estimated the genome size as nearly 10 Gb and we obtained an overview of the repeat content. At least two-thirds of the genome are non-unique DNA, and a third of the genomic DNA is composed of just five families of repetitive elements, including low-complexity sequences. Attempts to use off-the-shelf assembly tools failed on the available low-coverage data both before and after removal of highly repetitive components. Using a seed-based approach we nevertheless assembled short contigs covering 33 pre-microRNAs and the homeodomain-containing exon of nine Hox genes. The absence of clear evidence for paralogs implies that a genome duplication did not contribute to the large genome size. We furthermore report the assembly of the mitochondrial genome using a new, guided “crystallization” procedure. The initial results presented here set the stage for a more complete sequencing and analysis of this large genome.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-07-19
    Description: In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman–Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman–Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman–Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 41(17), pp. 6252-6258, ISSN: 0094-8276
    Publication Date: 2019-07-17
    Description: The transient response of the Atlantic Meridional Overturning Circulation (AMOC) to a deglacial ice-sheet retreat is studied using the Community Climate System Model version 3 (CCSM3), with a focus on orographic effects rather than meltwater discharge. It is found that the AMOC weakens significantly (41%) in response to the deglacial ice-sheet retreat. The AMOC weakening follows the decrease of the Northern Hemisphere ice-sheet volume linearly, with no evidence of abrupt thresholds. A wind-driven mechanism is proposed to explain the weakening of the AMOC: lowering the Northern Hemisphere ice sheets induces a northward shift of the westerlies, which causes a rapid eastward sea-ice transport and expanded sea-ice cover over the subpolar North Atlantic; this expanded sea ice insulates the ocean from heat loss and leads to suppressed deep convection and a weakened AMOC. A sea ice-ocean positive feedback could be further established between the AMOC decrease and sea-ice expansion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-17
    Description: The impact of assimilating sea ice thickness data derived from ESA's Soil Moisture and Ocean Salinity (SMOS) satellite together with Special Sensor Microwave Imager/Sounder (SSMIS) sea ice concentration data of the National Snow and Ice Data Center (NSIDC) in a coupled sea ice-ocean model is examined. A period of 3 months from 1 November 2011 to 31 January 2012 is selected to assess the forecast skill of the assimilation system. The 24 h forecasts and longer forecasts are based on the Massachusetts Institute of Technology general circulation model (MITgcm), and the assimilation is performed by a localized Singular Evolutive Interpolated Kalman (LSEIK) filter. For comparison, the assimilation is repeated only with the SSMIS sea ice concentrations. By running two different assimilation experiments, and comparing with the unassimilated model, independent satellite-derived data, and in situ observation, it is shown that the SMOS ice thickness assimilation leads to improved thickness forecasts. With SMOS thickness data, the sea ice concentration forecasts also agree better with observations, although this improvement is smaller.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-10-14
    Description: The composition and abundance of algal pigments provide information on characteristics of a phytoplankton community in respect to its photoacclimation, overall biomass, and taxonomic composition. Particularly, these pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by High Performance Liquid Chromatography (HPLC) techniques to filtered water samples. This method, like others when water samples have to be analysed in the laboratory, is time consuming and therefore only a limited number of data points can be obtained. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an Empirical Orthogonal Function (EOF) analysis to remote sensing reflectance data derived from ship-based hyper-spectral underwater radiometric and from multispectral satellite data (using the MERIS Polymer product developed by Steinmetz et al., 2011) measured in the Eastern Tropical Atlantic. Subsequently we developed statistically linear models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results, show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multi-spectral resolution is chosen (i.e. eight bands similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. The fitted statistical model constructed on the satellite reflectance data as input was applied to one month of MERIS Polymer data to predict the concentration of those pigment groups for the whole Eastern Tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., 〈 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photo-physiology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3The Ocean Floor : Bruce Heezen commemorative volume, (A Wiley-Interscience publication), Chichester, Wiley, pp. 147-163, ISBN: 0-471-10091-9
    Publication Date: 2014-05-12
    Description: The sedimentation regime off Northwest Africa is shaped by: (1) structur~al factors. which result in generallv low relief on land. shelf widths between 40 and more than 120 km. and av-erage sfope inclinations between 10 30' and 30; (2) land climates. which contral the delivery of terrigenous particles to the margin: (3) water movements including boundary currents and upwelling; and (4) the post- Pleistocene sea level rise. This chapter combines published and new results arising from research into the sedimentation processes off Northwest Africa. and emphasizes particularly the activities of the Kiel marine geological group during the past few years. Reviews of cruise activities and results were given in Closs et al. (1969) (Meteor cruise 8. 1967. off Morocco) . Seibold (1972) (Meteor cmise 25 . 1971. off Sahara to Central Senegal). Seibold and Hinz (1976) (Meteor cmise 39,1975 . and Valdivia cruise 10. 1975, from Morocco to South Senegal), and Waiden et al. (1974) (Meteor cmise 30, 1973, off Sierra Leone). Some of these cmises were used for pre- or post-site surveys for the Deep-Sea Drilling Project, or to add undisturbed Quaternary cores to the Glomar Challenger cores (leg 41, ] 975; Lancelot, et al .• 1978); leg 47 A, Arthur er al .• 1979; Lutze et al., 1979). We have concentrated our geological investigations on a number of standard profiles from the shelf to the upper continental rise as given in Figure 1. The manuscript was finished May 1979.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Solid Earth, Wiley, 119(7), pp. 5275-5289, ISSN: 2169-9356
    Publication Date: 2014-08-18
    Description: A new seismostratigraphic model has been established within the Arctic Ocean adjacent to the East Siberian Shelf on the basis of multichannel seismic reflection data acquired along a transect at 81°N. Ages for the sedimentary units were estimated via links to seismic lines and drill site data of the US Chukchi Shelf, the Lomonosov Ridge, and the adjacent Laptev Shelf. Two distinct seismic units were mapped throughout the area and are the constraints for dating the remaining strata. The lower marker unit, a pronounced high-amplitude reflector sequence (HARS), is the most striking stratigraphic feature over large parts of the Arctic Ocean. It indicates a strong and widespread change in deposition conditions. Probably, it developed during Oligocene times when a reorientation of Arctic Plates took place, accompanied by the gradual opening of the Fram Strait, and a widespread regression of sea level. The top of the HARS likely marks the end of Oligocene/early Miocene (23Ma). An age estimate for the base of the sequence is less clear but likely corresponds to base of Eocene (˜56Ma). The second marked unit detected on the seismic lines parallels the seafloor with a thickness of about 200ms two-way travel time (160 m). Its base is marked by a change from a partly transparent sequence with weak amplitude reflections below to a set of continuous high-amplitude reflectors above. This interface likely marks the transition to large-scale glaciation of the northern hemisphere and therefore is ascribed to the top Miocene (5.3 Ma).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-03-26
    Description: With each cell division, phytoplankton create new space for primary colonization by marine bacteria. Although this surface microenvironment is available to all planktonic bacterial colonizers, we show the assembly of bacterial consortia on a cosmopolitan marine diatom to be highly specific and reproducible. While phytoplankton–bacteria interactions play fundamental roles in marine ecosystems, namely primary production and the carbon cycle, the ecological paradigm behind epiphytic microbiome assembly remains poorly understood. In a replicated and repeated primary colonization experiment, we exposed the axenic diatom Thalassiosira rotula to several complex and compositionally different bacterial inocula derived from phytoplankton species of varying degrees of relatedness to the axenic Thalassiosira host or natural seawater. This revealed a convergent assembly of diverse and compositionally different bacterial inocula, containing up to 2071 operational taxonomic units (OTUs), towards a stable and reproducible core community. Four of these OTUs already accounted for a cumulative abundance of 60%. This core community was dominated by Rhodobacteraceae (30.5%), Alteromonadaceae (27.7%), and Oceanospirillales (18.5%) which was qualitatively and quantitatively most similar to its conspecific original. These findings reject a lottery assembly model of bacterial colonization and suggest selective microhabitat filtering. This is likely due to diatom host traits such as surface properties and different levels of specialization resulting in reciprocal stable-state associations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-05-04
    Description: We examine CMIP6 simulations of Arctic sea‐ice area and volume. We find that CMIP6 models produce a wide spread of mean Arctic sea‐ice area, capturing the observational estimate within the multi‐model ensemble spread. The CMIP6 multi‐model ensemble mean provides a more realistic estimate of the sensitivity of September Arctic sea‐ice area to a given amount of anthropogenic CO2 emissions and to a given amount of global warming, compared with earlier CMIP experiments. Still, most CMIP6 models fail to simulate at the same time a plausible evolution of sea‐ice area and of global mean surface temperature. In the vast majority of the available CMIP6 simulations, the Arctic Ocean becomes practically sea‐ice free (sea‐ice area 〈 1 million km2) in September for the first time before the year 2050 in each of the four emission scenarios SSP1‐1.9, SSP1‐2.6, SSP2‐4.5 and SSP5‐8.5 examined here.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-07-07
    Description: We analyzed velocity and hydrographic data from 23 moorings in the northeast Chukchi Sea from 2011 to 2014. In most years the eastern side of Hanna Shoal was strongly stratified year-round, while weakly stratified regions prevailed on the shelf south and west of the Shoal. Stratification differences cause differential vertical mixing rates, which in conjunction with advection of different bottom water properties resulted in seasonally-varying along-isobath density gradients. In agreement with numerical models, we find that bottom waters flow anticyclonically around the Shoal. Whereas most of the shelf responded barotropically to wind-forcing, there was a strong baroclinic component to the flow field northeast of Hanna Shoal, resulting in no net vertically-integrated transport on average. In contrast there is a net eastward transport from west of the Shoal, which implies convergence north of the Shoal. Convergence and along-isobath density gradients may foster cross-shelf exchange north of Hanna Shoal. Modal analyses indicate that the shelf south of the Shoal and Barrow Canyon responded coherently to local and remote winds, whereas the wind-current response around Hanna Shoal was less coherent. Barotropic topographic waves, of ~3-day period, were generated episodically northeast of the Shoal and propagate clockwise around Hanna Shoal, but are blocked from entering Barrow Canyon and are possibly scattered by the horizontally sheared flow and converging isobaths on the western side of the Shoal. Analysis of water properties on the western side of Hanna Shoal suggests that these include contributions from the western and southern portions of the Chukchi Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 47(13), ISSN: 0094-8276
    Publication Date: 2020-07-20
    Description: The response of the East Antarctic Ice Sheet to global warming represents a major source of uncertainty in sea level projections. Thinning of the East Antarctic George V and Sabrina Coast ice‐cover is currently taking place, and regional ice‐sheet instability episodes might have been triggered in past warm climates. However, the magnitude of ice retreat in the past can not yet be quantitatively derived from paleo‐proxy records alone. We propose that a runaway retreat of the George V coast grounding line and subsequent instability of the Wilkes Basin ice‐sheet would either leave a clear imprint on the water isotope composition in the Talos Dome region or prohibit a Talos Dome ice‐core record from the Last Interglacial altogether. Testing this hypothesis our ice sheet model simulations suggest, that Wilkes Basin ice‐sheet retreat remained relatively limited during the Last Interglacial and provide a constraint on Last Interglacial East Antarctic grounding line stability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-08-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-08-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-02-16
    Description: A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205±0.01 Ma) when atmospheric CO2 exceeded pre-industrial concentrations, but were similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial values, by ∼2.3°C for the combined proxy data (foraminifera Mg∕Ca and alkenones), or by ∼3.2–3.4°C (alkenones only). Compared to the pre-industrial period, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values. Our results demonstrate that even under low-CO2 emission scenarios, surface ocean warming may be expected to exceed model projections and will be accentuated in the higher latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-08-05
    Description: Paleoceanographic evidence commonly indicates that Last Glacial Maximum surface temperatures in the Japan Sea were comparable to modern conditions, in striking difference to colder neighboring regions. Here, based on a core from the central Japan Sea, our results show similar UK′37‐ and TEXL86‐derived temperatures between 24.7 and 16.3 ka BP, followed by an abrupt divergence at ~16.3 ka BP and a weakening of divergence after ~8.7 ka BP. We attribute this process to a highly stratified glacial upper ocean controlled by the East Asian Summer Monsoon, increasing thermal gradient between surface and subsurface layers during the deglaciation and the intrusion of Tsushima Warm Current since the mid‐Holocene, respectively. Therefore, we suggest that threshold‐like changes in upper‐ocean temperatures linked to sea level rise and monsoon dynamics, rather than just sea surface temperatures, play a critical role in shaping the thermal and ventilation history of this NW Pacific marginal sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 47(16), pp. e2019GL086810, ISSN: 0094-8276
    Publication Date: 2020-09-14
    Description: We simulate the two Coupled Model Intercomparison Project scenarios RCP4.5 and RCP8.5, to assess the effects of melt‐induced fresh water on the Atlantic meridional overturning circulation (AMOC). We use a newly developed climate model with high resolution at the coasts, resolving the complex ocean dynamics. Our results show an AMOC recovery in simulations run with and without an included ice sheet model. We find that the ice sheet adds a strong decadal variability on the freshwater release, resulting in intervals in which it reduces the surface runoff by high accumulation rates. This compensating effect is missing in climate models without dynamic ice sheets. Therefore, we argue to assess those freshwater hosing experiments critically, which aim to parameterize Greenland's freshwater release. We assume the increasing net evaporation over the Atlantic and the resulting increase in ocean salinity, to be the main driver of the AMOC recovery.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-09-28
    Description: Reconstructions of global hydroclimate during the Common Era (CE; the past ∼2000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (δ18O) or hydrogen (δ2H) isotopic compositions of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 759 isotope records from the terrestrial and marine realms, including glacier and ground ice (210); speleothems (68); corals, sclerosponges, and mollusks (143); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and nonexperts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate-model-simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model–data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593 (last access: 30 July 2020).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-07-23
    Description: Originating from the boreal forest and often transported over large distances, driftwood characterises many Arctic coastlines. Here we present a combined assessment of radiocarbon (14C) and dendrochronological (ring width) age estimates of driftwood samples to constrain the progradation of two Holocene beach-ridge systems near the Lena Delta in the Siberian Arctic (Laptev Sea). Our data show that the 14C ages obtained on syndepositional driftwood from beach deposits yield surprisingly coherent chronologies for the coastal evolution of the field sites. The dendrochronological analysis of wood from modern driftlines revealed the origin and recent delivery of the wood from the Lena River catchments. This finding suggests that the duration transport lies within the uncertainty of state-of-the-art 14C dating and thus substantiates the validity of age indication obtained from driftwood. This observation will help to better understand changes in similar coastal environments, and to improve our knowledge about the response of coastal systems to past climate and sea-level changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-11-16
    Description: The Northeast Greenland Ice Stream (NEGIS) extends around 600 km upstream from the coast to its onset near the ice divide in interior Greenland. Several maps of surface velocity and topography of interior Greenland exist, but their accuracy is not well constrained by in situ observations. Here we present the results from a GPS mapping of surface velocity in an area located approximately 150 km from the ice divide near the East Greenland Ice-core Project (EastGRIP) deep-drilling site. A GPS strain net consisting of 63 poles was established and observed over the years 2015–2019. The strain net covers an area of 35 km by 40 km, including both shear margins. The ice flows with a uniform surface speed of approximately 55 m a^−1 within a central flow band with longitudinal and transverse strain rates on the order of 10−4 a^−1 and increasing by an order of magnitude in the shear margins. We compare the GPS results to the Arctic Digital Elevation Model and a list of satellite-derived surface velocity products in order to evaluate these products. For each velocity product, we determine the bias in and precision of the velocity compared to the GPS observations, as well as the smoothing of the velocity products needed to obtain optimal precision. The best products have a bias and a precision of ∼0.5 m a^−1. We combine the GPS results with satellite-derived products and show that organized patterns in flow and topography emerge in NEGIS when the surface velocity exceeds approximately 55 m a−1 and are related to bedrock topography.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Climate of the Past, Copernicus, 16(6), pp. 2275-2323, ISSN: 1814-9332
    Publication Date: 2021-07-01
    Description: We present the Alfred Wegener Institute's contribution to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) wherein we employ the Community Earth System Models (COSMOS) that include a dynamic vegetation scheme. This work builds on our contribution to Phase 1 of the Pliocene Model Intercomparison Project (PlioMIP1) wherein we employed the same model without dynamic vegetation. Our input to the PlioMIP2 special issue of Climate of the Past is twofold. In an accompanying paper we compare results derived with COSMOS in the framework of PlioMIP2 and PlioMIP1. With this paper we present details of our contribution with COSMOS to PlioMIP2. We provide a description of the model and of methods employed to transfer reconstructed mid-Pliocene geography, as provided by the Pliocene Reconstruction and Synoptic Mapping Initiative Phase 4 (PRISM4), to model boundary conditions. We describe the spin-up procedure for creating the COSMOS PlioMIP2 simulation ensemble and present large-scale climate patterns of the COSMOS PlioMIP2 mid-Pliocene core simulation. Furthermore, we quantify the contribution of individual components of PRISM4 boundary conditions to characteristics of simulated mid-Pliocene climate and discuss implications for anthropogenic warming. When exposed to PRISM4 boundary conditions, COSMOS provides insight into a mid-Pliocene climate that is characterised by increased rainfall (+0.17 mm d−1) and elevated surface temperature (+3.37 ∘C) in comparison to the pre-industrial (PI). About two-thirds of the mid-Pliocene core temperature anomaly can be directly attributed to carbon dioxide that is elevated with respect to PI. The contribution of topography and ice sheets to mid-Pliocene warmth is much smaller in contrast – about one-quarter and one-eighth, respectively, and nonlinearities are negligible. The simulated mid-Pliocene climate comprises pronounced polar amplification, a reduced meridional temperature gradient, a northwards-shifted tropical rain belt, an Arctic Ocean that is nearly free of sea ice during boreal summer, and muted seasonality at Northern Hemisphere high latitudes. Simulated mid-Pliocene precipitation patterns are defined by both carbon dioxide and PRISM4 paleogeography. Our COSMOS simulations confirm long-standing characteristics of the mid-Pliocene Earth system, among these increased meridional volume transport in the Atlantic Ocean, an extended and intensified equatorial warm pool, and pronounced poleward expansion of vegetation cover. By means of a comparison of our results to a reconstruction of the sea surface temperature (SST) of the mid-Pliocene we find that COSMOS reproduces reconstructed SST best if exposed to a carbon dioxide concentration of 400 ppmv. In the Atlantic to Arctic Ocean the simulated mid-Pliocene core climate state is too cold in comparison to the SST reconstruction. The discord can be mitigated to some extent by increasing carbon dioxide that causes increased mismatch between the model and reconstruction in other regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-11-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-11-25
    Description: Antarctic krill (Euphausia superba) are high latitude pelagic organisms which play a key ecological role in the ecosystem of the Southern Ocean. To synchronize their daily and seasonal life-traits with their highly rhythmic environment, krill rely on the implementation of rhythmic strategies which might be regulated by a circadian clock. A recent analysis of krill circadian transcriptome revealed that their clock might be characterized by an endogenous free-running period of about 12–15 h. Using krill exposed to simulated light/dark cycles (LD) and constant darkness (DD), we investigated the circadian regulation of krill diel vertical migration (DVM) and oxygen consumption, together with daily patterns of clock gene expression in brain and eyestalk tissue. In LD, we found clear 24 h rhythms of DVM and oxygen consumption, suggesting a synchronization with photoperiod. In DD, the DVM rhythm shifted to a 12 h period, while the peak of oxygen consumption displayed a temporal advance during the subjective light phase. This suggested that in free-running conditions the periodicity of these clock-regulated output functions might reflect the shortening of the endogenous period observed at the transcriptional level. Moreover, differences in the expression patterns of clock gene in brain and eyestalk, in LD and DD, suggested the presence in krill of a multiple oscillator system. Evidence of short periodicities in krill behavior and physiology further supports the hypothesis that a short endogenous period might represent a circadian adaption to cope with extreme seasonal photoperiodic variability at high latitude.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-05-10
    Description: In this work we describe the compilation and homogenization of an extensive dataset of aerosol iodine field observations in the period between 1963 and 2018 and we discuss the spatial and temporal dependences of total iodine in bulk aerosol by comparing the observations with CAM-Chem model imulations. Total iodine in aerosol shows a distinct latitudinal dependence, with an enhancement towards the northern hemisphere (NH) tropics and lower values towards the poles. This behavior, which has been predicted by atmospheric models to depend on the global distribution of the main ceanic iodine source (which in turn depends on the reaction of surface ozone with aqueous iodide on he sea water-air interface, generating gas-phase I2 and HOI), is confirmed here by field observations for the first time. Longitudinally, there is some indication of a wave-one profile in the Tropics, which peaks in the Atlantic and shows a minimum in the Pacific, following the wave-one longitudinal variation of tropical tropospheric ozone. New data from Antarctica show that the south polar seasonal variation of iodine in aerosol mirrors that observed previously in the Arctic, with two equinoctial maxima and the dominant maximum occurring in spring. While no clear seasonal variability is observed in NH middle latitudes, there is an indication of different seasonal cycles in the NH tropical Atlantic and Pacific. A weak positive long-term trend is observed in the tropical annual averages, which is consistent with an enhancement of the anthropogenic ozone-driven global oceanic source of iodine over the last 50 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-01-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 48(10), pp. e2020GL090951, ISSN: 0094-8276
    Publication Date: 2021-07-01
    Description: Freshwater in the Arctic Ocean is one of the key climate components. It is not well understood how the capability of the Arctic Ocean to store freshwater will develop when freshwater supplies increase in a warming climate. By using numerical experiments, we find that this capability varies with the Arctic sea ice decline nonmonotonically, with the largest capability at intermediate strength of sea ice decline. Through enhancing the ocean surface stress, sea ice decline not only accumulates freshwater toward the Amerasian Basin but also tends to reduce the amount of freshwater in both the Eurasian and Amerasian basins by increasing the occupation of Atlantic-origin water in the upper ocean. An increase in river runoff modulates the counterbalance of the two competing effects, leading to the nonmonotonic changes of the Arctic freshwater storage capability in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Reviews of Geophysics, Wiley, 59(2), pp. e2020RG000727, ISSN: 8755-1209
    Publication Date: 2021-06-17
    Description: The Mid-Pleistocene Transition (MPT), where the Pleistocene glacial cycles changed from 41 to ∼100 kyr periodicity, is one of the most intriguing unsolved issues in the field of paleoclimatology. Over the course of over four decades of research, several different physical mechanisms have been proposed to explain the MPT, involving non-linear feedbacks between ice sheets and the global climate, the solid Earth, ocean circulation, and the carbon cycle. Here, we review these different mechanisms, comparing how each of them relates to the others, and to the currently available observational evidence. Based on this discussion, we identify the most important gaps in our current understanding of the MPT. We discuss how new model experiments, which focus on the quantitative differences between the different physical mechanisms, could help fill these gaps. The results of those experiments could help interpret available proxy evidence, as well as new evidence that is expected to become available.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-07-05
    Description: Earth system and climate modelling involves the simulation of processes on a wide range of scales and within and across various compartments of the Earth system. In practice, component models are often developed independently by different research groups, adapted by others to their special interests and then combined using a dedicated coupling software. This procedure not only leads to a strongly growing number of available versions of model components and coupled setups but also to model- and high-performance computing (HPC)-system-dependent ways of obtaining, configuring, building and operating them. Therefore, implementing these Earth system models (ESMs) can be challenging and extremely time consuming, especially for less experienced modellers or scientists aiming to use different ESMs as in the case of intercomparison projects. To assist researchers and modellers by reducing avoidable complexity, we developed the ESM-Tools software, which provides a standard way for downloading, configuring, compiling, running and monitoring different models on a variety of HPC systems. It should be noted that ESM-Tools is not a coupling software itself but a workflow and infrastructure management tool to provide access to increase usability of already existing components and coupled setups. As coupled ESMs are technically the more challenging tasks, we will focus on coupled setups, always implying that stand-alone models can benefit in the same way. With ESM-Tools, the user is only required to provide a short script consisting of only the experiment-specific definitions, while the software executes all the phases of a simulation in the correct order. The software, which is well documented and easy to install and use, currently supports four ocean models, three atmosphere models, two biogeochemistry models, an ice sheet model, an isostatic adjustment model, a hydrology model and a land-surface model. Compared to previous versions, ESM-Tools has lately been entirely recoded in a high-level programming language (Python) and provides researchers with an even more user-friendly interface for Earth system modelling. ESM-Tools was developed within the framework of the Advanced Earth System Model Capacity project, supported by the Helmholtz Association.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-08-02
    Description: High Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-tolate Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-07-26
    Description: Plate reconstruction studies show that the Neotethys Ocean was closing due to the convergence of Africa and Eurasia toward the end of the Cretaceous. The period around 75 Ma reflects the onset of continental collision between the two plates as convergence continued to be taken up mostly by subduction of the Neotethys slab beneath Eurasia. The Owen transform plate boundary in the northeast accommodated the fast northward motion of the Indian plate relative to the African plate. The rest of the plate was surrounded by mid-ocean ridges. Africa was experiencing continent-wide rifting related to northeast-southwest extension. We aim to quantify the forces and paleostresses that may have driven this continental extension. We use the latest plate kinematic reconstructions in a grid search to estimate horizontal gravitational stresses (HGSs), plate boundary forces, and the plate's interaction with the asthenosphere. The contribution of dynamic topography to HGSs is based on recent mantle convection studies. We model intraplate stresses and compare them with the strain observations. The fit to observations favors models where dynamic topography amplitudes are smaller than 300 m. The results also indicate that the net pull transmitted from slab to the surface African plate was low. To put this into context, we notice that available tectonic reconstructions show fragmented subduction zones and various colliding micro-continents along the northern margin of the African plate around this time. We therefore interpret a low net pull as resulting from either a small average slab length or from the micro-continents' resistance to subduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-09-18
    Description: We investigate hydrology during a past climate slightly warmer than the present: the Last Interglacial (LIG). With daily output of pre‐industrial and LIG simulations from eight new climate models we force hydrological model PCR‐GLOBWB, and in turn hydrodynamic model CaMa‐Flood. Compared to pre‐industrial, annual mean LIG runoff, discharge, and 100‐year flood volume are considerably larger in the Northern Hemisphere, by 14%, 25% and 82%, respectively. Anomalies are negative in the Southern Hemisphere. In some boreal regions, LIG runoff and discharge are lower despite higher precipitation, due the higher temperatures and evaporation. LIG discharge is much higher for the Niger, Congo, Nile, Ganges, Irrawaddy, Pearl, and lower for the Mississippi, Saint Lawrence, Amazon, Paraná, Orange, Zambesi, Danube, Ob. Discharge is seasonally postponed in tropical rivers affected by monsoon changes. Results agree with published proxies on the sign of discharge anomaly in 15 of 23 sites where comparison is possible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Climate of the Past, Copernicus, 16(4), pp. 1643-1665, ISSN: 1814-9332
    Publication Date: 2021-02-16
    Description: We compare results obtained from modeling the mid-Pliocene warm period using the Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) with the two different modeling methodologies and sets of boundary conditions prescribed for the two phases of the Pliocene Model Intercomparison Project (PlioMIP), tagged PlioMIP1 and PlioMIP2. Here, we bridge the gap between our contributions to PlioMIP1 (Stepanek and Lohmann, 2012) and PlioMIP2 (Stepanek et al., 2020). We highlight some of the effects that differences in the chosen mid-Pliocene model setup (PlioMIP2 vs. PlioMIP1) have on the climate state as derived with COSMOS, as this information will be valuable in the framework of the model–model and model–data comparison within PlioMIP2. We evaluate the model sensitivity to improved mid-Pliocene boundary conditions using PlioMIP's core mid-Pliocene experiments for PlioMIP1 and PlioMIP2 and present further simulations in which we test model sensitivity to variations in paleogeography, orbit, and the concentration of CO2. Firstly, we highlight major changes in boundary conditions from PlioMIP1 to PlioMIP2 and also the challenges recorded from the initial effort. The results derived from our simulations show that COSMOS simulates a mid-Pliocene climate state that is 0.29°C colder in PlioMIP2 if compared to PlioMIP1 (17.82°C in PlioMIP1, 17.53°C in PlioMIP2; values based on simulated surface skin temperature). On the one hand, high-latitude warming, which is supported by proxy evidence of the mid-Pliocene, is underestimated in simulations of both PlioMIP1 and PlioMIP2. On the other hand, spatial variations in surface air temperature (SAT), sea surface temperature (SST), and the distribution of sea ice suggest improvement of simulated SAT and SST in PlioMIP2 if employing the updated paleogeography. Our PlioMIP2 mid-Pliocene simulation produces warmer SSTs in the Arctic and North Atlantic Ocean than those derived from the respective PlioMIP1 climate state. The difference in prescribed CO2 accounts for 0.5°C of temperature difference in the Arctic, leading to an ice-free summer in the PlioMIP1 simulation, and a quasi ice-free summer in PlioMIP2. Beyond the official set of PlioMIP2 simulations, we present further simulations and analyses that sample the phase space of potential alternative orbital forcings that have acted during the Pliocene and may have impacted geological records. Employing orbital forcing, which differs from that proposed for PlioMIP2 (i.e., corresponding to pre-industrial conditions) but falls into the mid-Pliocene time period targeted in PlioMIP, leads to pronounced annual and seasonal temperature variations. Our result identifies the changes in mid-Pliocene paleogeography from PRISM3 to PRISM4 as the major driver of the mid-Pliocene warmth within PlioMIP and not the minor differences in forcings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-07-01
    Description: Palaeoclimate simulations improve our understanding of the climate, inform us about the performance of climate models in a different climate scenario, and help to identify robust features of the climate system. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), derived from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The PlioMIP2 ensemble simulates Arctic (60–90 °N) annual mean surface air temperature (SAT) increases of 3.7 to 11.6 °C compared to the pre-industrial period, with a multi-model mean (MMM) increase of 7.2 °C. The Arctic warming amplification ratio relative to global SAT anomalies in the ensemble ranges from 1.8 to 3.1 (MMM is 2.3). Sea ice extent anomalies range from −3.0 to −10.4×106 km2, with a MMM anomaly of −5.6×106 km2, which constitutes a decrease of 53 % compared to the pre-industrial period. The majority (11 out of 16) of models simulate summer sea-ice-free conditions (≤1×106 km2) in their mPWP simulation. The ensemble tends to underestimate SAT in the Arctic when compared to available reconstructions, although the degree of underestimation varies strongly between the simulations. The simulations with the highest Arctic SAT anomalies tend to match the proxy dataset in its current form better. The ensemble shows some agreement with reconstructions of sea ice, particularly with regard to seasonal sea ice. Large uncertainties limit the confidence that can be placed in the findings and the compatibility of the different proxy datasets. We show that while reducing uncertainties in the reconstructions could decrease the SAT data–model discord substantially, further improvements are likely to be found in enhanced boundary conditions or model physics. Lastly, we compare the Arctic warming in the mPWP to projections of future Arctic warming and find that the PlioMIP2 ensemble simulates greater Arctic amplification than CMIP5 future climate simulations and an increase instead of a decrease in Atlantic Meridional Overturning Circulation (AMOC) strength compared to pre-industrial period. The results highlight the importance of slow feedbacks in equilibrium climate simulations, and that caution must be taken when using simulations of the mPWP as an analogue for future climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3The Cryosphere, Copernicus, 14(11), pp. 3843-3873, ISSN: 1994-0424
    Publication Date: 2020-11-11
    Description: Antarctic geothermal heat flow (GHF) affects the temperature of the ice sheet, determining its ability to slide and internally deform, as well as the behaviour of the continental crust. However, GHF remains poorly constrained, with few and sparse local, borehole-derived estimates and large discrepancies in the magnitude and distribution of existing continent-scale estimates from geophysical models. We review the methods to estimate GHF, discussing the strengths and limitations of each approach; compile borehole and probe-derived estimates from measured temperature profiles; and recommend the following future directions. (1) Obtain more borehole-derived estimates from the subglacial bedrock and englacial temperature profiles. (2) Estimate GHF from inverse glaciological modelling, constrained by evidence for basal melting and englacial temperatures (e.g. using microwave emissivity). (3) Revise geophysically derived GHF estimates using a combination of Curie depth, seismic, and thermal isostasy models. (4) Integrate in these geophysical approaches a more accurate model of the structure and distribution of heat production elements within the crust and considering heterogeneities in the underlying mantle. (5) Continue international interdisciplinary communication and data access.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-12-07
    Description: Northwestern Alaska has been highly affected by changing climatic patterns with new temperature and precipitation maxima over the recent years. In particular, the Baldwin and northern Seward peninsulas are characterized by an abundance of thermokarst lakes that are highly dynamic and prone to lake drainage like many other regions at the southern margins of continuous permafrost. We used Sentinel-1 synthetic aperture radar (SAR) and Planet CubeSat optical remote sensing data to analyze recently observed widespread lake drainage. We then used synoptic weather data, climate model outputs and lake ice growth simulations to analyze potential drivers and future pathways of lake drainage in this region. Following the warmest and wettest winter on record in 2017/2018, 192 lakes were identified as having completely or partially drained by early summer 2018, which exceeded the average drainage rate by a factor of ∼ 10 and doubled the rates of the previous extreme lake drainage years of 2005 and 2006. The combination of abundant rain- and snowfall and extremely warm mean annual air temperatures (MAATs), close to 0 ∘C, may have led to the destabilization of permafrost around the lake margins. Rapid snow melt and high amounts of excess meltwater further promoted rapid lateral breaching at lake shores and consequently sudden drainage of some of the largest lakes of the study region that have likely persisted for millennia. We hypothesize that permafrost destabilization and lake drainage will accelerate and become the dominant drivers of landscape change in this region. Recent MAATs are already within the range of the predictions by the University of Alaska Fairbanks' Scenarios Network for Alaska and Arctic Planning (UAF SNAP) ensemble climate predictions in scenario RCP6.0 for 2100. With MAAT in 2019 just below 0 ∘C at the nearby Kotzebue, Alaska, climate station, permafrost aggradation in drained lake basins will become less likely after drainage, strongly decreasing the potential for freeze-locking carbon sequestered in lake sediments, signifying a prominent regime shift in ice-rich permafrost lowland regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 47(22), pp. 1-11, ISSN: 0094-8276
    Publication Date: 2020-11-18
    Description: Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner‐Ronne Ice Shelf are low. However, large‐scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high‐resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on‐shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-03-11
    Description: 129I measurements on samples collected during GEOTRACES oceanographic missions in the Arctic Ocean in 2015 have provided the first detailed, synoptic 129I sections across the Eurasian, Canada and Makarov Basins. During the 1990s, increased discharges of 129I from European nuclear fuel reprocessing plants produced a large, tracer spike whose passage through the Arctic Ocean has been followed by 129I time series measurements over the past 25 years. Elevated 129I levels measured over the Lomonosov and Alpha-Mendeleyev Ridges in 2015 were associated with tracer labeled, Atlantic-origin water bathymetrically steered by the ridge systems through the central Arctic while lower 129I levels were evident in the more poorly ventilated basin interiors. 129I levels of 200-400 x 107 at/l measured in intermediate waters in 2015 had increased by a factor of 10 compared to results from the same locations in 1994-1996 owing to the circulation of the 1990s, 129I input spike mainly associated with enhanced discharges from the La Hague nuclear fuel reprocessing plant. Comparisons of the patterns of 129I distributions between the mid-1990s and 2015 delineate large scale circulation changes that occurred during the shift from a positive Arctic Oscillation and a cyclonic circulation regime in the mid-1990s to anticyclonic circulation in 2015. The latter is characterized by a broadened Beaufort Gyre in the upper ocean, a weakened boundary current and partial mid-depth, AW flow reversal in the southern Canada Basin. Tracer 129I simulations using the applied circulation model, NAOSIM agree with both historical 129I results and recent GEOTRACES data sets, thereby lending context and credibility to the interpretation of large scale changes in arctic circulation and their relationship to shifts in climate indices revealed by tracer 129I distributions. This paper reports measurements and simulation results for 129I for the 1990s and 2015, and interprets them in the context of ocean circulation responses to changing atmospheric forcing regimes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-02-25
    Description: International Ocean Discovery Program (IODP) Expedition 382 in the Scotia Sea’s Iceberg Alley recovered among the most continuous and highest resolution stratigraphic records in the Southern Ocean near Antarctica spanning the last 3.3 Myr. Sites drilled in Dove Basin (U1536/U1537) have well‐resolved magnetostratigraphy and a strong imprint of orbital forcing in their lithostratigraphy. All magnetic reversals of the last 3.3 Myr are identified, providing a robust age model independent of orbital tuning. During the Pleistocene, alternation of terrigenous versus diatomaceous facies shows power in the eccentricity and obliquity frequencies comparable to the amplitude modulation of benthic δ18O records. This suggests that variations in Dove Basin lithostratigraphy during the Pleistocene reflect a similar history as globally integrated ice volume at these frequencies. However, power in the precession frequencies over the entire ∼3.3 Myr record does not match the amplitude modulation of benthic δ18O records, suggesting Dove Basin contains a unique record at these frequencies. Comparing the position of magnetic reversals relative to local facies changes in Dove Basin and the same magnetic reversals relative to benthic δ18O at North Atlantic IODP Site U1308, we demonstrate Dove Basin facies change at different times than benthic δ18O during intervals between ∼3 and 1 Ma. These differences are consistent with precession phase shifts and suggest climate signals with a Southern Hemisphere summer insolation phase were recorded around Antarctica. If Dove Basin lithology reflects local Antarctic ice volume changes, these signals could represent ice sheet precession‐paced variations not captured in benthic δ18O during the 41‐kyr world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-07-01
    Description: The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ 18 O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed inde- pendently of far-field sea level and δ 18 O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ 18 O and sea level may be more complex than assumed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-04-01
    Description: Eolian mineral dust is an active agent in the global climate system. It affects planetary albedo and can influence marine biological productivity and ocean‐atmosphere carbon dynamics. This makes understanding of the global dust cycle crucial for constraining the dust/climate relationship, which requires long‐term dust emission records for all major dust sources. Despite their importance, the sources of atmospheric dust deposited in the Southern Ocean remain poorly constrained. Eolian dust in the Pacific sector of the Southern Ocean is generally assumed to originate from Australia, with minor contributions from New Zealand. Here we present a high‐resolution elemental record of terrestrial inputs for the past ∼410 kyr from marine sediment core PS75/100‐4 recovered from east of South Island, New Zealand. Sediment grain size is slightly finer than that of loess deposits from South Island, New Zealand, and is coarser than that of marine sediments in the Tasman Sea to the west of New Zealand, which indicates that the dust originated mainly from New Zealand and not only from Australia. Core PS75/100‐4 records lithogenic mass accumulation rates ranging from ∼0.01 to 0.69 g/cm2/kyr (∼0.20 g/cm2/kyr average), with variations over a factor of ∼3‐4 over glacial versus interglacial timescales for the past 410 kyr. Our geochemical data correlate well with Southern Ocean and Antarctic eolian dust records and suggest a westerly wind‐supplied dust signal from New Zealand. Our findings, therefore, suggest that New Zealand should be considered an important long‐term regional dust source in global dust cycle models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-07-20
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-08
    Description: The ESA Earth Explorer CryoSat-2 was launched on 8 April 2010 to monitor the precise changes in the thickness of terrestrial ice sheets and marine floating ice. To do that, CryoSat orbits the planet at an altitude of around 720 km with a retrograde orbit inclination of 92∘ and a quasi repeat cycle of 369 d (30 d subcycle). To reach the mission goals, the CryoSat products have to meet the highest quality standards to date, achieved through continual improvements of the operational processing chains. The new CryoSat Ice Baseline-D, in operation since 27 May 2019, represents a major processor upgrade with respect to the previous Ice Baseline-C. Over land ice the new Baseline-D provides better results with respect to the previous baseline when comparing the data to a reference elevation model over the Austfonna ice cap region, improving the ascending and descending crossover statistics from 1.9 to 0.1 m. The improved processing of the star tracker measurements implemented in Baseline-D has led to a reduction in the standard deviation of the point-to-point comparison with the previous star tracker processing method implemented in Baseline-C from 3.8 to 3.7 m. Over sea ice, Baseline-D improves the quality of the retrieved heights inside and at the boundaries of the synthetic aperture radar interferometric (SARIn or SIN) acquisition mask, removing the negative freeboard pattern which is beneficial not only for freeboard retrieval but also for any application that exploits the phase information from SARIn Level 1B (L1B) products. In addition, scatter comparisons with the Beaufort Gyre Exploration Project (BGEP; https://www.whoi.edu/beaufortgyre, last access: October 2019) and Operation IceBridge (OIB; Kurtz et al., 2013) in situ measurements confirm the improvements in the Baseline-D freeboard product quality. Relative to OIB, the Baseline-D freeboard mean bias is reduced by about 8 cm, which roughly corresponds to a 60 % decrease with respect to Baseline-C. The BGEP data indicate a similar tendency with a mean draft bias lowered from 0.85 to −0.14 m. For the two in situ datasets, the root mean square deviation (RMSD) is also well reduced from 14 to 11 cm for OIB and by a factor of 2 for the BGEP. Observations over inland waters show a slight increase in the percentage of good observations in Baseline-D, generally around 5 %–10 % for most lakes. This paper provides an overview of the new Level 1 and Level 2 (L2) CryoSat Ice Baseline-D evolutions and related data quality assessment, based on results obtained from analyzing the 6-month Baseline-D test dataset released to CryoSat expert users prior to the final transfer to operations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-08-03
    Description: The shape of ice shelf cavities are a major source of uncertainty in understanding ice‐ocean interactions. This limits assessments of the response of the Antarctic ice sheets to climate change. Here we use vibroseis seismic reflection surveys to map the bathymetry beneath the Ekström Ice Shelf, Dronning Maud Land. The new bathymetry reveals an inland‐sloping trough, reaching depths of 1,100 m below sea level, near the current grounding line, which we attribute to erosion by palaeo‐ice streams. The trough does not cross‐cut the outer parts of the continental shelf. Conductivity‐temperature‐depth profiles within the ice shelf cavity reveal the presence of cold water at shallower depths and tidal mixing at the ice shelf margins. It is unknown if warm water can access the trough. The new bathymetry is thought to be representative of many ice shelves in Dronning Maud Land, which together regulate the ice loss from a substantial area of East Antarctica.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-08-10
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are: data from 106 more cruises added, extension of time coverage until 2019, and the inclusion of available discrete fugacity of CO2 (fCO2) values in the merged product files. GLODAPv2.2020 includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product. They correct for errors related to measurement, calibration, and data handling practices, while taking into account any known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg−1 in dissolved inorganic carbon, 4 μmol kg−1 in total alkalinity, 0.01–0.02, depending on region, in pH, and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete fCO2 were not subjected to bias comparison or adjustments. The original data, their documentation and doi codes are available at the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, last access: 22 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). The bias corrected product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-09-14
    Description: Ice nucleating particles (INPs) affect the radiative properties of cold clouds. Knowledge concerning their concentration above ground level and their potential sources is scarce. Here we present the first highly temperature resolved ice nucleation spectra of airborne samples from an aircraft campaign during late winter in 2018. Most INP spectra featured low concentration levels (〈3 · 10−4 L−1 at −15°C). −2 −1 However, we also found INP concentrations of up to 1.8·10 L at −15°C and freezing onsets as high as −7.5°C for samples mainly from the marine boundary layer. Shape and onset temperature of the ice nucleation spectra of those samples as well as heat sensitivity hint at biogenic INP. Colocated measurements additionally indicate a local marine influence rather than long‐range transport. Our results suggest that even in late winter above 80°N a local marine source for biogenic INP, which can efficiently nucleate ice at high temperatures, is present. Clouds are a key factor in the energy budget of the Arctic atmosphere. Ice nucleating particles (INPs) can modify the radiation properties and lifetime of clouds by affecting the relative abundance of liquid and frozen droplets in a cloud. Despite this important ability, knowledge about the INP concentration above ground level is limited as airborne INP measurements are very scarce in the Arctic. Here we present results from an aircraft campaign, which took place during the late winter of 2018 in latitudes above 80°N. We found INP concentrations at above −15°C, which are similar to those found in midlatitudes. These INPs also initiate freezing already at high temperatures. We found indications that the INPs are biogenic and originate from a local, marine source, rather than being transported from midlatitudes into the Arctic. Due to the presence of numerous cracks, open leads and polynyas in the sea ice in the investigation area, the ocean may provide a source for these biogenic INP in an environment, where sources on land are still shrouded in snow and ice. However, in a warming Arctic contributions from different sources might change, making the characterization of the current state important.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geochemistry, Geophysics, Geosystems, Wiley, 21, pp. #e2020GC009133
    Publication Date: 2020-11-01
    Description: A regional seismic survey on the southeastern Lomonosov Ridge and adjacent basins provides constraints on the coupled evolution of ocean circulations, depositional regime and tectonic processes. First, Mesozoic strata on the Lomonosov Ridge, its faulted flanks and the initial Amundsen Basin were covered with syn-rift sediments of Paleocene to early Eocene age. Numerous vertical faults indicate differential compaction of possibly anoxic sediments deposited in the young, still isolated Eurasian Basin. The second stage, as indicated by a prominent high-amplitude-reflector sequence (HARS) covering the ridge, was a time of widespread changes in deposition conditions, likely controlled by the ongoing subsidence of the Lomonosov Ridge and gradual opening of the Fram Strait. Episodic incursions of water masses from the North Atlantic probably were the consequences, and led to the deposition of thin sedimentary layers of different lithology. The third stage is marked by continuous deposition since the early Miocene (20 Ma). At that time, the ridge no longer posed an obstacle between the Amerasia and Eurasia Basins and pelagic sedimentation was established. Drift bodies, sediment waves, and erosional structures indicate the onset of circulation. Faulting on the ridge slope has led to a series of terraces where sediment drifts have accumulated since the early Miocene. It is suggested that ongoing sagging of the ridge and currents may have shaped the steep sediment free flanks of the terraces. Lastly, a sequence of high-amplitude reflectors marks the transition to the early Pliocene large-scale Northern Hemisphere glaciations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 47, pp. e2020GL088795, ISSN: 0094-8276
    Publication Date: 2020-11-16
    Description: Optically active water constituents attenuate solar radiation and hence affect the vertical distribution of energy in the upper ocean. To understand their implications, we operate an ocean biogeochemical model coupled to a general circulation model with sea ice. Incorporating the effect of phytoplankton and colored dissolved organic matter (CDOM) on light attenuation in the model increases the sea surface temperature in summer and decreases sea ice concentration in the Arctic Ocean. Locally, the sea ice season is reduced by up to one month. CDOM drives a significant part of these changes, suggesting that an increase of this material will amplify the observed Arctic surface warming through its direct thermal effect. Indirectly, changing advective processes in the Nordic Seas may further intensify this effect. Our results emphasize the phytoplankton and CDOM feedbacks on the Arctic ocean and sea ice system and underline the need to consider these effects in future modeling studies to enhance their plausibility.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-03-04
    Description: Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000 to 2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry-climate model simulations, which assume emissions reductions similar to those caused by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-03-08
    Description: Lake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large‐scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely‐related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10‐values: 1.6–3.7). Cytochrome‐c‐oxidase, lactate dehydrogenase, and 3‐hydroxyacyl‐CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature‐ dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback‐ regulation of enzymatic activities by whole organism responses. The species‐specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature‐dependent migration, movement activity, and mating season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Geochemical evidence of a floating Arctic ice sheet and underlying freshwater in the Arctic Mediterranean in glacial periods, EGU General Assembly 2021, Copernicus, pp. EGU21-12910
    Publication Date: 2021-05-01
    Description: Numerous studies have addressed the possible existence of large floating ice sheets in the glacial Arctic Ocean from theoretical, modelling, or seafloor morphology perspectives. Here, we add evidence from the sediment record that support the existence of such freshwater ice caps in certain intervals, and we discuss their implications for possible non-linear and rapid behaviour of such a system in the high latitudes. We present sedimentary activities of 230Th together with 234U/238U ratios, the concentrations of manganese, sulphur and calcium in the context of lithological information and records of microfossils and their isotope composition. New analyses (PS51/038, PS72/396) and a re-analysis of existing marine sediment records (PS1533, PS1235, PS2185, PS2200, amongst others) in view of the naturally occurring radionuclide 230Thex and, where available, 10Be from the Arctic Ocean and the Nordic Seas reveal the widespread occurrence of intervals with a specific geochemical signature. The pattern of these parameters in a pan-Arctic view can best be explained when assuming the repeated presence of freshwater in frozen and liquid form across large parts of the Arctic Ocean and the Nordic Seas. Based on the sedimentary evidence and known environmental constraints at the time, we develop a glacial scenario that explains how these ice sheets, together with eustatic sea-level changes, may have affected the past oceanography of the Arctic Ocean in a fundamental way that must have led to a drastic and non-linear response to external forcing. This concept offers a possibility to explain and to some extent reconcile contrasting age models for the Late Pleistocene in the Arctic Ocean. Our view, if adopted, offers a coherent dating approach across the Arctic Ocean and the Nordic Seas, linked to events outside the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-06-30
    Description: Biogeochemical processes in subseafloor sediments are closely coupled to global element cycles. To improve the understanding of changes in biogeochemical conditions on geological timescales, we investigate sediment cores from a 1180 m deep hole in the Nankai Trough offshore Japan (Site C0023) drilled during International Ocean Discovery Program Expedition 370. During its tectonic migration from the Shikoku Basin to the Nankai Trough over the past 15 Ma, Site C0023 has experienced significant changes in depositional, thermal, and geochemical conditions. By combining pore-water, solid-phase, and rock magnetic data, we demonstrate that a transition from organic carbon-starved conditions with predominantly aerobic respiration to an elevated carbon burial environment with increased sedimentation occurred at ∼2.5 Ma. Higher rates of organic carbon burial in consequence of increased nutrient supply and productivity likely stimulated the onset of anaerobic electron-accepting processes during organic carbon degradation. A significant temperature increase by ∼50°C across the sediment column associated with trench-style sedimentation since ∼0.5 Ma could increase the bioavailability of organic matter and enhance biogenic methanogenesis. The resulting shifts in reaction fronts led to diagenetic transformation of iron (oxyhydr)oxides into pyrite in the organic carbon-starved sediments several millions of years after burial. We also show that high amounts of reducible iron(III) which can serve as electron acceptor for microbial iron(III) reduction are preserved and still available as phyllosilicate-bound Fe. This is the first study that shows the evolution of long-term variations of (bio-)geochemical processes along tectonic migration of ocean floor, thereby altering the primary sediment composition long after deposition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-06-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-02-17
    Description: Glacial isostatic adjustment (GIA) is a major source of uncertainty for ice and ocean mass balance estimates derived from satellite gravimetry. In Antarctica the gravimetric effect of cryospheric mass change and GIA are of the same order of magnitude. Inverse estimates from geodetic observations hold some promise for mass signal separation. Here, we investigate the combination of satellite gravimetry and altimetry and demonstrate that the choice of input data sets and processing methods will influence the resultant GIA inverse estimate. This includes the combination that spans the full GRACE record (April 2002–August 2016). Additionally, we show the variations that arise from combining the actual time series of the differing data sets. Using the inferred trends, we assess the spread of GIA solutions owing to (1) the choice of different degree-1 and C20 products, (2) viable candidate surface-elevation-change products derived from different altimetry missions corresponding to different time intervals, and (3) the uncertainties associated with firn process models. Decomposing the total-mass signal into the ice mass and the GIA components is strongly dependent on properly correcting for an apparent bias in regions of small signal. Here our ab initio solutions force the mean GIA and GRACE trend over the low precipitation zone of East Antarctica to be zero. Without applying this bias correction, the overall spread of total-mass change and GIA-related mass change using differing degree-1 and C20 products is 68 and 72 Gt a−1, respectively, for the same time period (March 2003–October 2009). The bias correction method collapses this spread to 6 and 5 Gt a−1, respectively. We characterize the firn process model uncertainty empirically by analysing differences between two alternative surface mass balance products. The differences propagate to a 10 Gt a−1 spread in debiased GIA-related mass change estimates. The choice of the altimetry product poses the largest uncertainty on debiased mass change estimates. The spread of debiased GIA-related mass change amounts to 15 Gt a−1 for the period from March 2003 to October 2009. We found a spread of 49 Gt a−1 comparing results for the periods April 2002–August 2016 and July 2010–August 2016. Our findings point out limitations associated with data quality, data processing, and correction for apparent biases.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-09-06
    Description: Antarctica's ice shelves play a key role in stabilizing the ice streams that feed them. Since basal melting largely depends on ice‐ocean interactions, it is vital to attain consistent bathymetry models to estimate water and heat exchange beneath ice shelves. We have constructed bathymetry models beneath the ice shelves of western Dronning Maud Land by inverting airborne gravity data, and incorporating seismic, multibeam and radar depth references. Our models reveal deep glacial troughs beneath the ice shelves and terminal moraines close to the continental shelf breaks, which currently limit the entry of Warm Deep Water from the Southern Ocean. The ice shelves buttress a catchment that comprises an ice volume equivalent to nearly 1 meter of eustatic sea level rise, partly susceptible to ocean forcing. Changes in water temperature and thermocline depth may accelerate marine based ice sheet drainage and constitute an underestimated contribution to future global sea level rise.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-06-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-07-06
    Description: Climate simulations for the North Atlantic and Europe for recent and future conditions simulated with the regionally coupled ROM model are analyzed and compared to the results from the MPI‐ESM. The ROM simulations also include a biogeochemistry and ocean tides. For recent climate conditions, ROM generally improves the simulations compared to the driving model MPI‐ESM. Reduced oceanic biases in the Northern Atlantic are found, as well as a better simulation of the atmospheric circulation, notably storm tracks and blocking. Regarding future climate projections for the 21st century following the RCP 4.5 and 8.5 scenarios, MPI‐ESM and ROM largely agree qualitatively on the climate change signal over Europe. However, many important differences are identified. For example, ROM shows an SST cooling in the Subpolar Gyre which is not present in MPI‐ESM. Under the RCP8.5 scenario, ROM Arctic sea ice cover is thinner and reaches the seasonally ice‐free state by 2055, well before MPI‐ESM. This shows the decisive importance of higher ocean resolution and regional coupling for determining the regional responses to global warming trends. Regarding biogeochemistry, both ROM and MPI‐ESM simulate a widespread decline in winter nutrient concentration in the North Atlantic of up to ~35%. On the other hand, the phytoplankton spring bloom in the Arctic and in the North‐Western Atlantic starts earlier and the yearly primary production is enhanced in the Arctic in the late 21st century. These results clearly demonstrate the added value of ROM to determine more detailed and more reliable climate projections at the regional scale.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-28
    Description: Simulating Arctic Ocean mesoscale eddies in ocean circulation models presents a great challenge because of their small size. This study employs an unstructured‐mesh ocean‐sea ice model to conduct a decadal‐scale global simulation with a 1‐km Arctic. It provides a basinwide overview of Arctic eddy energetics. Increasing model resolution from 4 to 1 km increases Arctic eddy kinetic energy (EKE) and total kinetic energy (TKE) by about 40% and 15%, respectively. EKE is the highest along main currents over topography slopes, where strong conversion from available potential energy to EKE takes place. It is high in halocline with a maximum typically centered in the depth range of 70–110 m, and in the Atlantic Water layer of the Eurasian Basin as well. The seasonal variability of EKE along the continental slopes of southern Canada and eastern Eurasian basins is similar, stronger in fall and weaker in spring.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-25
    Description: Landfast sea ice (fast ice) attached to Antarctic (near-)coastal elements is a critical component of the local physical and ecological systems. Through its direct coupling with the atmosphere and ocean, fast-ice properties are also a potential indicator of processes related to a changing climate. However, in situ fast-ice observations in Antarctica are extremely sparse because of logistical challenges and harsh environmental conditions. Since 2010, a monitoring program observing the seasonal evolution of fast ice in Atka Bay has been conducted as part of the Antarctic Fast Ice Network (AFIN). The bay is located on the northeastern edge of Ekström Ice Shelf in the eastern Weddell Sea, close to the German wintering station Neumayer III. A number of sampling sites have been regularly revisited each year between annual ice formation and breakup to obtain a continuous record of sea-ice and sub-ice platelet-layer thickness, as well as snow depth and freeboard across the bay. Here, we present the time series of these measurements over the last 9 years. Combining them with observations from the nearby Neumayer III meteorological observatory as well as auxiliary satellite images enables us to relate the seasonal and interannual fast-ice cycle to the factors that influence their evolution. On average, the annual consolidated fast-ice thickness at the end of the growth season is about 2 m, with a loose platelet layer of 4 m thickness beneath and 0.70 m thick snow on top. Results highlight the predominately seasonal character of the fast-ice regime in Atka Bay without a significant interannual trend in any of the observed variables over the 9-year observation period. Also, no changes are evident when comparing with sporadic measurements in the 1980s and 1990s. It is shown that strong easterly winds in the area govern the year-round snow distribution and also trigger the breakup of fast ice in the bay during summer months. Due to the substantial snow accumulation on the fast ice, a characteristic feature is frequent negative freeboard, associated flooding of the snow–ice interface, and a likely subsequent snow ice formation. The buoyant platelet layer beneath negates the snow weight to some extent, but snow thermodynamics is identified as the main driver of the energy and mass budgets for the fast-ice cover in Atka Bay. The new knowledge of the seasonal and interannual variability of fast-ice properties from the present study helps to improve our understanding of interactions between atmosphere, fast ice, ocean, and ice shelves in one of the key regions of Antarctica and calls for intensified multidisciplinary studies in this region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-11-23
    Description: Responses of marine primary production to a changing climate are determined by a concert of multiple environmental changes, for example in temperature, light, pCO2, nutrients, and grazing. To make robust projections of future global marine primary production, it is crucial to understand multiple driver effects on phytoplankton. This meta-analysis quantifies individual and interactive effects of dual driver combinations on marine phytoplankton growth rates. Almost 50% of the single-species laboratory studies were excluded because central data and metadata (growth rates, carbonate system, experimental treatments) were insufficiently reported. The remaining data (42 studies) allowed for the analysis of interactions of pCO2 with temperature, light, and nutrients, respectively. Growth rates mostly respond non-additively, whereby the interaction with increased pCO2 profusely dampens growth-enhancing effects of high temperature and high light. Multiple and single driver effects on coccolithophores differ from other phytoplankton groups, especially in their high sensitivity to increasing pCO2. Polar species decrease their growth rate in response to high pCO2, while temperate and tropical species benefit under these conditions. Based on the observed interactions and projected changes, we anticipate primary productivity to: (a) first increase but eventually decrease in the Arctic Ocean once nutrient limitation outweighs the benefits of higher light availability; (b) decrease in the tropics and mid-latitudes due to intensifying nutrient limitation, possibly amplified by elevated pCO2; and (c) increase in the Southern Ocean in view of higher nutrient availability and synergistic interaction with increasing pCO2. Growth-enhancing effect of high light and warming to coccolithophores, mainly Emiliania huxleyi, might increase their relative abundance as long as not offset by acidification. Dinoflagellates are expected to increase their relative abundance due to their positive growth response to increasing pCO2 and light levels. Our analysis reveals gaps in the knowledge on multiple driver responses and provides recommendations for future work on phytoplankton.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-07-01
    Description: The Pliocene epoch has great potential to improve our understanding of the long-term climatic and environmental consequences of an atmospheric CO2 concentration near ∼400 parts per million by volume. Here we present the large-scale features of Pliocene climate as simulated by a new ensemble of climate models of varying complexity and spatial resolution based on new reconstructions of boundary conditions (the Pliocene Model Intercomparison Project Phase 2; PlioMIP2). As a global annual average, modelled surface air temperatures increase by between 1.7 and 5.2 °C relative to the pre-industrial era with a multi-model mean value of 3.2 °C. Annual mean total precipitation rates increase by 7 % (range: 2 %–13 %). On average, surface air temperature (SAT) increases by 4.3 °C over land and 2.8 °C over the oceans. There is a clear pattern of polar amplification with warming polewards of 60°N and 60°S exceeding the global mean warming by a factor of 2.3. In the Atlantic and Pacific oceans, meridional temperature gradients are reduced, while tropical zonal gradients remain largely unchanged. There is a statistically significant relationship between a model's climate response associated with a doubling in CO2 (equilibrium climate sensitivity; ECS) and its simulated Pliocene surface temperature response. The mean ensemble Earth system response to a doubling of CO2 (including ice sheet feedbacks) is 67 % greater than ECS; this is larger than the increase of 47 % obtained from the PlioMIP1 ensemble. Proxy-derived estimates of Pliocene sea surface temperatures are used to assess model estimates of ECS and give an ECS range of 2.6–4.8°C. This result is in general accord with the ECS range presented by previous Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3npj Climate and Atmospheric Science, Springer Nature, 3(1), pp. 49, ISSN: 2397-3722
    Publication Date: 2021-01-04
    Description: Central Europe has experienced a severe drought almost every April for the last 14 years consecutively, driven by record high temperatures, low flows, high evapotranspiration, and high soil moisture deficit. The dynamic of this recent and recurrent mid-spring dryness is not yet understood. Here we show that the period 2007â€``2020 was characterized by a reduction of ~50% of the usual April rainfall amount over large areas in central Europe. The precipitation deficit and the record high temperatures were triggered by a multiyear recurrent high-pressure system centered over the North Sea and northern Germany and a decline in the temperature gradient between the Arctic region and the mid-latitudes, which diverted the Atlantic storm tracks northward. From a long-term perspective, the precipitation, temperature, and soil moisture anomalies observed over the last 14 years have reached the highest amplitudes over the observational record. Our study provides an in-depth analysis of the hydroclimate extremes in central Europe over the last 140 years and their atmospheric drivers, enabling us to increase our dynamical understating of long-term dry periods, which is vital to enhance forecasting and mitigation of such events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-01-28
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-06-16
    Description: In the last decades, changing climate conditions have had a severe impact on sea ice at the western Antarctic Peninsula (WAP), an area rapidly transforming under global warming. To study the development of spring sea ice and environmental conditions in the pre-satellite era we investigated three short marine sediment cores for their biomarker inventory with a particular focus on the sea ice proxy IPSO25 and micropaleontological proxies. The core sites are located in the Bransfield Strait in shelf to deep basin areas characterized by a complex oceanographic frontal system, coastal influence and sensitivity to large-scale atmospheric circulation patterns. We analyzed geochemical bulk parameters, biomarkers (highly branched isoprenoids, glycerol dialkyl glycerol tetraethers, sterols), and diatom abundances and diversity over the past 240 years and compared them to observational data, sedimentary and ice core climate archives, and results from numerical models. Based on biomarker results we identified four different environmental units characterized by (A) low sea ice cover and high ocean temperatures, (B) moderate sea ice cover with decreasing ocean temperatures, (C) high but variable sea ice cover during intervals of lower ocean temperatures, and (D) extended sea ice cover coincident with a rapid ocean warming. While IPSO25 concentrations correspond quite well to satellite sea ice observations for the past 40 years, we note discrepancies between the biomarker-based sea ice estimates, the long-term model output for the past 240 years, ice core records, and reconstructed atmospheric circulation patterns such as the El Niño–Southern Oscillation (ENSO) and Southern Annular Mode (SAM). We propose that the sea ice biomarker proxies IPSO25 and PIPSO25 are not linearly related to sea ice cover, and, additionally, each core site reflects specific local environmental conditions. High IPSO25 and PIPSO25 values may not be directly interpreted as referring to high spring sea ice cover because variable sea ice conditions and enhanced nutrient supply may affect the production of both the sea-ice-associated and phytoplankton-derived (open marine, pelagic) biomarker lipids. For future interpretations we recommend carefully considering individual biomarker records to distinguish between cold sea-ice-favoring and warm sea-ice-diminishing environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-07-01
    Description: The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 48, pp. e2021GL092826, ISSN: 0094-8276
    Publication Date: 2021-06-14
    Description: Year-round records of the ionic composition of Antarctic aerosol were obtained at the inland Dome C (DC) and coastal Neumayer (NM) sites, with additional observations of black carbon at NM. Discussions focus on the origin of ammonium in Antarctica. This first Antarctic atmospheric study of several species emitted by biomass burning indicates that black carbon, oxalate, and fine potassium reach a maximum in October in relation to biomass burning activity in the southern hemisphere. Ammonium reaches a maximum two months later, suggesting that biomass burning remains a minor ammonium source there. The ammonium maximum in December coincides with the occurrence of diatom blooms in the austral ocean, suggesting that oceanic ammonia emissions are the main source of ammonium in Antarctica. The ammonium to sulfur-derived biogenic species molar ratio of 0.15 in summer suggests far lower ammonia emissions from the Antarctic oceans than mid-latitude southern oceans.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 126, ISSN: 0148-0227
    Publication Date: 2021-06-25
    Description: Saharan dust is transported in great quantities from the North African continent every year, most of which is deposited across the North Atlantic Ocean. This dust impacts regional and global climate by affecting the atmospheric radiation balance and altering ocean carbon budgets. However, little research has been carried out on time series of Saharan dust collected in situ across the open Atlantic. Here, we present a unique three-year time series of Saharan dust along a trans-Atlantic transect, sampled by moored surface buoys and subsurface sediment traps. Results show a good correlation between the particle-size distributions of atmospheric dust and the lithogenic particles settling to the deep ocean floor, confirming the aeolian origin of the lithogenic particles intercepted by the subsurface sediment traps, even in the distal western part of the Atlantic Ocean. Dust from both dry and wet deposition as collected by the sediment traps, shows increased deposition fluxes and coarser grain size in summer and/or autumn that coincides with increased precipitation at the sampling sites as derived from satellite data. In contrast, both buoys that sampled dust during transport at sea level show little seasonal variation in both concentration and particle size, as the large amounts of dust transported in summer and early autumn at high altitudes are far above their sampling range. This implies that wet deposition in summer and autumn defines the typical seasonal trends of both the dust deposition flux and its particle-size distribution observed in the sediment traps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-06-16
    Description: Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-07-27
    Description: The thecosome pteropods Limacina helicina and L. retroversa are important contributors to the zooplankton community in high-latitude environments but little is known about their distribution and life cycle under polar conditions. We collected the early life stages (〈 1 mm) of the thecosome population in 2012 and 2013 at a bi-weekly to monthly resolution in fjord highly influenced by Arctic waters as well as Atlantic inflows (Adventfjorden, Svalbard, 78°N), together with environmental parameters. L. retroversa only occurred episodically, in association with the inflow of Atlantic water, with low numbers and random size distributions. This suggests that this boreal species does not fulfill its life cycle in Adventfjorden. In contrast, young specimens of L. helicina were present during the entire study. Veligers hatched in late summer/autumn and measured 0.14 mm on average. They grew with rates of 0.0006 mm day− 1 over the 10–11 months of development. Only thereafter, growth accelerated by one order of magnitude and maximal rates were reached in autumn (0.0077 mm day− 1). Our results indicate that L. helicina reaches a size of 1 mm after approximately 1.5 years in Adventfjorden. We therefore suggest that L. helicina overwinters the first year as a small juvenile and that it needs at least 2 years to reach an adult size of 5 mm in Adventfjorden. This reveals an complex and delicate aspect of the life-cycle of L. helicina and further research is needed to determine if it makes the population especially vulnerable towards climate changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 118(4), pp. 2546-2556, ISSN: 0148-0227
    Publication Date: 2016-11-15
    Description: The roughness of a glacier bed has high importance for the estimation of the sliding velocity and can also provide valuable insights into the dynamics and history of ice sheets, depending on scale. Measurement of basal properties in present-day ice sheets is restricted to ground-penetrating radar and seismics, with surveys retrieving relatively coarse data sets. Deglaciated areas, like the Barents Sea, can be surveyed by shipborne 2-D and 3-D seismics and multibeam sonar and provide the possibility of studying the basal roughness of former ice sheets and ice streams with high resolution. Here, for the first time, we quantify the subglacial roughness of the former Barents Sea ice sheet by estimating the spectral roughness of the basal topography. We also make deductions about the past flow directions by investigating how the roughness varies along a 2-D line as the orientation of the line changes. Lastly, we investigate how the estimated basal roughness is affected by the resolution of the basal topography data set by comparing the spectral roughness along a cross section using various sampling intervals. We find that the roughness typically varies on a similar scale as for other previously marine-inundated areas in West Antarctica, with subglacial troughs having very low roughness, consistent with fast ice flow and high rates of basal erosion. The resolution of the data set seems to be of minor importance when comparing roughness indices calculated with a fixed profile length. A strong dependence on track orientation is shown for all wavelengths, with profiles having higher roughness across former flow directions than along them.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-01-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-01-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-23
    Description: Aim Fossil pollen spectra from lake sediments in central and western Mongolia have been used to interpret past climatic variations, but hitherto no suitable modern pollen–climate calibration set has been available to infer past climate changes quantitatively. We established such a modern pollen dataset and used it to develop a transfer function model that we applied to a fossil pollen record in order to investigate: (1) whether there was a significant moisture response to the Younger Dryas event in north-western Mongolia; and (2) whether the early Holocene was characterized by dry or wet climatic conditions. Location Central and western Mongolia. Methods We analysed pollen data from surface sediments from 90 lakes. A transfer function for mean annual precipitation (Pann) was developed with weighted averaging partial least squares regression (WA-PLS) and applied to a fossil pollen record from Lake Bayan Nuur (49.98° N, 93.95° E, 932 m a.s.l.). Statistical approaches were used to investigate the modern pollen–climate relationships and assess model performance and reconstruction output. Results Redundancy analysis shows that the modern pollen spectra are characteristic of their respective vegetation types and local climate. Spatial autocorrelation and significance tests of environmental variables show that the WA-PLS model for Pann is the most valid function for our dataset, and possesses the lowest root mean squared error of prediction. Main conclusions Precipitation is the most important predictor of pollen and vegetation distributions in our study area. Our quantitative climate reconstruction indicates a dry Younger Dryas, a relatively dry early Holocene, a wet mid-Holocene and a dry late Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 115, pp. F04032, ISSN: 0148-0227
    Publication Date: 2016-11-14
    Description: Recent advances in three‐dimensional (3D) imaging of snow and firn combined with numerical modeling of flow through complex geometries have greatly improved the ability to predict permeability values based on microstructure. In this work, we combined 3D reconstructions of polar firn microstructure obtained from microcomputed tomography (mCT) and a 3D lattice‐Boltzmann (LB) model of air flow. We compared the modeled results to measurements of permeability for polar firn with a wide range of grain and pore‐scale characteristics. The results show good agreement between permeability measurements and calculated permeability values from the LB model over a wide range of sample types. The LB model is better at predicting measured permeability values than traditional empirical equations for polar firn.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-11-15
    Description: Ice shelves play an important role in stabilizing the interior grounded ice of the large ice sheets. The thinning of major ice shelves observed in recent years, possibly in connection to warmer ocean waters coming into contact with the ice-shelf base, has focused attention on the ice-ocean interface. Here we reveal a complex network of sub ice-shelf channels under the Fimbul Ice Shelf, Antarctica, mapped using ground-penetrating radar over a 100 km2 grid. The channels are 300–500 m wide and 50 m high, among the narrowest of any reported. Observing narrow channels beneath an ice shelf that is mainly surrounded by cold ocean waters, with temperatures close to the surface freezing point, shows that channelized basal melting is not restricted to rapidly melting ice shelves, indicating that spatial melt patterns around Antarctica are likely to vary on scales that are not yet incorporated in ice-ocean models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research: Oceans, Wiley, 119(10), pp. 6743-6762, ISSN: 2169-9291
    Publication Date: 2014-11-27
    Description: Over the polar oceans, near-surface atmospheric transport of momentum is strongly influenced by sea-ice surface topography. The latter is analyzed on the basis of laser altimeter data obtained during airborne campaigns between 1995 and 2011 over more than 10,000 km of flight distance in different regions of the Arctic Ocean. Spectra of height and spacing between topographic features averaged over 10 km flight sections show that typical values are 0.45 m for the mean height and about 20 m for the mean spacing. Nevertheless, the variability is high and the spatial variability is stronger than the temporal one. The total topography spectrum is divided into a range with small obstacles (between 0.2 m and 0.8 m height) and large obstacles (≥0.8 m). Results show that large pressure ridges represent the dominant topographic feature only along the coast of Greenland. In the Central Arctic, the concentration of large ridges decreased over the years, accompanied by an increase of small obstacles concentration and this might be related to decreasing multiyear ice. The application of a topography-dependent parameterization of neutral atmospheric drag coefficients reflects the large variability in the sea-ice topography and reveals characteristic differences between the regions. Based on the analysis of the two spectral ranges, we find that the consideration of only large pressure ridges is not enough to characterize the roughness degree of an ice field, and the values of drag coefficients are in most regions strongly influenced by small obstacles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-11-17
    Description: Large-scale patterns of net community production (NCP) were estimated during the late summer cruise ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean. Several approaches were used based on the following: (i) continuous measurements of surface water oxygen to argon ratios (O2/Ar), (ii) underway measurements of surface partial pressure of carbon dioxide (pCO2), (iii) discrete samples of dissolved inorganic carbon, and (iv) dissolved inorganic nitrogen and phosphate. The NCP estimates agreed well within the uncertainties associated with each approach. The highest late summer NCP (up to 6 mol C m-2) was observed in the marginal sea ice zone region. Low values (〈1 mol C m-2) were found in the sea ice-covered deep basins with a strong spatial variability. Lowest values were found in the Amundsen Basin and moderate values in the Nansen and Makarov Basins with slightly higher estimates over the Mendeleev Ridge. Our findings support a coupling of NCP to sea ice coverage and nutrient supply and thus stress a potential change in spatial and temporal distribution of NCP in a future Arctic Ocean. To follow the evolution of NCP in space and time, it is suggested to apply one or several of these approaches in shipboard investigations with a time interval of 3 to 5 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-11-14
    Description: A Spectral Radiation Buoy (SRB) was developed to autonomously measure the spectral incident, reflected, and transmitted spectral solar radiation (350-800 nm) above and below sea ice. The SRB was deployed on drifting first-year sea ice near the North Pole in mid-April 2012, together with velocity and ice mass balance buoys. The buoys drifted southward and reached Fram Strait after approximately 7 months, covering a complete melt season. At the SRB site, snowmelt started on 10 June, and had completely disappeared by 14 July. Surface albedo was above 0.85 until snowmelt onset and decreased rapidly with the progression of snowmelt. Albedo was lowest on 14 July, when the observed surface was likely a mixture of bare ice and melt pond(s). The transmitted irradiance measured under the ice was largest in July, with a monthly average of 20 W m(-2), compared to 〈0.3 W m(-2) premelt. Under-ice irradiance peaked on 19-20 July, with a daily average around 35 W m(-2). From mid-April to mid-September, the solar energy transmitted through the ice into the ocean contributed about two-thirds of the energy required for the observed bottom melt (0.49 m). The energy absorbed by the ice after snowmelt was enough to melt an additional 0.1 m of ice. Solar energy incident on open water and melt ponds provided significant additional heating, indicating solar heating could explain all of the observed bottom melt in this region in summer 2012.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-10-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Solid Earth, Wiley, 119(119), pp. 8610-8632, ISSN: 0148-0227
    Publication Date: 2016-12-16
    Description: The interpretation of seismic refraction and gravity data acquired in 2010 gives new insights into the crustal structure of the West Greenland coast and the adjacent deep central Baffin Bay basin. Underneath Melville Bay, the depth of the Moho varies between 26 to 17 km. Stretched continental crust with a thickness of 25 to 14 km and deep sedimentary basins are present in this area. The deep Melville Bay Graben contains an up to ~11km thick infill of consolidated and unconsolidated sediments with velocities of 1.6 to 4.9 km/s. Seawards, at the ~60 km wide transition between oceanic and stretched continental crust, a mount-shaped magmatic structure is observed, which most likely formed prior to the initial formation of oceanic crust. The up to 4 km high magmatic structure is underlain by a ~2 km thick and ~50 km wide high velocity lower crust. More to the west, in the oceanic part of the Baffin Bay basin, we identify a 2-layered, 3.5 to 6 km thin igneous oceanic crust with increasing thickness toward the shelf. Beneath the oceanic crust, the depth of the Moho ranges between 11.5 and 13.5 km. In the western part of the profile, oceanic layer 3 is unusually thin (~1.5 km) A possible explanation for the thin crust is accretion due to slow spreading, although the basement is notably smooth compared to the basement of other regions formed by ultra-slow spreading. The oceanic crust is underlain by partly serpentinized upper mantle with velocities of 7.6 to 7.8 km/s.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-17
    Description: Enhancement of ocean alkalinity using calcium compounds, e.g., lime has been proposed to mitigate further increase of atmospheric CO2 and ocean acidification due to anthropogenic CO2 emissions. Using a global model, we show that such alkalinization has the potential to preserve pH and the saturation state of carbonate minerals at close to today’s values. Effects of alkalinization persist after termination: Atmospheric CO2 and pH do not return to unmitigated levels. Only scenarios in which large amounts of alkalinity (i.e., in a ratio of 2:1 with respect to emitted CO2) are added over large ocean areas can boost oceanic CO2 uptake sufficiently to avoid further ocean acidification on the global scale, thereby elevating some key biogeochemical parameters, e.g., pH significantly above preindustrial levels. Smaller-scale alkalinization could counteract ocean acidification on a subregional or even local scale, e.g., in upwelling systems. The decrease of atmospheric CO2 would then be a small side effect.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2017-01-27
    Description: Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the Southern Annular Mode (SAM) towards its high-index polarity. The positive phase of the SAM is characterised by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely export production and downward transport of carbon north of the Polar Front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production, but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Proceedings in Applied Mathematics and Mechanics, Wiley, 11(1), pp. 169-170, ISSN: 16177061
    Publication Date: 2017-11-13
    Description: Ice shelves are important elements of the climate system and sensitive to climate changes. The disintegration of large Antarctic ice shelves is the focus of this fracture mechanical analysis. Ice is a complex material which, depending on the context, can be seen as a viscous fluid or as an elastic solid. A fracture event usually occurs on a rather short time scale, thus the elastic response is important and linear elastic fracture mechanics can be used. The investigation of the stress intensity factor as a measure of crack tip loading is based on a 2-dimensional analysis of a single crack with a mode-I type load and additional body loads. This investigation is performed using configurational forces. Depth dependent density and temperature profiles are considered. The relevant parameters are obtained by literature, remote sensing data analysis and modeling of the ice dynamics. The criticality of wet surface cracks is investigated.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Proceedings in Applied Mathematics and Mechanics, Wiley, 12(1), pp. 155-156, ISSN: 16177061
    Publication Date: 2017-11-13
    Description: Previous studies on the sensitivity of cracks in ice shelves with different boundary conditions, stress states and density profiles revealed the need for further analyses. As the transfer of boundary conditions from dynamic ice flow simulations to the linear elastic fracture analyses proved to be a critical point in previous studies, a new approach to relate viscous and elastic material behaviour is proposed. The numerical simulations are conducted using Finite Elements utilizing the concept of configurational forces. To show the applicability of the approach, a 2-dimensional plane stress geometry with volume loads due to the ice shelf flow is analyzed. The resulting crack path is compared to available crack paths from satellite images.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Proceedings in Applied Mathematics and Mechanics, Wiley, 14(1), pp. 431-432, ISSN: 16177061
    Publication Date: 2017-11-13
    Description: Ice shelves are formed by the viscous flow of inland ice into the ocean, they are floating and loosing mass by iceberg calving. There are two different kinds of calving: large tabular icebergs detach as singular events in time, and small scale calving occuring on a rather continuous time scale. Three visco-elastic approaches are discussed, in order to derive a general law for calving rates applicable to small scale calving. The results are highly dependent on the termination criterium for each approach, hence the computed calving rate has to be adapted and validated with measurements to get the most qualified value.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...