ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,233)
  • Lunar and Planetary Science and Exploration  (732)
  • Space Sciences (General)  (197)
  • Fluid Mechanics and Thermodynamics  (196)
  • Composite Materials
  • 2005-2009  (1,233)
  • 1990-1994
  • 1935-1939
  • 2005  (1,233)
Collection
  • Other Sources  (1,233)
Source
Years
  • 2005-2009  (1,233)
  • 1990-1994
  • 1935-1939
Year
  • 1
    Publication Date: 2011-08-24
    Description: The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 308; 5724; 970-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The mineralogical and elemental compositions of the martian soil are indicators of chemical and physical weathering processes. Using data from the Mars Exploration Rovers, we show that bright dust deposits on opposite sides of the planet are part of a global unit and not dominated by the composition of local rocks. Dark soil deposits at both sites have similar basaltic mineralogies, and could reflect either a global component or the general similarity in the compositions of the rocks from which they were derived. Increased levels of bromine are consistent with mobilization of soluble salts by thin films of liquid water, but the presence of olivine in analysed soil samples indicates that the extent of aqueous alteration of soils has been limited. Nickel abundances are enhanced at the immediate surface and indicate that the upper few millimetres of soil could contain up to one per cent meteoritic material.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 436; 7047; 49-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-26
    Description: To explain the much higher denudation rates and valley network development on early Mars (more than approximately 3.6 Gyr ago), most investigators have invoked either steady state warm/wet (Earthlike) or cold/dry (modern Mars) end-member paleoclimates. Here we discuss evidence that highland gradation was prolonged, but generally slow and possibly ephemeral during the Noachian Period, and that the immature valley networks entrenched during a brief terminal epoch of more erosive fluvial activity in the late Noachian to early Hesperian. Observational support for this interpretation includes (1) late-stage breaching of some enclosed basins that had previously been extensively modified, but only by internal erosion and deposition; (2) deposition of pristine deltas and fans during a late stage of contributing valley entrenchment; (3) a brief, erosive response to base level decline (which was imparted as fretted terrain developed by a suite of processes unrelated to surface runoff) in fluvial valleys that crosscut the highland-lowland boundary scarp; and (4) width/contributing area relationships of interior channels within valley networks, which record significant late-stage runoff production with no evidence of recovery to lower-flow conditions. This erosion appears to have ended abruptly, as depositional landforms generally were not entrenched with declining base level in crater lakes. A possible planetwide synchronicity and common cause to the late-stage fluvial activity are possible but remain uncertain. This increased activity of valley networks is offered as a possible explanation for diverse features of highland drainage basins, which were previously cited to support competing warm, wet and cold, dry paleoclimate scenarios.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research; Vol. 110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Radio Doppler data from the Galileo spacecraft's encounter with Amalthea, one of Jupiter's small inner moons, on 5 November 2002 yield a mass of (2.08 +/- 0.15) x 10(18) kilograms. Images of Amalthea from two Voyager spacecraft in 1979 and Galileo imaging between November 1996 and June 1997 yield a volume of (2.43 +/- 0.22) x 10(6) cubic kilometers. The satellite thus has a density of 857 +/- 99 kilograms per cubic meter. We suggest that Amalthea is porous and composed of water ice, as well as rocky material, and thus formed in a cold region of the solar system, possibly not at its present location near Jupiter.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 308; 5726; 1291-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 308; 5724; 969-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-04-25
    Description: Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT) in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that some NEOs are rubble piles rather than consolidated bodies. Our mission s RRT technique is analogous to doing a CAT scan of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and to measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate greater than 1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Ion thruster propulsion is utilized by Deep Interior to enable tomographic radar mapping of multiple asteroids. Within the Discovery AO scheduling parameters we identify two targets, S-type 1999 ND43 (approximately 500 m diameter) and V-type 3908 Nyx (approximately 1 km), asteroids whose compositions bracket the diversity of solar system materials that we are likely to encounter, from undifferentiated to highly evolved. The 5-15 MHz radar is capable of probing more primitive bodies (e.g. comets or C-types) that may be available given other launch schedules. 5 MHz radar easily penetrates, with the required SNR , greater than 1 km of basalt (a good analog for Nyx). Basalt has a greater loss tangent than expected for most asteroids, although iron-rich M-types are probably not appropriate targets. 15 MHz radar penetrates the outer approximately 100 m of rocky 1 km asteroids and the deep interiors of comets. Laboratory studies of the most common NE0 materials expected (S-, C- and V-type meteorite analogs) will commence in 2005.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 71; LPI-Contrib-1231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-04-25
    Description: There are numerous challenges in successfully implementing and interpreting planetary ground penetrating radar (GPR) measurements. Many are due to substantial uncertainties in the target ground parameters and the intervening medium (i.e., the ionosphere). These uncertainties generate a compelling need for meaningful quantitative simulation of the planetary GPR problem. An accurate numerical model would enable realistic numerical GPR simulations using parameter regimes much broader than are possible in laboratory or field experiments. Parameters such as source bandwidth and power, surface and subsurface features, and ionospheric profiles could be rapidly iterated to understand their impact on GPR performance and the reliable interpretation of GPR data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 79; LPI-Contrib-1231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-08-22
    Description: Attempts to match the E asteroids with enstatite-rich meteorites universally conclude that the aubrites or enstatite chondrites are natural candidates, and accordingly conclude that E asteroids as a class are very water-poor. Accordingly, the highly reduced nature of typical enstatite-rich meteorites suggests that aqueous alteration was an improbable process on any E asteroid. However, there are spectroscopic observations of several E-class asteroids that suggest the presence there of hydrated phases. Examination of the Kaidun meteorite reveals the true situation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Oxygen in Asteroids and Meteorites; LPI-Contrib-1267
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (〈0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains 〈100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 309; 5735; 737-41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 310; 5746; 270-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 k 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science; Volume 307; 1255-1259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 307; 5713; 1247-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-08-31
    Description: The Mars Exploration Rovers Spirit and Opportunity investigated numerous craters since landing in Gusev crater (14.569degS, 175.473degE) and Meridiani Planum (1.946degS, 354.473degE) over the first 400 sols of their missions [1-4]. Craters at both sites are simple structures and vary in size and preservation state. Comparing observed and expected pristine morphology and using process-specific gradational signatures around terrestrial craters as a template [5-7] allows distinguishing gradation processes whose relative importance fundamentally differs from those responsible for most crater modification on the Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; 42-43; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-31
    Description: The Mars Exploration Rovers have provided a field geologist's perspective of impact craters in various states of degradation along their traverses at Gusev crater and Meridiani Planum. This abstract will describe the craters observed and changes to the craters that constrain the erosion rates and the climate [l]. Changes to craters on the plains of Gusev argue for a dry and desiccating environment since the Late Hesperian in contrast to the wet and likely warm environment in the Late Noachian at Meridiani in which the sulfate evaporites were deposited in salt-water playas or sabkhas.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; 40-41; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-31
    Description: We present the results of the complete survey of Martian alluvial fans from 0-30 S, initiated by Moore and Howard. Nineteen impact craters contain alluvial fans. They are regionally grouped into three distinct areas. We present our initial results regarding their distribution and orientation in order to understand what controls their formation. Since alluvial fans are formed by water transport of sediment, these features record wetter episodes of Martian climate. In addition, their enigmatic distribution (in regional groups and in some craters, but not similar adjacent ones) needs to be understood, to see how regional geology, topographic characteristics, and/or climate influence their formation and distribution.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-08-31
    Description: Evidence for the presence of liquid water early in Mars history continues to accumulate. The most recent evidence for liquid water being pervasive early in Mars history is the discoveries of sulfate and gypsum layers by the Mars Exploration Rovers and Mars Express. However, the presence of liquid water at the surface very early in Mars history presents a conundrum. The early sun was most likely approximately 75% fainter than it is today. About 65-70 degrees of greenhouse warming is needed to bring surface temperatures to the melting point of water. To date climate models have not been able to produce a continuously warm and wet early Mars. This may be a good thing as there is morphological and mineralogical evidence that the warm and wet period had to be relatively short and episodic. The rates of erosion appear to correlate with the rate at which Mars was impacted thus an alternate possibility is transient warm and wet conditions initiated by large impacts. It is widely accepted that even relatively small impacts (approximately 10 km) have altered the past climate of Earth to such an extent as to cause mass extinctions. Mars has been impacted with a similar distribution of objects. The impact record at Mars is preserved in the abundance of observable craters on it surface. Impact induced climate change must have occurred on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-31
    Description: The martian southern highlands contain impact craters that display pristine to degraded morphologies, and preserve a record of degradation that can be attributed to fluvial, eolian, mass wasting, volcanic and impact-related processes. However, the relative degree of modification by these processes and the amounts of material contributed to crater interiors are not well constrained. Impact craters (D〉10 km) within Terra Cimmeria (0deg-60degS, 190deg-240degW), Terra Tyrrhena (0deg-30degS, 260deg-310degW) and Noachis Terra (20deg-50degS, 310deg-340degW) are being examined to better understand the degradational history and evolution of highland terrains. The following scientific objectives will be accomplished. 1) Determine the geologic processes that modified impact craters (and surrounding highland terrains). 2) Determine the sources (e.g. fluvial, lacustrine, eolian, mass wasting, volcanic, impact melt) and relative amounts of material composing crater interior deposits. 3) Document the relationships between impact crater degradation and highland fluvial systems. 4) Determine the spatial and temporal relationships between degradational processes on local and regional scales. And 5) develop models of impact crater (and highland) degradation that can be applied to these and other areas of the martian highlands. The results of this study will be used to constrain the geologic, hydrologic and climatic evolution of Mars and identify environments in which subsurface water might be present or evidence for biologic activity might be preserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; 77-78; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-08-31
    Description: Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on The Role of Volatile and Atmospheres on Martian Impact Craters; LPI-Contrib-1273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-31
    Description: Many regions of the martian surface are covered by fine-grained materials emplaced by volcanic, fluvial, or aeolian processes. These mantling deposits likely hide ancient channel systems (particularly at smaller scale lengths) and volcanic, impact, glacial, or shoreline features. Synthetic aperture radar (SAR) offers the capability to probe meters below the surface, with imaging resolution in the 10 s of m range, to reveal the buried terrain and enhance our understanding of Mars geologic and climate history. This presentation focuses on the practical applications of a Mars orbital SAR, methods for polarimetric and interferometric radar studies, and examples of such techniques for Mars-analog sites on the Moon and Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 25-26; LPI-Contrib-1231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-31
    Description: Radar interferometry is rapidly becoming one of the major applications of radar systems in Earth orbit. So far the 2000 flight of the Shuttle Radar Topographic Mission (SRTM) is the only dedicated U.S. radar to be flown for the collection of interferometric data, but enough has been learned from this mission and from the use of foreign partner radars (ERS-1/2, Radarsat, ENIVISAT and JERS-1) for the potential planetary applications of this technique to be identified. A recent workshop was organized by the Jet Propulsion Laboratory and the Southern California Earthquake Center (SCEC), and was held at Oxnard, CA, from October 20th - 22nd, 2004. At this meeting, the major interest was in terrestrial radar systems, but approx. 20 or the approx. 250 attendees also discussed potential applications of interferometric radar for the terrestrial planets. The primary foci were for the detection of planetary water, the search for active tectonism and volcanism and the improved topographic mapping. This abstract provides a summary of these planetary discussions at the Oxnard meeting.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 56-57; LPI-Contrib-1231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: The 1/14/04 USA Space Exploratiofltilization Initiative invites all Space-faring Nations, all Space User Groups in Science, Space Entrepreneuring, Advocates of Robotic and Human Space Exploration, Space Tourism and Colonization Promoters, etc., to join an International Space Partnership. With more Space-faring Nations and Space User Groups each year, such a Partnership would require Multi-year (35 yr.-45 yr.) Space Mission Planning. With each Nation and Space User Group demanding priority for its missions, one needs a methodology for obiectively selecting the best mission sequences to be added annually to this 45 yr. Moving Space Mission Plan. How can this be done? Planners have suggested building a Reusable, Sustainable, Space Transportation Infrastructure (RSSn) to increase Mission synergism, reduce cost, and increase scientific and societal returns from this Space Initiative. Morgenthaler and Woodcock presented a Paper at the 55th IAC, Vancouver B.C., Canada, entitled Constrained Optimization Models For Optimizing Multi - Year Space Programs. This Paper showed that a Binary Integer Programming (BIP) Constrained Optimization Model combined with the NASA ATLAS Cost and Space System Operational Parameter Estimating Model has the theoretical capability to solve such problems. IAA Commission III, Space Technology and Space System Development, in its ACADEMY DAY meeting at Vancouver, requested that the Authors and NASA experts find several Space Exploration Architectures (SEAS), apply the combined BIP/ATLAS Models, and report the results at the 56th Fukuoka IAC. While the mathematical Model is in Ref.[2] this Paper presents the Application saga of that effort.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-10-02
    Description: The composition of material condensed in the outer solar system is very dependent on the state of carbon and oxygen in the solar or circumplanetary nebula, since oxygen is the dominant solid-forming element in a solar composition gas (in the form of silicates and water ice), and carbon is about half as abundant. Past discussions of solid material formed in these regions have focused on differences expected between material formed near giant planets where carbon is generally expected to be in the reduced, CH4, form and material formed in the outer protoplanetary solar nebula where CO is believed to be the dominant form [1]. The composition and expected density of these materials are quite sensitive to the C and O solar abundances in all these models. We discuss here the effects of recently suggested modifications to solar abundances on the interpretation of the mean densities for satellites in the Saturn system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 10; LPI-Contrib-1234-Pt-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-10-02
    Description: The Panoramic Cameras (Pancam) on the Spirit and Opportunity Mars Exploration Rovers have acquired multispectral reflectance observations of rocks and soils at different incidence, emission, and phase angles that will be used for photometric modeling of surface materials. Phase angle coverage at both sites extends from approx. 0 deg. to approx. 155 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 10; LPI-Contrib-1234-Pt-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-10-02
    Description: The seven known Martian nakhlites are Nakhla, Lafayette, Governador Valadares, and four recent finds from hot and cold deserts: MIL03346 from the Transantarctic Mountains, a paired group from the Yamato Mountains (Y000593, Y000749, and Y000802, and two from Morocco (NWA998 and NWA817. Radiometric ages (Sm-Nd, Rb-Sr, U-Pb, and Ar-Ar) for the first three nakhlites, along with Chassigny, fall in the range of 1.19-1.37 Gyr and may suggest a common formation age. These meteorites also show very similar cosmic-ray (space) exposure ages, suggesting a single ejection event from Mars. The ages for nakhlites are different from those of Martian shergottites, whose radiometric ages vary by nearly a factor of three (approx. 165-475 Myr) and whose space exposure ages vary over a factor of approx. 20. Shergottite ages suggest that multiple locations on the Martian surface have been sampled, whereas nakhlite data imply sampling of only one Mars surface location. Because older Martian surfaces are expected to be more abundant, it seems surprising that all nakhlites would represent only one Martian impact event. To address this issue, we are measuring the (39)Ar-(40)Ar ages of Y-000593, NWA-998, Nakhla, and MIL-03346, and the space (CRE) exposure age of NWA998. Additional information is included in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-10-02
    Description: We modeled the solar phase curves of the moon at a series of wavelengths using the full disk telescopic observations [1]. We endeavored to keep the database self-contained, that is, to use the values derived for the solar magnitude and phase curves of the disk-integrated [1]. These observations were made in a suite of 10 narrowband filters between 0.315 microns and 1.06 microns, and in the broad band Johnson UBV filters, as part of a larger program to obtain photoelectric photometry of the larger planets. Two aspects of the lunar observations are unique. First, the observations cover phase angles from 6deg through 120deg. More importantly, the observers used a special 20-mm diameter f/15 fused quartz lens constructed solely for this purpose. The lens reduced the whole lunar image in the focal plane to a size comparable to the planets observed as part of the same program. This image was fed directly into the photometer. Thus, these observations constitute the only existing set of phase curves of the entire lunar disk over a range of wavelengths. Table 1 lists the values of the Hapke model parameters which fit the data. Figure 1 is an example of the model fits to the data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-10-02
    Description: Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-10-02
    Description: The first of two relatively close Iapetus flybys in Cassini's primary mission occured on Dec 31, 2004 18:49 UTC near apoapsis from orbit "B" to "C" at an altitude of approximately 123,400 km over the northern leading hemisphere, resulting in a minimum pixel scale of 740 m for the ISS narrow angle camera (NAC). Data revealed details of a greater than 1300-km-long ridge that had been discovered just one week earlier in optical navigation images. Individual mountains within the western part of the ridge reach heights of approximately 20 km over surrounding terrain. The data set provides constraints on the origin of the albedo dichotomy. It appears very likely that the dark material is overlying an ice crust, but no evidence for emplacement of dark material via surface flows is apparent. Instead, signs for dark-material emplacement through processes that included ballistic transportation are visible. No bright-floor ("punch-through") craters have been found on the dark hemisphere. The ridge discovery may revive the idea of an endogenic origin of the dark side.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-10-02
    Description: To better understand the behavior of the Mars CO2 ice seasonal polar caps, and in particular interpret the the Mars Express Omega observations of the recession of the northern seasonal cap, we present some simulations of the Martian Climate/CO2 cycle/ water cycle as modeled by the Laboratoire de Meteorologie Dynamique (LMD) global climate model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 6; LPI-Contrib-1234-Pt-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-10-02
    Description: Introduction: The Mars Global Surveyor spacecraft has completed three Mars years in nearly circular polar orbit at a nominal altitude of 400 km. The Mars crust is at least an order of magnitude more intensely magnetized than that of the Earth [1], and intriuging in both its global distribution and geometric properties [2,3,4,5]. We present here a new map of the magnetic field with an order of magnitude increased sensitivity to crustal magnetization. The map is assembled from 〉 2 full years of MGS night-side observations. The increased sensitivity and spatial resolution afforded by this new map invites geologic interpretation akin to that here-to-for reserved for aeromagnetic and ship surveys on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-10-02
    Description: The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry and are generally used as references for organic compounds in extraterrestrial material. Among the classes of organic compounds found in these meteorites are amino acids, carboxylic acids, hydroxy acids, purines, and pyrimidines. Such compounds, important in contemporary biochemistry, are thought to have been delivered to the early Earth in asteroids and comets and may have played a role in early life and/or the origin of life. Absent among (today's) critically important biological compounds reported in carbonaceous meteorites are keto acids, i.e., pyruvic acid, acetoacetic acid, and higher homologs. These compounds are key intermediates in such critical processes as glycolysis and the citric acid cycle. In this study several individual meteoritic keto acids were identified by gas chromatography-mass spectrometry (GC-MS) (see figure below). All compounds were identified as their trimethylsilyl (TMS), isopropyl ester (ISP), and tert-butyldimethylsilyl (tBDMS) derivatives. In general, the compounds follow the abiotic synthesis pattern of other known meteorite classes of organic compounds [1,2]: a general decrease in abundance with increasing carbon number within a class of compounds and many, if not all, possible isomers present at a given carbon number. The majority of the shown compounds was positively identified by comparison of their mass spectra to commercially available standards or synthesized standards.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-10-02
    Description: LAP 02205 is a 1.2 kg lunar mare basalt meteorite found in the Lap Paz ice field of Antarctica in 2002 [1]. Four similar meteorites were also found within the same region [1] and all five have a combined mass of 1.9 kg (LAP 02224, LAP 02226, LAP 02436 and LAP 03632, hereafter called the LAP meteorites). The LAP meteorites all contain a similar texture, mineral assemblage, and composition. A lunar origin for these samples comes from O isotopic data for LAP 02205 [1], Fe/Mn ratios of pyroxenes [1-5], and the presence of distinct lunar mineralogy such as Fe metal and baddeleyite. The LAP meteorites may represent an area of the Moon, which has never been sampled by Apollo missions, or by other lunar meteorites. The data from this study will be used to compare the LAP meteorites to Apollo mare basalts and lunar basaltic meteorites, and will ultimately help to constrain their origin.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-10-02
    Description: The STARDUST sample return capsule is anticipated to provide 500-1000 cometary particles 15 m in size. These were collected during the 340 km flyby of Comet P/Wild-2 and impacted the aerogel collection medium at a relative velocity of approx. 6.1 /kms. Hypervelocity impact studies suggest that some fraction of the original organic inventory of collected particles ought to remain intact, although there is likely to be a significant amount of devolatilization and disassociation of the lower mass organic fraction.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-10-02
    Description: Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-10-02
    Description: Introduction: The observed Springtime (Ls approx. 200) surface albedo in the Martian southern polar region is shown in Figure 1. In general, the hemisphere west of Hellas is marked by relatively high values of surface albedo. In contrast, the hemisphere east of Hellas contains extensive regions of very low surface albedo. One of the brightest features within the western hemisphere is the South Pole Residual Cap (SPRC). The dark region, which dominates the eastern hemisphere, is the "Cryptic" region[1]. The nature of the SPRC has been the source of considerable debate since its identification as CO2 ice by the Viking spacecraft. Two fundamental questions still exist regarding the SPRC s formation, location and stability. First, why is the SPRC offset from the geographic pole? There are no local topographic features or surface properties that can account for the offset in the SPRC. Second, does the SPRC represent a large or a small reservoir of CO2? If the former, then it could possibly buffer the surface pressure. If the latter, then the SPRC may not survive every year.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-10-02
    Description: We model the interior of Rhea based on observational constraints and the results from geodynamical models available in the literature. Ten main types of models are defined, depending on the presence or absence of a high-pressure ice layer (ice II), and the extent of separation of the rock component from the volatiles. We present degree-two gravity components computed for each of these models in order to assess which properties of the interior are likely to be inferred from Cassini radio science measurements scheduled on November 26, 2005.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-10-02
    Description: The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-10-02
    Description: The debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures 〉 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-10-02
    Description: Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 1; LPI-Contrib-1234-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-10-02
    Description: Results are presented from the Cassini radio and plasma wave instrument during the approach and first few orbits around Saturn. During the approach the intensity modulation of Saturn Kilometric Radiation (SKR) showed that the radio rotation period of Saturn has increased to 10 hr 45 min plus or minus 36 sec, about 6 min longer than measured by Voyager in 1980-81. Also, many intense impulsive radio signals called Saturn Electrostatic Discharges (SEDs) were detected from saturnian lightning, starting as far as 1.08 AU from Saturn, much farther than terrestrial lightning can be detected from Earth. Some of the SED episodes have been linked to cloud systems observed in Saturn s atmosphere by the Cassini imaging system. Within the magnetosphere plasma wave emissions have been used to construct an electron density profile through the inner region of the magnetosphere. With decreasing radial distance the electron density increases gradually to a peak of about 100 per cubic centimeter near the outer edge of the A ring, and then drops precipitously to values as low as .03 per cubic centimeter over the rings. Numerous nearly monochromatic whistler-mode emissions were observed as the spacecraft passed over the rings that are believed to be produced by meteoroid impacts on the rings. Whistlermode emissions, similar to terrestrial auroral hiss were also observed over the rings, indicating that an electrodynamic interaction, similar to auroral particle acceleration, may be occurring in or near the rings. During the Titan flybys Langmuir probe and plasma wave measurements provided observations of the density and temperature in Titan's ionosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-10-02
    Description: The valley networks found on the slopes of Martian volcanoes represent an interesting subset of the Martian valley networks. Not only do the volcanoes constrain the possible geologic settings, they also provide a window into Martian valley development through time, as the volcanoes formed throughout the geologic history of Mars. Here I take another look at this intriguing subset of networks by revisiting conclusions reached in my earlier studies using the Viking imagery and the valleys on Hawaii as an analog. I then examine more recent datasets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-10-02
    Description: Mars Exploration Rover Opportunity discovered sedimentary dirty evaporites in Meridiani Planum that were deposited in salt-water playas or sabkhas in the Noachian, roughly coeval with a variety of geomorphic indicators (valley networks, degraded craters and highly eroded terrain) of a possible early warmer and wetter environment. In contrast, the cratered plains of Gusev that Spirit has traversed (exclusive of the Columbia Hills) have been dominated by impact and eolian processes and a gradation history that argues for a dry and desiccating environment since the Late Hesperian. This paper reviews the surficial geology and gradation history of the plains in Gusev crater as observed along the traverse by Spirit that supports this climate change from the two landing sites on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 7; LPI-Contrib-1234-Pt-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-10-02
    Description: The Huygens Probe descended through Titan s atmosphere on January 14, 2005. The Descent Imager/Spectral Radiometer (DISR) instrument made optical measurements which constrain the nature and vertical distribution and of the aerosols in the atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-10-02
    Description: Determination of atmospheric and surface elemental and molecular composition of various solar system bodies is essential to the development of a firm understanding of the origin and evolution of the solar system. Furthermore, such data is needed to address the intriguing question of whether or not life exists or once existed elsewhere in the Solar System. As such, these measurements are among the primary scientific goals of NASA s current and future planetary missions. In recent years, significant progress toward both miniaturization and field portability of in situ analytical separation and detection devices have been made with future planetary explorations in mind. However, despite all these advances, accurate in situ identification of atmospheric and surface compounds remains a big challenge. In response to that we are developing various hardware and software tools which would enable us to uniquely identify species of interest in a complex chemical environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-10-02
    Description: The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 /cm (1 mm to 7 microns), with a spectral resolution that can be set from 0.5 to 15.5 /cm. The far infrared portion of the spectrum (10-600 /cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600-1100 /cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. More complete descriptions of the instrument and investigation are given in and. A brief description of the first results from observations through the Saturn orbital insertion period can be found in.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 6; LPI-Contrib-1234-Pt-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-10-02
    Description: Several teams have recently reported the detection of methane in the Martian atmosphere [1-3]. Although the detection is at the limit of the instrument capacities, one of the most surprising findings by some of these teams is the apparent strong spatial variations observed in spite of the fact that a gas like methane was expected to have a relatively long lifetime in the Martian atmosphere and thus be well mixed. To better quantitatively understand how such spatial variations can form on Mars, we have performed multiple realistic 3D general circulation model simulations in which gases with different sources, lifetime or sinks are released and transported in the Martian atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 6; LPI-Contrib-1234-Pt-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-10-02
    Description: Introduction: The meteorite record contains several examples of minerals that would not persist if allowed to come to equilibrium with a cooling gas of solar composition. This includes all minerals in CAIs and AOAs. Their survival is generally ascribed to physical removal of the object from the gas (isolation into a large parent object, or ejection by a stellar wind), but could also result from outward radial diffusion into cooler regions, which we discuss here. Accretion of CAIs into planetesimals has also been relied on to preserve them against loss into the sun. However, this suggestion faces several objections. Simple outward diffusion in turbulence has recently been modeled in some detail, and can preserve CAIs against loss into the sun [2]. Naturally, outward radial diffusion in turbulence is slower than immediate ejection by a stellar wind, which occurs on an orbital timescale. Here we ask whether these different transport mechanisms can be distinguished by nonequilibrium mineralogy, which provides a sort of clock. Our application here is to one aspect of CAI mineralogy - the Wark-Lovering rims (WLR); even more specifically, to alteration of one layer in the WLR sequence from melilite (Mel) to anorthite (An).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-10-02
    Description: Hellas basin, the largest well-preserved impact structure on the Martian surface, is Mars deepest depositional sink and has long been recognized as a source for global dust storms. The basin and surrounding highlands span a wide range in latitude and elevation, exhibit landforms shaped by a diversity of geologic processes, and preserve exposures of Noachian, Hesperian, and Amazonian units. Geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide resources for potential Martian life. Hellas is a geologically significant region for evaluating volatile abundance, distribution and cycling and changes in surface conditions on Mars. Current work integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-10-02
    Description: Introduction: The water-content of Martian magmas is a topic of debate among researchers. Some Martian basalts are characterized with melt inclusions of biotite, apatite and amphibole; phases typically associated with hydration reactions on Earth [1-3]. However, the H-content of melt inclusions from these basalts is low, and bulk-rock H2O-contents range from a meager 0.013 to 0.035 wt. % in Shergotty [4]. Nonetheless, researchers note that low present-day water contents do not preclude a once hydrous past [5]. Since light lithophile elements (LLE), such as Li and B, partition into aqueous fluids at T 〉 350 C, workers proposed that Li-B depletions in pyroxene rims of Nakhlite and Shergottite basalts reflect the loss of several weight percent water from Martian magmas during crystallization [6]. Since similar depletions were observed in pyroxene rims from completely dry lunar basalts, it is likely that alternative mechanisms also contribute to the distribution of elements such as Li and B [7]. Given that many Martian basalts have experienced considerable shock pressures (15-45 GPa), it is possible that shock and subsequent thermal metamorphism may have influenced the volatile element records of these basalts [8]. In order to better understand the distribution of Li and B, we are studying the effects of crystal chemistry, shock pressure, and thermal metamorphism in pyroxenes from lunar basalts. Below, we discuss results from experimentally shocked and thermally metamorphosed Apollo 11, 10017 (A-11) and Apollo 17, 75035 (A-17) basalts.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-10-02
    Description: We surveyed the characteristic of non-organized soils at Gusev crater at microscale and macroscale in four main traverse regions: (1) Landing site to Bonneville crater; (2) Bonneville to West Spur; (3) the West Spur region; and (4) the Columbia Hills up to sol 363. Non-organized soils are defined as soils traversed by Spirit that do not include drifts, ripples, or dunes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-10-02
    Description: We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 3; LPI-Contrib-1234-Pt-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-10-02
    Description: Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-10-02
    Description: The Mars Rover-missions demonstrate that there are accessible Martian sulfate deposits (evaporites) [1]. These sedimentary rocks could indicate influence of past or present biotic processes even in the absence of traces of extraterrestrial life. We evaluate the potential of the analysis of mass independent isotope fractionation of oxygen in sulfate as a biosignature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-10-02
    Description: The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-10-02
    Description: Unique geomorphologic features such as basin terraces exhibiting topographic continuity have been found within several Martian craters as shown in Viking, MOC, and THEMIS images. These features, showing similarity to terrestrial shorelines, have been mapped and cataloged with significant effort [1]. Currently, open wave action on the surface of paleolakes has been hypothesized as the geomorphologic agent responsible for the generation of these features [2]. As consequence, feature interpretations, including shorelines, wave-cut benches, and bars are, befittingly, lacustrine. Because such interpretations and their formation mechanisms have profound implications for the climate and potential biological history of Mars, confidence is crucial. The insight acquired through linked quantitative modeling of geomorphologic agents and processes is key to accurately interpreting these features. In this vein, recent studies [3,4] involving the water wave energy in theoretical open water basins on Mars show minimal erosional effects due to water waves under Martian conditions. Consequently, sub-glacial lake flattens the surface, produces a local velocity increase over the lake, and creates a deviation of the ice flow from the main flow direction [11]. These consequences of ice flow are observed at Lake Vostok, Antarctica an excellent Martian analogue [11]. Martian observations include reticulate terrain exhibiting sharp inter-connected ridges speculated to reflect the deposition and reworking of ice blocks at the periphery of ice-covered lakes throughout Hellas [12]. Our model determines to what extent ice, a terrestrial geomorphologic agent, can alter the Martian landscape. Method: We study the evolution of crater ice plugs as the formation mechanism of surface features frequently identified as shorelines. In particular, we perform model integrations involving parameters such as ice slope and purity, atmospheric pressure and temperature, crater shape and composition, and an energy balance between solar flux, geothermal flux, latent heat, and ablation. Our ultimate goal is to understand how an intracrater ice plug could create the observed shoreline features and how these
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-10-02
    Description: Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (~35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-10-02
    Description: For the past 30 years there has been a strong consensus within the international scientific community in favor of sending a network of geophysical landers to Mars to characterize the near-surface weather and climate, determine the large-scale atmospheric dynamics and explore the interior structure and composition. Despite this scientific support, there has been an unbroken string of proposed missions over the past fifteen years which have failed for programmatic reasons to progress beyond the design stage (Mars Network Mission, MESUR, Marsnet, InterMarsnet, NetLander). In this presentation, we review the scientific rationale and technical requirements for such a mission, and discuss current activities aimed toward its implementation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 2; LPI-Contrib-1234-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-11
    Description: Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-11
    Description: Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Fuild Mechanics; Volume 523; 37-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-06
    Description: In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-12
    Description: New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in some detail. The objectives of each effort were noted. Issues relative to code validation for injector design were discussed in some detail. The requirement for CFD support during the design of the experiment was noted and discussed in terms of instrumentation placement and experimental rig uncertainty. In conclusion, MSFC has made significant progress in the last two years in advancing CFD toward the goal of application to injector design. A parallel effort focused on program support and technology development via the SCIT Task have enabled the progress.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Fifth International Symposium on Liquid Space Propulsion; NASA/CP-2005-213607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-12
    Description: Future long-duration missions to Mars require capabilities in terms of manufacture of structures and chemical compounds essential for human habitat and exploratory activities. Currently, it is not feasible to import all the required raw and finished materials from Earth. In fact, essential items such as structural members as well as various gases for human consumption and material processing need to be largely extracted from the available planetary resources. The resources on Mars include its soil and rocks, its atmosphere and the polar caps. Mars atmosphere consists of 95% carbon dioxide and the balance contains small percentages of oxygen, nitrogen, and argon. The Mars regolith contains many metal oxides in various mineralogical forms. Presently, Martian soil samples are not available. However, a closely matched Martian soil simulant developed by the Johnson Space Center has been available for scientific research and engineering studies. The chemical makeup of this simulant is compared with the data from Viking Lander and Path Finder missions are shown..
    Keywords: Lunar and Planetary Science and Exploration
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIX-1 - XXIX-12; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-12
    Description: In situ resource utilization can best be described as living off the land. In our case the land is the planet Mars. ISRU is based on the idea that some fraction of the consumables, life support and propellant materials do not have to be flown from earth. Rather, they can be manufactured or extracted from resources already present on Mars. The primary resources on Mars are the atmosphere, polar caps and regolith. The atmosphere of Mars is mostly carbon dioxide as shown in the table below. The proportion of oxygen on the other hand is quite small. Still, there is quite a bit of oxygen in the Martian atmosphere, but it is unfortunately tied up with carbon. Thus, one of the goals of ISRU is the separation of breathable oxygen from the carbon dioxide. Several means of separation have been proposed. We have begun experiments on another approach for production of oxygen with carbon monoxide as a useful by product. Our work on a CO2 separator is described later in this report. Regolith melting is another means of obtaining materials. Two materials of interest are iron and silicon. Iron oxide is plentiful on Mars and is of obvious importance for structural components. Silicon is the foundation of solid state devices. Power generation on Mars may be accomplished using silicon solar cells. There is discussion of the feasibility of in situ production of solar cells. This would require a means of extracting silicon from the regolith. We have conducted several experiments concerning melting and glassification of the Mars soil simulant. Other summer faculty fellows have tried various means of processing the stimulant material. These include furnace melting, microwave melting and laser ablation. We have conducted several furnace melting experiments in both air and carbon dioxide environments. We have also carried out experiments to test spark melting in a carbon dioxide atmosphere. These experiments suggest the possibility of using arc melting in a reducing atmosphere. It is important to keep in mind that we are working with a soil stimulant. Any simulant, no matter how chemically similar it is to Martian regolith, may differ in mineralogy. The underlying assumption in this work is that once a glass is formed, any differences between simulant and regolith are unimportant. The exact means of forming the glass do, however, depend on the mineralogy of the regolith. A sample return mission is required to help answer these questions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXV-1 - XXV-13; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-12
    Description: Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this approach, the numeric grid size can be much larger than the thickness of double layer. Presented in this report are a description of the approach, methodology for implementation and several validation simulations for micro flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; VII-1 - VII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of level-two design tools for PARSEC. The "CFD Multiphysics Tool" will be the propulsive element of the tool set. The name acknowledges that space propulsion performance assessment is primarily a fluid mechanics problem. At the core of the CFD Multiphysics Tool is an open-source CFD code, HYP, under development at ERAU. ERAU is renowned for its undergraduate degree program in Aerospace Engineering the largest in the nation. The strength of the program is its applications-oriented curriculum, which culminates in one of three two-course Engineering Design sequences: Aerospace Propulsion, Spacecraft, or Aircraft. This same philosophy applies to the HYP Project, albeit with fluid physics modeling commensurate with graduate research. HYP s purpose, like the Multiphysics Tool s, is to enable calculations of real (three-dimensional; geometrically complex; intended for hardware development) applications of high speed and propulsive fluid flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXIII-5 - XXXIII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-12
    Description: Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XIX-1 - XIX-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-12
    Description: The development and analysis of turbomachinery components for industrial and aerospace applications has been greatly enhanced in recent years through the advent of computational fluid dynamics (CFD) codes and techniques. Although the use of this technology has greatly reduced the time required to perform analysis and design, there still remains much room for improvement in the process. In particular, there is a steep learning curve associated with most turbomachinery CFD codes, and the computation times need to be reduced in order to facilitate their integration into standard work processes. Two turbomachinery codes have recently been developed by Dr. Daniel Dorney (MSFC) and Dr. Douglas Sondak (Boston University). These codes are entitled Aardvark (for 2-D and quasi 3-D simulations) and Phantom (for 3-D simulations). The codes utilize the General Equation Set (GES), structured grid methodology, and overset O- and H-grids. The codes have been used with success by Drs. Dorney and Sondak, as well as others within the turbomachinery community, to analyze engine components and other geometries. One of the primary objectives of this study was to establish a set of parametric input values which will enhance convergence rates for steady state simulations, as well as reduce the runtime required for unsteady cases. The goal is to reduce the turnaround time for CFD simulations, thus permitting more design parametrics to be run within a given time period. In addition, other code enhancements to reduce runtimes were investigated and implemented. The other primary goal of the study was to develop enhanced users manuals for Aardvark and Phantom. These manuals are intended to answer most questions for new users, as well as provide valuable detailed information for the experienced user. The existence of detailed user s manuals will enable new users to become proficient with the codes, as well as reducing the dependency of new users on the code authors. In order to achieve the objectives listed, the following tasks were accomplished: 1) Parametric Study Of Preconditioning Parameters And Other Code Inputs; 2) Code Modifications To Reduce Runtimes; 3) Investigation Of Compiler Options To Reduce Code Runtime; and 4) Development/Enhancement of Users Manuals for Aardvark and Phantom
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXVI-1 - XXVI-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-12
    Description: The work involves two areas: Composites, optimum fiber placement with initial construction of a pressure vessel, and the general subject of insulation, a continual concern in harsh thermal environments. Insulation
    Keywords: Composite Materials
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; VI-1 - VI-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XVIII-1 - XVIII-11; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-11
    Description: In this paper, we expand the previous theory to be applied to a generic drop size distribution with spheroidal raindrops including spherical raindrops. Results will be used to discuss the multiple scattering effects on the backscatter measurements acquired by a W-band nadir-pointing radar.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Geoscience and Remote Sensing Symposium
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-11
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-11
    Description: A top-level architectural approach facilitates the provision of communications and navigation support services to the anticipated lunar mission set. Following the time-honored principles of systems architecting, i.e., form follows function, the first step is to define the functions or services to be provided, both in terms of character and degree. These will include communication as well as trackin and navigation services.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Lunar Conference 2005
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: The long-term stable trajectories around Europa, one of the Galilean moons of Jupiter, are analyzed for their potential applications in spacecraft trajectory design, such as end of mission desposal options, backup orbits, or intermediary targets for transfer trajectories.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-06
    Description: This viewgraph is a printout of a presentation which originally contained multimedia components. The presentation summarizes the accomplishments of the Cassini-Huygens mission, with numerous images and video clips of Saturn, its rings, and its moons. The presentation also summarizes a feasibility analysis of the Neptune-Triton Explorer (NExTEP).
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace and Electronic Systems Society; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-06
    Description: There is no doubt that the awareness of the often long history and its principal players of a scientific specialty is disappearing among present-day researchers. The reason is the inexorable rise of specialization, in which scientists are expected to keep pace with publications in their own field, not to mention the inevitable round of writing grant proposals and teaching and other mundane responsibilities. The authors of this small book had the intention of rectifying this for solar and stellar physics, disciplines which are still broad enough to embrace fields as diverse as nuclear fusion, magnetohydrodynamics, and the dynamic theory of gas spheres. They take the reader on a journey from ancient Greek and middle Eastern astronomy to the late 1990s, one which has an emphasis very much on a theoretical point of view. For the authors, it is the ideas that are central, not the observations.
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-06
    Description: I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst s spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times (Delta)t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT s softer energy band decreases the detection rate of short, hard bursts, while the BAT s longer accumulation times increase the detection rate of long, soft bursts. Consequently, Swift is detecting long, low fluence bursts (2-3 x fainter than BATSE).
    Keywords: Space Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-06
    Description: This paper presents results of a photogeologic reconnaissance of 70 mm photographs taken on the lunar surface during the Apollo 15, 16, and 17 missions, whose primary objective was to investigate the lunar highland crust. Photographs at all three sites, notably the Apennine Front, show pervasive layered structure. These layers are easily distinguished from lighting artifacts, and are considered genuine crustal structures. Their number, thickness, and extent implies that they are lava flows, not ejecta blankets or intrusive features. They appear to be the upper part of the earliest lunar crust, possibly forming a layer tens of kilometers thick. Remote sensing studies (X-ray fluorescence and reflectance spectroscopy), indicate that the highland crust is dominantly a feldspathic basalt. It is concluded that the highland layers represent a global crust formed by eruptions of high-alumina basalt in the first few hundred million years of the Moon's history.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-06
    Description: The Mars Orbiter Laser Altimeter not only provides surface topography from the laser pulse time-of-flight, but also two radiometric measurements, the active measurement of transmitted and reflected laser pulse energy, and the passive measurement of reflected solar illumination. The passive radiometry measurement is accomplished in a novel fashion by monitoring the noise density at the output of the photodetector and solving for the amount of background light. The passive radiometry measurements provide images of Mars at 1064-nm wavelength over a 2 nm bandwidth with sub-km spatial resolution and with 2% or better precision under full illumination. We describe in this paper the principle of operation, the receiver mathematical model, its calibration, and performance assessment from sample measurement data.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-06
    Description: We will demonstrate that CaO and Ca(OH)2 are excellent candidates to explain the 6.8 microns feature, which is one of the most obscure features in young stellar objects. We discuss the condensation of CaO grains and the potential formation of a Ca(OH)2 surface layer. The infrared spectra of these grains are compared with the spectra of fifteen young stellar objects. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions) and the 6.8 micron feature has only been observed in young stellar objects. Therefore, we consider CaO grains to be a plausible candidate to explain the 6.8 microns feature and hypothesize that they are produced in the hot interiors of young stellar environments.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-06
    Description: Experimental results and interpretation of the temperature measurements data retrieved during the balloon campaigns (in 2002 and in 2003) for testing HASI (Huygens Atmospheric Structure Instrument), launched from the Italian Space Agency Base in Trapani (Sicily), are presented. Both ascending and descending phases are analysed; data reveal interesting features near the tropopause (present in the region between 11km-14km), where temperature cooling can be related to layers with strong winds (2002 flight); in the troposphere a multistratified structure of the temperature field is observed and discussed (particularly in the 2003 flight) Finally, stability and turbulence of the atmosphere are analysed; the buoyancy N2 parameters for both the flights show lowers value respect to standard tropospheric values corresponding to a lower stability of the atmosphere; still there is a higher stability above the tropopause. The energy spectrum of temperature data is consistent with the Kolmogorov theory: the characteristic k(sup -5/3) behaviour is reproduced.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 153-161; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-06
    Description: As part of the collaboration with Italian Space Agency on HASI instrument for Huygens mission, University of Padova has been conducting since 2001 scientific activity on Stratospheric Balloon Launches from the Trapani base in Sicily. The most recent boomerang flight in July 2003 has successfully flown a mock up of the Huygens probe hosting spares of flight scientific units and extra housekeeping and scientific sensors on a parachuted descent from 33 kilometre altitude. This work presents the studies conducted on attitude reconstruction of the probe, as well as the utilisation of iterative extended Kalman filtering in investigating vanes induced spin rate and in providing a baseline for the performance evaluation of Huygens accelerometers operations. Finally some possible contributions on the reconstruction of the lower part of Titan descent for Huygens probe are suggested based on the confrontation of sensor data for 2003 flight.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 147-152; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-06
    Description: Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 81-89; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-06
    Description: Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 21-26; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: A viewgraph presentation is shown to raise awareness of aerocapture technology through in-space propulsion. The topics include: 1) Purpose; 2) In-Space Propulsion Program; 3) Aerocapture Overview; 4) Aerocapture Technology Alternatives; 5) Aerocapture Technology Project Process; 6) Results from 2002 Aerocapture TAG; 7) Bounding Case Requirements; 8) ST9 Flight Demonstration Opportunity; 9) Aerocapture NRA Content: Cycles 1 and 2; 10) Ames Research Center TPS Development; 11) Applied Research Associates TPS Development; 12) LaRC Structures Development; 13) Lockheed Martin Astronautics Aeroshell Development; 14) ELORET/ARC Sensor Development; 15) Ball Aerospace Trailing Ballute Development; 16) Cycle 2 NRA Selections - Aerocapture; and 17) Summary.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-06
    Description: Mars Pathfinder's Accelerometer instrument measured an unexpected and large temperature inversion between 10 and 20 kilometer altitude. Other instruments have failed to detect similar temperature inversions. I test whether this inversion is real or not by examining what changes have to be made to the assumptions in the accelerometer data processing to obtain a more "expected" temperature profile. Changes in derived temperature of up to 30K, or 15%, are necessary, which correspond to changes in derived density of up to 25% and changes in derived pressure of up to 10%. If the drag coefficient is changed to satisfy this, then instead of decreasing from 1.6 to 1.4 from 20 kilometers to 10 kilometers, the drag coefficient must increase from 1.6 to 1.8 instead. If winds are invoked, then speeds of 60 meters per second are necessary, four times greater than those predicted. Refinements to the equation of hydrostatic equilibrium modify the temperature profile by an order of magnitude less than the desired amount. Unrealistically large instrument drifts of 0.5-1.0 meters per square second are needed to adjust the temperature profile as desired. However, rotational contributions to the accelerations may have the necessary magnitude and direction to make this correction. Determining whether this hypothesis is true will require further study of the rigid body equations of motion, with detailed knowledge of the positions of all six accelerometers. The paradox concerning this inversion is not yet resolved. It is important to resolve it because the paradox has some startling implications. At one extreme, are temperature profiles derived from accelerometers inherently inaccurate by 20K or more? At the other extreme, are RS temperature profiles inaccurate by this same amount?
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 13-19; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-06
    Description: We explore the utility of various sensors by recovering parachute-probe dynamics information from a package released from a small-scale, remote-controlled airplane. The airdrops aid in the development of datasets for the exploration of planetary probe trajectory recovery algorithms, supplementing data collected from instrumented, full-scale tests and computer models.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 163-170; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: In-situ Thermal Protection System (TPS) sensors are required to provide verification by traceability of TPS performance and sizing tools. Traceability will lead to higher fidelity design tools, which in turn will lead to lower design safety margins, and decreased heatshield mass. Decreasing TPS mass will enable certain missions that are not otherwise feasible, and directly increase science payload. NASA Ames is currently developing two flight measurements as essential to advancing the state of TPS traceability for material modeling and aerothermal simulation: heat flux and surface recession (for ablators). The heat flux gage is applicable to both ablators and non-ablators and is therefore the more generalized sensor concept of the two with wider applicability to mission scenarios. This paper describes the continuing development of a thermal microsensor capable of surface and in-depth temperature and heat flux measurements for TPS materials appropriate to Titan, Neptune, and Mars aerocapture, and direct entry. The thermal sensor is a monolithic solid state device composed of thick film platinum RTD on an alumina substrate. Choice of materials and critical dimensions are used to tailor gage response, determined during calibration activities, to specific (forebody vs. aftbody) heating environments. Current design has maximum operating temperature of 1500K, and allowable constant heat flux of q=28.7 W/cm(sup 2), and time constants between 0.05 and 0.2 seconds. The catalytic and radiative response of these heat flux gages can also be changed through the use of appropriate coatings. By using several co-located gages with various surface coatings, data can be obtained to isolate surface heat flux components due to radiation, catalycity and convection. Selectivity to radiative heat flux is a useful feature even for an in-depth gage, as radiative transport may be a significant heat transport mechanism for porous TPS materials in Titan aerocapture.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 235-238; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-06
    Description: A review of the relevant flight conditions and physical models for planetary probe afterbody aeroheating calculations is given. Readily available sources of afterbody flight data and published attempts to computationally simulate those flights are summarized. A current status of the application of turbulence models to afterbody flows is presented. Finally, recommendations for additional analysis and testing that would reduce our uncertainties in our ability to accurately predict base heating levels are given.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 275-286; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: The assignment is to make precise (better than 1 %) measurements of isotope ratios and accurate (5-10%) measurements of abundances of noble gas and to obtain vertical profiles of trace chemically active gases from above the clouds all the way down to the surface. Science measurement objectives are as follows: 1) Determine the composition of Venus atmosphere, including trace gas species and light stable isotopes; 2) Accurately measure noble-gas isotopic abundance in the atmosphere; 3) Provide descent, surface, and ascent meteorological data; 4) Measure zonal cloud-level winds over several Earth days; 5) Obtain near-IR descent images of the surface from 10-km altitude to the surface; 6) Accurately measure elemental abundances & mineralogy of a core from the surface; and 7) Evaluate the texture of surface materials to constrain weathering environment.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2nd International Planetary Probe Workshop; 69-74; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: The goal of the proposed Mars Sample Return mission is to bring samples from the surface of Mars back to Earth for thorough examination and analysis. The Earth Entry Vehicle is the passive entry body designed to protect the sample container from entry heating and deceleration loads during descent through the Earth s atmosphere to a recoverable location on the surface. This paper summarizes the entry vehicle design and outlines the subsystem development and testing currently planned in preparation for an entry vehicle flight test in 2010 and mission launch in 2013. Planned efforts are discussed for the areas of the thermal protection system, vehicle trajectory, aerodynamics and aerothermodynamics, impact energy absorption, structure and mechanisms, and the entry vehicle flight test.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 269-274; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: A new software tool designed to perform aeroassist studies has been developed by Global Aerospace Corporation (GAC). The Hypersonic Planetary Aeroassist Simulation System (HyperPASS) [1] enables users to perform guided aerocapture, guided ballute aerocapture, aerobraking, orbit decay, or unguided entry simulations at any of six target bodies (Venus, Earth, Mars, Jupiter, Titan, or Neptune). HyperPASS is currently being used for trade studies to investigate (1) aerocapture performance with alternate aeroshell types, varying flight path angle and entry velocity, different gload and heating limits, and angle of attack and angle of bank variations; (2) variable, attached ballute geometry; (3) railgun launched projectile trajectories, and (4) preliminary orbit decay evolution. After completing a simulation, there are numerous visualization options in which data can be plotted, saved, or exported to various formats. Several analysis examples will be described.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 251-256; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: The nonequilibrium ionization process in hydrogen-helium mixture behind a strong shock wave is studied numerically using the detailed ionization rate model developed recently by Park which accounts for emission and absorption of Lyman lines. The study finds that, once the avalanche ionization is started, the Lyman line is self-absorbed. The intensity variation of the radiation at 5145 Angstroms found by Leibowitz in a shock tube experiment can be numerically reproduced by assuming that ionization behind the shock wave prior to the onset of avalanche ionization is 1.3%. Because 1.3% initial ionization is highly unlikely, Leibowitz s experimental data is deemed questionable. By varying the initial electron density value in the calculation, the calculated ionization equilibration time is shown to increase approximately as inverse square-root of the initial electron density value. The true ionization equilibration time is most likely much longer than the value found by Leibowitz.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; 99-106; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: A viewgraph presentation on project Prometheus and future entry probe missions is shown. The topics include: 1) What Is Project Prometheus?; 2) What Capabilities Can Project Prometheus Offer? What Mission Types Are Being Considered?; 3) Jupiter Icy Moons Orbiter (JIMO); 4) How Are Mission Opportunities Changing?; 5) Missions Of Interest a Year Ago; 6) Missions Now Being Considered For Further Study; 7) Galileo-Style (Conventional) Probe Delivery; 8) Galileo-Style Probe Support; 9) Conventional Delivery and Support of Multiple Probes; 10) How Entry Probe Delivery From an NEP Vehicle Is Different; and 11) Concluding Remarks.
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The REST simulator includes many parameters: a) Inertial 〈-〉 Fix to Earth reference system; b) Geodetic 〈-〉 Geocentric coordinates; c) Rotational velocity of the Atmosphere; d) Effect of the rotation of the Earth; e) Bulge effect of the Earth; f) Spherical harmonic expansion for the Earth s gravitational potential, J2 (zonal); g) Heat flux, temperature in the wall; h) Drag coefficient for different regimes; i) Flow regime status; j) Density model NRLMSISE-00; k) Wind model HWM-93; l) G2S atmospheric model with the latest meteorological conditions and m) Landing area (Monte Carlo Simulations)
    Keywords: Space Sciences (General)
    Type: 2nd International Planetary Probe Workshop; NASA/CP-2004-213456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: NASA is planning missions to Mars every two years until 2010, these missions will rely on solar power. Sunlight on the surface of Mars is altered by airborne dust and fluctuates from day to day. The MATE flight experiment was designed to evaluate solar cell performance and will fly on the Mars 2001 surveyor Lander as part of the Mars In-Situ Propellant Production Precursor (MIP) package. MATE will measure several solar cell technologies and characterize the Martian environment's solar power. This will be done by measuring full IV curvers on solar cells, direct and global insolation, temperature, and spectral content. The lander is scheduled to launch in April 2001 and arrive on Mars in January of 2002. The site location has not been identified but will be near the equator, is a powered landing, and is baselined for 90 sols. The intent of this paper is to provide a brief overview of the MATE experiment and progress to date. The MATE Development Unit (DU) hardware has been built and has completed testing, work is beginning in the Qualification Unit which will start testing later this year, Flight Hardware is to be delivered next spring.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 16th Space Photovoltaic Research and Technology Conference; NASA/CP-2001-210747/REV1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-05
    Description: PMR-15, a high-temperature polyimide developed in the mid-1970's at the NASA Lewis Research Center, offers the combination of ease of processing, low cost, and good stability and performance at temperatures up to 288 C (500 F). This material is widely regarded as one of the leading high-temperature matrix resins for polymer-matrix-composite aircraft engine components. PMR-15 is widely used in both military and civilian aircraft engines. The current worldwide market for PMR-15 is on the order of 50,000 lb, with a total sales of around $5 to $10 million. However, PMR-15 is made from methylene dianiline (MDA), a known animal mutagen and a suspected human mutagen. Recent concerns about the safety of workers involved in the manufacture and repair of PMR-15 components have led to the implementation of costly protective measures to limit worker exposure and ensure workplace safety. In some cases, because of safety and economic concerns, airlines have eliminated PMR-15 components from engines in their fleets. Current efforts at Lewis are focused on developing suitable replacements for PMR-15 that do not contain mutagenic constituents and have processability, stability, and mechanical properties comparable to that of PMR-15. A recent development from these efforts is a new class of thermosetting polyimides based on 2,2'-dimethylbenzidine (DMBZ). Autoclave processing developed for PMR-15 composites was used to prepare low-void-content T650-35 carbon-fiber-reinforced laminates from DMBZ-15 polyimides. The glass transition temperatures of these laminates were about 50 C higher than those of the T650- 35/PMR-15 composites (400 versus 348 C). In addition, DMBZ-15 polyimide composites aged for 1000 hr in air at 288 C (500 F) had weight losses close to those of comparable PMR-15 laminates (0.9 versus 0.7 percent). The elevated (288 C) and room temperature mechanical properties of T650-35-reinforced DMBZ-15 polyimide and PMR-15 laminates were comparable. Standard Ames tests are being conducted on this diamine to assess its mutagenicity.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-05
    Description: A number of titanium matrix composite (TMC) systems are currently being investigated for high-temperature air frame and propulsion system applications. As a result, numerous computational methodologies for predicting both deformation and life for this class of materials are under development. An integral part of these methodologies is an accurate and computationally efficient constitutive model for the metallic matrix constituent. Furthermore, because these systems are designed to operate at elevated temperatures, the required constitutive models must account for both time-dependent and time-independent deformations. To accomplish this, the NASA Lewis Research Center is employing a recently developed, complete, potential-based framework. This framework, which utilizes internal state variables, was put forth for the derivation of reversible and irreversible constitutive equations. The framework, and consequently the resulting constitutive model, is termed complete because the existence of the total (integrated) form of the Gibbs complementary free energy and complementary dissipation potentials are assumed a priori. The specific forms selected here for both the Gibbs and complementary dissipation potentials result in a fully associative, multiaxial, nonisothermal, unified viscoplastic model with nonlinear kinematic hardening. This model constitutes one of many models in the Generalized Viscoplasticity with Potential Structure (GVIPS) class of inelastic constitutive equations.
    Keywords: Composite Materials
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...