NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Experimental Shock Decomposition of Siderite to MagnetiteThe debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures > 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.
Document ID
20050166980
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Bell, M. S.
(Houston Univ. TX, United States)
Golden, D. C.
(Hernandez Engineering, Inc. Houston, TX, United States)
Zolensky, M. E.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2005
Publication Information
Publication: Lunar and Planetary Science XXXVI, Part 2
Subject Category
Lunar And Planetary Science And Exploration
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available