ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 11 (1993), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Lancang metamorphic terrane consists of an eastern low-P/T belt and a western high-P/T belt divided by a N–S-trending fault. Protoliths of both units are mid–late Proterozoic basement and its cover. The low-P/T belt includes the Permian Lincang batholith, related amphibolite facies rocks of the Damenglong and Chongshan groups, and Permo-Triassic volcanic and volcaniclastic rocks. Most whole-rock Rb–Sr isochron and U–Pb zircon ages of the Lincang batholith are in the range 290–279 and 254–212 Ma, respectively. Metamorphism of the low-P/T belt reaches upper amphibolite with local granulite facies (735°C at 5 kbar), subsequently retrogressed at 450–500°C during post-Triassic time. The high-P/T rocks grade from west to east from blueschist through transitional blueschist/greenschist to epidote amphibolite facies. Estimated P–T conditions follow the high-P intermediate facies series up to about 550–600°C, at which oligoclase is stable. The 40Ar/39Ar plateau age of sodic amphibole in blueschist is 279 Ma.The paired metamorphic belts combined with the spatial and temporal distribution of other blueschist belts lead us to propose a tentative tectonic history of south-east Asia since the latest Precambrian. Tectonic juxtaposition of paired belts with contrasting P–T conditions, perhaps during collision of the Baoshan block with south-east Asia, suggests that an intervening oceanic zone existed that has been removed. The Baoshan block is a microcontinent rifted from the northern periphery of Gondwana. Successive collision and amalgamation of microcontinents from either Gondwana or the Panthalassan ocean resulted in rapid southward continental growth of c. 500 km during the last 200 Ma. Hence, the Lancang region in south-east Asia represents a suture zone between two contrasting microcontinents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-07-01
    Print ISSN: 0263-4929
    Electronic ISSN: 1525-1314
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2017-10-02
    Description: Introduction: An overarching geologic theory, GEOMARS, coherently explains many otherwise anomalous aspects of the geological history of Mars. Premises for a theory of martian geologic evolution include: (1) Mars is a water-rich terrestrial planet, (2) terrestrial planets should evolve through progressive stages of dynamical history (accretion, differentiation, tectonism) and mantle convection (magma ocean, plate tectonism, stagnant lid), and (3) the early history of Earth affords an analogue to the evolution of Mars. The theory describes the following major stages of evolution for Mars (from oldest to youngest): Stage 1 - shortly after accretion, Mars differentiates to a liquid metallic core, a mantle boundary (MBL) of high-pressure silicate mineral phases, upper mantle, magma ocean, thin komatiic crust, and convecting steam atmosphere; Stage 2- Mars cools to condense its steam atmosphere and transform its mode of mantle convection to plate tectonism; subduction of waterrich oceanic crust initiates arc volcanism and transfers water, carbonates and sulfates to the mantle; Stage 3 - the core dynamo initiates, and the associated magnetosphere leads to conditions conducive to the development of near-surface life and photosynthetic production of oxygen; Stage 4 - accretion of thickened, continental crust and subduction of hydrated oceanic crust to the mantle boundary layer and lower mantle of Mars occurs; Stage 5 - the core dynamo stops during Noachian heavy bombardment while plate tectonism continues; Stage 6 - initiation of the Tharsis superplume (approx. between 4.0 and 3.8Ga) occurs, and Stage 7 - the superlume phase (stagnant-lid regime) of martian planetary evolution with episodic phases of volcanism and water outflows continues into the present. The GEOMARS Theory is testable through a multidisciplinary approach, including utilizing GRS-based information. Based on a synthesis of published geologic, paleohydrologic, topographic, geophysical, spectral, and elemental information, we have defined geologic provinces that represent significant windows into the geological evolution of Mars, unfolding the GEOMARS Theory and forming the basis for interpreting GRS data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXVI, Part 4; LPI-Contrib-1234-Pt-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...