ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-01-01
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0.28 mrad/pixel, nearly a factor of four higher than that of the Mars Pathfinder and Mars Surveyor '98 cameras. Image compression will be performed using a wavelet compression algorithm. The Mini-Thermal Emission Spectrometer (Mini-TES) is a point spectrometer operating in -the thermal IR. It produces high spectral resolution (5 /cm) image cubes with a wavelength range of 5-40 gm, a nominal signal/noise ratio of 500:1, and a maximum angular resolution of 7 mrad (7 cm at a distance of 10 in). The wavelength region over which it operates samples the diagnostic fundamental absorption features of rockforming minerals, and also provides some capability to see through dust coatings that could tend to obscure spectral features. The mineralogical information that Mini-TES provides will be used to select from a distance the rocks and soils that will be investigated in more detail and ultimately sampled. Mini-TES is derived from the MO/MGS TES instrument, but is significantly smaller and simpler. The instrument uses an 8-cm Cassegrain telescope, a Michelson interferometer, and uncooled pyroelectric detectors. Along with its mineralogical capabilities, Mini-TES can provide information on the thermophysical properties of rocks and soils. Viewing upward, it can also provide temperature profiles through the martian atmospheric boundary layer. Elemental and Mineralogical Composition: Once promising samples have been identified from a distance using Pancam/Mini-TES, they will be studied in detail using up to three compositional sensors that can be placed directly against them by an Instrument Arm. The two compositional sensors, presently on the payload are an Alpha-Proton-X-Ray Spectrometer (APXS), and a Mossbauer Spectrometer. The APXS is derived closely from the instrument that flew on Mars Pathfinder. Radioactive alpha sources and three detection modes (alpha, proton, and x-ray) provide elemental abundances of rocks and soils to complement and constrain mineralogical data. The Athena APXS will have a revised mechanical design that will cut down significantly on backscattering of alpha particles from martian atmospheric carbon. It will also include a target of known elemental composition that will be used for calibration purposes. The Athena Mossbauer Spectrometer is a diagnostic instrument for the mineralogy and oxidation state of Fe-bearing phases, which are particularly important on Mars. The instrument measures the resonant absorption of gamma rays produced by a Co-57 source to determine splitting of nuclear energy levels in Fe atoms that is related to the electronic environment surrounding them. It has been under development for space flight for many years at the Technical University of Darmstadt. The Mossbauer Spectrometer (and the other arm instruments) will be able to view a small permanent magnet array that will attract magnetic particles in the martian soil. The payload may also include a Raman Spectrometer. If included, the Raman Spectrometer will provide precise identification of major and minor mineral phases. It requires no sample preparation, and is also sensitive to organics. Fine-Scale Texture: The Instrument Arm a also carries a Microscopic Imager that will obtain high-resolution monochromatic images of the same materials for which compositional data will be obtained. Its spatial resolution is 20 micron/pixel over a 1 cm depth of field, and 40 micron/pixel over a 1-cm depth of field. Like Pancam, it uses the same active pixel sensor detectors and electronics as the rover's navigation cameras. The Instrument Arm is a three degree-of-freedom arm that uses designs and components from the Mars Pathfinder and Mars Surveyor '98 projects. Its primary function is instrument positioning. Along with the instruments noted above, it also carries a brush that can be used to remove dust and other loose coatings from rocks. Sample Collection and Storage: Martian rock and soil samples will be collected using a low-power rotary coring drill called the Mini-Corer. An important characteristic of this device is that it can obtain intact samples of rock from up to 5 cm within strong boulders and bedrock, Nominal core dimensions are 8xl7 mm. The Mini-Corer drills a core to the commanded depth in a rock, shears it off, retains it, and extracts it. It can also acquire samples of loose soil, using soil sample cups that are pressed downward into loose material. The Mini-Corer can drill at angles from vertical to 45' off vertical. It has six interchangeable bits for long life. Mechanical damage to the sample during drilling is minimal, and heating is negligible. After acquisition, the sample may be viewed by the arm instruments, and/or placed in one of 104 compartments in the Sample Container. A subset of the acquired samples may be replaced with other samples obtained later if desired. The Sample Container has no moving parts, and is mounted external to the rover for easy removal by the Mars Surveyor 2005 flight system. Operation of the rover will make extensive use of automated onboard navigation and hazard avoidance capabilities. Otherwise, use of onboard autonomy is minimal. Data downlink capability is about 40 Mbit/sol, and the use of the Mars Surveyor '01 orbiter for data relay imposes a limit of at most two command cycles per sol. Because of the significant amount of time available between command cycles, all payload elements will be operated sequentially, rather than in parallel.; this approach also significantly simplifies operations and minimizes peak power usage. The landing site for the '01 rover has not been selected yet. Site selection will make as full use as possible of Mars Global Surveyor data, and will involve substantial input from the broad Mars science community. Summary: The following table describes the mass, power, providers, and key scientific objectives of all the major elements of the Athena payload. Additional Athena payload information may be found at: http://astrosun.tn.cornell.edu/athena/index.html. Additional information contained in the original.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Mars Surveyor 2001 Landing Site Workshop
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The Athena Mars rover payload includes two primary science-grade imagers: Pancam, a multispectral, stereo, panoramic camera system, and the Color Microscopic Imager (CMI), a multispectral and variable depth-of-field microscope. Both of these instruments will help to achieve the primary Athena science goals by providing information on the geology, mineralogy, and climate history of the landing site. In addition, Pancam provides important support for rover navigation and target selection for Athena in situ investigations. Here we describe the science goals, instrument designs, and instrument performance of the Pancam and CMI investigations.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 1; 15-16; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The Athena Precursor Experiment (APEX) is a suite of scientific instruments for the Mars Surveyor Program 2001 (MSP'01) lander. The major elements of the APEX pay load are: (1) Pancam/Mini-TES, a combined stereo color imager and mid-infrared point spectrometer. (2) An Alpha-Proton-X-Ray Spectrometer (APXS) for in-situ elemental analysis. (3) A Mossbauer Spectrometer for in-situ determination of the mineralogy of Fe-bearing rocks and soils. (4) A Magnet Array that can separate magnetic soil particles from non-magnetic ones.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration; 98-100; LPI-Contrib-991
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Near-infrared spectra of a bright and a dark thermal emission feature on the night side of Venus have been obtained from 2.2 to 2.5 microns at a spectral resolution of 1200 to 1500. Both bright and dark features show numerous weak absorption bands produced by CO2, CO, water vapor, and other gases. The bright feature emits more radiation than the dark feature throughout this spectral region, but the largest contrasts occur between 2.21 s 2.32 microns, where H2SO4 clouds and a weak CO2 band provide the only known sources of extinction. The contrast decreases by 55 to 65 percent at wavelengths longer than 2.34 microns, where CO, clouds, and water vapor also absorb and scatter upwelling radiation. This contrast reduction may provide direct spectroscopic evidence for horizontal variations in the water vapor concentrations in the Venus atmosphere at levels below the cloud tops.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science (ISSN 0036-8075); 252; 1293-129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Meteoritic impacts under oxidizing surface conditions occur on both earth and Mars. Oxidative alteration of impact melt sheets is reported at several terrestrial impact structures including Manicouagan, West Clearwater Lake, and the Ries Basin. A number of studies have advocated that a significant fraction of Martian soil may consist of erosional products of oxidatively altered impact melt sheets. If so, the signature of the Fe-bearing mineralogies formed by the process may be present in visible and near infrared reflectivity data for the Martian surface. Of concern is what mineral assemblages form in impact melt sheets produced under oxidizing conditions and what their spectral signatures are. Spectral and Moessbauer data for 19 powder samples of impact melt rock from Manicouagan Crater are reported. Results show for naturally occurring materials that composite hematite-pyroxene bands have minima in the 910-nm region. Thus many of the anomalous Phobos-2 spectra, characterized by a shallow band minimum in the near-IR whose position varies between approximately 850 and 1000 nm, can be explained by assemblages whose endmembers (hematite and pyroxene) are accepted to be present on Mars. Furthermore, results show that a mineralogically diverse suite of rocks can be generated at essentially constant composition, which implies that variations in Martian surface mineralogy do not necessarily imply variations in chemical composition.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Mars: Past, Present, and Future. Results from the MSATT Program, Part 1; p 30-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: During the Galileo spacecraft encounter with the Earth-Moon system in December, 1992, a variety of spectral data and imagery were obtained for the eastern limb region as well as much of the lunar nearside. In order to support this encounter, we have been collecting near-infrared spectra and other remote sensing data for that portion of the northeastern nearside (NEM region) for which the highest resolution Galileo data were obtained. Analysis of spectra obtained for highlands units in the NEN region indicates that most surface units are dominated by anorthositic norite. To date, no pure anorthosites have been identified in the region. Several dark-haloed impact craters have exposed mare material from beneath highlands-rich surface units. Hence, ancient mare volcanism occurred in at least a portion of the NEN region. Endogenic dark-haloed craters in the region are the source of localized dark mantle deposits (LDMD) of pyroclastic origin and at least two compositional groups are present. The Galileo spacecraft obtained very high-resolution remote sensing data for the northeastern part of the nearside of the Moon. In order to prepare for and support this encounter, we have collected and analyzed a variety of spectral data for the NEN region. Numerous unanswered questions exist for this region. These include: (1) the composition and stratigraphy of the local highlands crust, (2) the nature and mode of formation of regional light plains, (3) the composition of localized pyroclastic deposits, and (4) the distribution of possible cryptomare in the region. The purpose of this paper is to present the preliminary results of our analyzes of remote sensing data of remote sensing data obtained for the NEN region.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 617-618
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The research presented here represents the initial phase of a broader project that is intended to provide data in the mid- and far-IR spectral region for both well-characterized iron oxides/oxyhydroxides and poorly crystalline or amorphous materials (e.g., palagonites). Such information can be used in the interpretation of data to be returned by the Mars Observer Thermal Emission Spectrometer (TES). Additionally, this same information will prove useful for assessing the information content of existing Kuiper Airborne Observatory, Mariner 7, and Mariner 9 spectra. which also cover the thermal IR wavelength region.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Mars: Past, Present, and Future. Results from the MSATT Program, Part 1; p 2-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: In recent years, we have utilized the Apollo orbital geochemistry datasets and Earth-based spectral reflectance data to investigate the composition of highland units associated with lunar multiring basins. These include Imbrium, Orientale, and Nectaris Basins. We have also analyzed a large number of near-IR reflectance spectra and multispectral images in an attempt to answer a variety of questions concerning the Serenitatis Basin. These questions include the following: (1) What is the composition of highland units in the region and how do these compositions vary as a function of position around and distance from Serenitatis?; (2) What was the crustal stratigraphy of the Serenitatis preimpact target site?; (3) How do the Apollo 17 samples relate to geologic units in the surrounding highlands?; (4) What is the nature and origin of light plains deposits in the region?; and (5) Do cryptomare occur in the Serenitatis region? The purpose of this paper is to present the preliminary results of our analyses of spectral data obtained for the Serenitatis Basin region.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Science Inst., Workshop on Geology of the Apollo 17 Landing Site; p 14-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-23
    Description: We present a new spectrum of the Centaur object 5145 Pholus between 1.15 and 2.4 micro meters. We model this, and the previously published (0.4- to 1.0- micrometer) spectrum, using Hapke scattering theory. Seen in absorption are the 2.04- micrometer band of H2O ice and a strong band at 2.27 micrometer, interpreted as frozen methanol and/or a photolytic product of methanol having small molecular weight. The presence of small molecules is indicative of a chemically primitive surface, since heating and other processes remove the light hydrocarbons in favor of macromolecular carbon of the kind found in carbonaceous meteorites. The unusually red slope of Pholus' spectrum is matched by fine grains of a refractory organic solid (tholin). Olivine (which we model with Fo 82) also appears to be present on Pholus. We present a five-component model for the composite spectrum of all spectroscopic and photometric data available for 5145 Pholus and conclude that this is a primitive object which has not yet been substantially processed by solar heat. The properties of Pholus are those of the nucleus of a large comet that has never been active.
    Keywords: Astronomy
    Type: ICARUS: Article IS985997 (ISSN 0019-1035); Volume 135; 389-407
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...