ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (288)
  • Signal Transduction  (288)
  • American Association for the Advancement of Science (AAAS)  (288)
  • American Association of Petroleum Geologists
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • 2010-2014  (79)
  • 2000-2004  (65)
  • 1995-1999  (144)
  • 1985-1989
  • 1980-1984
  • 1960-1964
  • 1935-1939
  • 1930-1934
  • 2010  (79)
  • 2000  (65)
  • 1999  (80)
  • 1996  (64)
  • Natural Sciences in General  (288)
  • Geosciences
Collection
  • Articles  (288)
Publisher
  • American Association for the Advancement of Science (AAAS)  (288)
  • American Association of Petroleum Geologists
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • +
Years
  • 2010-2014  (79)
  • 2000-2004  (65)
  • 1995-1999  (144)
  • 1985-1989
  • 1980-1984
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wickelgren, I -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):14-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9917254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Cells, Cultured ; Dimerization ; Drug Design ; Humans ; Neurons/*metabolism ; Potassium Channels/metabolism ; Rats ; Receptors, GABA-B/*chemistry/*metabolism ; Signal Transduction ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-09-18
    Description: The antifungal defense of Drosophila is controlled by the spaetzle/Toll/cactus gene cassette. Here, a loss-of-function mutation in the gene encoding a blood serine protease inhibitor, Spn43Ac, was shown to lead to constitutive expression of the antifungal peptide drosomycin, and this effect was mediated by the spaetzle and Toll gene products. Spaetzle was cleaved by proteolytic enzymes to its active ligand form shortly after immune challenge, and cleaved Spaetzle was constitutively present in Spn43Ac-deficient flies. Hence, Spn43Ac negatively regulates the Toll signaling pathway, and Toll does not function as a pattern recognition receptor in the Drosophila host defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levashina, E A -- Langley, E -- Green, C -- Gubb, D -- Ashburner, M -- Hoffmann, J A -- Reichhart, J M -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1917-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UPR 9022 CNRS, Institut de Biologie Moleculaire et Cellulaire, 15 Rue Rene Descartes, Strasbourg 67084, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489372" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antifungal Agents/*metabolism ; *Antimicrobial Cationic Peptides ; Body Patterning ; Drosophila/embryology/genetics/*immunology ; *Drosophila Proteins ; Escherichia coli/genetics/immunology ; Genes, Insect ; Hemolymph/metabolism ; Insect Proteins/*biosynthesis/genetics/metabolism/*physiology ; Membrane Glycoproteins/genetics/*physiology ; Micrococcus luteus/immunology ; Molecular Sequence Data ; Mutagenesis ; Peptides/genetics/metabolism ; *Receptors, Cell Surface ; Recombinant Fusion Proteins/genetics/metabolism ; Serine Proteinase Inhibitors/genetics/*metabolism ; Serpins/genetics/*metabolism ; Signal Transduction ; Toll-Like Receptors ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-01-23
    Description: The plant hormone abscisic acid (ABA) regulates potassium and chloride ion channels at the plasma membrane of guard cells, leading to stomatal closure that reduces transpirational water loss from the leaf. The tobacco Nt-SYR1 gene encodes a syntaxin that is associated with the plasma membrane. Syntaxins and related SNARE proteins aid intracellular vesicle trafficking, fusion, and secretion. Disrupting Nt-Syr1 function by cleavage with Clostridium botulinum type C toxin or competition with a soluble fragment of Nt-Syr1 prevents potassium and chloride ion channel response to ABA in guard cells and implicates Nt-Syr1 in an ABA-signaling cascade.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leyman, B -- Geelen, D -- Quintero, F J -- Blatt, M R -- New York, N.Y. -- Science. 1999 Jan 22;283(5401):537-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Plant Physiology and Biophysics, University of London, Wye College, Wye, Kent TN25 5AH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9915701" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Animals ; Botulinum Toxins/metabolism ; Cell Membrane/physiology ; Chloride Channels/*physiology ; Genes, Plant ; Genetic Complementation Test ; Ion Channel Gating/drug effects ; Membrane Proteins/chemistry/genetics/*physiology ; Molecular Sequence Data ; Oocytes ; Patch-Clamp Techniques ; Plant Growth Regulators/*pharmacology ; Plant Leaves/*physiology ; *Plants, Toxic ; Potassium Channels/*physiology ; Qa-SNARE Proteins ; Saccharomyces cerevisiae/genetics/growth & development ; Signal Transduction ; Tobacco/genetics/*physiology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-11-05
    Description: Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, V -- El Far, O -- Bofill-Cardona, E -- Nanoff, C -- Freissmuth, M -- Karschin, A -- Airas, J M -- Betz, H -- Boehm, S -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1180-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurochemistry, Max Planck Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550060" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium/metabolism ; Calmodulin/antagonists & inhibitors/*metabolism ; Cells, Cultured ; Dimerization ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; GTP-Binding Proteins/*metabolism ; Glutamic Acid/*metabolism ; Hippocampus/cytology/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Potassium Channels/metabolism ; *Potassium Channels, Inwardly Rectifying ; Presynaptic Terminals/metabolism ; Propionates/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/antagonists & inhibitors/*metabolism ; Recombinant Fusion Proteins/metabolism ; Sesterterpenes ; Signal Transduction ; Swine ; *Synaptic Transmission ; Terpenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-05-29
    Description: Endoglin is a transforming growth factor-beta (TGF-beta) binding protein expressed on the surface of endothelial cells. Loss-of-function mutations in the human endoglin gene ENG cause hereditary hemorrhagic telangiectasia (HHT1), a disease characterized by vascular malformations. Here it is shown that by gestational day 11.5, mice lacking endoglin die from defective vascular development. However, in contrast to mice lacking TGF-beta, vasculogenesis was unaffected. Loss of endoglin caused poor vascular smooth muscle development and arrested endothelial remodeling. These results demonstrate that endoglin is essential for angiogenesis and suggest a pathogenic mechanism for HHT1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, D Y -- Sorensen, L K -- Brooke, B S -- Urness, L D -- Davis, E C -- Taylor, D G -- Boak, B B -- Wendel, D P -- K08 HL03490-03/HL/NHLBI NIH HHS/ -- T35 HL07744-06/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1999 May 28;284(5419):1534-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Molecular Biology and Genetics, Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-5330, USA. dean.li@hci.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10348742" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD ; Antigens, CD31/analysis ; Blood Vessels/cytology/*embryology/metabolism ; Cell Differentiation ; Crosses, Genetic ; Endothelium, Vascular/cytology/*embryology/metabolism ; Female ; Gene Targeting ; In Situ Hybridization ; Male ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Muscle, Smooth, Vascular/cytology/*embryology ; *Neovascularization, Physiologic ; Receptors, Cell Surface ; Signal Transduction ; Transforming Growth Factor beta/metabolism ; Vascular Cell Adhesion Molecule-1/genetics/*physiology ; Yolk Sac/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-07-03
    Description: Lymphocyte development is critically influenced by self-antigens. T cells are subject to both positive and negative selection, depending on their degree of self-reactivity. Although B cells are subject to negative selection, it has been difficult to test whether self-antigen plays any positive role in B cell development. A murine model system of naturally generated autoreactive B cells with a germ line gene-encoded specificity for the Thy-1 (CD90) glycoprotein was developed, in which the presence of self-antigen promotes B cell accumulation and serum autoantibody secretion. Thus, B cells can be subject to positive selection, generated, and maintained on the basis of their autoreactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayakawa, K -- Asano, M -- Shinton, S A -- Gui, M -- Allman, D -- Stewart, C L -- Silver, J -- Hardy, R R -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA. K_Hayakawa@fccc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390361" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/immunology ; Animals ; Antigens, CD5/analysis ; Antigens, Thy-1/*immunology ; Autoantibodies/*biosynthesis/blood/immunology ; Autoantigens/*immunology ; B-Lymphocyte Subsets/*immunology ; Genes, Immunoglobulin ; Hybridomas ; Immunity, Innate ; Immunologic Surveillance ; Mice ; Mice, SCID ; Mice, Transgenic ; Receptors, Antigen, B-Cell/immunology ; Signal Transduction ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-04-09
    Description: Phosphorylation of inhibitor of kappa B (IkappaB) proteins is an important step in the activation of the transcription nuclear factor kappa B (NF-kappaB) and requires two IkappaB kinases, IKK1 (IKKalpha) and IKK2 (IKKbeta). Mice that are devoid of the IKK2 gene had extensive liver damage from apoptosis and died as embryos, but these mice could be rescued by the inactivation of the gene encoding tumor necrosis factor receptor 1. Mouse embryonic fibroblast cells that were isolated from IKK2-/- embryos showed a marked reduction in tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1alpha-induced NF-kappaB activity and an enhanced apoptosis in response to TNF-alpha. IKK1 associated with NF-kappaB essential modulator (IKKgamma/IKKAP1), another component of the IKK complex. These results show that IKK2 is essential for mouse development and cannot be substituted with IKK1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Q -- Van Antwerp, D -- Mercurio, F -- Lee, K F -- Verma, I M -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):321-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Salk Institute, La Jolla, CA 92037, USA. Signal Pharmaceuticals, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195897" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Line ; DNA-Binding Proteins/metabolism ; Embryonic and Fetal Development ; Gene Targeting ; I-kappa B Kinase ; I-kappa B Proteins ; Interleukin-1/pharmacology ; Liver/cytology/*embryology ; Mice ; NF-kappa B/metabolism ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Receptors, Tumor Necrosis Factor/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factor RelA ; Transcription Factors/metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-01-05
    Description: Phytochromes are a family of photoreceptors used by green plants to entrain their development to the light environment. The distribution of these chromoproteins has been expanded beyond photoautotrophs with the discovery of phytochrome-like proteins in the nonphotosynthetic eubacteria Deinococcus radiodurans and Pseudomonas aeruginosa. Like plant phytochromes, the D. radiodurans receptor covalently binds linear tetrapyrroles autocatalytically to generate a photochromic holoprotein. However, the attachment site is distinct, using a histidine to potentially form a Schiff base linkage. Sequence homology and mutational analysis suggest that D. radiodurans bacteriophytochrome functions as a light-regulated histidine kinase, which helps protect the bacterium from visible light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S J -- Vener, A V -- Vierstra, R D -- New York, N.Y. -- Science. 1999 Dec 24;286(5449):2517-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Cellular and Molecular Biology Program and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617469" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Bacterial Proteins/chemistry/genetics/*metabolism ; Biliverdine/analogs & derivatives/metabolism ; Binding Sites ; Gram-Positive Cocci/genetics/*metabolism ; Histidine/metabolism ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Photoreceptors, Microbial/chemistry/genetics/*metabolism ; Phytochrome/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Pseudomonas aeruginosa/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-01-05
    Description: CmPP16 from Cucurbita maxima was cloned and the protein was shown to possess properties similar to those of viral movement proteins. CmPP16 messenger RNA (mRNA) is present in phloem tissue, whereas protein appears confined to sieve elements (SE). Microinjection and grafting studies revealed that CmPP16 moves from cell to cell, mediates the transport of sense and antisense RNA, and moves together with its mRNA into the SE of scion tissue. CmPP16 possesses the characteristics that are likely required to mediate RNA delivery into the long-distance translocation stream. Thus, RNA may move within the phloem as a component of a plant information superhighway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xoconostle-Cazares, B -- Xiang, Y -- Ruiz-Medrano, R -- Wang, H L -- Monzer, J -- Yoo, B C -- McFarland, K C -- Franceschi, V R -- Lucas, W J -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):94-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9872750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cloning, Molecular ; Cucumis sativus ; Cucurbitaceae/genetics/*metabolism ; Microinjections ; Molecular Sequence Data ; Plant Leaves/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Roots/metabolism ; Plant Stems/metabolism ; Plant Viral Movement Proteins ; RNA, Antisense/metabolism ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...