ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,489)
  • American Geophysical Union (AGU)
  • American Meteorological Society
  • Periodicals Archive Online (PAO)
  • 2020-2023  (32)
  • 2020-2022  (2,457)
  • 1980-1984
  • 1950-1954
  • 1925-1929
  • 2020  (2,489)
  • 2020  (2,489)
Collection
  • Articles  (2,489)
Years
  • 2020-2023  (32)
  • 2020-2022  (2,457)
  • 1980-1984
  • 1950-1954
  • 1925-1929
  • +
Year
Journal
Topic
  • 1
    Publication Date: 2020-07-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3845-3862, doi:10.1175/JCLI-D-19-0215.1.
    Description: The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.
    Description: The authors gratefully acknowledge support from the Physical Oceanography Program of the U.S. National Science Foundation (Awards OCE-1756143 and OCE-1537136) and the Climate Program Office of the National Oceanic and Atmospheric Administration (Award NA15OAR4310088). Gratitude is extended to Claus Böning and Arne Biastoch who shared ORCA025 output. S. Zou thanks F. Li, M. Buckley, and L. Li for helpful discussions. We also thank three anonymous reviewers for helpful suggestions.
    Keywords: Deep convection ; Ocean circulation ; Thermocline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Hahn, L. C., Storelvmo, T., Hofer, S., Parfitt, R., & Ummenhofer, C. C. Importance of Orography for Greenland cloud and melt response to atmospheric blocking. Journal of Climate, 33(10), (2020): 4187-4206, doi:10.1175/JCLI-D-19-0527.1.
    Description: More frequent high pressure conditions associated with atmospheric blocking episodes over Greenland in recent decades have been suggested to enhance melt through large-scale subsidence and cloud dissipation, which allows more solar radiation to reach the ice sheet surface. Here we investigate mechanisms linking high pressure circulation anomalies to Greenland cloud changes and resulting cloud radiative effects, with a focus on the previously neglected role of topography. Using reanalysis and satellite data in addition to a regional climate model, we show that anticyclonic circulation anomalies over Greenland during recent extreme blocking summers produce cloud changes dependent on orographic lift and descent. The resulting increased cloud cover over northern Greenland promotes surface longwave warming, while reduced cloud cover in southern and marginal Greenland favors surface shortwave warming. Comparison with an idealized model simulation with flattened topography reveals that orographic effects were necessary to produce area-averaged decreasing cloud cover since the mid-1990s and the extreme melt observed in the summer of 2012. This demonstrates a key role for Greenland topography in mediating the cloud and melt response to large-scale circulation variability. These results suggest that future melt will depend on the pattern of circulation anomalies as well as the shape of the Greenland Ice Sheet.
    Description: This research was supported by the Woods Hole Oceanographic Institution Summer Student Fellow program, by the U.S. National Science Foundation under AGS-1355339 to C.C.U., and by the European Research Council through Grant 758005.
    Keywords: Ice sheets ; Blocking ; Cloud cover ; Topographic effects ; Climate change ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2020-03-16
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(4), (2020): 1535-1545, doi:10.1175/JCLI-D-19-0547.1.
    Description: In a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overturning circulation (AMOC). Here we study the AMOC response in the CMIP5 experiment, using the near-geostrophic balance of the AMOC on interannual time scales to identify the role of temperature and salinity changes in altering the circulation. The thermal wind relationship is used to quantify changes in the zonal density gradients that control the strength of the flow. At 40°N, where the overturning cell is at its strongest, weakening of the AMOC is largely driven by warming between 1000- and 2000-m depth along the western margin. Despite significant subpolar surface freshening, salinity changes are small in the deep branch of the circulation. This is likely due to the influence of anomalously salty water in the subpolar intermediate layers, which is carried northward from the subtropics in the upper limb of the AMOC. In the upper 1000 m at 40°N, salty anomalies due to increased evaporation largely cancel the buoyancy increase due to warming. Therefore, in CMIP5, temperature dynamics are responsible for AMOC weakening, while freshwater forcing instead acts to strengthen the circulation in the net. These results indicate that past modeling studies of AMOC weakening, which rely on freshwater hosing in the subpolar gyre, may not be directly applicable to a more complex warming scenario.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank John Marshall for helpful discussions on the driving mechanisms of the AMOC, and three anonymous reviewers whose comments greatly improved the manuscript. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Thermohaline circulation ; Water masses/storage ; Climate change ; Climate prediction ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Renfrew, I. A., Pickart, R. S., Vage, K., Moore, G. W. K., Bracegirdle, T. J., Elvidge, A. D., Jeansson, E., Lachlan-Cope, T., McRaven, L. T., Papritz, L., Reuder, J., Sodemann, H., Terpstra, A., Waterman, S., Valdimarsson, H., Weiss, A., Almansi, M., Bahr, F., Brakstad, A., Barrell, C., Brooke, J. K., Brooks, B. J., Brooks, I. M., Brooks, M. E., Bruvik, E. M., Duscha, C., Fer, I., Golid, H. M., Hallerstig, M., Hessevik, I., Huang, J., Houghton, L., Jonsson, S., Jonassen, M., Jackson, K., Kvalsund, K., Kolstad, E. W., Konstali, K., Kristiansen, J., Ladkin, R., Lin, P., Macrander, A., Mitchell, A., Olafsson, H., Pacini, A., Payne, C., Palmason, B., Perez-Hernandez, M. D., Peterson, A. K., Petersen, G. N., Pisareva, M. N., Pope, J. O., Seidl, A., Semper, S., Sergeev, D., Skjelsvik, S., Soiland, H., Smith, D., Spall, M. A., Spengler, T., Touzeau, A., Tupper, G., Weng, Y., Williams, K. D., Yang, X., & Zhou, S. The Iceland Greenland Seas Project. Bulletin of the American Meteorological Society, 100(9), (2019): 1795-1817, doi:10.1175/BAMS-D-18-0217.1.
    Description: The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
    Description: The IGP has received funding from the U.S. National Science Foundation: Grant OCE-1558742; the U.K.’s Natural Environment Research Council: AFIS (NE/N009754/1); the Research Council of Norway: MOCN (231647), VENTILATE (229791), SNOWPACE (262710) and FARLAB (245907); and the Bergen Research Foundation (BFS2016REK01). We thank all those involved in the field work associated with the IGP, particularly the officers and crew of the Alliance, and the operations staff of the aircraft campaign.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3127-3143, doi: 10.1175/JPO-D-19-0011.1.
    Description: The Intermediate Western Boundary Current (IWBC) transports Antarctic Intermediate Water across the Vitória–Trindade Ridge (VTR), a seamount chain at ~20°S off Brazil. Recent studies suggest that the IWBC develops a strong cyclonic recirculation in Tubarão Bight, upstream of the VTR, with weak time dependency. We herein use new quasi-synoptic observations, data from the Argo array, and a regional numerical model to describe the structure and variability of the IWBC and to investigate its dynamics. Both shipboard acoustic Doppler current profiler (ADCP) data and trajectories of Argo floats confirm the existence of the IWBC recirculation, which is also captured by our Regional Oceanic Modeling System (ROMS) simulation. An “intermediate-layer” quasigeostrophic (QG) model indicates that the ROMS time-mean flow is a good proxy for the IWBC steady state, as revealed by largely parallel isolines of streamfunction ψ⎯ and potential vorticity Q⎯; a ψ⎯−Q⎯ scatter diagram also shows that the IWBC is potentially unstable. Further analysis of the ROMS simulation reveals that remotely generated, westward-propagating nonlinear eddies are the main source of variability in the region. These eddies enter the domain through the Tubarão Bight eastern edge and strongly interact with the IWBC. As they are advected downstream and negotiate the local topography, the eddies grow explosively through horizontal shear production.
    Description: We thank Frank O. Smith for copy editing and proofreading this manuscript. This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brazil—Finance Code 001 and by Projeto REMARSUL (Processo CAPES 88882.158621/2014-01), Projeto VT-Dyn (Processo FAPESP 2015/21729-4) and Projeto SUBMESO (Processo CNPq 442926/2015-4). Rocha was supported by a WHOI Postdoctoral Scholarship.
    Description: 2020-06-06
    Keywords: South Atlantic Ocean ; Instability ; Mesoscale processes ; Intermediate waters ; In situ oceanic observations ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kwon, Y., Seo, H., Ummenhofer, C. C., & Joyce, T. M. Impact of multidecadal variability in Atlantic SST on winter atmospheric blocking. Journal of Climate, 33(3), (2020): 867-892, doi: 10.1175/JCLI-D-19-0324.1.
    Description: Recent studies have suggested that coherent multidecadal variability exists between North Atlantic atmospheric blocking frequency and the Atlantic multidecadal variability (AMV). However, the role of AMV in modulating blocking variability on multidecadal times scales is not fully understood. This study examines this issue primarily using the NOAA Twentieth Century Reanalysis for 1901–2010. The second mode of the empirical orthogonal function for winter (December–March) atmospheric blocking variability in the North Atlantic exhibits oppositely signed anomalies of blocking frequency over Greenland and the Azores. Furthermore, its principal component time series shows a dominant multidecadal variability lagging AMV by several years. Composite analyses show that this lag is due to the slow evolution of the AMV sea surface temperature (SST) anomalies, which is likely driven by the ocean circulation. Following the warm phase of AMV, the warm SST anomalies emerge in the western subpolar gyre over 3–7 years. The ocean–atmosphere interaction over these 3–7-yr periods is characterized by the damping of the warm SST anomalies by the surface heat flux anomalies, which in turn reduce the overall meridional gradient of the air temperature and thus weaken the meridional transient eddy heat flux in the lower troposphere. The anomalous transient eddy forcing then shifts the eddy-driven jet equatorward, resulting in enhanced Rossby wave breaking and blocking on the northern flank of the jet over Greenland. The opposite is true with the AMV cold phases but with much shorter lags, as the evolution of SST anomalies differs in the warm and cold phases.
    Description: We gratefully acknowledge support from the NSF Climate and Large-scale Dynamics Program (AGS-1355339) to Y-OK, HS, CCU, and TMJ, the NASA Physical Oceanography Program (NNX13AM59G) to Y-OK, HS, and TMJ, NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) and DOE CESD Regional and Global Model Analysis Program (DE-SC0019492) to Y-OK, and NSF Physical Oceanography Program (OCE-1419235) to HS. We are very grateful to the three anonymous reviewers and editor Dr. Mingfang Ting, for their thorough and insightful suggestions. The NOAA 20CR dataset was downloaded from the NOAA Earth System Research Laboratory Physical Science Division webpage (https://www.esrl.noaa.gov/psd/data/20thC_Rean/). Support for the 20CR Project version 2c dataset is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. The HadISST dataset was downloaded from the U.K. Met Office Hadley Centre webpage (https://www.metoffice.gov.uk/hadobs/hadisst/). The ERA-20C dataset was downloaded from the ECMWF webpage (https://apps.ecmwf.int/datasets/data/era20c-daily/). The ERSST5 dataset was provided by the NOAA Earth System Research Laboratory Physical Science Division (https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html).
    Keywords: North Atlantic Ocean ; Atmosphere-ocean interaction ; Blocking ; Climate variability ; Multidecadal variability ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 415-437, doi:10.1175/JPO-D-19-0019.1.
    Description: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Description: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Description: 2020-08-06
    Keywords: Ocean ; Atlantic Ocean ; Diapycnal mixing ; Diffusion ; Dispersion ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 789-806, doi:10.1175/JTECH-D-18-0244.1.
    Description: Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.
    Description: This study has been conducted using EU Copernicus Marine Service Information and was supported by the European Union within the EU Copernicus Marine Service In Situ phase-I and phase-II contracts led by Ifremer. The publication was also supported by SOERE CTDO2 in France. The Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (see http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). The marine mammal data were collected and made freely available by the International MEOP Consortium and the national programs that contribute to it (see http://www.meop.net; https://doi.org/10.17882/45461). Aleix Gelabert and Dídac Costa were the skippers of the OPOO, sponsored by the Intergovernmental Oceanographic Commission (UNESCO) and Pharmaton. The BWR is a periodic oceanic race organized by the Fundació Navegació Oceànica de Barcelona (FNOB). Reviewer D. Briand provided some useful comments on the final version of the draft paper before submission.
    Description: 2020-11-04
    Keywords: Ocean ; Climatology ; Salinity ; Temperature ; Data quality control ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(5), (2020): 1245-1263, doi:10.1175/JPO-D-19-0213.1.
    Description: We use laboratory experiments and theoretical modeling to investigate the surface expression of a subglacial discharge plume, as occurs at many fjords around Greenland. The experiments consider a fountain that is released vertically into a homogeneous fluid, adjacent either to a vertical or a sloping wall, that then spreads horizontally at the free surface before sinking back to the bottom. We present a model that separates the fountain into two separate regions: a vertical fountain and a horizontal, negatively buoyant jet. The model is compared to laboratory experiments that are conducted over a range of volume fluxes, density differences, and ambient fluid depths. It is shown that the nondimensionalized length, width, and aspect ratio of the surface expression are dependent on the Froude number, calculated at the start of the negatively buoyant jet. The model is applied to observations of the surface expression from a Greenland subglacial discharge plume. In the case where the discharge plume reaches the surface with negative buoyancy the model can be used to estimate the discharge properties at the base of the glacier.
    Description: We gratefully acknowledge technical assistance from Anders Jensen and thank anonymous reviewers for improving the clarity of the manuscript. CM thanks the Weston Howard Jr. Scholarship for funding. Support to CC was given by NSF project OCE-1434041 and OCE-1658079.
    Description: 2020-10-27
    Keywords: Ocean ; Glaciers ; Ice sheets ; Convection ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 679-694, doi:10.1175/JPO-D-19-0218.1.
    Description: The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.
    Description: LH was supported by the National Basic Research Program of China through Grant 2019YFA0606703 and “The Fundamental Research Funds of Shandong University” (2019GN051). The authors thank the anonymous reviewers and the editor for their constructive comments. Code availability: The Matlab code that performs the decomposition and produces some figures in this paper is available at https://github.com/lei-han-SDU/IMOC/.
    Description: 2020-09-02
    Keywords: Meridional overturning circulation ; Ocean circulation ; Streamfunction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(5),(2020): 1227-1244, doi:10.1175/JPO-D-19-0280.1.
    Description: The Nordic seas are commonly described as a single basin to investigate their dynamics and sensitivity to environmental changes when using a theoretical framework. Here, we introduce a conceptual model for a two-basin marginal sea that better represents the Nordic seas geometry. In our conceptual model, the marginal sea is characterized by both a cyclonic boundary current and a front current as a result of different hydrographic properties east and west of the midocean ridge. The theory is compared to idealized model simulations and shows good agreement over a wide range of parameter settings, indicating that the physics in the two-basin marginal sea is well captured by the conceptual model. The balances between the atmospheric buoyancy forcing and the lateral eddy heat fluxes from the boundary current and the front current differ between the Lofoten and the Greenland Basins, since the Lofoten Basin is more strongly eddy dominated. Results show that this asymmetric sensitivity leads to opposing responses depending on the strength of the atmospheric buoyancy forcing. Additionally, the front current plays an essential role for the heat and volume budget of the two basins, by providing an additional pathway for heat toward the interior of both basins via lateral eddy heat fluxes. The variability of the temperature difference between east and west influences the strength of the different flow branches through the marginal sea and provides a dynamical explanation for the observed correlation between the front current and the slope current of the Norwegian Atlantic Current in the Nordic seas.
    Description: We thank Ilker Fer and two anonymous reviewers whose comments improved this paper. S. L. Ypma and S. Georgiou were supported by NWO (Netherlands Organisation for Scientific Research) VIDI Grant 864.13.011 awarded to C. A. Katsman. M. A. Spall was supported by National Science Foundation Grants OCE-1558742 and OPP-1822334. E. Lambert is funded by the ERA4CS project INSeaPTION. The model data analyzed in this study are available on request from the corresponding author. This study has been conducted using E.U. Copernicus Marine Service Information. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso+, with support from CNES (https://www.aviso.altimetry.fr).
    Description: 2020-10-27
    Keywords: Boundary currents ; Deep convection ; Eddies ; Fronts ; Instability ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hagos, S., Foltz, G. R., Zhang, C., Thompson, E., Seo, H., Chen, S., Capotondi, A., Reed, K. A., DeMott, C., & Protat, A. Atmospheric convection and air-sea interactions over the tropical oceans: scientific progress, challenges, and opportunities. Bulletin of the American Meteorological Society, 101(3), (2020): E253-E258, doi:10.1175/BAMS-D-19-0261.1.
    Description: Over the past 30 years, the scientific community has made considerable progress in understanding and predicting tropical convection and air–sea interactions, thanks to sustained investments in extensive in situ and remote sensing observations, targeted field experiments, advances in numerical modeling, and vastly improved computational resources and observing technologies. Those investments would not have been fruitful as isolated advancements without the collaborative effort of the atmospheric convection and air–sea interaction research communities. In this spirit, a U.S.- and International CLIVAR–sponsored workshop on “Atmospheric convection and air–sea interactions over the tropical oceans” was held in the spring of 2019 in Boulder, Colorado. The 90 participants were observational and modeling experts from the atmospheric convection and air–sea interactions communities with varying degrees of experience, from early-career researchers and students to senior scientists. The presentations and discussions covered processes over the broad range of spatiotemporal scales (Fig. 1).
    Description: The workshop was sponsored by the United States and International CLIVAR. Funding was provided by the U.S. Department of Energy, Office of Naval Research, NOAA, NSF, and the World Climate Research Programme. We thank Mike Patterson, Jennie Zhu, and Jeff Becker from the U.S. CLIVAR Project Office for coordinating the workshop.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(10), (2020): 4109-4120, doi:10.1175/JCLI-D-19-0294.1.
    Description: This study suggests that the Gulf Stream influence on the wintertime North Atlantic troposphere is most pronounced when the eddy-driven jet (EDJ) is farthest south and better collocated with the Gulf Stream. Using the reanalysis dataset NCEP-CFSR for December–February 1979–2009, the daily EDJ latitude is separated into three regimes (northern, central, and southern). It is found that the average trajectory of atmospheric fronts covaries with EDJ latitude. In the southern EDJ regime (~19% of the time), the frequency of near-surface atmospheric fronts that pass across the Gulf Stream is maximized. Analysis suggests that this leads to significant strengthening in near-surface atmospheric frontal convergence resulting from strong air–sea sensible heat flux gradients (due to strong temperature gradients in the atmosphere and ocean). In recent studies, it was shown that the pronounced band of time-mean near-surface wind convergence across the Gulf Stream is set by atmospheric fronts. Here, it is shown that an even smaller subset of atmospheric fronts—those associated with a southern EDJ—primarily sets the time mean, due to enhanced Gulf Stream air–sea interaction. Furthermore, statistically significant anomalies in vertical velocity extending well above the boundary layer are identified in association with changes in EDJ latitude. These anomalies are particularly strong for a southern EDJ and are spatially consistent with increases in near-surface atmospheric frontal convergence over the Gulf Stream. These results imply that much of the Gulf Stream influence on the time-mean atmosphere is modulated on synoptic time scales, and enhanced when the EDJ is farthest south.
    Description: For part of this study, R. P. was funded by the Weston Howland Jr. postdoctoral scholarship at Woods Hole Oceanographic Institution. We gratefully acknowledge the support to Y.-O. K. from the NOAA CPO Climate Variability and Predictability program (NA13OAR4310139), the DOE Regional and Global Model Analysis program (DE-SC0014433 and DE-SC0019492), and the NSF AGS Climate and Large-scale Dynamics program and OCE Physical Oceanography program (AGS-1355339). We thank NCAR for allowing access to the NCEP-CFSR dataset, accessible at https://rda.ucar.edu. We thank the editor Hisashi Nakamura and the three reviewers whose comments have helped greatly improve the manuscript.
    Description: 2020-10-13
    Keywords: Atmosphere-ocean interaction ; Atmosphere-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Schlundt, M., Farrar, J. T., Bigorre, S. P., Plueddemann, A. J., & Weller, R. A. (2020). Accuracy of wind observations from open-ocean buoys: correction for flow distortion. Journal of Atmospheric and Oceanic Technology, 37(4), 687-703, doi:10.1175/JTECH-D-19-0132.1.
    Description: The comparison of equivalent neutral winds obtained from (i) four WHOI buoys in the subtropics and (ii) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56–0.76 m s−1. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because 1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and 2) 1-min sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy–scatterometer comparisons. The interanemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the interanemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement.
    Description: We gratefully acknowledge the help of three anonymous reviewers, whose input greatly improved the paper. In particular, one reviewer pointed out a mistake in our initial interpretation of scatterometer stability, which was corrected in the final manuscript. JTF and MS were supported by NASA Grant NNX14AM71G (International Ocean Vector Winds Science Team). The SPURS observations were supported by NASA (Grants NNX11AE84G, NNX15AG20G, and 80NSSC18K1494). The Stratus, NTAS, and WHOTS ocean reference stations (ORS) are long-term surface moorings deployed as part of the OceanSITES (http://www.oceansites.org) component of the Global Ocean Observing System, and are supported by NOAA’s Climate Program Office’s Ocean Observing and Monitoring Division, as are RAW, AJP, and SPB through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 with NOAA Climate Program Office (CPO) (FundRef No. 100007298). The technical staff of the UOP Group at WHOI and the crews of NOAA and UNOLS vessels have been essential to the successful long-term maintenance of the ORS.
    Keywords: Ocean ; Wind ; Buoy observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2781-2797, doi: 10.1175/JPO-D-19-0111.1.
    Description: To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.
    Description: We thank Alonso Hernández-Guerra, M. Dolores Pérez-Hernández, and María Casanova-Masjoan for providing the inverse model results from Casanova-Masjoan et al. (2018). The A22 section is part of the WOCE/CLIVAR observing effort, with all data available at http://cchdo.ucsd.edu/. We thank Carl Wunsch, Patrick Heimbach, Chris Hill, and Diana Lees Spiegel for their assistance with the ECCO fields. The state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP) and can be downloaded at http://www.ecco-group.org/products.htm. The citable URL for the ECCO version 4 release 2 product is http://hdl.handle.net/1721.1/102062. We are grateful to Joseph Pedlosky and Glenn Flierl for their comments on an earlier version of this work. IALB and JMT were supported financially by U.S. NSF Grants OCE-0726720, 1332667, and 1332834. MS was supported by the U.S. NASA Sea Level Change Team (Contract NNX14AJ51G) and through the ECCO Consortium funding via the Jet Propulsion Laboratory. We thank two anonymous reviewers, whose thoughtful comments led to improvements.
    Description: 2020-04-17
    Keywords: North Atlantic Ocean ; Barotropic flows ; Boundary currents ; Ocean circulation ; Gyres ; Vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2867-2881, doi: 10.1175/JPO-D-19-0072.1.
    Description: The Antarctic Circumpolar Current plays a central role in the ventilation of heat and carbon in the global ocean. In particular, the isopycnal slopes determine where each water mass outcrops and thus how the ocean interacts with the atmosphere. The region-integrated isopycnal slopes have been suggested to be eddy saturated, that is, stay relatively constant as the wind forcing changes, but whether or not the flow is saturated in realistic present day and future parameter regimes is unknown. This study analyzes an idealized two-layer quasigeostrophic channel model forced by a wind stress and a residual overturning generated by a mass flux across the interface between the two layers, with and without a blocking ridge. The sign and strength of the residual overturning set which way the isopycnal slopes change with the wind forcing, leading to an increase in slope with an increase in wind forcing for a positive overturning and a decrease in slope for a negative overturning, following the usual conventions; this behavior is caused by the dominant standing meander weakening as the wind stress weakens causing the isopycnal slopes to become more sensitive to changes in the wind stress and converge with the slopes of a flat-bottomed simulation. Eddy saturation only appears once the wind forcing passes a critical level. These results show that theories for saturation must have both topography and residual overturning in order to be complete and provide a framework for understanding how the isopycnal slopes in the Southern Ocean may change in response to future changes in wind forcing.
    Description: MKY and RF acknowledge support through NSF Awards OCE-1536515 and AGS-1835576. MKY acknowledges funding from NDSEG. GRF was supported by NSF OCE-1459702. We are very grateful for conversations with David Marshall, Andrew Stewart, and two anonymous reviewers that greatly improved the manuscript. The code for running the model is found at https://github.com/mkyoungs/JPO-QG-Channel.
    Description: 2020-04-30
    Keywords: Southern Ocean ; Eddies ; Storm tracks ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2883-2900, doi: 10.1175/JPO-D-19-0124.1.
    Description: Hurricanes interact with the Gulf Stream in the South Atlantic Bight (SAB) through a wide variety of processes, which are crucial to understand for prediction of open-ocean and coastal hazards during storms. However, it remains unclear how waves are modified by large-scale ocean currents under storm conditions, when waves are aligned with the storm-driven circulation and tightly coupled to the overlying wind field. Hurricane Matthew (2016) impacted the U.S. Southeast coast, causing extensive coastal change due to large waves and elevated water levels. The hurricane traveled on the continental shelf parallel to the SAB coastline, with the right side of the hurricane directly over the Gulf Stream. Using the Coupled Ocean–Atmosphere–Wave–Sediment Transport modeling system, we investigate wave–current interaction between Hurricane Matthew and the Gulf Stream. The model simulates ocean currents and waves over a grid encompassing the U.S. East Coast, with varied coupling of the hydrodynamic and wave components to isolate the effect of the currents on the waves, and the effect of the Gulf Stream relative to storm-driven circulation. The Gulf Stream modifies the direction of the storm-driven currents beneath the right side of the hurricane. Waves transitioned from following currents that result in wave lengthening, through negative current gradients that result in wave steepening and dissipation. Wave–current interaction over the Gulf Stream modified maximum coastal total water levels and changed incident wave directions at the coast by up to 20°, with strong implications for the morphodynamic response and stability of the coast to the hurricane.
    Description: C.A. Hegermiller is grateful to the Woods Hole Oceanographic Institution (WHOI) Postdoctoral Scholarship program and the WHOI-U.S. Geological Survey (USGS) cooperative agreement for support. This project was supported by the USGS Coastal and Marine Hazards and Resources Program and by the Office of Naval Research, Increasing the Fidelity of Morphological Storm Impact Predictions Project. Thank you to the internal and external reviewers for improving the quality of this work, and to conversations within the Woods Hole community during the development of the experiment and analysis of the results. Model data can be found at http://geoport.whoi.edu/thredds/catalog/sand/usgs/users/chegermiller/projects/WCI_JPO_2019/catalog.html. Figure color maps are from Thyng et al. (2016).
    Description: 2020-05-01
    Keywords: Hurricanes ; Waves, oceanic ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(12), (2019): 3061-3068, doi: 10.1175/JPO-D-18-0172.1.
    Description: The calculation of energy flux in coastal trapped wave modes is reviewed in the context of tidal energy pathways near the coast. The significant barotropic pressures and currents associated with coastal trapped wave modes mean that large errors in estimating the wave flux are incurred if only the baroclinic component is considered. A specific example is given showing that baroclinic flux constitutes only 10% of the flux in a mode-1 wave for a reasonable choice of stratification and bathymetry. The interpretation of baroclinic energy flux and barotropic-to-baroclinic conversion at the coast is discussed: in contrast to the open ocean, estimates of baroclinic energy flux do not represent a wave energy flux; neither does conversion represent the scattering of energy from the tidal Kelvin wave to higher modes.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship, and by NSF under Grant OCE-1756781. I am grateful to K. Brink for the many useful conversations that contributed to this work and to J. Toole for providing detailed comments on an early version of this paper. The comments of three anonymous reviewers were very helpful in improving this paper.
    Description: 2020-06-03
    Keywords: Diapycnal mixing ; Internal waves ; Kelvin waves ; Topographic effects ; Waves, oceanic ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Pratt, L. J., Pearson-Potts, K. A., & Tan, S. Persistent turbulence in the Samoan Passage. Journal of Physical Oceanography, 49(12), (2019): 3179-3197, doi: 10.1175/JPO-D-19-0116.1.
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Description: The authors thank Zhongxiang Xao and Jody Klymak, who provided earlier setups of the numerical model, and also Arjun Jagannathan for insightful discussions on the subject of flow over topography. We also thank John Mickett and Eric Boget for their assistance in designing, deploying, and recovering the moorings. In addition, we also thank the crew and scientists aboard the R/V Revelle and R/V Thompson, without whom the data presented in this paper could not have been gathered. Ilker Fer and two anonymous reviewers provided thoughtful feedback that improved the paper. This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870, and OCE-1658027.
    Keywords: Gravity waves ; Turbulence ; Abyssal circulation ; Mixing ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 825-840, doi:10.1175/JTECH-D-19-0145.1.
    Description: The study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.
    Description: Authors would like to acknowledge Melissa Omand, Ben Pietro, and Jing He for their valuable input during the design phase of the EcoCTD, as well as for their support for deploying the EcoCTD in the field. We are grateful to Eva Alou, Andrea Carbonero, and John Allen for providing calibrated data from the shipboard CTD. Authors would also like to thank Don Peters along with Dynamics System Analysis Ltd. for facilitating access to ProteusDS and providing support in using the software. We are grateful to the crew of the RV Armstrong and NRV Alliance for their support in the field. Development of the EcoCTD is supported by the Office of Naval Research (ONR) through the CALYPSO Departmental Research Initiative (Grant N000141613130). Advanced field testing was supported by Woods Hole Oceanographic Institution internal funding. MATLAB routines for data processing are publicly available at https://github.com/mfreilich1/ecoctd_processing.
    Description: 2020-11-08
    Keywords: Fronts ; Upwelling/downwelling ; Vertical motion ; Data processing ; Profilers ; oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 807-824, doi:10.1175/JTECH-D-19-0054.1.
    Description: Marine mammals are under growing pressure as anthropogenic use of the ocean increases. Ship strikes of large whales and loud underwater sound sources including air guns for marine geophysical prospecting and naval midfrequency sonar are criticized for their possible negative effects on marine mammals. Competent authorities regularly require the implementation of mitigation measures, including vessel speed reductions or shutdown of acoustic sources if marine mammals are sighted in sensitive areas or in predefined exclusion zones around a vessel. To ensure successful mitigation, reliable at-sea detection of animals is crucial. To date, ship-based marine mammal observers are the most commonly implemented detection method; however, thermal (IR) imaging–based automatic detection systems have been used in recent years. This study evaluates thermal imaging–based automatic whale detection technology for its use across different oceans. The performance of this technology is characterized with respect to environmental conditions, and an automatic detection algorithm for whale blows is presented. The technology can detect whales in polar, temperate, and subtropical ocean regimes over distances of up to several kilometers and outperforms marine mammal observers in the number of whales detected. These results show that thermal imaging technology can be used to assist in providing protection for marine mammals against ship strike and acoustic impact across the world’s oceans.
    Description: This work was funded by the Office of Naval Research (ONR) under Award N000141310856, by the Environmental Studies Research Fund (ESRF; esrfunds.org) under Award 2014-03S and by the Alfred-Wegener-Institute Helmholtz Zentrum für Polar- und Meeresforschung. DPZ and OB declare competing financial interests: 1) Patent US8941728B2, DE102011114084B4: A method for automatic real-time marine mammal detection. The patent describes the ideas basic to the automatic whale detection software as used to acquire and process the data presented in this paper. 2) Licensing of the Tashtego automatic whale detection software to the manufacturer of IR sensor. The authors confirm that these competing financial interests did not alter their adherence good scientific practice. We thank P. Abgrall, J. Coffey, K. Keats, B. Mactavish, V. Moulton, and S. Penney-Belbin for data collection or IR image review. We thank S. Besaw, J. Christian, A. Coombs, P. Coombs, W. Costello, T. Elliott, E. Evans, I. Goudie, C. Jones, K. Knowles, R. Martin, A. Murphy, D. and J. Shepherd; and the staffs at the Irish Loop Express, the Myrick Wireless Interpretive Centre, the Mistaken Point Ecological Reserve, and the lighthouse keepers for logistical assistance at our remote field site. We thank D. Boutilier and B. McDonald (DFO) for assisting us in obtaining license to occupy permits for Cape Race. We thank D. Taylor (ESRF Research Manager) for his support.
    Keywords: Ocean ; Instrumentation/sensors ; Remote sensing ; Animal studies ; Field experiments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(6), (2020): 2389-2406, doi:10.1175/JCLI-D-19-0112.1.
    Description: This study investigates the modulation of North Pacific Oscillation (NPO) variability upon initiation of the East Asian winter monsoon (EAWM). The data show that the initiation of EAWM in the Philippine Sea strongly connects to the southern lobe variability of the NPO in January followed by a basin-scale oceanic Victoria mode pattern. No apparent connection was found for the northern lobe of the NPO when the ENSO signals are removed. The strengthening of the EAWM in November interacts with the Kuroshio front and generates a low-level heating source in the Philippine Sea. Significant Rossby wave sources are then formed in the lower to midtroposphere. Wave ray tracing analyses confirm the atmospheric teleconnection established by the Rossby wave propagation in the mid- to upper troposphere. Analyses of the origin of wave trajectories from the Philippine Sea show a clear eastward propagating pathway that affects the southern lobe of the NPO from the southern lobe of the western Pacific pattern at 500 hPa and above on the time scale of 20 days. No ray trajectories from the lower troposphere can propagate eastward to influence the central-eastern subtropical Pacific. The wave propagation process is further supported by the coupled model experiments.
    Description: We thank three anonymous reviewers for their constructive comments that have helped to improve the clarity of the presentation. This study was supported by the MOST Grants 107-2611-M-002-013-MY4 and 108-2111-M-002-006 -MY3, Taiwan.
    Description: 2020-08-21
    Keywords: Atmosphere-ocean interaction ; ENSO ; Climate variability ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4),(2020): 921-933, doi:10.1175/JPO-D-19-0184.1.
    Description: Intermediate-depth intraseasonal variability (ISV) at a 20–90-day period, as detected in velocity measurements from seven subsurface moorings in the tropical western Pacific, is interpreted in terms of equatorial Rossby waves. The moorings were deployed between 0° and 7.5°N along 142°E from September 2014 to October 2015. The strongest ISV energy at 1200 m occurs at 4.5°N. Peak energy at 4.5°N is also seen in an eddy-resolving global circulation model. An analysis of the model output identifies the source of the ISV as short equatorial Rossby waves with westward phase speed but southeastward and downward group velocity. Additionally, it is shown that a superposition of first three baroclinic modes is required to represent the ISV energy propagation. Further analysis using a 1.5-layer shallow water model suggests that the first meridional mode Rossby wave accounts for the specific meridional distribution of ISV in the western Pacific. The same model suggests that the tilted coastlines of Irian Jaya and Papua New Guinea, which lie to the south of the moorings, shift the location of the northern peak of meridional velocity oscillation from 3°N to near 4.5°N. The tilt of this boundary with respect to a purely zonal alignment therefore needs to be taken into account to explain this meridional shift of the peak. Calculation of the barotropic conversion rate indicates that the intraseasonal kinetic energy below 1000 m can be transferred into the mean flows, suggesting a possible forcing mechanism for intermediate-depth zonal jets.
    Description: This study is supported by the National Natural Science Foundation of China (Grants 91958204 and 41776022), the China Ocean Mineral Resources Research and Development Association Program (DY135-E2-3-02), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA22000000). L. Pratt was supported by the U.S. National Science Foundation Grant OCE-1657870. F. Wang thanks the support from the Scientific and Technological Innovation Project by Qingdao National Laboratory for Marine Science and Technology (Grant 2016ASKJ12), the National Program on Global Change and Air-Sea Interaction (Grant GASI-IPOVAI-01-01), and the National Natural Science Foundation of China (Grants 41730534, 41421005, and U1406401).
    Keywords: North Pacific Ocean ; Rossby waves ; Model output statistics ; Numerical analysis/modeling ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(24), (2019): 8449-8463, doi: 10.1175/JCLI-D-19-0252.1.
    Description: A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
    Description: MAS was supported by the National Science Foundation under Grant OPP-1822334. Comments and suggestions from Michael Steele, Gianluca Meneghello, and an anonymous reviewer helped to clarify the work.
    Description: 2020-05-15
    Keywords: Arctic ; Sea ice ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(1), (2020): 255-268, doi:10.1175/JPO-D-19-0166.1.
    Description: Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank the creators of the SODA and ECCO reanalysis products. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132. The SODA outputs used here can be accessed at http://www.atmos.umd.edu/~ocean/, and the ECCO outputs at https://ecco.jpl.nasa.gov/. Data from the CMIP5 ensemble is available at https://esgf-node.llnl.gov/projects/esgf-llnl/. The particle tracking code used for these experiments can be found at https://github.com/slevang/particle-tracking.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Eddies ; Hydrologic cycle ; Lagrangian circulation/transport ; Transport ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 455-469, doi:10.1175/JPO-D-19-0190.1.
    Description: The mechanisms by which time-dependent wind stress anomalies at midlatitudes can force variability in the meridional overturning circulation at low latitudes are explored. It is shown that winds are effective at forcing remote variability in the overturning circulation when forcing periods are near the midlatitude baroclinic Rossby wave basin-crossing time. Remote overturning is required by an imbalance in the midlatitude mass storage and release resulting from the dependence of the Rossby wave phase speed on latitude. A heuristic theory is developed that predicts the strength and frequency dependence of the remote overturning well when compared to a two-layer numerical model. The theory indicates that the variable overturning strength, relative to the anomalous Ekman transport, depends primarily on the ratio of the meridional spatial scale of the anomalous wind stress curl to its latitude. For strongly forced systems, a mean deep western boundary current can also significantly enhance the overturning variability at all latitudes. For sufficiently large thermocline displacements, the deep western boundary current alternates between interior and near-boundary pathways in response to fluctuations in the wind, leading to large anomalies in the volume of North Atlantic Deep Water stored at midlatitudes and in the downstream deep western boundary current transport.
    Description: MAS and DN were supported by the National Science Foundation under Grant OCE-1634468.
    Description: 2020-11-10
    Keywords: Meridional overturning circulation ; Ocean circulation ; Rossby waves ; Thermocline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2),(2020): 531-534, doi:10.1175/JPO-D-19-0237.1.
    Description: Longuet-Higgins in 1964 first pointed out that the Rossby wave energy flux as defined by the pressure work is not the same as that defined by the group velocity. The two definitions provide answers that differ by a nondivergent vector. Longuet-Higgins suggested that the problem arose from ambiguity in the definition of energy flux, which only impacts the energy equation through its divergence. Numerous authors have addressed this issue from various perspectives, and we offer one more approach that we feel is more succinct than previous ones, both mathematically and conceptually. We follow the work described by Cai and Huang in 2013 in concluding that there is no need to invoke the ambiguity offered by Longuet-Higgins. By working directly from the shallow-water equations (as opposed to the more involved quasigeostrophic treatment of Cai and Huang), we provide a concise derivation of the nondivergent pressure work and demonstrate that the two energy flux definitions are equivalent when only the divergent part of the pressure work is considered. The difference vector comes from the nondivergent part of the geostrophic pressure work, and the familiar westward component of the Rossby wave group velocity comes from the divergent part of the geostrophic pressure work. In a broadband wave field, the expression for energy flux in terms of a single group velocity is no longer meaningful, but the expression for energy flux in terms of the divergent pressure work is still valid.
    Description: This work was supported by NASA Grants NNX13AE46G and NNX14AM71G, and National Science Foundation Grant OCE-1336752. We are indebted to Roger Samelson, Joe Pedlosky, and two anonymous reviewers for comments that significantly improved the presentation.
    Description: 2020-08-19
    Keywords: Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3),(2020): 595-613, doi:10.1175/JPO-D-19-0108.1.
    Description: Small estuaries in Mediterranean climates display pronounced salinity variability at seasonal and event time scales. Here, we use a hydrodynamic model of the Coos Estuary, Oregon, to examine the seasonal variability of the salinity dynamics and estuarine exchange flow. The exchange flow is primarily driven by tidal processes, varying with the spring–neap cycle rather than discharge or the salinity gradient. The salinity distribution is rarely in equilibrium with discharge conditions because during the wet season the response time scale is longer than discharge events, while during low flow it is longer than the entire dry season. Consequently, the salt field is rarely fully adjusted to the forcing and common power-law relations between the salinity intrusion and discharge do not apply. Further complicating the salinity dynamics is the estuarine geometry that consists of multiple branching channel segments with distinct freshwater sources. These channel segments act as subestuaries that import both higher- and lower-salinity water and export intermediate salinities. Throughout the estuary, tidal dispersion scales with tidal velocity squared, and likely includes jet–sink flow at the mouth, lateral shear dispersion, and tidal trapping in branching channel segments inside the estuary. While the estuarine inflow is strongly correlated with tidal amplitude, the outflow, stratification, and total mixing in the estuary are dependent on the seasonal variation in river discharge, which is similar to estuaries that are dominated by subtidal exchange flow.
    Description: We thank two anonymous reviewers for constructive comments, the staff of the South Slough National Estuarine Research Reserve for providing time series data, and Parker MacCready for sharing LiveOcean boundary conditions. This work was partially sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). Computations were performed on the University of Oregon high performance computer Talapas.
    Description: 2020-08-26
    Keywords: Estuaries ; North Pacific Ocean ; Baroclinic flows ; Channel flows ; Dispersion ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martini, K. I., Murphy, D. J., Schmitt, R. W., & Larson, N. G. Reply to "comments on 'corrections for pumped SBE 41CP CTDs determined from stratified tank experiments'". Journal of Atmospheric and Oceanic Technology, 37(2), (2020): 357-363, doi:10.1175/JTECH-D-19-0171.1.
    Description: The response in Johnson (2020) that the method used to determine cell thermal mass correction coefficients for SBE 41CP CTD data from Argo floats is biased as determined by Martini et al. (2019) is valid. However, the recommendation for correction coefficients should not be followed due to these three errors in Johnson (2020): Alignment is as large a source of dynamic error as cell thermal mass in the SBE 41CP CTD. Order of operations was overlooked, so that cell thermal mass is used to correct for alignment errors caused by the temporal mismatch of temperature and conductivity. The cell thermal mass corrections determined in Johnson et al. (2007) and Johnson (2020) also bias salinity. In this response we will do the following: Detail how the corrections in Johnson (2020) are biased because the optimization procedure does not accurately model physics in the tank and conductivity cell. Verify using in situ data from Argo floats deployed in the ocean that alignment is a significant source of error for the SBE 41CP as shown in Martini et al. (2019). Determine cell thermal mass correction coefficients from the stratified tank experiment merging the methods of Johnson (2020) and Martini et al. (2019) to optimize against a model that better represents the physics in the tank and conductivity cell. Compare the corrections using in situ data using the coefficients determined in Johnson et al. (2007), Martini et al. (2019), Johnson (2020), and this manuscript.
    Description: Thanks to Pelle Robbins for finding the in situ profiles used for this analysis in the vast database of Argo floats, John Gilson showing me how to access that high-resolution data, Ray Schmitt for use of the stratified tank, Susan Wijffels, Breck Owens, and Annie Wong for intellectual support, and Diego Sorrentino and Vlad Simontov for validating the sampling scheme in the SBE 41CP.
    Description: 2020-08-24
    Keywords: Ocean ; Algorithms ; Data processing ; In situ oceanic observations ; Measurements ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3863-3882, doi:10.1175/JCLI-D-19-0687.1.
    Description: The direct response of the cold-season atmospheric circulation to the Arctic sea ice loss is estimated from observed sea ice concentration (SIC) and an atmospheric reanalysis, assuming that the atmospheric response to the long-term sea ice loss is the same as that to interannual pan-Arctic SIC fluctuations with identical spatial patterns. No large-scale relationship with previous interannual SIC fluctuations is found in October and November, but a negative North Atlantic Oscillation (NAO)/Arctic Oscillation follows the pan-Arctic SIC fluctuations from December to March. The signal is field significant in the stratosphere in December, and in the troposphere and tropopause thereafter. However, multiple regressions indicate that the stratospheric December signal is largely due to concomitant Siberian snow-cover anomalies. On the other hand, the tropospheric January–March NAO signals can be unambiguously attributed to SIC variability, with an Iceland high approaching 45 m at 500 hPa, a 2°C surface air warming in northeastern Canada, and a modulation of blocking activity in the North Atlantic sector. In March, a 1°C northern Europe cooling is also attributed to SIC. An SIC impact on the warm Arctic–cold Eurasia pattern is only found in February in relation to January SIC. Extrapolating the most robust results suggests that, in the absence of other forcings, the SIC loss between 1979 and 2016 would have induced a 2°–3°C decade−1 winter warming in northeastern North America and a 40–60 m decade−1 increase in the height of the Iceland high, if linearity and perpetual winter conditions could be assumed.
    Description: This research was supported by the Blue-Action project (European Union’s Horizon 2020 research and innovation program, Grant 727852) and by the National Science Foundation (OPP 1736738).
    Description: 2020-10-06
    Keywords: Atmosphere-ocean interaction ; Climate change ; Climate variability ; Ice loss/growth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-08-26
    Description: A unique automated planetary boundary layer (PBL) retrieval algorithm is proposed as a common cross-platform method for use with commercially available ceilometers for implementation under the redesigned U.S. Environmental Protection Agency Photochemical Assessment Monitoring Stations program. This algorithm addresses instrument signal quality and screens for precipitation and cloud layers before the implementation of the retrieval methodology using the Haar wavelet covariance transform method. Layer attribution for the PBL height is supported with the use of continuation and time-tracking parameters, and uncertainties are calculated for individual PBL height retrievals. Commercial ceilometer retrievals are tested against radiosonde PBL height and cloud-base height during morning and late afternoon transition times, critical to air quality model prediction and when retrieval algorithms struggle to identify PBL heights. A total of 58 radiosonde profiles were used and retrievals for nocturnal stable layers, residual layers and mixing layers were assessed. Overall good agreement was found for all comparisons with one system showing limitations for the cases of nighttime surface stable layers and daytime mixing layer. It is recommended that nighttime shallow stable layer retrievals be performed with a recommended minimum height or with additional verification. Retrievals of residual layer heights and mixing layer comparisons revealed overall good correlations to radiosonde heights (correlation coefficients, r2, ranging from 0.89 – 0.96 and bias ranging from ~ -131 to +63 m, and r2 from 0.88 – 0.97 and bias from -119 to +101 m, respectively).
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-10-07
    Description: The dynamic origin of the interannual variability of West China autumn rainfall (WCAR), a special weather/climate phenomenon over western-central China in September and October, was investigated via observational diagnosis and numerical simulations. Here we found that the interannual variability of WCAR is closely related to the local horizontal trough, which is passively induced by two lower-level anticyclonic (high pressure) anomalies over East Asia. The anticyclonic anomaly over the south is a Gill-type response to the central and eastern Pacific diabatic cooling, while that over the north is part of the mid- to high-latitude barotropic Rossby wave train, which could be induced by either the thermal forcing of the central and eastern Pacific Ocean sea surface temperature (SST) cooling or that of the subtropical northern Atlantic Ocean SST warming. The quasi-barotropic high pressure anomaly over East Asia acts as an “invisible mountain” that steers the low-level anomalous southwesterly into a southeasterly and hinders the water vapor going farther to the north, leading to enhanced WCAR. However, the real mountain ranges in the region (the Qinglin and Ba Mountains) have no essential impact on the formation and interannual variability of WCAR.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-08-27
    Description: Capsule Edward Kidson was a New Zealand scientist who spearheaded the modernisation of Australasian meteorology by introducing Bergen School methods of synoptic analysis to the Southern Hemisphere in the 1930s.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-10-01
    Description: Accurate simulation of planetary boundary layer height (PBLH) is key to greenhouse gas emission estimation, air quality prediction, and weather forecasting. This paper describes an extensive performance assessment of several Weather Research and Forecasting (WRF) Model configurations in which novel observations from ceilometers, surface stations, and a flux tower were used to study their ability to reproduce the PBLH and the impact that the urban heat island (UHI) has on the modeled PBLHs in the greater Washington, D.C., area. In addition, CO2 measurements at two urban towers were compared with tracer transport simulations. The ensemble of models used four PBL parameterizations, two sources of initial and boundary conditions, and one configuration including the building energy parameterization urban canopy model. Results have shown low biases over the whole domain and period for wind speed, wind direction, and temperature, with no drastic differences between meteorological drivers. We find that PBLH errors are mostly positively correlated with sensible heat flux errors and that modeled positive UHI intensities are associated with deeper modeled PBLs over the urban areas. In addition, we find that modeled PBLHs are typically biased low during nighttime for most of the configurations with the exception of those using the MYNN parameterization, and these biases directly translate to tracer biases. Overall, the configurations using the MYNN scheme performed the best, reproducing the PBLH and CO2 molar fractions reasonably well during all hours and thus opening the door to future nighttime inverse modeling.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-08-27
    Description: Summer monsoon rainfall supplies over 55% of annual precipitation to global monsoon regions. As shown by more than 70% of models, including 30 models from CMIP5 and 30 models from CMIP6 under high-emission scenarios, North American (NAM) monsoon rainfall decreases in a warmer climate, in sharp contrast to the robust increase in Asian-African monsoon rainfall. A hierarchy of model experiments are analyzed to understand the mechanism for the reduced NAM monsoon rainfall in this study. Modeling evidence shows that the reduction of NAM monsoon rainfall is related to both direct radiative forcing of increased CO2 concentration and SST warming, manifested as fast and slow responses to abrupt CO2 quadrupling in CGCMs. A cyclone anomaly forms over the Eurasian-African continent due to enhanced land-sea thermal contrast under increased CO2 concentration, and this leads to a subsidence anomaly on its western flank, suppressing the NAM monsoon rainfall. The SST warming acts to further reduce the rainfall over the NAM monsoon region, and the El Niño-like SST warming pattern with enhanced SST warming over the equatorial Pacific plays a key role in suppressing NAM rainfall, whereas relative cooling over the subtropical North Atlantic has no contribution. A positive feedback between monsoon precipitation and atmospheric circulation helps to amplify the responses of monsoon rainfall.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-10-01
    Description: The assimilation of L-band surface brightness temperature (Tb) into the land surface model (LSM) component of a numerical weather prediction (NWP) system is generally expected to improve the quality of summertime 2-m air temperature (T2m) forecasts during water-limited surface conditions. However, recent retrospective results from the European Centre for Medium-Range Weather Forecasts (ECMWF) suggest that the assimilation of L-band Tb from the European Space Agency’s (ESA) Soil Moisture Ocean Salinity (SMOS) mission may, under certain circumstances, degrade the accuracy of growing-season 24-h T2m forecasts within the central United States. To diagnose the source of this degradation, we evaluate ECMWF soil moisture (SM) and evapotranspiration (ET) forecasts using both in situ and remote sensing resources. Results demonstrate that the assimilation of SMOS Tb broadly improves the ECMWF SM analysis in the central United States while simultaneously degrading the quality of 24-h ET forecasts. Based on a recently derived map of true global SM–ET coupling and a synthetic fraternal twin data assimilation experiment, we argue that the spatial and temporal characteristics of ECMWF SM analyses and ET forecast errors are consistent with the hypothesis that the ECMWF LSM overcouples SM and ET and, as a result, is unable to effectively convert an improved SM analysis into enhanced ET and T2m forecasts. We demonstrate that this overcoupling is likely linked to the systematic underestimation of root-zone soil water storage capacity by LSMs within the U.S. Corn Belt region.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-08-27
    Description: Recent advances in global ocean prediction systems are fostered by the needs of accurate representation of mesoscale processes. The day-by-day realistic representation of its variability is hampered by the scarcity of observations as well as the capability of assimilation systems to correct the ocean states at the same scale. This work extends a 3dvar system designed for oceanic applications, to cope with global eddy-resolving grid and dense observational datasets in a hybridly parallelized environment. The efficiency of the parallelization is assessed in term of both scalability and accuracy. The scalability is favoured by a weak-constrained formulation of the continuity requirement among the artificial boundaries implied by the domain decomposition. The formulation forces possible boundary discontinuities to be less than a prescribed error, and minimizes the parallel communication compared to standard methods. Theoretically, the exact solution is recovered by decreasing the boundary error towards zero. Practically, it is shown that the accuracy increases until a lower bound arises, due to the presence of the mesh and the finite accuracy of the minimizer. A twin experiment has been set up to estimate the benefit of employing an eddy-resolving grid within the assimilation step compared to an eddy-permitting one, while keeping the eddy-resolving grid within the forecast step. It is shown that the use of coarser grid for data assimilation does not allow an optimal exploitation of the present remote sensing observation network. A global decrease of about 15% in the error statistics is found when assimilating dense surface observations, while no significant improvement is seen for sparser observations (insitu profilers).
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-10-01
    Description: Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-10-20
    Description: Buoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A U–u*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different U–u* equation for U 〈 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-10-19
    Description: Concentrated poleward flows near the eastern boundaries between 2- and 4-km depth have been observed repeatedly, particularly in the Southern Hemisphere. These deep eastern boundary currents (DEBCs) play an important role in setting the large-scale tracer distribution and have nonnegligible contribution to global transports of mass, heat, and tracers, but their dynamics are not well understood. In this paper, we first demonstrate the significant role of DEBCs in the southeastern Atlantic, Indian, and Pacific Oceans, using the Southern Ocean State Estimate (SOSE) data assimilating product, and using high-resolution regional general circulation model configurations. The vorticity balances of these DEBCs reveal that, over most of the width of such currents, they are in an interior-like vorticity budget, with the meridional advection of planetary vorticity βυ and vortex stretching fwz being the largest two terms, and with contributions of nonlinearity and friction that are of smaller spatial scale. The stretching is shown, using a temperature budget, to be largely forced by resolved or parameterized eddy temperature transport. Strongly decaying signals from the eastern boundary in friction and stretching form the dominant balance in a sublayer close to the eastern boundary. The temporal variability of DEBCs is then examined, to help to interpret observations that tend to be sporadic in both time and space. The probability distribution functions of northward velocity in DEBC regions are broad, implying that flow reversals are common. Although the regions of the simulated DEBCs are generally local minima of eddy kinetic energy, they are still constantly releasing westward-propagating Rossby waves.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-08-27
    Description: The intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model. Moreover the accumulated precipitation prediction experiments have been conducted on 21 target tropical cyclones with daily precipitation ≥100 mm in South China from 2012 to 2016. The best forecasting scheme for the DSAEF_LTP model is identified, and the performance of the prediction is compared with three numerical weather prediction models (the European Centre for Medium-Range Weather Forecasts, the Global Forecast System and T639). The forecasting ability of the DSAEF_LTP model for heavy rainfall (accumulated precipitation ≥250 mm and ≥100 mm) improves when the intensity of the tropical cyclone is introduced, giving some advantages over the three numerical weather prediction models. The selection of analog tropical cyclones with a maximum intensity (during precipitation over land) equaling to or higher than the initial intensity of the target tropical cyclone gives better forecasts. The prediction accuracy for accumulated precipitation is higher for tropical cyclones with higher intensity and higher observed precipitation, with in both cases positive linear correlations with the threat score.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-10-20
    Description: Global numerical weather prediction (NWP) models have begun to resolve the mesoscale k−5/3 range of the energy spectrum, which is known to impose an inherently finite range of deterministic predictability per se as errors develop more rapidly on these scales than on the larger scales. However, the dynamics of these errors under the influence of the synoptic-scale k−3 range is little studied. Within a perfect-model context, the present work examines the error growth behavior under such a hybrid spectrum in Lorenz’s original model of 1969, and in a series of identical-twin perturbation experiments using an idealized two-dimensional barotropic turbulence model at a range of resolutions. With the typical resolution of today’s global NWP ensembles, error growth remains largely uniform across scales. The theoretically expected fast error growth characteristic of a k−5/3 spectrum is seen to be largely suppressed in the first decade of the mesoscale range by the synoptic-scale k−3 range. However, it emerges once models become fully able to resolve features on something like a 20-km scale, which corresponds to a grid resolution on the order of a few kilometers.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-10-09
    Description: Dust is the major aerosol type over the Tibetan Plateau (TP), and the TP plays an important role in forming the spring dust belt across the Northern Hemisphere in the upper troposphere. Estimated spring dust mass flux (DMF) showed a significant declining trend over the TP during 2007–19. The total spring DMF across the TP (TDMFTP) was mainly affected by DMFs over the Tarim Basin, while the spring DMF across the TP in the midtroposphere was also connected with DMFs over the northwest Indian Peninsula and central Asia. Interannual variability of spring TDMFTP was strongly correlated with the North Atlantic winter sea surface temperature (SST) tripole. A cold preceding winter induced by the North Atlantic winter SST tripole over midlatitude Eurasia promotes dust activities in the subsequent spring. The North Atlantic winter SST tripole anomalies persist into the subsequent spring and induce a corresponding atmosphere response. Enhanced atmospheric baroclinicity develops over northwest China and the northern Indian Peninsula during spring, which is attributed to surface thermal forcing induced by the positive winter SST tripole phase. A strong positive North Atlantic winter SST tripole anomaly strengthens the upper-level westerly jets, enhancing airflow toward the TP midtroposphere; together, these circulation patterns cause anomalous cyclonic conditions in the lower troposphere, especially over the Tarim Basin, via the eastward propagation of a Rossby wave train. These atmospheric circulation conditions are likely to increase the frequency of dust occurrence and promote the transport of dust onto the TP.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-07-01
    Description: The Kiremt rainy season is the foundation of agriculture in the Ethiopian Highlands and a key driver of economic development as well as the instigator of famines that have plagued the country’s history. Despite the importance of these rains, relatively little research exists on predicting the season’s onset; even less research evaluates statistical modeling approaches, in spite of their demonstrated utility for decision-making at local scales. To explore these methods, predictions are generated conditioned on three definitions of onset, at three lead times, using partial least squares (PLS) regression and random forest classification. Results illustrate moderate prediction skill and an ability to avoid false onsets, which may guide planting decisions; however, they are highly sensitive to how onset is defined, suggesting that future prediction approaches should additionally consider local agricultural definitions of onset.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-07-21
    Description: We formulate a new second-order closure turbulence model by employing a recent closure for the pressure–temperature correlation at the equation level. As a result, we obtain new heat flux equations that avoid the long-standing issue of a finite critical Richardson number. The new, structurally simpler model improves on the Mellor–Yamada and Galperin et al. models; a key feature includes enhanced mixing under stable conditions facilitating agreement with observational, experimental, and high-resolution numerical datasets. The model predicts a planetary boundary layer height deeper than predicted by models with low critical Richardson numbers, as demonstrated in single-column model runs of the GISS ModelE general circulation model.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-07-13
    Description: A novel approach to compare airborne observations of solar spectral irradiances measured above clouds with along-track radiative transfer simulations (RTS) is presented. The irradiance measurements were obtained with the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the High Altitude and Long Range Research Aircraft (HALO). The RTS were conducted using the operational ecRad radiation scheme of the Integrated Forecast System (IFS), operated by the European Centre for Medium-Range Weather Forecasts (ECMWF), and a stand-alone radiative transfer solver, the library for Radiative transfer (libRadtran). Profiles of observed and simulated radar reflectivity were provided by the HALO Microwave Package (HAMP) and the Passive and Active Microwave Transfer Model (PAMTRA), respectively. The comparison aims to investigate the capability of the two models to reproduce the observed radiation field. By analyzing spectral irradiances above clouds, different ice cloud optical parameterizations in the models were evaluated. Simulated and observed radar reflectivity fields allowed the vertical representation of the clouds modeled by the IFS to be evaluated, and enabled errors in the IFS analysis data (IFS AD) and the observations to be separated. The investigation of a North Atlantic low pressure system showed that the RTS, in combination with the IFS AD, generally reproduced the observed radiation field. For heterogeneously distributed liquid water clouds, an underestimation of upward irradiance by up to 27% was found. Simulations of ice-topped clouds, using a specific ice optics parameterization, indicated a systematic underestimation of broadband cloud-top albedo, suggesting major deficiencies in the ice optics parameterization between 1242 and 1941 nm wavelength.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-07-01
    Description: Based on a priori analysis of large-eddy simulations (LESs) of the convective atmospheric boundary layer, improved turbulent mixing and dissipation length scales are proposed for a turbulence kinetic energy (TKE)-based planetary boundary layer (PBL) scheme. The turbulent mixing length incorporates surface similarity and TKE constraints in the surface layer, and makes adjustments for lateral entrainment effects in the mixed layer. The dissipation length is constructed based on balanced TKE budgets accounting for shear, buoyancy, and turbulent mixing. A nongradient term is added to the TKE flux to correct for nonlocal turbulent mixing of TKE. The improved length scales are implemented into a PBL scheme, and are tested with idealized single-column convective boundary layer (CBL) cases. Results exhibit robust applicability across a broad CBL stability range, and are in good agreement with LES benchmark simulations. It is then implemented into a community atmospheric model and further evaluated with 3D real-case simulations. Results of the new scheme are of comparable quality to three other well-established PBL schemes. Comparisons between simulated and radiosonde-observed profiles show favorable performance of the new scheme on a clear day.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-07-09
    Description: During spring 2016 the Probabilistic Hazard Information (PHI) prototype experiment was run in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) as part of the Forecasting a Continuum of Environmental Threats (FACETS) program. Nine National Weather Service forecasters were trained to use the web-based PHI prototype tool to produce dynamic PHI for severe weather threats. Archived and real-time weather scenarios were used to test this new paradigm of issuing probabilistic information, rather than deterministic information. The forecasters’ mental workload was evaluated after each scenario using the NASA-Task Load Index (TLX) questionnaire. This study summarizes the analysis results of mental workload experienced by forecasters while using the PHI prototype. Six subdimensions of mental workload: mental demand, physical demand, temporal demand, performance, effort, and frustration were analyzed to derive top contributing factors to workload. Average mental workload was 46.6 (out of 100, standard deviation: 19, range 70.8). Top contributing factors to workload included using automated guidance, PHI object quantity, multiple displays, and formulating probabilities in the new paradigm. Automated guidance provided support to forecasters in maintaining situational awareness and managing increased quantities of threats. The results of this study provided understanding of forecasters’ mental workload and task strategies and developed insights to improve usability of the PHI prototype tool.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-07-09
    Description: This study investigates the northward-propagating quasi-biweekly oscillation (QBWO) in the western North Pacific by examining the composite meridional structures. Using newly released reanalysis and remote sensing data, the northward propagation is understood in terms of the meridional contrasts in the planetary boundary layer (PBL) moisture and the column-integrated moist static energy (MSE). The meridional contrast in the PBL moisture, with larger values north of the convection center, is predominantly attributed to the moisture convergence associated with barotropic vorticity anomalies. A secondary contribution comes from the meridional moisture advection, for which advections by mean and perturbation winds are almost equally important. The meridional contrast in the MSE tendency, due to the recharge in the front of convection and discharge in the rear of convection, is jointly contributed by the meridional and vertical MSE advections. The meridional MSE advection mainly depends on the moisture processes particularly in the PBL, and the vertical MSE advection largely results from the advection of the mean MSE by vertical velocity anomalies, wherein the upper-troposphere ascending motion related to the stratiform heating in the rear of the convection plays the major role. In addition, partial feedback from sea surface temperature (SST) anomalies is evaluated on the basis of MSE budget analysis. SST anomalies tend to enhance the surface turbulent heat fluxes ahead of the convention center and suppress them behind the convention center, thus positively contributing approximately 20% of the meridional contrast in the MSE tendency.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-07-10
    Description: Although the development of supergradient winds is well understood, the importance of supergradient winds in tropical cyclone (TC) intensification is still under debate. One view is that the spinup of the eyewall occurs by the upward advection of high tangential momentum associated with supergradient winds from the boundary layer. The other view argues that the upward advection of supergradient winds by eyewall updrafts results in an outward agradient force, leading to the formation of a shallow outflow layer immediately above the inflow boundary layer. As a result, the spinup of tangential wind in the eyewall by the upward advection of supergradient wind from the boundary layer is largely offset by the spindown of tangential wind due to the outflow resulting from the agradient force. In this study, the net contribution by the upward advection of the supergradient wind component from the boundary layer to the intensification rate and final intensity of a TC are quantified through ensemble sensitivity numerical experiments using an axisymmetric TC model. Results show that consistent with the second view above, the positive upward advection of the supergradient wind component from the boundary layer by eyewall updrafts is largely offset by the negative radial advection due to the outflow resulting from the outward agradient force. As a result, the upward advection of the supergradient wind component contributes little (often less than 4%) to the intensification rate and but it contributes about 10%–15% to the final intensity of the simulated TC due to the enhanced inner-core air–sea thermodynamic disequilibrium.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-07-10
    Description: This study is the first to reach a global view of the precipitation process partitioning, using a combination of satellite and global climate modeling data. The pathways investigated are 1) precipitating ice (ice/snow/graupel) that forms above the freezing level and melts to produce rain (S) followed by additional condensation and collection as the melted precipitating ice falls to the surface (R); 2) growth completely through condensation and collection (coalescence), warm rain (W); and 3) precipitating ice (primarily snow) that falls to the surface (SS). To quantify the amounts, data from satellite-based radar measurements—CloudSat, GPM, and TRMM—are used, as well as climate model simulations from the Community Atmosphere Model (CAM) and the Met Office Unified Model (UM). Total precipitation amounts and the fraction of the total precipitation amount for each of the pathways is examined latitudinally, regionally, and globally. Carefully examining the contributions from the satellite-based products leads to the conclusion that about 57% of Earth’s precipitation follows pathway S, 15% R, 23% W, and 5% SS, each with an uncertainty of ±5%. The percentages differ significantly from the global climate model results, with the UM indicating smaller fractional S, more R, and more SS; and CAM showing appreciably greater S, negative R (indicating net evaporation below the melting layer), a much larger percentage of W and much less SS. Possible reasons for the wide differences between the satellite- and model-based results are discussed.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-07-10
    Description: The emergence of a spatial pattern in the externally forced response (FR) of dynamic sea level (DSL) during the altimeter era has recently been demonstrated using climate models but our understanding of its initial emergence, drivers, and implications for the future is poor. Here the anthropogenic forcings of the DSL pattern are explored using the Community Earth System Model Large Ensemble (CESM-LE) and Single-Forcing Large Ensemble, a newly available set of simulations where values of individual forcing agents remain fixed at 1920 levels, allowing for an estimation of their effects. Statistically significant contributions to the DSL FR are identified for greenhouse gases (GHGs) and industrial aerosols (AERs), with particularly strong contributions resulting from AERs in the mid-twentieth century and GHGs in the late twentieth and twenty-first century. Secondary, but important, contributions are identified for biomass burning aerosols in the equatorial Atlantic Ocean in the mid-twentieth century, and for stratospheric ozone in the Southern Ocean during the late twentieth century. Key to understanding regional DSL patterns are ocean heat content and salinity anomalies, which are driven by surface heat and freshwater fluxes, ocean dynamics, and the spatial structure of seawater thermal expansivity. Potential implications for the interpretation of DSL during the satellite era and the longer records from tide gauges are suggested as a topic for future research.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-07-06
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-06-30
    Description: Capsule Developing and providing interdisciplinary formal climate change training and education for current and future decision-makers.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-10-01
    Description: The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program User Facility produces ground-based long-term continuous unique measurements for atmospheric state, precipitation, turbulent fluxes, radiation, aerosol, cloud, and the land surface, which are collected at multiple sites. These comprehensive datasets have been widely used to calibrate climate models and are proven to be invaluable for climate model development and improvement. This article introduces an evaluation package to facilitate the use of ground-based ARM measurements in climate model evaluation. The ARM data-oriented metrics and diagnostics package (ARM-DIAGS) includes both ARM observational datasets and a Python-based analysis toolkit for computation and visualization. The observational datasets are compiled from multiple ARM data products and specifically tailored for use in climate model evaluation. In addition, ARM-DIAGS also includes simulation data from models participating the Coupled Model Intercomparison Project (CMIP), which will allow climate-modeling groups to compare a new, candidate version of their model to existing CMIP models. The analysis toolkit is designed to make the metrics and diagnostics quickly available to the model developers.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-07-01
    Description: A sensitivity analysis methodology recently developed by the authors is applied to COAMPS and WRF. The method involves varying model parameters according to Latin Hypercube Sampling, and developing multivariate multiple regression models that map the model parameters to forecasts over a spatial domain. The regression coefficients and p values testing whether the coefficients are zero serve as measures of sensitivity of forecasts with respect to model parameters. Nine model parameters are selected from COAMPS and WRF, and their impact is examined on nine forecast quantities (water vapor, convective and gridscale precipitation, and air temperature and wind speed at three altitudes). Although the conclusions depend on the model parameters and specific forecast quantities, it is shown that sensitivity to model parameters is often accompanied by nontrivial spatial structure, which itself depends on the underlying forecast model (i.e., COAMPS vs WRF). One specific difference between these models is in their sensitivity with respect to a parameter that controls temperature increments in the Kain–Fritsch trigger function; whereas this parameter has a distinct spatial structure in COAMPS, that structure is completely absent in WRF. The differences between COAMPS and WRF also extend to the quality of the statistical models used to assess sensitivity; specifically, the differences are largest over the waters off the southeastern coast of the United States. The implication of these findings is twofold: not only is the spatial structure of sensitivities different between COAMPS and WRF, the underlying relationship between the model parameters and the forecasts is also different between the two models.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-01
    Description: An increase in the severity of extreme weather is arguably one of the most important consequences of climate change with immediate and potentially devastating impacts. Recent events, like Hurricane Harvey, stimulated public discourse surrounding the role of climate change in amplifying, or otherwise modifying, the patterns of such events. Within the scientific community, recent years have witnessed considerable progress on “climate attribution”—the use of statistical techniques to assess the probability that climate change is influencing the character of some extreme weather events. Using a novel application of signal detection theory, this article assesses when, and to what extent, laypeople attribute changes in hurricanes to climate change and whether and how certain characteristics predict this decision. The results show that people attribute hurricanes to climate change based on their preexisting climate beliefs and numeracy. Respondents who were more dubious about the existence of climate change (and more numerate) required a greater degree of evidence (i.e., a more extreme world) before they were willing to suggest that an unusual hurricane season might be influenced by climate change. However, those who have doubts were still willing to make these attributions when hurricane behavior becomes sufficiently extreme. In general, members of the public who hold different prior views about climate change are not in complete disagreement about the evidence they perceive, which leaves the possibility for future work to explore ways to bring such judgments back into alignment.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-10-01
    Description: Aircraft cruising near the tropopause currently benefit from the highest thermal efficiency and the least viscous (sticky) air, within the lowest 50 km of Earth’s atmosphere. Both advantages wane in a warming climate, because atmospheric dynamic viscosity increases with temperature, in synergy with the simultaneous engine efficiency reduction. Here, skin friction drag, the dominant term for extra aviation fuel consumption in a future warming climate, is quantified by 34 climate models under a strong emissions scenario. Since 1950, the viscosity increase at cruising altitudes (∼200 hPa) reaches ∼1.5% century‒1, corresponding to a total drag increment of ∼0.22% century‒1 for commercial aircraft. Meridional gradients and regional disparities exist, with low to midlatitudes experiencing greater increases in skin friction drag. The North Atlantic corridor (NAC) is moderately affected, but its high traffic volume generates additional fuel cost of ∼3.8 × 107 gallons annually by 2100, compared to 2010. Globally, a normal year after 2100 would consume an extra ∼4 × 106 barrels per year. Intermodel spread is
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-07-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-07-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-07-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
  • 67
    Publication Date: 2020-07-01
    Description: The Facility for Weather and Climate Assessments (FACTS) developed at the NOAA Physical Sciences Laboratory is a freely available resource that provides the science community with analysis tools; multimodel, multiforcing climate model ensembles; and observational/reanalysis datasets for addressing a wide class of problems on weather and climate variability and its causes. In this paper, an overview of the datasets, the visualization capabilities, and data dissemination techniques of FACTS is presented. In addition, two examples are given that show the use of the interactive analysis and visualization feature of FACTS to explore questions related to climate variability and trends. Furthermore, we provide examples from published studies that have used data downloaded from FACTS to illustrate the types of research that can be pursued with its unique collection of datasets.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-07-01
    Description: The current atmospheric observing systems fail to provide a satisfactory amount of spatially and temporally resolved observations of temperature and humidity in the planetary boundary layer (PBL) despite their potential positive impact on numerical weather prediction (NWP). This is particularly critical for humidity, which exhibits a very high variability in space and time or for the vertical distribution of temperature, determining the atmosphere’s stability. Novel ground-based lidar remote sensing technologies and in situ measurements from unmanned aerial vehicles can fill this observational gap, but operational maturity was so far lacking. Only recently, commercial lidar systems for temperature and humidity profiling in the lower troposphere and automated observations on board of drones have become available. Raman lidar can provide profiles of temperature and humidity with high temporal and vertical resolution in the troposphere. Drones can provide high-quality in situ observations of various meteorological variables with high temporal and vertical resolution, but flights are complicated in high-wind situations, icing conditions, and can be restricted by aviation activity. Both observation systems have shown to considerably improve analyses and forecasts of high-impact weather, such as thunderstorms and fog in an operational, convective-scale NWP framework. The results of this study demonstrate the necessity for and the value of additional, high-frequency PBL observations for NWP and how lidar and drone observations can fill the gap in the current operational observing system.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-07-01
    Description: When drought hits water-scarce regions, there are significant repercussions for food and water security, as well as serious issues for the stability of broader social and environmental systems. To mitigate these effects, environmental monitoring and early warning systems aimed at detecting the onset of drought conditions can facilitate timely and effective responses from government and private sector stakeholders. This study uses multistage, participatory research methods across more than 135 interviews, focus groups, and workshops to assess extant climatic, agricultural, hydrological, and drought monitoring systems; key cross-sector drought impacts; and drought monitoring needs in four countries in the Middle East and North Africa (MENA) region: Morocco, Tunisia, Lebanon, and Jordan. This extensive study of user needs for drought monitoring across the MENA region is informing and shaping the ongoing development of drought early warning systems, a composite drought indicator (CDI), and wider drought management systems in each country. Overarching themes of drought monitoring needs include technical definitions of drought for policy purposes; information-sharing regimes and data-sharing platforms; ground-truthing of remotely sensed and modeled data; improved data quality in observation networks; and two-way engagement with farmers, organizations, and end-users of drought monitoring products. This research establishes a basis for informing enhanced drought monitoring and management in the countries, and the broad stakeholder engagement can help foster the emergence of effective environmental monitoring coalitions.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-07-01
    Description: Many regions in Africa and the Middle East are vulnerable to drought and to water and food insecurity, motivating agency efforts such as the U.S. Agency for International Development’s (USAID) Famine Early Warning Systems Network (FEWS NET) to provide early warning of drought events in the region. Each year these warnings guide life-saving assistance that reaches millions of people. A new NASA multimodel, remote sensing–based hydrological forecasting and analysis system, NHyFAS, has been developed to support such efforts by improving the FEWS NET’s current early warning capabilities. NHyFAS derives its skill from two sources: (i) accurate initial conditions, as produced by an offline land modeling system through the application and/or assimilation of various satellite data (precipitation, soil moisture, and terrestrial water storage), and (ii) meteorological forcing data during the forecast period as produced by a state-of-the-art ocean–land–atmosphere forecast system. The land modeling framework used is the Land Information System (LIS), which employs a suite of land surface models, allowing multimodel ensembles and multiple data assimilation strategies to better estimate land surface conditions. An evaluation of NHyFAS shows that its 1–5-month hindcasts successfully capture known historic drought events, and it has improved skill over benchmark-type hindcasts. The system also benefits from strong collaboration with end-user partners in Africa and the Middle East, who provide insights on strategies to formulate and communicate early warning indicators to water and food security communities. The additional lead time provided by this system will increase the speed, accuracy, and efficacy of humanitarian disaster relief, helping to save lives and livelihoods.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-07-01
    Description: The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) performed comprehensive meteorological and aerosol measurements and ground-based atmospheric remote sensing at two Antarctic stations using the most advanced instrumentation available. A suite of cloud research radars, lidars, spectral and broadband radiometers, aerosol chemical and microphysical sampling equipment, and meteorological instrumentation was deployed at McMurdo Station on Ross Island from December 2015 through December 2016. A smaller suite of radiometers and meteorological equipment, including radiosondes optimized for surface energy budget measurement, was deployed on the West Antarctic Ice Sheet between 4 December 2015 and 17 January 2016. AWARE provided Antarctic atmospheric data comparable to several well-instrumented high Arctic sites that have operated for many years and that reveal numerous contrasts with the Arctic in aerosol and cloud microphysical properties. These include persistent differences in liquid cloud occurrence, cloud height, and cloud thickness. Antarctic aerosol properties are also quite different from the Arctic in both seasonal cycle and composition, due to the continent’s isolation from lower latitudes by Southern Ocean storm tracks. Antarctic aerosol number and mass concentrations are not only non-negligible but perhaps play a more important role than previously recognized because of the higher sensitivities of clouds at the very low concentrations caused by the large-scale dynamical isolation. Antarctic aerosol chemical composition, particularly organic components, has implications for local cloud microphysics. The AWARE dataset, fully available online in the ARM Program data archive, offers numerous case studies for unique and rigorous evaluation of mixed-phase cloud parameterization in climate models.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-07-01
    Description: A rapidly growing number of TV weathercasters are reporting on the local implications of climate change, although little is known about the effectiveness of such communication. To test the impact of localized climate reporting, we conducted an internet-based randomized controlled experiment in which local TV news viewers (n = 1,200) from two American cities (Chicago and Miami) watched either three localized climate reports or three standard weather reports featuring a prominent TV weathercaster from their city; each of the videos was between 1 and 2 min in duration. Participants’ understanding of climate change as real, human-caused, and locally relevant was assessed with a battery of questions after watching the set of three videos. Compared to participants who watched weather reports, participants who watched climate reports became significantly more likely to 1) understand that climate change is happening, is human-caused, and is causing harm in their community; 2) feel that climate change is personally relevant and express greater concern about it; and 3) feel that they understand how climate change works and express greater interest in learning more about it. In short, our findings demonstrate that watching even a brief amount of localized climate reporting (less than 6 min) delivered by TV weathercasters helps viewers develop a more accurate understanding of global climate change as a locally and personally relevant problem, and offer strong support for this promising approach to promoting enhanced public understanding of climate change through public media.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-01
    Description: Recent social science research has provided a better understanding of risk communication and decision-making. However, less is understood about the public’s actual weather knowledge, how they assess their weather knowledge, and how knowledge may relate to weather forecast information use. The objective of this study was to gain a better understanding of self-perceived and assessed weather knowledge of participants. Psychology literature indicates some people are prone to overestimating their knowledge, which is known as the Dunning–Kruger effect (DKE), but this has yet to be studied in a meteorological context. This study compared participants’ assessed weather knowledge with their self-perceived weather knowledge, and results indicate participants with the lowest assessed weather knowledge do overestimate their weather knowledge, a result consistent with previous psychological studies. Participants who obtained a weather forecast more frequently exhibited higher perceived and assessed weather knowledge. Higher perceived and assessed weather knowledge was also observed among users of a specialty weather website compared to a more general audience. The study raises interesting questions about how users of different weather sources acquire or (add to) their weather knowledge and is the first study to explore DKE in the context of weather communication.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-07-01
    Description: As we celebrate the fiftieth anniversary of NASA’s Apollo missions, images of Earth simulated with the ECMWF Integrated Forecasting System (IFS) are visually compared with pictures collected during space missions of the past five decades, in particular from the Apollo missions (1968–72). The numerical weather reforecasts use the latest version of the IFS and are initialized from (re)analysis data, which provide our current best representation of the atmospheric state for any given date back to the 1950s. Visible images of our planet are produced from the IFS with a simple simulator whose main inputs are the solar fluxes at the top of the atmosphere. First, a comparison to recent imagery from deep space illustrates the high level of performance of the IFS on recent dates. Then, the validation of the IFS against photographs taken by Apollo 11 and 17 both in-flight and from the lunar surface exhibits a significant level of agreement, despite the absence or very limited number of satellite observations available. This short study confirms that the combination of high-quality initial conditions with a modern numerical weather prediction model can yield reasonably accurate reforecasts of global meteorological conditions, especially cloud systems, for dates as far back as the late 1960s.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-07-01
    Description: It might be impossible to truly fathom the magnitude of the threat that global-mean sea level rise poses. However, conceptualizing the scale of the solutions required to protect ourselves against global-mean sea level rise aids in our ability to acknowledge and understand that threat. On these grounds, we here discuss a means to protect over 25 million people and important economical regions in northern Europe against sea level rise. We propose the construction of a Northern European Enclosure Dam (NEED) that stretches between France, the United Kingdom, and Norway. NEED may seem an overwhelming and unrealistic solution at first. However, our preliminary study suggests that NEED is potentially favorable financially, but also in scale, impacts, and challenges compared to that of alternative solutions, such as (managed) migrations and that of country-by-country protection efforts. The mere realization that a solution as considerable as NEED might be a viable and cost-effective protection measure is illustrative of the extraordinary global threat of global-mean sea level rise that we are facing. As such, the concept of constructing NEED showcases the extent of protection efforts that are required if mitigation efforts fail to limit sea level rise.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-07-01
    Description: The National Oceanic and Atmospheric Administration’s (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT) project evaluated the ability of observations from high-altitude unmanned aircraft to improve forecasts of high-impact weather events like tropical cyclones or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. During three field campaigns conducted in 2015 and 2016, the National Aeronautics and Space Administration (NASA) Global Hawk, instrumented with GPS dropwindsondes and remote sensors, flew 15 missions sampling 6 tropical cyclones and 3 winter storms. Missions were designed using novel techniques to target sampling regions where high model forecast uncertainty and a high sensitivity to additional observations existed. Data from the flights were examined in real time by operational forecasters, assimilated in operational weather forecast models, and applied postmission to a broad suite of data impact studies. Results from the analyses spanning different models and assimilation schemes, though limited in number, consistently demonstrate the potential for a positive forecast impact from the observations, both with and without a gap in satellite coverage. The analyses with the then-operational modeling system demonstrated large forecast improvements near 15% for tropical cyclone track at a 72-h lead time when the observations were added to the otherwise complete observing system. While future decisions regarding use of the Global Hawk platform will include budgetary considerations, and more observations are required to enhance statistical significance, the scientific results support the potential merit of the observations. This article provides an overview of the missions flown, observational approach, and highlights from the completed and ongoing data impact studies.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
  • 78
    Publication Date: 2020-07-01
    Description: Citizen science is often recognized for its potential to directly engage the public in science, and is uniquely positioned to support and extend participants’ learning in science. In March 2018, the Global Learning and Observations to Benefit the Environment (GLOBE) Program, NASA’s largest and longest-lasting citizen science program about Earth, organized a month-long event that asked people around the world to contribute daily cloud observations and photographs of the sky (15 March–15 April 2018). What was considered a simple engagement activity turned into an unprecedented worldwide event that garnered major public interest and media recognition, collecting over 55,000 observations from 99 different countries, in more than 15,000 locations, on every continent including Antarctica. The event was called the “Spring Cloud Challenge” and was created to 1) engage the general public in the scientific process and promote the use of the GLOBE Observer app, 2) collect ground-based visual observations of varying cloud types during boreal spring, and 3) increase the number and locations of ground-based visual cloud observations collocated with cloud-observing satellites. The event resulted in roughly 3 times more observations than during the historic and highly publicized 2017 North American total solar eclipse. The dataset also includes observations over the Drake Passage in Antarctica and reports from intense Saharan dust events. This article describes how the challenge was crafted, outreach to volunteer scientists around the world, details of the data collected, and impact of the data.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-07-01
    Description: There are at least three popular perceptions surrounding the weather forecast for the D-day landing in Normandy, 6 June 1994: 1) that the Allied weather forecasters predicted a crucial break or “window of opportunity” in the unsettled weather prevailing at the time; 2) that the German meteorologists, lacking observations from the North Atlantic, failed to see this break coming and thus the invasion took the Wehrmacht by surprise; and 3) that the American forecasters, guided by a skillful analog system, predicted the favorable conditions several days ahead but got no support from their pessimistic British colleagues. This article will present evidence taken mostly from hitherto rather neglected sources of information, transcripts of the telephone discussions between the Allied forecasters and archived German weather analyses. They show that 1) the synoptic development for the invasion was not particularly well predicted and, if there was a break in the weather, it occurred for reasons other than those predicted; 2) the German forecasters were fairly well informed about the large-scale synoptic situation over most of the North Atlantic, probably thanks to decoded American analyses; and 3) from the viewpoint of a “neutral Swede,” the impression is that the American analog method might not have performed as splendidly as its adherents have claimed, but also not as badly as its critics have alleged. Finally, the D-day forecast, the discussions among the forecasters, and their briefings with the Allied command are interesting not only from a historical perspective, but also as an early and well-documented example of decision-making under meteorological uncertainty.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-07-01
    Description: Climate change and air pollution have important societal consequences, especially in emerging economies, wherein transitions from polluting technologies to cleaner alternatives coincide with high population vulnerability to environmental threats. India is home to a fifth of the world’s population and a gamut of human activities, employing a far ranging spectrum of technologies and fuels, with consequent emissions. Atmospheric fine particles or aerosols in the region predominate in carbonaceous constituents and dust. Multi-institutional studies in the region have earlier focused on natural and anthropogenic climate forcing by aerosols and feedbacks on regional and global climate. Important gaps remain in understanding human activities influencing emissions, emission aerosol properties, and regional atmospheric processes, specifically those related to carbonaceous aerosol impacts on climate and air quality. With an aim to address these gaps, the COALESCE (Carbonaceous Aerosol Emissions, Source Apportionment and Climate Impacts) project was launched on 7 July 2017. The project adopts integration of scientific methods developed by both the climate and air quality research communities. New fundamental knowledge from the project and strong links to India’s policy framework would enable climate and clean-air action in the region. The article describes the scientific rationale, objectives, and planned activities under COALESCE to explore engagement with the international climate and air quality research communities and to enable eventual dissemination of research findings, knowledge products, and decision-support tools.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-10-21
    Description: A high-resolution global atmospheric model, the nonhydrostatic icosahedral atmospheric model (NICAM), exhibited underestimation biases in low-level mixed-phase clouds in the midlatitudes and polar regions. The ice-cloud microphysics used in a single-moment bulk cloud microphysics scheme (NSW6) was evaluated and improved using a single-column model by reference to a double-moment bulk cloud microphysics scheme (NDW6). Budget analysis indicated that excessive action of the Bergeron–Findeisen and riming processes crucially reduced supercooled liquid water. In addition, the rapid production of rain directly reduced cloud water and indirectly reduced cloud water through the production of snow and graupel by riming. These biases in growth rates were found to originate from the number concentration diagnosis used in NSW6. The diagnosis based on the midlatitude cloud systems assumption was completely different from the one for low-level mixed-phase clouds. To alleviate underestimation biases, rain production, heterogeneous ice nucleation, vapor deposition by snow and graupel, and riming processes were revised. The sequential revisions of cloud microphysics alleviated the underestimation biases step by step without parameter tuning. The lifetime of cloud layers simulated by NSW6 was reasonably prolonged.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-10-01
    Description: Warm-season rainfall associated with mesoscale convective systems (MCSs) in the central United States is characterized by higher intensity and nocturnal timing compared to rainfall from non-MCS systems, suggesting their potentially different footprints on the land surface. To differentiate the impacts of MCS and non-MCS rainfall on the surface water balance, a water tracer tool embedded in the Noah land surface model with multiparameterization options (WT-Noah-MP) is used to numerically “tag” water from MCS and non-MCS rainfall separately during April–August (1997–2018) and track their transit in the terrestrial system. From the water-tagging results, over 50% of warm-season rainfall leaves the surface–subsurface system through evapotranspiration by the end of August, but non-MCS rainfall contributes a larger fraction. However, MCS rainfall plays a more important role in generating surface runoff. These differences are mostly attributed to the rainfall intensity differences. The higher-intensity MCS rainfall tends to produce more surface runoff through infiltration excess flow and drives a deeper penetration of the rainwater into the soil. Over 70% of the top 10th percentile runoff is contributed by MCS rainfall, demonstrating its important contribution to local flooding. In contrast, lower-intensity non-MCS rainfall resides mostly in the top layer and contributes more to evapotranspiration through soil evaporation. Diurnal timing of rainfall has negligible effects on the flux partitioning for both MCS and non-MCS rainfall. Differences in soil moisture profiles for MCS and non-MCS rainfall and the resultant evapotranspiration suggest differences in their roles in soil moisture–precipitation feedbacks and ecohydrology.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-08-25
    Description: Capsule summary. Helicopter-borne observations with unprecedented high resolution provide new insights in the fine-scale structure of marine boundary layer clouds and aerosol stratification over the Eastern North Atlantic.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-08-25
    Description: Tropical cyclones (TCs) rank among the most costly natural disasters in the United States, and accurate forecasts of track and intensity are critical for emergency response. Intensity guidance has improved steadily but slowly, as processes which drive intensity change are not fully understood. Because most TCs develop far from land-based observing networks, geostationary satellite imagery is critical to monitor these storms. However, these complex data can be challenging to analyze in real time, and off-the-shelf machine learning algorithms have limited applicability on this front due to their “black box” structure. This study presents analytic tools that quantify convective structure patterns in infrared satellite imagery for over-ocean TCs, yielding lower-dimensional but rich representations that support analysis and visualization of how these patterns evolve during rapid intensity change. The proposed ORB feature suite targets the global Organization, Radial structure, and Bulk morphology of TCs. By combining ORB and empirical orthogonal functions, we arrive at an interpretable and rich representation of convective structure patterns that serve as inputs to machine learning methods. This study uses the logistic lasso, a penalized generalized linear model, to relate predictors to rapid intensity change. Using ORB alone, binary classifiers identifying the presence (versus absence) of such intensity change events can achieve accuracy comparable to classifiers using environmental predictors alone, with a combined predictor set improving classification accuracy in some settings. More complex nonlinear machine learning methods did not perform better than the linear logistic lasso model for current data.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-10-19
    Description: Using 4-yr mooring observations and ocean circulation model experiments, this study characterizes the spatial and temporal variability of the Equatorial Intermediate Current (EIC; 200–1200 m) in the Indian Ocean and investigates the causes. The EIC is dominated by seasonal and intraseasonal variability, with interannual variability being weak. The seasonal component dominates the midbasin with a predominant semiannual period of ~166 days but weakens toward east and west where the EIC generally exhibits large intraseasonal variations. The resonant second and fourth baroclinic modes at the semiannual period make the largest contribution to the EIC, determining the overall EIC structures. The higher baroclinic modes, however, modify the EIC’s vertical structures, forming multiple cores during some time periods. The EIC intensity has an abrupt change near 73°E, which is strong to the east and weak to the west. Model simulation suggests that the abrupt change is caused primarily by the Maldives, which block the propagation of equatorial waves. The Maldives impede the equatorial Rossby waves, reducing the EIC’s standard deviation associated with reflected Rossby waves by ~48% and directly forced waves by 20%. Mode decomposition further demonstrates that the semiannual resonance amplitude of the second baroclinic mode reduces by 39% because of the Maldives. However, resonance amplitude of the four baroclinic mode is less affected, because the Maldives fall in the node region of mode 4’s resonance. The research reveals the spatiotemporal variability of the poorly understood EIC, contributing to our understanding of equatorial wave–current dynamics.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-08-25
    Description: The Early Twentieth Century Warming (ETCW) defined as the period 1921–50 saw a clear increase in actinometrical observations in the Arctic. Nevertheless, information on radiation balance and its components at that time is still very limited in availability, and therefore large discrepancies exist among estimates of total solar irradiance forcing. To eliminate these uncertainties, all available solar radiation data for the Arctic needs to be collected and processed. Better knowledge about incoming solar radiation (direct, diffuse and global) should allow for more reliable estimation of the magnitude of total solar irradiance forcing, which can help in turn, to more precisely and correctly explain the reasons for the ETCW in the Arctic. The paper summarises our research into the availability of solar radiation data for the Arctic. An important part of this work is its detailed inventory of data series (including metadata) for the period before the mid-20th century. Based on the most reliable data series, general solar conditions in the Arctic during the ETCW are described. The character of solar radiation changes between the ETCW and present times, in particular after 2000, is also analyzed. Average annual global solar radiation in the Russian Arctic during the ETCW were slightly greater than in the period 1964–90 (by about 1–2 W·m˗2), and markedly greater than in the period 2001–19 (by about 16 W·m˗2). Our results also reveal that in the period 1920–2019 three phases of solar radiation changes can be distinguished: a brightening phase (1921–50), a stabilisation phase (1951–93) and a dimming phase (after 2000).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-10-05
    Description: Variability in soil moisture has implications for regional terrestrial environments under a warming climate. This paper focuses on the spatiotemporal variability in the intra-annual persistence of soil moisture in China using the fifth-generation reanalysis dataset by the European Centre for Medium-Range Weather Forecasts for the period 1979–2018. The results show that in China, the mean intra-annual persistence in the humid to arid zones increased from 60 to 115 days in the lower layer but decreased from 19 to 13 days and from 25 to 14 days in the upper and root layers, respectively. However, these changes were strongly attenuated in extremely dry and wet regions due to the scarcity of soil moisture anomalies. Large changes in persistence occurred in the lower soil layer in dryland areas, with a mean difference of up to 40 days between the 2010s and the 1980s. Overall increasing trends dominated the large-scale spatial features, despite regional decreases in the eastern arid zone and the North and Northeast China plains. In the root layer, the two plains experienced an expanded decrease while on the Tibetan Plateau it was dominated by decadal variability. These contrasting changes between the lower and root layers along the periphery of the transition zone was a reflection of the enhanced soil hydrological cycle in the root layer. The enhanced persistence in drylands lower layer is an indication of the intensified impacts of soil moisture anomalies (e.g., droughts) on terrestrial water cycle. These findings may help the understanding of climate change impacts on terrestrial environments.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-09-16
    Description: Data assimilation combines forecasts from a numerical model with observations. Most of the current data assimilation algorithms consider the model and observation error terms as additive Gaussian noise, specified by their covariance matrices Q and R, respectively. These error covariances, and specifically their respective amplitudes, determine the weights given to the background (i.e., the model forecasts) and to the observations in the solution of data assimilation algorithms (i.e., the analysis). Consequently, Q and R matrices significantly impact the accuracy of the analysis. This review aims to present and to discuss, with a unified framework, different methods to jointly estimate the Q and R matrices using ensemble-based data assimilation techniques. Most of the methods developed to date use the innovations, defined as differences between the observations and the projection of the forecasts onto the observation space. These methods are based on two main statistical criteria: 1) the method of moments, in which the theoretical and empirical moments of the innovations are assumed to be equal, and 2) methods that use the likelihood of the observations, themselves contained in the innovations. The reviewed methods assume that innovations are Gaussian random variables, although extension to other distributions is possible for likelihood-based methods. The methods also show some differences in terms of levels of complexity and applicability to high-dimensional systems. The conclusion of the review discusses the key challenges to further develop estimation methods for Q and R. These challenges include taking into account time-varying error covariances, using limited observational coverage, estimating additional deterministic error terms, or accounting for correlated noise.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-10-27
    Description: A large midlatitude cyclone occurred over the central United States from 0000 to 1800 UTC 30 April 2017. During this period, there were more than 1100 reports of moderate-or-greater turbulence at commercial aviation cruising altitudes east of the Rocky Mountains. Much of this turbulence was located above or, otherwise, outside the synoptic-scale cloud shield of the cyclone, thus complicating its avoidance. In this study we use two-way nesting in a numerical model with finest horizontal spacing of 370 m to investigate possible mechanisms producing turbulence in two distinct regions of the cyclone. In both regions, model-parameterized turbulence kinetic energy compares well to observed turbulence reports. Despite being outside of hazardous large radar reflectivity locations in deep convection, both regions experienced strong modification of the turbulence environment as a result of upper-tropospheric/lower-stratospheric (UTLS) convective outflow. For one region, where turbulence was isolated and short lived, simulations revealed breaking of ~100-km horizontal-wavelength lower-stratospheric gravity waves in the exit region of a UTLS jet streak as the most likely mechanism for the observed turbulence. Although similar waves occurred in a simulation without convection, the altitude at which wave breaking occurred in the control simulation was strongly affected by UTLS outflow from distant deep convection. In the other analyzed region, turbulence was more persistent and widespread. There, overturning waves of much shorter 5–10-km horizontal wavelengths occurred within layers of gradient Richardson number 〈 0.25, which promoted Kelvin–Helmholtz instability associated with strong vertical shear in different horizontal locations both above and beneath the convectively enhanced UTLS jet.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-10-01
    Description: In this study, we investigate the technical application of the regularized regression method Lasso for identifying systematic biases in decadal precipitation predictions from a high-resolution regional climate model (CCLM) for Europe. The Lasso approach is quite novel in climatological research. We apply Lasso to observed precipitation and a large number of predictors related to precipitation derived from a training simulation, and transfer the trained Lasso regression model to a virtual forecast simulation for testing. Derived predictors from the model include local predictors at a given grid box and EOF predictors that describe large-scale patterns of variability for the same simulated variables. A major added value of the Lasso function is the variation of the so-called shrinkage factor and its ability in eliminating irrelevant predictors and avoiding overfitting. Among 18 different settings, an optimal shrinkage factor is identified that indicates a robust relationship between predictand and predictors. It turned out that large-scale patterns as represented by the EOF predictors outperform local predictors. The bias adjustment using the Lasso approach mainly improves the seasonal cycle of the precipitation prediction and, hence, improves the phase relationship and reduces the root-mean-square error between model prediction and observations. Another goal of the study pertains to the comparison of the Lasso performance with classical model output statistics and with a bivariate bias correction approach. In fact, Lasso is characterized by a similar and regionally higher skill than classical approaches of model bias correction. In addition, it is computationally less expensive. Therefore, we see a large potential for the application of the Lasso algorithm in a wider range of climatological applications when it comes to regression-based statistical transfer functions in statistical downscaling and model bias adjustment.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-06-10
    Description: Using a Lagrangian trajectory model, contributions of moisture from the Indian Ocean (IO), the South China Sea (SCS), the adjacent land region (LD), and the Pacific Ocean (PO) to interannual summer precipitation variations in southwestern China (SWC) are investigated. Results show that, on average, the IO, SCS, LD, and PO contribute 48.8%, 21.1%, 23.6%, and 3.7% of the total moisture release in SWC, respectively. In summers with the above-normal precipitation, moisture release from the IO and SCS increases significantly by 41.4% and 15.1%, respectively. In summers with below-normal precipitation, moisture release from the IO and SCS decreases significantly by 44.2% and 24.6%, respectively. In addition, the moisture anomalies from the four source regions together explain 86.5% of the total interannual variances of SWC summer precipitation, and the IO and SCS only can explain 75.7%. Variations in moisture transport from the IO, SCS, and LD to SWC are not independent of one another and are commonly influenced by the anomalous anticyclone in the western North Pacific Ocean, which enhances the moisture transport from the IO and SCS by the anomalous southwesterlies over its northwestern quadrant but reduces that from the LD east of SWC by the anomalous westerlies along its northern edge. Anomalous warming in the tropical Atlantic Ocean can modify the Walker circulation, induce anomalous descending motion over the central tropical Pacific, and excite the anomalous anticyclone in the western North Pacific as the classic Matsuno–Gill response. The observed impacts of the tropical Atlantic warming on the anomalous anticyclone and summer precipitation in SWC can be well reproduced in an atmospheric general circulation model.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-05-27
    Description: The NOAA Warn-on-Forecast System (WoFS) is an experimental rapidly updating convection-allowing ensemble designed to provide probabilistic operational guidance on high-impact thunderstorm hazards. The current WoFS uses physics diversity to help maintain ensemble spread. We assess the systematic impacts of the three WoFS PBL schemes—YSU, MYJ, and MYNN—using novel, object-based methods tailored to thunderstorms. Very short forecast lead times of 0–3 h are examined, which limits phase errors and thereby facilitates comparisons of observed and model storms that occurred in the same area at the same time. This evaluation framework facilitates assessment of systematic PBL scheme impacts on storms and storm environments. Forecasts using all three PBL schemes exhibit overly narrow ranges of surface temperature, dewpoint, and wind speed. The surface biases do not generally decrease at later forecast initialization times, indicating that systematic PBL scheme errors are not well mitigated by data assimilation. The YSU scheme exhibits the least bias of the three in surface temperature and moisture and in many sounding-derived convective variables. Interscheme environmental differences are similar both near and far from storms and qualitatively resemble the differences analyzed in previous studies. The YSU environments exhibit stronger mixing, as expected of nonlocal PBL schemes; are slightly less favorable for storm intensification; and produce correspondingly weaker storms than the MYJ and MYNN environments. On the other hand, systematic interscheme differences in storm morphology and storm location forecast skill are negligible. Overall, the results suggest that calibrating forecasts to correct for systematic differences between PBL schemes may modestly improve WoFS and other convection-allowing ensemble guidance at short lead times.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-05-27
    Description: The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-06-01
    Description: Heated tipping-bucket (TB) gauges are used broadly in national weather monitoring networks, but their performance for the measurement of solid precipitation has not been well characterized. Manufacturer-provided TB gauges were evaluated at five test sites during the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), with most gauge types tested at more than one site. The test results were used to develop and evaluate adjustments for the undercatch of solid precipitation by heated TB gauges. New methods were also developed to address challenges specific to measurements from heated TB gauges. Tipping-bucket transfer functions were created specifically to minimize the sum of errors over the course of the adjusted multiseasonal accumulation. This was based on the hypothesis that the best transfer function produces the most accurate long-term precipitation records, rather than accurate catch efficiency measurements or accurate daily or hourly precipitation measurements. Using this new approach, an adjustment function derived from multiple gauges was developed that performed better than traditional gauge-specific and multigauge catch efficiency derived adjustments. Because this new multigauge adjustment was developed using six different types of gauges tested at five different sites, it may be applicable to solid precipitation measurements from unshielded heated TB gauges that were not evaluated in WMO-SPICE. In addition, this new method of optimizing transfer functions may be useful for other types of precipitation gauges, as it has many practical advantages over the traditional catch efficiency methods used to derive undercatch adjustments.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-05-28
    Description: This article illustrates how multifrequency radar observations can refine the mass–size parameterization of frozen hydrometeors in scattering models and improve the correlation between the radar observations and in situ measurements of microphysical properties of ice and snow. The data presented in this article were collected during the GPM Cold Season Precipitation Experiment (GCPEx) (2012) and Olympic Mountain Experiment (OLYMPEx) (2015) field campaigns, where the true mass–size relationship was not measured. Starting from size and shape distributions of ice particles measured in situ, scattering models are used to simulate an ensemble of reflectivity factors for various assumed mass–size parameterizations (MSP) of the power-law type. This ensemble is then collocated to airborne and ground-based radar observations, and the MSPs are refined by retaining only those that reproduce the radar observations to a prescribed level of accuracy. A versatile “retrieval dashboard” is built to jointly analyze the optimal MSPs and associated retrievals. The analysis shows that the optimality of an MSP depends on the physical assumptions made in the scattering simulators. This work confirms also the existence of a relationship between parameters of the optimal MSPs. Through the MSP optimization, the retrievals of ice water content M and mean diameter Dm seem robust to the change in meteorological regime (between GCPEx and OLYMPEx); whereas the retrieval of the diameter spread Sm seems more campaign dependent.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-08-26
    Description: The filtering properties of the standardized precipitation index (SPI), the Palmer drought severity index (PDSI), and the model calibrated drought index (MCDI) are investigated to determine their relations to past, present, and future precipitation anomalies in regions with a wide diversity of precipitation characteristics. All three indices can be closely approximated by weighted averages of precipitation, but with different weighting. The SPI is well represented by one-sided, uniformly weighted averages; the MCDI is well represented by one-sided, exponentially weighted averages; and the PDSI is well represented by two-sided, exponentially weighted averages with much higher weighting of past and present precipitation than future precipitation. Detailed analyses identify interpretational complications and other undesirable features in the SPI and PDSI. In addition, the PDSI and MCDI are each restricted to single regionally specific “intrinsic” time scales that can significantly differ between the two indices. Inspired by the strengths of the SPI, PDSI, and MCDI, a hybrid index is developed that consists of exponentially weighted averages of past and present precipitation that are implicit in the PDSI and MCDI. The explicit specification of the exponential weighting allows users to control the time scale of the hybrid index to investigate precipitation variability on any time scale of interest. This advantage over the PDSI and MCDI is analogous to the controllability of the time scale of the SPI, but the exponentially fading memory is more physical than the uniform weighting of past and present precipitation in the SPI.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-06-08
    Description: This study investigates the association between summer high temperature extremes (HTEs) over China and the Pacific meridional mode (PMM) that is characterized by an anomalous north–south sea surface temperature gradient and an anomalous surface circulation over the northeastern subtropical Pacific. It is found that the HTE activities over most parts of southern China (particularly eastern China) are prominently intensified during the positive PMM phase and weakened during the negative phase. Further examinations suggest that the PMM is linked with HTEs in China through processes that entail both eastward and westward development of signals emanating from the PMM site. The westward development is associated with the formation of an anomalous low-level cyclone over the western North Pacific (WNP), which may be viewed as a Matsuno–Gill-type response to the off-equatorial heating in the eastern Pacific. This circulation change is accompanied by anomalous ascent over WNP and northern China, and subsidence over eastern China. On the other hand, the eastward development process is linked to the PMM-induced displacement of the East Asian jet stream and the generation of a midlatitude Rossby wave train. In the positive PMM phase, the above circulation changes are accompanied by anomalous air subsidence and enhanced adiabatic heating, reduced precipitation, anomalous lower-level anticyclone, and rising surface pressure over the eastern part of China. Moreover, the land surface of that region receives more solar radiation. Opposite changes are discernible over northern China. These changes are favorable for the occurrence and persistence of HTEs over eastern China and tend to suppress HTEs over northern China.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-05-20
    Description: Currently, major efforts are under way to refine the horizontal resolution of weather and climate models to kilometer-scale grid spacing (Δx). Besides refining the representation of the atmospheric dynamics and enabling the use of explicit convection, this will also provide higher resolution in the representation of orography. This study investigates the influence of these resolution increments on the simulation of orographic moist convection. Nine days of fair-weather thermally driven flow over the Alps are analyzed. Two sets of simulations with the COSMO model are compared, each consisting of three runs at Δx of 4.4, 2.2, and 1.1 km: one set using a fixed representation of orography at a resolution of 8.8 km, and one with varying representation at the resolution of the computational mesh. The spatial distribution of precipitation during daytime is only marginally affected by the orographic details, but nighttime convection to the south of the Alps—triggered by cold-air outflow from the valleys—is very sensitive to orography and precipitation is enhanced if more detailed orography is provided. During daytime, the onset of precipitation is delayed. The amplitude of the diurnal cycle of precipitation is reduced, even though more moisture converges toward the Alpine region during the afternoon. The hereby accumulated moisture sustains precipitation during the evening and nighttime over the surrounding plains. For these differences, the effects of changes in orographic detail are more important than changes in grid spacing. In addition, the individual convective cells are weaker, but their number increases with higher resolved orography.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-05-14
    Description: Recent studies proposed leading averaged coupled covariance (LACC) as an effective strongly coupled data assimilation (SCDA) method to improve the coupled state estimation over weakly coupled data assimilation (WCDA) in a coupled general circulation model (CGCM). This SCDA method, however, has been previously evaluated only in the perfect model scenario. Here, as a further step toward evaluating LACC for real world data assimilation, LACC is evaluated for the assimilation of reanalysis data in a CGCM. Several criteria are used to evaluate LACC against the benchmark WCDA. It is shown that despite significant model bias, LACC can improve the coupled state estimation over WCDA. Compared to WCDA, LACC increases the globally averaged anomaly correlation coefficients (ACCs) of sea surface temperature (SST) by 0.036 and atmosphere temperature at the bottom level (Ts) by 0.058. However, there also exist regions where WCDA outperforms LACC. Although the reduction in the anomaly root-mean-square error (RMSE) is not as consistently clear as the increase in ACC, LACC can largely correct the biased model climatology.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-05-15
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...