ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Meunier, T., Pallas Sanz, E., de Marez, C., Perez, J., Tenreiro, M., Ruiz Angulo, A., & Bower, A. The dynamical structure of a warm core ring as I\inferred from glider observations and along-track altimetry. Remote Sensing, 13(13), (2021): 2456, https://doi.org/10.3390/rs13132456.
    Description: This study investigates the vertical structure of the dynamical properties of a warm-core ring in the Gulf of Mexico (Loop Current ring) using glider observations. We introduce a new method to correct the glider’s along-track coordinate, which is, in general, biased by the unsteady relative movements of the glider and the eddy, yielding large errors on horizontal derivatives. Here, we take advantage of the synopticity of satellite along-track altimetry to apply corrections on the glider’s position by matching in situ steric height with satellite-measured sea surface height. This relocation method allows recovering the eddy’s azimuthal symmetry, precisely estimating the rotation axis position, and computing reliable horizontal derivatives. It is shown to be particularly appropriate to compute the eddy’s cyclo-geostrophic velocity, relative vorticity, and shear strain, which are otherwise out of reach when using the glider’s raw traveled distance as a horizontal coordinate. The Ertel potential vorticity (PV) structure of the warm core ring is studied in details, and we show that the PV anomaly is entirely controlled by vortex stretching. Sign reversal of the PV gradient across the water column suggests that the ring might be baroclinically unstable. The PV gradient is also largely controlled by gradients of the vortex stretching term. We also show that the ring’s total energy partition is strongly skewed, with available potential energy being 3 times larger than kinetic energy. The possible impact of this energy partition on the Loop Current rings longevity is also discussed.
    Description: This research was funded by a grant of the National Council of Science and Technology of Mexico—Secretariat of Energy Hydrocarbons Trust, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM).
    Keywords: Gliders ; Altimetry ; Mesoscale ; Eddies ; Warm-core rings ; Potential vorticity ; Gulf of Mexico
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6), (2020): 1557-1582, doi:10.1175/JPO-D-19-0239.1.
    Description: We examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.
    Description: This work was supported by the National Science Foundation Ocean Science Division under Grant OCE-1558960. PG also acknowledges support of the NASA Physical Oceanography Program Grant NNX16H59G. KC would like to thank D. McGillicuddy Jr. for inspiring discussions and suggestions during the course of this study. Constructive comments from two anonymous reviewers are appreciated.
    Keywords: Ageostrophic circulations ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Upwelling/downwelling ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Testor, P., de Young, B., Rudnick, D. L., Glenn, S., Hayes, D., Lee, C. M., Pattiaratchi, C., Hill, K., Heslop, E., Turpin, V., Alenius, P., Barrera, C., Barth, J. A., Beaird, N., Becu, G., Bosse, A., Bourrin, F., Brearley, J. A., Chao, Y., Chen, S., Chiggiato, J., Coppola, L., Crout, R., Cummings, J., Curry, B., Curry, R., Davis, R., Desai, K., DiMarco, S., Edwards, C., Fielding, S., Fer, I., Frajka-Williams, E., Gildor, H., Goni, G., Gutierrez, D., Haugan, P., Hebert, D., Heiderich, J., Henson, S., Heywood, K., Hogan, P., Houpert, L., Huh, S., Inall, M. E., Ishii, M., Ito, S., Itoh, S., Jan, S., Kaiser, J., Karstensen, J., Kirkpatrick, B., Klymak, J., Kohut, J., Krahmann, G., Krug, M., McClatchie, S., Marin, F., Mauri, E., Mehra, A., Meredith, M. P., Meunier, T., Miles, T., Morell, J. M., Mortier, L., Nicholson, S., O'Callaghan, J., O'Conchubhair, D., Oke, P., Pallas-Sanz, E., Palmer, M., Park, J., Perivoliotis, L., Poulain, P., Perry, R., Queste, B., Rainville, L., Rehm, E., Roughan, M., Rome, N., Ross, T., Ruiz, S., Saba, G., Schaeffer, A., Schonau, M., Schroeder, K., Shimizu, Y., Sloyan, B. M., Smeed, D., Snowden, D., Song, Y., Swart, S., Tenreiro, M., Thompson, A., Tintore, J., Todd, R. E., Toro, C., Venables, H., Wagawa, T., Waterman, S., Watlington, R. A., & Wilson, D. OceanGliders: A component of the integrated GOOS. Frontiers in Marine Science, 6, (2019): 422, doi:10.3389/fmars.2019.00422.
    Description: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Description: The editorial team would like to recognize the support of the global glider community to this paper. Our requests for data and information were met with enthusiasm and welcome contributions from around the globe, clearly demonstrating to us a point made in this paper that there are many active and dedicated teams of glider operators and users. We should also acknowledge the support that OceanGliders has received from the WMO/IOC JCOMM-OCG and JCOMMOPS that have allowed this program to develop, encouraging us to articulate a vision for the role of gliders in the GOOS. We acknowledge support from the EU Horizon 2020 AtlantOS project funded under grant agreement No. 633211 and gratefully acknowledge the many agencies and programs that have supported underwater gliders: AlterEco, ANR, CFI, CIGOM, CLASS Ellet Array, CNES, CNRS/INSU, CONACyT, CSIRO, DEFRA, DFG/SFB-754, DFO, DGA, DSTL, ERC, FCO, FP7, and H2020 Europen Commission, HIMIOFoTS, Ifremer, IMOS, IMS, IOOS, IPEV, IRD, Israel MOST, JSPS, MEOPAR, NASA, NAVOCEANO (Navy), NERC, NFR, NJDEP, NOAA, NRC, NRL, NSF, NSERC, ONR, OSNAP, Taiwan MOST, SANAP-NRF, SENER, SIMS, Shell Exploration and Production Company, Sorbonne Université, SSB, UKRI, UNSW, Vettleson, Wallenberg Academy Fellowship, and WWF.
    Keywords: In situ ocean observing systems ; Gliders ; Boundary currents ; Storms ; Water transformation ; Ocean data management ; Autonomous oceanic platforms ; GOOS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-11
    Description: High-resolution hydrographic measurements reveal the presence of three intrathermocline eddies (ITEs) embedded within a loop current eddy. ITEs are lenticular bodies of nearly homogeneous water, which contrasts with the well-stratified surrounding water. Their radii and thickness ranged between 19–32 km and 150–250 m. Negative relative vorticity within their cores (down to −0.85 times the Coriolis frequency), along with a large negative stratification anomaly, results in low Ertel potential vorticity and intense negative Ertel potential vorticity anomalies. Vortex stretching and relative vorticity have comparable contributions to potential vorticity anomaly, resulting in Burger numbers of order unity. The similarity of thermohaline properties within the ITE's cores and the surrounding loop current eddy water suggests that these ITEs likely form by intense mixing events followed by Rossby adjustment. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-01
    Description: Velocity data from a mooring array deployed northeast of the Campeche Bank (CB) show the presence of subinertial, high-frequency (below 15 days) velocity fluctuations within the core of the northward flowing Loop Current. These fluctuations are associated with the presence of surface-intensified Loop Current frontal eddies (LCFEs), with cyclonic vorticity and diameter 〈 100 km. These eddies are well reproduced by a high-resolution numerical simulation of the Gulf of Mexico, and the model analysis suggests that they originate along and north of the CB, their main energy source being the mixed baroclinic–barotropic instability of the northward flow along the shelf break. There is no indication that these high-frequency LCFEs contribute to the LC eddy detachment in contrast to the low-frequency LCFEs (periods 〉 30 days) that have been linked to Caribbean eddies and the LC separation process. Model results show that wind variability associated with winter cold surges are responsible for the emergence of high-frequency LCFEs in a narrow band of periods (6–10 day) in the region of the CB. The dynamical link between the formation of these LCFEs and the wind variability is not direct: (i) the large-scale wind perturbations generate sea level anomalies on the CB as well as first baroclinic mode, coastally trapped waves in the western Gulf of Mexico; (ii) these waves propagate cyclonically along the coast; and (iii) the interaction of these anomalies with the Loop Current triggers cyclonic vorticity perturbations that grow in intensity as they propagate downstream and develop into cyclonic eddies when they flow north of the Yucatan shelf.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-01
    Description: Vertical motions play a key role in the enhancement of primary production within mesoscale eddies through the introduction of nutrients into the euphotic layer. However, the details of the vertical velocity field w driving these enhancements remain under discussion. For the first time the mesoscale w associated with an intrathermocline eddy is computed and analyzed using in situ high-resolution three-dimensional (3D) fields of density and horizontal velocity by resolving a generalized omega equation valid for high Rossby numbers. In the seasonal pycnocline the diagnosed w reveals a multipolar structure with upwelling and downwelling cells located at the eddy periphery. In the main pycnocline w is characterized by a dipolar structure with downwelling velocities upstream of the propagation path and upwelling velocities downstream. Maximum values of w reach 6.4 m day−1. An observed enhancement of chlorophyll-a at the eddy periphery coincides with the location of the upwelling and downwelling cells. Analysis of the forcing terms of the generalized omega equation indicates that the mechanisms behind the dipolar structure of the w field are a combination of horizontal deformation and advection of vertical relative vorticity by ageostrophic vertical shear. The wind during the eddy sampling was rather constant and uniform with a speed of 5 m s−1. Diagnosed nonlinear Ekman pumping leads to a dipolar pattern that mirrors the inferred w. Horizontal ageostrophic secondary circulation is dominated by centripetal acceleration and closes the dipole w structure. Vertical fluxes act to maintain the intrathermocline eddy structure.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-28
    Description: Using the generalized omega equation and cruise observations in July 2012, this study analyzes the 3D vertical circulation in the upwelling region and frontal zone east of Hainan Island, China. The results show that there is a strong frontal zone in subsurface layer along the 100-m isobath, which is characterized by density gradient of O(10−4) kg m−4 and vertical eddy diffusivity of O(10−5–10−4) m2 s−1. The kinematic deformation term SDEF, ageostrophic advection term SADV, and vertical mixing forcing term SMIX are calculated from the observations. Their distribution patterns are featured by banded structure, that is, alternating positive–negative alongshore bands distributed in the cross-shelf direction. Correspondingly, alternating upwelling and downwelling bands appear from the coast to the deep waters. The maximum downward velocity reaches −5 × 10−5 m s−1 within the frontal zone, accompanied by the maximum upward velocity of 7 × 10−5 m s−1 on two sides. The dynamic diagnosis indicates that SADV contributes most to the coastal upwelling, while term SDEF, which is dominated by the ageostrophic component SDEFa, plays a dominant role in the frontal zone. The vertical mixing forcing term SMIX, which includes the momentum and buoyancy flux terms SMOM and SBUO, is comparable to SDEF and SADV in the upper ocean, but negligible below the thermocline. The effect of the vertical mixing on the vertical velocity is mainly concentrated at depths with relatively large eddy diffusivity and eddy diffusivity gradient in the frontal zone.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-01
    Print ISSN: 2169-9275
    Electronic ISSN: 2169-9291
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...