ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (84)
  • American Association for the Advancement of Science (AAAS)  (84)
  • American Geophysical Union
  • Annual Reviews
  • Periodicals Archive Online (PAO)
  • 1990-1994  (84)
  • 1994  (56)
  • 1990  (28)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (84)
  • American Geophysical Union
  • Annual Reviews
  • Periodicals Archive Online (PAO)
Years
  • 1990-1994  (84)
Year
  • 1
    Publication Date: 1990-08-17
    Description: The transcription factor C/EBP uses a bipartite structural motif to bind DNA. Two protein chains dimerize through a set of amphipathic alpha helices termed the leucine zipper. Highly basic polypeptide regions emerge from the zipper to form a linked set of DNA contact surfaces. In the recently proposed a "scissors grip" model, the paired set of basic regions begin DNA contact at a central point and track in opposite directions along the major groove, forming a molecular clamp around DNA. This model predicts that C/EBP must undertake significant changes in protein conformation as it binds and releases DNA. The basic region of ligand-free C/EBP is highly sensitive to protease digestion. Pronounced resistance to proteolysis occurred when C/EBP associated with its specific DNA substrate. Sequencing of discrete proteolytic fragments showed that prominent sites for proteolysis occur at two junction points predicted by the "scissors grip" model. One junction corresponds to the cleft where the basic regions emerge from the leucine zipper. The other corresponds to a localized nonhelical segment that has been hypothesized to contain an N-cap and facilitate the sharp angulation necessary for the basic region to track continuously in the major groove of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuman, J D -- Vinson, C R -- McKnight, S L -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):771-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2202050" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Chromatography, High Pressure Liquid ; DNA/*metabolism ; DNA-Binding Proteins/metabolism ; Kinetics ; Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Peptide Fragments/metabolism ; Peptide Hydrolases/*metabolism ; Protein Conformation ; Transcription Factors/*metabolism ; Trypsin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-08-24
    Description: The protein Felix was designed de novo to fold into an antiparallel four-helix bundle of specific topology. Its sequence of 79 amino acid residues is not homologous to any known protein sequence, but is "native-like" in that it is nonrepetitive and contains 19 of the 20 naturally occurring amino acids. Felix has been expressed from a synthetic gene cloned in Escherichia coli, and the protein has been purified to homogeneity. Physical characterization of the purified protein indicates that Felix (i) is monomeric in solution, (ii) is predominantly alpha-helical, (iii) contains a designed intramolecular disulfide bond linking the first and fourth helices, and (iv) buries its single tryptophan in an apolar environment and probably in close proximity with the disulfide bond. These physical properties rule out several alternative structures and indicate that Felix indeed folds into approximately the designed three-dimensional structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hecht, M H -- Richardson, J S -- Richardson, D C -- Ogden, R C -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):884-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392678" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Base Sequence ; DNA/genetics ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Denaturation ; *Proteins ; *Recombinant Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, D C -- He, X M -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):302-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, AL 35812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374930" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Models, Molecular ; Protein Conformation ; *Serum Albumin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1990-12-07
    Description: A genetic system was developed in Escherichia coli to study leucine zippers with the amino-terminal domain of bacteriophage lambda repressor as a reporter for dimerization. This system was used to analyze the importance of the amino acid side chains at eight positions that form the hydrophobic interface of the leucine zipper dimer from the yeast transcriptional activator, GCN4. When single amino acid substitutions were analyzed, most functional variants contained hydrophobic residues at the dimer interface, while most nonfunctional sequence variants contained strongly polar or helix-breaking residues. In multiple randomization experiments, however, many combinations of hydrophobic residues were found to be nonfunctional, and leucines in the heptad repeat were shown to have a special function in leucine zipper dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, J C -- O'Shea, E K -- Kim, P S -- Sauer, R T -- AI15706/AI/NIAID NIH HHS/ -- GM11117/GM/NIGMS NIH HHS/ -- GM44162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 7;250(4986):1400-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2147779" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; DNA-Binding Proteins/*genetics ; Escherichia coli/*genetics ; Fungal Proteins/*genetics ; Genetic Variation ; Leucine Zippers/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phenotype ; Protein Conformation ; *Protein Kinases ; Random Allocation ; Recombinant Fusion Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-09-28
    Description: To understand why proteins adopt particular three-dimensional structures, it is important to elucidate the hierarchy of interactions that stabilize the native state. Proteins in partly folded states can be used to dissect protein organizational hierarchies. A partly folded apomyoglobin intermediate has now been characterized structurally by trapping slowly exchanging peptide NH protons and analyzing them by two-dimensional 1H-NMR (nuclear magnetic resonance). Protons in the A, G, and H helix regions are protected from exchange, while protons in the B and E helix regions exchange freely. On the basis of these results and the three-dimensional structure of native myoglobin, a structural model is presented for the partly folded intermediate in which a compact subdomain retains structure while the remainder of the protein is essentially unfolded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughson, F M -- Wright, P E -- Baldwin, R L -- DK34909/DK/NIDDK NIH HHS/ -- GM19988/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1544-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Beckman Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apoproteins/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Myoglobin/chemistry/*metabolism ; Protein Conformation ; Spectrophotometry, Ultraviolet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is an example of a ubiquitous class of enzymes that are regulated by covalent modification. In the three-dimensional structure of the enzyme-substrate complex, isocitrate forms a hydrogen bond with Ser113, the site of regulatory phosphorylation. The structures of Asp113 and Glu113 mutants, which mimic the inactivation of the enzyme by phosphorylation, show minimal conformational changes from wild type, as in the phosphorylated enzyme. Calculations based on observed structures suggest that the change in electrostatic potential when a negative charge is introduced either by phosporylation or site-directed mutagenesis is sufficient to inactivate the enzyme. Thus, direct interaction at a ligand binding site is an alternative mechanism to induced conformational changes from an allosteric site in the regulation of protein activity by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurley, J H -- Dean, A M -- Sohl, J L -- Koshland, D E Jr -- Stroud, R M -- GM 24485/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1012-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204109" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Homeostasis ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-08-03
    Description: Comparison of the 2.4 angstrom resolution crystal structures of dimeric clam hemoglobin in the deoxygenated and carbon-monoxide liganded states shows how radically different the structural basis for cooperative oxygen binding is from that operative in mammalian hemoglobins. Heme groups are in direct communication across a novel subunit interface formed by the E and F helices. The conformational changes at this interface that accompany ligand binding are more dramatic at a tertiary level but more subtle at a quaternary level than those in mammalian hemoglobins. These findings suggest a cooperative mechanism that links ligation at one subunit with potentiation of affinity at the second subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Royer, W E Jr -- Hendrickson, W A -- Chiancone, E -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2382132" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carboxyhemoglobin/metabolism ; Hemoglobins/*metabolism ; Ligands ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mollusca ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-07-20
    Description: The crystallographic structure of a recombinant hirudin-thrombin complex has been solved at 2.3 angstrom (A) resolution. Hirudin consists of an NH2-terminal globular domain and a long (39 A) COOH-terminal extended domain. Residues Ile1 to Tyr3 of hirudin form a parallel beta-strand with Ser214 to Glu217 of thrombin with the nitrogen atom of Ile1 making a hydrogen bond with Ser195 O gamma atom of the catalytic site, but the specificity pocket of thrombin is not involved in the interaction. The COOH-terminal segment makes numerous electrostatic interactions with an anion-binding exosite of thrombin, whereas the last five residues are in a helical loop that forms many hydrophobic contacts. In all, 27 of the 65 residues of hirudin have contacts less than 4.0 A with thrombin (10 ion pairs and 23 hydrogen bonds). Such abundant interactions may account for the high affinity and specificity of hirudin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rydel, T J -- Ravichandran, K G -- Tulinsky, A -- Bode, W -- Huber, R -- Roitsch, C -- Fenton, J W 2nd -- HL13160/HL/NHLBI NIH HHS/ -- HL43229/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):277-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Michigan State University, East Lansing 48824.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374926" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Hirudins/*metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Recombinant Proteins/metabolism ; Thrombin/*metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-10
    Description: A metalloantibody has been constructed with a coordination site for metals in the antigen binding pocket. The Zn(II) binding site from carbonic anhydrase B was used as a model. Three histidine residues have been placed in the light chain complementarity determining regions of a single chain antibody molecule. In contrast to the native protein, the mutant displayed metal-dependent fluorescence-quenching behavior. This response was interpreted as evidence for metal binding in the three-histidine site with relative affinities in the order Cu(II) greater than Zn(II) greater than Cd(II). The presence of metal cofactors in immunoglobulins should facilitate antibody catalysis of redox and hydrolytic reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iverson, B L -- Iverson, S A -- Roberts, V A -- Getzoff, E D -- Tainer, J A -- Benkovic, S J -- Lerner, R A -- F32GM-1204702/GM/NIGMS NIH HHS/ -- IGM 37684/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):659-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2116666" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Binding Sites, Antibody ; Cadmium ; Carbonic Anhydrases/*immunology ; Copper ; Fluoresceins ; Immunoglobulin Heavy Chains ; Immunoglobulin Light Chains ; Ligands ; *Metals ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Spectrometry, Fluorescence ; Zinc
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alper, J -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):804-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2154848" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/drug therapy ; *Antiviral Agents/therapeutic use ; Capsid/ultrastructure ; Common Cold/*drug therapy ; Drug Design ; Humans ; Models, Molecular ; Protein Conformation ; Rhinovirus/ultrastructure ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1990-08-13
    Description: The three-dimensional structure of charybdotoxin, a high-affinity peptide blocker of several potassium ion channels, was determined by two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. Unambiguous NMR assignments of backbone and side chain hydrogens were made for all 37 amino acids. The structure was determined by distance geometry and refined by nuclear Overhauser and exchange spectroscopy back calculation. The peptide is built on a foundation of three antiparallel beta strands to which other parts of the sequence are attached by three disulfide bridges. The overall shape is roughly ellipsoidal, with axes of approximately 2.5 and 1.5 nanometers. Nine of the ten charged groups are located on one side of the ellipsoid, with seven of the eight positive residues lying in a stripe 2.5 nanometers in length. The other side displays three hydrophobic residues projecting prominently into aqueous solution. The structure rationalizes several mechanistic features of charybdotoxin block of the high-conductance Ca2(+)-activated K+ channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Massefski, W Jr -- Redfield, A G -- Hare, D R -- Miller, C -- GM-20168/GM/NIGMS NIH HHS/ -- GM-31768/GM/NIGMS NIH HHS/ -- RR0031/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):521-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Charybdotoxin ; Disulfides/analysis ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Potassium Channels/drug effects ; Protein Conformation ; *Scorpion Venoms/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1990-12-21
    Description: Human growth hormone (hGH) elicits a diverse set of biological activities including lactation that derives from binding to the prolactin (PRL) receptor. The binding affinity of hGH for the extracellular binding domain of the hPRL receptor (hPRLbp) was increased about 8000-fold by addition of 50 micromolar ZnCl2. Zinc was not required for binding of hGH to the hGH binding protein (hGHbp) or for binding of hPRL to the hPRLbp. Other divalent metal ions (Ca2+, Mg2+, Cu2+, Mn2+, and Co2+) at physiological concentrations did not support such strong binding. Scatchard analysis indicated a stoichiometry of one Zn2+ per hGH.hPRLbp complex. Mutational analysis showed that a cluster of three residues (His18, His21, and Glu174) in hGH and His188 from the hPRLbp (conserved in all PRL receptors but not GH receptors) are probable Zn2+ ligands. This polypeptide hormone.receptor "zinc sandwich" provides a molecular mechanism to explain why nonprimate GHs are not lactogenic and offers a molecular link between zinc deficiency and its association with altered functions of hGH.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Bass, S -- Fuh, G -- Wells, J A -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chlorides/*pharmacology ; Growth Hormone/*metabolism ; Humans ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligonucleotide Probes ; Plasmids ; Protein Conformation ; Receptors, Prolactin/drug effects/genetics/*metabolism ; Restriction Mapping ; Zinc/metabolism/*pharmacology ; *Zinc Compounds
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1990-10-05
    Description: Rhodopsin is a member of a family of receptors that contain seven transmembrane helices and are coupled to G proteins. The nature of the interactions between rhodopsin mutants and the G protein, transduction (Gt), was investigated by flash photolysis in order to monitor directly Gt binding and dissociation. Three mutant opsins with alterations in their cytoplasmic loops bound 11-cis-retinal to yield pigments with native rhodopsin absorption spectra, but they failed to stimulate the guanosine triphosphatase activity of Gt. The opsin mutations included reversal of a charged pair conserved in all G protein-coupled receptors at the cytoplasmic border of the third transmembrane helix (mutant CD1), replacement of 13 amino acids in the second cytoplasmic loop (mutant CD2), and deletion of 13 amino acids from the third cytoplasmic loop (mutant EF1). Whereas mutant CD1 failed to bind Gt, mutants CD2 and EF1 showed normal Gt binding but failed to release Gt in the presence of guanosine triphosphate. Therefore, it appears that at least the second and third cytoplasmic loops of rhodopsin are required for activation of bound Gt.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franke, R R -- Konig, B -- Sakmar, T P -- Khorana, H G -- Hofmann, K P -- New York, N.Y. -- Science. 1990 Oct 5;250(4977):123-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2218504" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism ; Chromosome Deletion ; Micelles ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Photolysis ; Protein Binding ; Protein Conformation ; Rhodopsin/genetics/*metabolism ; Transducin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1990-12-14
    Description: A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzyme's structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3443688/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, D L -- White, S P -- Otwinowski, Z -- Yuan, W -- Gelb, M H -- Sigler, P B -- GM22324/GM/NIGMS NIH HHS/ -- HL36235/HL/NHLBI NIH HHS/ -- R01 HL036235/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 14;250(4987):1541-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2274785" target="_blank"〉PubMed〈/a〉
    Keywords: Bee Venoms/analysis ; Binding Sites ; Calcium/metabolism ; Catalysis ; Chemistry, Physical ; Cobra Venoms/analysis ; Models, Molecular ; Molecular Structure ; Organophosphonates/metabolism ; Phospholipases A/chemistry/*metabolism ; Phospholipases A2 ; Phospholipids/metabolism ; Physicochemical Phenomena ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1990-03-16
    Description: An amino acid sequence encodes a message that determines the shape and function of a protein. This message is highly degenerate in that many different sequences can code for proteins with essentially the same structure and activity. Comparison of different sequences with similar messages can reveal key features of the code and improve understanding of how a protein folds and how it performs its function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, J U -- Reidhaar-Olson, J F -- Lim, W A -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315699" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Computer Graphics ; *DNA-Binding Proteins ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Proteins/*physiology/ultrastructure ; Repressor Proteins ; Structure-Activity Relationship ; Surface Properties ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1990-12-21
    Description: lambda Cro is a dimeric DNA binding protein. Random mutagenesis and a selection for Cro activity have been used to identify the contacts between Cro subunits that are crucial for maintenance of a stably folded structure. To obtain equivalent contacts in a monomeric system, a Cro variant was designed and constructed in which the antiparallel beta-ribbon that forms the dimer interface was replaced by a beta-hairpin. The engineered monomer has a folded structure similar to wild type, is significantly more stable than wild type, and exhibits novel half-operator binding activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mossing, M C -- Sauer, R T -- AI-16982/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2148648" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriophage lambda/*genetics ; Circular Dichroism ; *DNA-Binding Proteins ; Escherichia coli/genetics ; *Genetic Variation ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Repressor Proteins/*genetics/metabolism ; Thermodynamics ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1990-07-13
    Description: The three-dimensional structure of the DNA-binding domain (DBD) of the glucocorticoid receptor has been determined by nuclear magnetic resonance spectroscopy and distance geometry. The structure of a 71-residue protein fragment containing two "zinc finger" domains is based on a large set of proton-proton distances derived from nuclear Overhauser enhancement spectra, hydrogen bonds in previously identified secondary structure elements, and coordination of two zinc atoms by conserved cysteine residues. The DBD is found to consist of a globular body from which the finger regions extend. A model of the dimeric complex between the DBD and the glucocorticoid response element is proposed. The model is consistent with previous results indicating that specific amino acid residues of the DBD are involved in protein-DNA and protein-protein interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hard, T -- Kellenbach, E -- Boelens, R -- Maler, B A -- Dahlman, K -- Freedman, L P -- Carlstedt-Duke, J -- Yamamoto, K R -- Gustafsson, J A -- Kaptein, R -- New York, N.Y. -- Science. 1990 Jul 13;249(4965):157-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2115209" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA/*metabolism ; DNA-Binding Proteins/analysis/*metabolism ; Humans ; Magnetic Resonance Spectroscopy ; Metalloproteins/analysis ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/analysis/metabolism ; Protein Conformation ; Rats ; Receptors, Glucocorticoid/*analysis/metabolism ; Regulatory Sequences, Nucleic Acid ; Zinc/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1657-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2270477" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Viral/immunology ; Histocompatibility Antigens Class I/genetics/*immunology ; Humans ; *Immunity, Cellular ; *Major Histocompatibility Complex ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1990-09-07
    Description: A protein crystal structure is usually described by one single structure, which largely omits the dynamical behavior of the molecule. A molecular dynamics method with a time-averaged crystallographic restraint was used to overcome this limitation. This method yields an ensemble of structures in which all possible thermal motions are allowed, that is, in additional to isotropic distributions, anisotropic and anharmonic positional distributions occur as well. In the case of bovine pancreatic phospholipase A2, this description markedly improves agreement with the observed x-ray diffraction data compared to the results of the classical one-model structure description. Time-averaged crystallographically restrained molecular dynamics reveals large mobilities in the loops involved in lipid bilayer association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, P -- van Gunsteren, W F -- Hol, W G -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BIOSON Research Institute, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2396108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Crystallography ; Hot Temperature ; Models, Molecular ; Motion ; *Phospholipases ; *Phospholipases A ; Phospholipases A2 ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1990-07-20
    Description: The 70-residue carboxyl-terminal domain of the muscle contractile protein troponin-C contains two helix-loop-helix calcium (Ca)-binding sites that are related to each other by approximate twofold rotational symmetry. Hydrophobic residues from the helices and a short three residue beta sheet at the interface of the two sites act to stabilize the protein domain in the presence of Ca. A synthetic 34-residue peptide representing one of these sites (site III) has been synthesized and studied by H-1 nuclear magnetic resonance (NMR) spectroscopy. In solution this peptide undergoes a Ca-induced conformational change to form the helix-loop-helix Ca-binding motif. Two-dimensional nuclear Overhauser effect spectra have provided evidence for the formation of a beta sheet and interactions between several hydrophobic residues from opposing helices as found in troponin-C. It is proposed that a symmetric two-site dimer similar in tertiary structure to the carboxyl-terminal domain of troponin-C forms from the assembly of two site III peptides in the Ca-bound form.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, G S -- Hodges, R S -- Sykes, B D -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):280-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374927" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/*metabolism/pharmacology ; Hydrogen ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemical synthesis/*metabolism ; Protein Conformation ; Troponin/chemical synthesis/*metabolism ; Troponin C ; Turkeys
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1990-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Y C -- Grable, J C -- Love, R -- Greene, P J -- Rosenberg, J M -- GM25671/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1307-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2399465" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Graphics ; Crystallization ; DNA-Binding Proteins ; *Deoxyribonuclease EcoRI ; Methods ; Models, Molecular ; Molecular Sequence Data ; Oligonucleotides ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1990-02-23
    Description: Ras proteins participate as a molecular switch in the early steps of the signal transduction pathway that is associated with cell growth and differentiation. When the protein is in its GTP complexed form it is active in signal transduction, whereas it is inactive in its GDP complexed form. A comparison of eight three-dimensional structures of ras proteins in four different crystal lattices, five with a nonhydrolyzable GTP analog and three with GDP, reveals that the "on" and "off" states of the switch are distinguished by conformational differences that span a length of more than 40 A, and are induced by the gamma-phosphate. The most significant differences are localized in two regions: residues 30 to 38 (the switch I region) in the second loop and residues 60 to 76 (the switch II region) consisting of the fourth loop and the short alpha-helix that follows the loop. Both regions are highly exposed and form a continuous strip on the molecular surface most likely to be the recognition sites for the effector and receptor molecule(or molecules). The conformational differences also provide a structural basis for understanding the biological and biochemical changes of the proteins due to oncogenic mutations, autophosphorylation, and GTP hydrolysis, and for understanding the interactions with other proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Tong, L -- deVos, A M -- Brunger, A -- Yamaizumi, Z -- Nishimura, S -- Kim, S H -- CA45593/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):939-45.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2406906" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Models, Molecular ; Molecular Structure ; Protein Conformation ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins p21(ras) ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1990-09-21
    Description: Ribonuclease H digests the RNA strand of duplex RNA.DNA hybrids into oligonucleotides. This activity is indispensable for retroviral infection and is involved in bacterial replication. The ribonuclease H from Escherichia coli is homologous with the retroviral proteins. The crystal structure of the E. coli enzyme reveals a distinctive alpha-beta tertiary fold. Analysis of the molecular model implicates a carboxyl triad in the catalytic mechanism and suggests a likely mode for the binding of RNA.DNA substrates. The structure was determined by the method of multiwavelength anomalous diffraction (MAD) with the use of synchrotron data from a crystal of the recombinant selenomethionyl protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, W -- Hendrickson, W A -- Crouch, R J -- Satow, Y -- GM 34102/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1398-405.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2169648" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; *Endoribonucleases/genetics ; Escherichia coli/enzymology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Recombinant Proteins ; Ribonuclease H ; *Selenium ; *Selenomethionine ; Sequence Homology, Nucleic Acid ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1990-08-31
    Description: The isocitrate dehydrogenase of Escherichia coli is regulated by covalent modification at the active site rather than, as expected, at an allosteric site. As a means of evaluating the mechanism of regulation, the kinetics of the substrate, 2R,3S-isocitrate, and a substrate analog, 2R-malate, were compared for the native, phosphorylated, and mutant enzymes. Phosphorylation decreases activity by more than a factor of 10(6) for the true substrate, but causes minor changes in the activity of the substrate analog. The kinetic results indicate that electrostatic repulsion and steric hindrance between the phosphoryl moiety and the gamma carboxyl group of 2R,3S-isocitrate are the major causes of the inactivation, with a lesser contribution from the loss of a hydrogen bond.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dean, A M -- Koshland, D E Jr -- New York, N.Y. -- Science. 1990 Aug 31;249(4972):1044-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2204110" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Isocitrate Dehydrogenase/genetics/*metabolism ; Models, Molecular ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1990-08-03
    Description: A two-fold (C2) symmetric inhibitor of the protease of human immunodeficiency virus type-1 (HIV-1) has been designed on the basis of the three-dimensional symmetry of the enzyme active site. The symmetric molecule inhibited both protease activity and acute HIV-1 infection in vitro, was at least 10,000-fold more potent against HIV-1 protease than against related enzymes, and appeared to be stable to degradative enzymes. The 2.8 angstrom crystal structure of the inhibitor-enzyme complex demonstrated that the inhibitor binds to the enzyme in a highly symmetric fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erickson, J -- Neidhart, D J -- VanDrie, J -- Kempf, D J -- Wang, X C -- Norbeck, D W -- Plattner, J J -- Rittenhouse, J W -- Turon, M -- Wideburg, N -- AI 27220/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):527-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer-Assisted Molecular Design, Abbott Laboratories, Abbott Park, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2200122" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Drug Design ; Endopeptidases/*metabolism ; Gene Products, pol/*metabolism ; HIV Protease ; HIV-1/*enzymology ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Protease Inhibitors/*pharmacology ; Protein Conformation ; Sugar Alcohols/*pharmacology ; Valine/*analogs & derivatives/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1990-10-19
    Description: U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fabrizio, P -- Abelson, J -- GM 32637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 19;250(4979):404-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Division of Biology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2145630" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Nucleus/*metabolism ; Introns ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA Precursors/*genetics ; *RNA Splicing ; RNA, Small Nuclear/*genetics/metabolism ; Ribonucleoproteins/metabolism ; Ribonucleoproteins, Small Nuclear ; Saccharomyces cerevisiae/genetics ; Schizosaccharomyces/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1990-09-21
    Description: Triosephosphate isomerase (TIM) is used as a model system for the study of how a localized conformational change in a protein structure is produced and related to enzyme reactivity. An 11-residue loop region moves more than 7 angstroms and closes over the active site when substrate binds. The loop acts like a "lid" in that it moves rigidly and is attached by two hinges to the remainder of the protein. The nature of the motion appears to be built into the loop by conserved residues; the hinge regions, in contrast, are not conserved. Results of molecular dynamics calculations confirm the structural analysis and suggest a possible ligand-induced mechanism for loop closure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joseph, D -- Petsko, G A -- Karplus, M -- New York, N.Y. -- Science. 1990 Sep 21;249(4975):1425-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2402636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbohydrate Epimerases/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; *Protein Conformation ; Software ; Triose-Phosphate Isomerase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1994-06-24
    Description: Two ternary complexes of rat DNA polymerase beta (pol beta), a DNA template-primer, and dideoxycytidine triphosphate (ddCTP) have been determined at 2.9 A and 3.6 A resolution, respectively. ddCTP is the triphosphate of dideoxycytidine (ddC), a nucleoside analog that targets the reverse transcriptase of human immunodeficiency virus (HIV) and is at present used to treat AIDS. Although crystals of the two complexes belong to different space groups, the structures are similar, suggesting that the polymerase-DNA-ddCTP interactions are not affected by crystal packing forces. In the pol beta active site, the attacking 3'-OH of the elongating primer, the ddCTP phosphates, and two Mg2+ ions are all clustered around Asp190, Asp192, and Asp256. Two of these residues, Asp190 and Asp256, are present in the amino acid sequences of all polymerases so far studied and are also spatially similar in the four polymerases--the Klenow fragment of Escherichia coli DNA polymerase I, HIV-1 reverse transcriptase, T7 RNA polymerase, and rat DNA pol beta--whose crystal structures are now known. A two-metal ion mechanism is described for the nucleotidyl transfer reaction and may apply to all polymerases. In the ternary complex structures analyzed, pol beta binds to the DNA template-primer in a different manner from that recently proposed for other polymerase-DNA models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, H -- Sawaya, M R -- Kumar, A -- Wilson, S H -- Kraut, J -- CA17374/CA/NCI NIH HHS/ -- ES06839/ES/NIEHS NIH HHS/ -- GM10928/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1891-903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego 92093-0317.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7516580" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA Polymerase I/*chemistry/metabolism ; DNA Primers/*chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxycytosine Nucleotides/*chemistry/metabolism ; Dideoxynucleotides ; HIV Reverse Transcriptase ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; RNA-Directed DNA Polymerase/chemistry/metabolism ; Rats ; Recombinant Proteins ; Templates, Genetic ; Thymine Nucleotides/chemistry/metabolism ; Viral Proteins ; Zidovudine/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1994-04-01
    Description: The crystal structure of a ternary protein complex has been determined at 2.4 angstrom resolution. The complex is composed of three electron transfer proteins from Paracoccus denitrificans, the quinoprotein methylamine dehydrogenase, the blue copper protein amicyanin, and the cytochrome c551i. The central region of the c551i is folded similarly to several small bacterial c-type cytochromes; there is a 45-residue extension at the amino terminus and a 25-residue extension at the carboxyl terminus. The methylamine dehydrogenase-amicyanin interface is largely hydrophobic, whereas the amicyanin-cytochrome interface is more polar, with several charged groups present on each surface. Analysis of the simplest electron transfer pathways between the redox partners points out the importance of other factors such as energetics in determining the electron transfer rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, L -- Durley, R C -- Mathews, F S -- Davidson, V L -- GM41574/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):86-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8140419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Computer Graphics ; Cytochrome c Group/*chemistry/metabolism ; Electron Transport ; Hydrogen Bonding ; *Indolequinones ; Models, Molecular ; Oxidation-Reduction ; Oxidoreductases Acting on CH-NH Group Donors/*chemistry/metabolism ; Paracoccus denitrificans/*chemistry/enzymology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Quinones/chemistry/metabolism ; Software ; Tryptophan/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1994-02-04
    Description: The three-dimensional structure of a catalytic antibody (1F7) with chorismate mutase activity has been determined to 3.0 A resolution as a complex with a transition state analog. The structural data suggest that the antibody stabilizes the same conformationally restricted pericyclic transition state as occurs in the uncatalyzed reaction. Overall shape and charge complementarity between the combining site and the transition state analog dictate preferential binding of the correct substrate enantiomer in a conformation appropriate for reaction. Comparison with the structure of a chorismate mutase enzyme indicates an overall similarity between the catalytic mechanism employed by the two proteins. Differences in the number of specific interactions available for restricting the rotational degrees of freedom in the transition state, and the lack of multiple electrostatic interactions that might stabilize charge separation in this highly polarized metastable species, are likely to account for the observed 10(4) times lower activity of the antibody relative to that of the natural enzymes that catalyze this reaction. The structure of the 1F7 Fab'-hapten complex provides confirmation that the properties of an antibody catalyst faithfully reflect the design of the transition state analog.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haynes, M R -- Stura, E A -- Hilvert, D -- Wilson, I A -- AI-23498/AI/NIAID NIH HHS/ -- GM-38273/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):646-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303271" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Catalytic/*chemistry/metabolism ; Bacillus subtilis/enzymology ; Binding Sites ; Binding Sites, Antibody ; Catalysis ; Chorismate Mutase/*chemistry/metabolism ; Chorismic Acid/metabolism ; Crystallization ; Haptens ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/metabolism ; Models, Molecular ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1994-07-01
    Description: Here it is shown, with the use of protein-protein photocrosslinking, that the carboxyl-terminal region of the alpha subunit of RNA polymerase (RNAP) is in direct physical proximity to the activating region of the catabolite gene activator protein (CAP) in the ternary complex of the lac promoter, RNAP, and CAP. These results strongly support the proposal that transcription activation by CAP involves protein-protein contact between the carboxyl-terminal region of the alpha subunit and the activating region of CAP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Y -- Ebright, Y W -- Ebright, R H -- GM41376/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 1;265(5168):90-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Rutgers University, New Brunswick, NJ 08855.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8016656" target="_blank"〉PubMed〈/a〉
    Keywords: Azides/metabolism ; Cross-Linking Reagents ; Crystallography, X-Ray ; Cyclic AMP Receptor Protein/chemistry/*metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Lac Operon ; Models, Molecular ; *Promoter Regions, Genetic ; Pyridines/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1994-10-21
    Description: The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms. It contains a glutathione reductase-like flavin-binding subunit and a diheme cytochrome subunit. The diheme cytochrome folds as two domains, each resembling mitochondrial cytochrome c, and has an unusual interpropionic acid linkage joining the two heme groups in the interior of the subunit. The active site of the flavoprotein subunit contains a catalytically important disulfide bridge located above the pyrimidine portion of the flavin ring. A tryptophan, threonine, or tyrosine side chain may provide a partial conduit for electron transfer to one of the heme groups located 10 angstroms from the flavin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z W -- Koh, M -- Van Driessche, G -- Van Beeumen, J J -- Bartsch, R G -- Meyer, T E -- Cusanovich, M A -- Mathews, F S -- GM-20530/GM/NIGMS NIH HHS/ -- GM-21277/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939681" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatium/*enzymology ; Computer Graphics ; Crystallography, X-Ray ; Cytochrome c Group/*chemistry ; Electron Transport ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; Oxidoreductases/*chemistry ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-20
    Description: A predictive rule for protein folding is presented that involves two recurrent glycine-based motifs that cap the carboxyl termini of alpha helices. In proteins, helices that terminated in glycine residues were found predominantly in one of these two motifs. These glycine structures had a characteristic pattern of polar and apolar residues. Visual inspection of known helical sequences was sufficient to distinguish the two motifs from each other and from internal glycines that fail to terminate helices. These glycine motifs--in which the local sequence selects between available structures--represent an example of a stereochemical rule for protein folding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aurora, R -- Srinivasan, R -- Rose, G D -- GM 29458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 20;264(5162):1126-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178170" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Glycine/*chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oligopeptides/chemistry ; *Protein Folding ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1994-06-03
    Description: Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- Zaluzec, E J -- Wery, J P -- Niu, L -- Switzer, R L -- Zalkin, H -- Satow, Y -- DK-42303/DK/NIDDK NIH HHS/ -- GM-24658/GM/NIGMS NIH HHS/ -- R37 DK042303/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1427-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197456" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Allosteric Regulation ; Amidophosphoribosyltransferase/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Bacillus subtilis/*enzymology ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Oxygen/pharmacology ; Protein Folding ; Protein Structure, Secondary ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: Protein tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains. The crystal structure of a representative member of this family, the 37-kilodalton form (residues 1 to 321) of PTP1B, has been determined at 2.8 A resolution. The enzyme consists of a single domain with the catalytic site located at the base of a shallow cleft. The phosphate recognition site is created from a loop that is located at the amino-terminus of an alpha helix. This site is formed from an 11-residue sequence motif that is diagnostic of PTPs and the dual specificity phosphatases, and that contains the catalytically essential cysteine and arginine residues. The position of the invariant cysteine residue within the phosphate binding site is consistent with its role as a nucleophile in the catalytic reaction. The structure of PTP1B should serve as a model for other members of the PTP family and as a framework for understanding the mechanism of tyrosine dephosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barford, D -- Flint, A J -- Tonks, N K -- CA53840/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1397-404.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/*chemistry/isolation & purification/metabolism ; Substrate Specificity ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1994-03-04
    Description: The enzyme acetylcholinesterase generates a strong electrostatic field that can attract the cationic substrate acetylcholine to the active site. However, the long and narrow active site gorge seems inconsistent with the enzyme's high catalytic rate. A molecular dynamics simulation of acetylcholinesterase in water reveals the transient opening of a short channel, large enough to pass a water molecule, through a thin wall of the active site near tryptophan-84. This simulation suggests that substrate, products, or solvent could move through this "back door," in addition to the entrance revealed by the crystallographic structure. Electrostatic calculations show a strong field at the back door, oriented to attract the substrate and the reaction product choline and to repel the other reaction product, acetate. Analysis of the open back door conformation suggests a mutation that could seal the back door and thus test the hypothesis that thermal motion of this enzyme may open multiple routes of access to its active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilson, M K -- Straatsma, T P -- McCammon, J A -- Ripoll, D R -- Faerman, C H -- Axelsen, P H -- Silman, I -- Sussman, J L -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1276-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Houston, TX 77204-5641.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122110" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Acetylcholinesterase/*chemistry/metabolism ; Binding Sites ; Catalysis ; Choline/metabolism ; Computer Simulation ; Crystallography, X-Ray ; Electrochemistry ; Models, Molecular ; *Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1994-06-10
    Description: Specific protein-ligand interactions are critical for cellular function, and most proteins select their partners with sharp discrimination. However, the oligopeptide-binding protein of Salmonella typhimurium (OppA) binds peptides of two to five amino acid residues without regard to sequence. The crystal structure of OppA reveals a three-domain organization, unlike other periplasmic binding proteins. In OppA-peptide complexes, the ligands are completely enclosed in the protein interior, a mode of binding that normally imposes tight specificity. The protein fulfills the hydrogen bonding and electrostatic potential of the ligand main chain and accommodates the peptide side chains in voluminous hydrated cavities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tame, J R -- Murshudov, G N -- Dodson, E J -- Neil, T K -- Dodson, G G -- Higgins, C F -- Wilkinson, A J -- New York, N.Y. -- Science. 1994 Jun 10;264(5165):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of York, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8202710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/chemistry/*metabolism ; Binding Sites ; Carrier Proteins/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Lipoproteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Oligopeptides/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1994-09-30
    Description: Nucleotide sequence information derived from DNA segments of the human and other genomes is accumulating rapidly. However, it frequently proves difficult to use such short DNA segments to identify clones in genomic libraries or fragments in blots of the whole genome or for in situ analysis of chromosomes. Oligonucleotide probes, consisting of two target-complementary segments, connected by a linker sequence, were designed. Upon recognition of the specific nucleic acid molecule the ends of the probes were joined through the action of a ligase, creating circular DNA molecules catenated to the target sequence. These probes thus provide highly specific detection with minimal background.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nilsson, M -- Malmgren, H -- Samiotaki, M -- Kwiatkowski, M -- Chowdhary, B P -- Landegren, U -- New York, N.Y. -- Science. 1994 Sep 30;265(5181):2085-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beijer Laboratory, Department of Medical Genetics, Biomedical Center, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7522346" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cells, Cultured ; Chromosomes, Human, Pair 12 ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA/*analysis ; DNA, Circular/*analysis ; Genetic Vectors ; Humans ; In Situ Hybridization ; Lymphocytes ; Membrane Proteins/genetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Oligonucleotide Probes/chemistry ; Repetitive Sequences, Nucleic Acid ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-04
    Description: Physical inclusion of small molecules in larger structural lattices is well known in the crystalline state and is a common feature of the chemistry of zeolites. In the liquid state, a variety of synthetic macrocyclic molecules are available to complex and contain smaller guest species. An alternative strategy for binding is explored: assembly of cavity-forming structures from small subunits. Encapsulation of small guest molecules such as methane can be achieved with a synthetic structure that assembles reversibly through hydrogen bonding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Branda, N -- Wyler, R -- Rebek, J Jr -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1267-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122107" target="_blank"〉PubMed〈/a〉
    Keywords: Benzyl Compounds/chemistry ; Chemistry, Physical ; Chloroform ; Hydrogen Bonding ; Imidazoles/chemistry ; Magnetic Resonance Spectroscopy ; Methane/*chemistry ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Physicochemical Phenomena ; Polymers/*chemistry ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1994-11-04
    Description: The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Choi, K Y -- Zalkin, H -- Brennan, R G -- GM 24658/GM/NIGMS NIH HHS/ -- GM 49244/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):763-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201-3098.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hypoxanthine ; Hypoxanthines/metabolism ; Lac Repressors ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Operator Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1994-07-22
    Description: Cellulose is the major polysaccharide of plants where it plays a predominantly structural role. A variety of highly specialized microorganisms have evolved to produce enzymes that either synergistically or in complexes can carry out the complete hydrolysis of cellulose. The structure of the major cellobiohydrolase, CBHI, of the potent cellulolytic fungus Trichoderma reesei has been determined and refined to 1.8 angstrom resolution. The molecule contains a 40 angstrom long active site tunnel that may account for many of the previously poorly understood macroscopic properties of the enzyme and its interaction with solid cellulose. The active site residues were identified by solving the structure of the enzyme complexed with an oligosaccharide, o-iodobenzyl-1-thio-beta-cellobioside. The three-dimensional structure is very similar to a family of bacterial beta-glucanases with the main-chain topology of the plant legume lectins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Divne, C -- Stahlberg, J -- Reinikainen, T -- Ruohonen, L -- Pettersson, G -- Knowles, J K -- Teeri, T T -- Jones, T A -- New York, N.Y. -- Science. 1994 Jul 22;265(5171):524-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Uppsala University, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8036495" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Cellobiose/analogs & derivatives/chemistry/metabolism ; Cellulose/metabolism ; Cellulose 1,4-beta-Cellobiosidase ; Computer Graphics ; Crystallography, X-Ray ; Glycoside Hydrolases/*chemistry/metabolism ; Hydrogen Bonding ; Iodobenzenes/chemistry/metabolism ; Models, Molecular ; Protein Structure, Secondary ; Trichoderma/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1994-08-05
    Description: Peptide nucleic acids (PNA) incorporating nucleic acid bases into an achiral polyamide backbone bind to DNA in a sequence-dependent manner. The structure of a PNA-ribonucleic acid (RNA) complex was determined with nuclear magnetic resonance methods. A hexameric PNA formed a 1:1 complex with a complementary RNA that is an antiparallel, right-handed double helix with Watson-Crick base pairing similar to the "A" form structure of RNA duplexes. The achiral PNA backbone assumed a distinct conformation upon binding that differed from previously proposed models and provides a basis for further structure-based design of antisense agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, S C -- Thomson, S A -- Veal, J M -- Davis, D G -- New York, N.Y. -- Science. 1994 Aug 5;265(5173):777-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Glaxo Research Institute, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7519361" target="_blank"〉PubMed〈/a〉
    Keywords: Magnetic Resonance Spectroscopy ; Models, Molecular ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Peptides/*chemistry ; RNA/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1994-12-23
    Description: HIV integrase is the enzyme responsible for inserting the viral DNA into the host chromosome; it is essential for HIV replication. The crystal structure of the catalytically active core domain (residues 50 to 212) of HIV-1 integrase was determined at 2.5 A resolution. The central feature of the structure is a five-stranded beta sheet flanked by helical regions. The overall topology reveals that this domain of integrase belongs to a superfamily of polynucleotidyl transferases that includes ribonuclease H and the Holliday junction resolvase RuvC. The active site region is identified by the position of two of the conserved carboxylate residues essential for catalysis, which are located at similar positions in ribonuclease H. In the crystal, two molecules form a dimer with a extensive solvent-inaccessible interface of 1300 A2 per monomer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dyda, F -- Hickman, A B -- Jenkins, T M -- Engelman, A -- Craigie, R -- Davies, D R -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1981-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892-0560.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801124" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Nucleotidyltransferases/*chemistry ; HIV-1/*enzymology ; Hydrogen Bonding ; Integrases ; Models, Molecular ; Molecular Sequence Data ; Protein Folding ; Protein Structure, Secondary ; Ribonuclease H/chemistry ; Solubility ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1994-12-02
    Description: The pathway of male sexual development in mammals is initiated by SRY, a gene on the short arm of the Y chromosome. Its expression in the differentiating gonadal ridge directs testicular morphogenesis, characterized by elaboration of Mullerian inhibiting substance (MIS) and testosterone. SRY and MIS each belong to conserved gene families that function in the control of growth and differentiation. Structural and biochemical studies of the DNA binding domain of SRY (the HMG box) revealed a protein-DNA interaction consisting of partial side chain intercalation into a widened minor groove. Functional studies of SRY in a cell line from embryonic gonadal ridge demonstrated activation of a gene-regulatory pathway leading to expression of MIS. SRY molecules containing mutations associated with human sex reversal have altered structural interactions with DNA and failed to induce transcription of MIS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haqq, C M -- King, C Y -- Ukiyama, E -- Falsafi, S -- Haqq, T N -- Donahoe, P K -- Weiss, M A -- GM51558/GM/NIGMS NIH HHS/ -- HD30812/HD/NICHD NIH HHS/ -- P30HD28138/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 2;266(5190):1494-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pediatric Surgical Research Laboratory, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7985018" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Mullerian Hormone ; Base Sequence ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Female ; *Gene Expression Regulation, Developmental ; Genitalia, Male/*embryology ; *Glycoproteins ; Growth Inhibitors/biosynthesis/*genetics ; Humans ; Male ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mullerian Ducts ; *Nuclear Proteins ; Sex Differentiation/*genetics ; Sex-Determining Region Y Protein ; Testicular Hormones/biosynthesis/*genetics ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carr, C M -- Kim, P S -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):234-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939658" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism/virology ; Endocytosis ; Endosomes/virology ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*physiology ; Hydrogen-Ion Concentration ; *Membrane Fusion ; Models, Biological ; Models, Molecular ; Orthomyxoviridae/immunology/*physiology ; Protein Conformation ; Viral Envelope Proteins/chemistry/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, P H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):769-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303292" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1994-04-15
    Description: The most frequently occurring resistance of Gram-negative bacteria against tetracyclines is triggered by drug recognition of the Tet repressor. This causes dissociation of the repressor-operator DNA complex and enables expression of the resistance protein TetA, which is responsible for active efflux of tetracycline. The 2.5 angstrom resolution crystal structure of the homodimeric Tet repressor complexed with tetracycline-magnesium reveals detailed drug recognition. The orientation of the operator-binding helix-turn-helix motifs of the repressor is inverted in comparison with other DNA binding proteins. The repressor-drug complex is unable to interact with DNA because the separation of the DNA binding motifs is 5 angstroms wider than usually observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinrichs, W -- Kisker, C -- Duvel, M -- Muller, A -- Tovar, K -- Hillen, W -- Saenger, W -- New York, N.Y. -- Science. 1994 Apr 15;264(5157):418-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Kristallographie, Freie Universitat Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8153629" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; DNA, Bacterial/metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Magnesium/chemistry ; Models, Molecular ; Mutation ; Operator Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Repressor Proteins/*chemistry/genetics/metabolism ; Tetracycline/*chemistry/metabolism ; *Tetracycline Resistance/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flam, F -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1563-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128241" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Models, Molecular ; Protein Conformation ; *Protein Engineering ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1994-07-15
    Description: The three-dimensional structure of the oligomerization domain (residues 319 to 360) of the tumor suppressor p53 has been solved by multidimensional heteronuclear magnetic resonance (NMR) spectroscopy. The domain forms a 20-kilodalton symmetric tetramer with a topology made up from a dimer of dimers. The two primary dimers each comprise two antiparallel helices linked by an antiparallel beta sheet. One beta strand and one helix are contributed from each monomer. The interface between the two dimers forming the tetramer is mediated solely by helix-helix contacts. The overall result is a symmetric, four-helix bundle with adjacent helices oriented antiparallel to each other and with the two antiparallel beta sheets located on opposing faces of the molecule. The tetramer is stabilized not only by hydrophobic interactions within the protein core but also by a number of electrostatic interactions. The implications of the structure of the tetramer for the biological function of p53 are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clore, G M -- Omichinski, J G -- Sakaguchi, K -- Zambrano, N -- Sakamoto, H -- Appella, E -- Gronenborn, A M -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):386-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023159" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Graphics ; DNA/chemistry/metabolism ; Genes, p53 ; Macromolecular Substances ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Protein Conformation ; Protein Structure, Secondary ; Tumor Suppressor Protein p53/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1994-10-21
    Description: Femtosecond pump-probe experiments reveal the impulsive production of photoproduct in the primary event in vision. The retinal chromophore of rhodopsin was excited with a 35-femtosecond pulse at 500 nanometers, and transient changes in absorption were measured with 10-femtosecond probe pulses. At probe wavelengths within the photo-product absorption band, oscillatory features with a period of 550 femtoseconds (60 wavenumbers) were observed whose phase and amplitude demonstrate that they are the result of nonstationary vibrational motion in the ground state of the photoproduct. The observation of coherent vibrational motion of the photoproduct supports the idea that the primary step in vision is a vibrationally coherent process and that the high quantum yield of the cis--〉trans isomerization in rhodopsin is a consequence of the extreme speed of the excited-state torsional motion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Q -- Schoenlein, R W -- Peteanu, L A -- Mathies, R A -- Shank, C V -- EY-02051/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):422-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Materials Sciences Division, Lawrence Berkeley Laboratory, University of California, 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Fourier Analysis ; Isomerism ; *Light ; Models, Molecular ; Photic Stimulation ; Photochemistry ; Rhodopsin/analogs & derivatives/*chemistry ; Spectrum Analysis ; Vision, Ocular/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: Thermodynamic studies have demonstrated the central importance of a large negative heat capacity change (delta C degree assoc) in site-specific protein-DNA recognition. Dissection of the large negative delta C degree assoc and the entropy change of protein-ligand and protein-DNA complexation provide a thermodynamic signature identifying processes in which local folding is coupled to binding. Estimates of the number of residues that fold on binding obtained from this analysis agree with structural data. Structural comparisons indicate that these local folding transitions create key parts of the protein-DNA interface. The energetic implications of this "induced fit" model for DNA site recognition are considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spolar, R S -- Record, M T Jr -- GM23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):777-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303294" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; *Protein Folding ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1994-07-15
    Description: The tailspike protein (TSP) of Salmonella typhimurium phage P22 is a part of the apparatus by which the phage attaches to the bacterial host and hydrolyzes the O antigen. It has served as a model system for genetic and biochemical analysis of protein folding. The x-ray structure of a shortened TSP (residues 109 to 666) was determined to a 2.0 angstrom resolution. Each subunit of the homotrimer contains a large parallel beta helix. The interdigitation of the polypeptide chains at the carboxyl termini is important to protrimer formation in the folding pathway and to thermostability of the mature protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinbacher, S -- Seckler, R -- Miller, S -- Steipe, B -- Huber, R -- Reinemer, P -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biochemie, Abteilung Strukturforschung, Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023158" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacteriophage P22 ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Glycoside Hydrolases/*chemistry/genetics ; Models, Molecular ; Point Mutation ; Protein Conformation ; *Protein Folding ; Protein Structure, Secondary ; *Protein Structure, Tertiary ; Viral Proteins/*chemistry/genetics ; *Viral Tail Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-28
    Description: A four-ring tripeptide containing alternating imidazole and pyrrole carboxamides specifically binds six-base pair 5'-(A,T)GCGC(A,T)-3' sites in the minor groove of DNA. The designed peptide has a specificity completely reversed from that of the tripyrrole distamycin, which binds A,T sequences. Structural studies with nuclear magnetic resonance revealed that two peptides bound side-by-side and in an antiparallel orientation in the minor groove. Each of the four imidazoles in the 2:1 ligand-DNA complex recognized a specific guanine amino group in the GCGC core through a hydrogen bond. Targeting a designated four-base pair G.C tract by this synthetic ligand supports the generality of the 2:1 peptide-DNA motif for sequence-specific minor groove recognition of DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geierstanger, B H -- Mrksich, M -- Dervan, P B -- Wemmer, D E -- GM-27681/GM/NIGMS NIH HHS/ -- GM-43129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 28;266(5185):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939719" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Computer Graphics ; DNA/chemistry/*metabolism ; Drug Design ; Hydrogen Bonding ; Imidazoles/chemical synthesis/*chemistry/metabolism ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligopeptides/chemical synthesis/*chemistry/metabolism ; Protein Conformation ; Pyrroles/chemical synthesis/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1994-04-01
    Description: The crystal structure of a complex between a 24-amino acid peptide from the third variable (V3) loop of human immunodeficiency virus-type 1 (HIV-1) gp 120 and the Fab fragment of a broadly neutralizing antibody (59.1) was determined to 3 angstrom resolution. The tip of the V3 loop containing the Gly-Pro-Gly-Arg-Ala-Phe sequence adopts a double-turn conformation, which may be the basis of its conservation in many HIV-1 isolates. A complete map of the HIV-1 principal neutralizing determinant was constructed by stitching together structures of V3 loop peptides bound to 59.1 and to an isolate-specific (MN) neutralizing antibody (50.1). Structural conservation of the overlapping epitopes suggests that this biologically relevant conformation could be of use in the design of synthetic vaccines and drugs to inhibit HIV-1 entry and virus-related cellular fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghiara, J B -- Stura, E A -- Stanfield, R L -- Profy, A T -- Wilson, I A -- GM-46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 1;264(5155):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7511253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology ; Antigen-Antibody Complex/*chemistry/immunology ; Antigen-Antibody Reactions ; Computer Graphics ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology ; HIV-1/*chemistry/immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Peptide Fragments/*chemistry/immunology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-16
    Description: DNA is often bent when complexed with proteins. Understanding the forces responsible for DNA bending would be of fundamental value in exploring the interplay of these macromolecules. A series of experiments was devised to test the hypothesis that proteins with cationic surfaces can induce substantial DNA bending by neutralizing phosphates on one DNA face. Repulsions between phosphates in the remaining anionic helix are predicted to result in an unbalanced compression force acting to deform the DNA toward the protein. This hypothesis is supported by the results of electrophoretic experiments in which DNA spontaneously bends when one helical face is partially modified by incorporation of neutral phosphate analogs. Phasing with respect to a site of intrinsic DNA curvature (hexadeoxyadenylate tract) permits estimation of the electrostatic bend angle, and demonstrates that such modified DNAs are deformed toward the neutralized surface, as predicted. Similar model systems may be useful in exploring the extent to which phosphate neutralization can account for DNA bending by particular proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strauss, J K -- Maher, L J 3rd -- GM47814/GM/NIGMS NIH HHS/ -- P30 CA36727-08/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1829-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-6805.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997878" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cations/chemistry ; DNA/*chemistry ; DNA-Binding Proteins/chemistry ; Electrochemistry ; Electrophoresis, Polyacrylamide Gel ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Nucleosomes/chemistry ; Oligodeoxyribonucleotides ; Organophosphorus Compounds/chemistry ; Phosphates/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1994-08-19
    Description: The three-dimensional structure of an unusually active hydrolytic antibody with a phosphonate transition state analog (hapten) bound to the active site has been solved to 2.5 A resolution. The antibody (17E8) catalyzes the hydrolysis of norleucine and methionine phenyl esters and is selective for amino acid esters that have the natural alpha-carbon L configuration. A plot of the pH-dependence of the antibody-catalyzed reaction is bell-shaped with an activity maximum at pH 9.5; experiments on mechanism lend support to the formation of a covalent acyl-antibody intermediate. The structural and kinetic data are complementary and support a hydrolytic mechanism for the antibody that is remarkably similar to that of the serine proteases. The antibody active site contains a Ser-His dyad structure proximal to the phosphorous atom of the bound hapten that resembles two of the three components of the Ser-His-Asp catalytic triad of serine proteases. The antibody active site also contains a Lys residue to stabilize oxyanion formation, and a hydrophobic binding pocket for specific substrate recognition of norleucine and methionine side chains. The structure identifies active site residues that mediate catalysis and suggests specific mutations that may improve the catalytic efficiency of the antibody. This high resolution structure of a catalytic antibody-hapten complex shows that antibodies can converge on active site structures that have arisen through natural enzyme evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, G W -- Guo, J -- Huang, W -- Fletterick, R J -- Scanlan, T S -- DK39304/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1059-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066444" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Catalytic/*chemistry/immunology/metabolism ; Binding Sites ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Haptens/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Serine Endopeptidases/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1994-01-21
    Description: Collagenase is a zinc-dependent endoproteinase and is a member of the matrix metalloproteinase (MMP) family of enzymes. The MMPs participate in connective tissue remodeling events and aberrant regulation has been associated with several pathologies. The 2.4 angstrom resolution structure of the inhibited enzyme revealed that, in addition to the catalytic zinc, there is a second zinc ion and a calcium ion which play a major role in stabilizing the tertiary structure of collagenase. Despite scant sequence homology, collagenase shares structural homology with two other endoproteinases, bacterial thermolysin and crayfish astacin. The detailed description of protein-inhibitor interactions present in the structure will aid in the design of compounds that selectively inhibit individual members of the MMP family. Such inhibitors will be useful in examining the function of MMPs in pathological processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lovejoy, B -- Cleasby, A -- Hassell, A M -- Longley, K -- Luther, M A -- Weigl, D -- McGeehan, G -- McElroy, A B -- Drewry, D -- Lambert, M H -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):375-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Glaxo Research Institute, Research Triangle Park, NC 27709.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278810" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/metabolism ; Collagenases/*chemistry/metabolism ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Matrix Metalloproteinase 8 ; Matrix Metalloproteinase Inhibitors ; Metalloendopeptidases/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermolysin/chemistry ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubes, G -- New York, N.Y. -- Science. 1994 Aug 12;265(5174):884-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8052844" target="_blank"〉PubMed〈/a〉
    Keywords: Computer Graphics ; *Computer Simulation ; Drug Design ; Models, Molecular ; User-Computer Interface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1994-12-23
    Description: A synthetic combinatorial library containing 52,128,400 D-amino acid hexapeptides was used to identify a ligand for the mu opioid receptor. The peptide, Ac-rfwink-NH2, bears no resemblance to any known opioid peptide. Simulations using molecular dynamics, however, showed that three amino acid moieties have the same spatial orientation as the corresponding pharmacophoric groups of the opioid peptide PLO17. Ac-rfwink-NH2 was shown to be a potent agonist at the mu receptor and induced long-lasting analgesia in mice. Analgesia produced by intraperitoneally administered Ac-rfwink-NH2 was blocked by intracerebroventricular administration of naloxone, demonstrating that this peptide may cross the blood-brain barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dooley, C T -- Chung, N N -- Wilkes, B C -- Schiller, P W -- Bidlack, J M -- Pasternak, G W -- Houghten, R A -- DA-000138/DA/NIDA NIH HHS/ -- DA-02615/DA/NIDA NIH HHS/ -- DA-03742/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2019-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Torrey Pines Institute for Molecular Studies, San Diego, CA 92121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801131" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Analgesics/chemistry/metabolism/*pharmacology ; Animals ; Brain/metabolism ; Dose-Response Relationship, Drug ; Endorphins/pharmacology ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)- ; Enkephalin, D-Penicillamine (2,5)- ; Enkephalins/metabolism ; Guinea Pigs ; Injections, Intraventricular ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Naloxone/administration & dosage/pharmacology ; Opioid Peptides/chemistry/metabolism/*pharmacology ; Pain Measurement ; Protein Conformation ; Rats ; Receptors, Opioid, mu/agonists/metabolism ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1994-12-09
    Description: The crystal structure of a 27-kilodalton methylcobalamin-containing fragment of methionine synthase from Escherichia coli was determined at 3.0 A resolution. This structure depicts cobalamin-protein interactions and reveals that the corrin macrocycle lies between a helical amino-terminal domain and an alpha/beta carboxyl-terminal domain that is a variant of the Rossmann fold. Methylcobalamin undergoes a conformational change on binding the protein; the dimethylbenzimidazole group, which is coordinated to the cobalt in the free cofactor, moves away from the corrin and is replaced by a histidine contributed by the protein. The sequence Asp-X-His-X-X-Gly, which contains this histidine ligand, is conserved in the adenosylcobalamin-dependent enzymes methylmalonyl-coenzyme A mutase and glutamate mutase, suggesting that displacement of the dimethylbenzimidazole will be a feature common to many cobalamin-binding proteins. Thus the cobalt ligand, His759, and the neighboring residues Asp757 and Ser810, may form a catalytic quartet, Co-His-Asp-Ser, that modulates the reactivity of the B12 prosthetic group in methionine synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drennan, C L -- Huang, S -- Drummond, J T -- Matthews, R G -- Lidwig, M L -- GM08570/GM/NIGMS NIH HHS/ -- GM16429/GM/NIGMS NIH HHS/ -- GM24908/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1669-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992050" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/*chemistry/metabolism ; Amino Acid Isomerases/chemistry ; Amino Acid Sequence ; Benzimidazoles ; Catalysis ; Computer Graphics ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/*enzymology ; Histidine/metabolism ; *Intramolecular Transferases ; Ligands ; Methylation ; Methylmalonyl-CoA Mutase/chemistry ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Vitamin B 12/*analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1946.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801119" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/pharmacology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Nucleotidyltransferases/antagonists & inhibitors/*chemistry/metabolism ; DNA-Binding Proteins/metabolism ; Drug Design ; HIV-1/drug effects/*enzymology ; Integrases ; Models, Molecular ; Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1994-10-21
    Description: The molecular structure of the D-alanine:D-alanine ligase of the ddlB gene of Escherichia coli, co-crystallized with an S,R-methylphosphinate and adenosine triphosphate, was determined by x-ray diffraction to a resolution of 2.3 angstroms. A catalytic mechanism for the ligation of two D-alanine substrates is proposed in which a helix dipole and a hydrogen-bonded triad of tyrosine, serine, and glutamic acid assist binding and deprotonation steps. From sequence comparison, it is proposed that a different triad exists in a recently discovered D-alanine:D-lactate ligase (VanA) present in vancomycin-resistant enterococci. A molecular mechanism for the altered specificity of VanA is suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fan, C -- Moews, P C -- Walsh, C T -- Knox, J R -- 1RO1-AI-34330/AI/NIAID NIH HHS/ -- GM-49338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 21;266(5184):439-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939684" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Amino Acid Sequence ; Bacterial Proteins/chemistry ; Binding Sites ; *Carbon-Oxygen Ligases ; Computer Graphics ; Crystallography, X-Ray ; Dipeptides/biosynthesis ; Drug Resistance, Microbial ; Escherichia coli/drug effects/*enzymology ; Hydrogen Bonding ; Ligases/chemistry ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Peptide Synthases/*chemistry/genetics/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Substrate Specificity ; Vancomycin/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1994-01-21
    Description: The structure of the 52-amino acid DNA-binding domain of the prokaryotic Hin recombinase, complexed with a DNA recombination half-site, has been solved by x-ray crystallography at 2.3 angstrom resolution. The Hin domain consists of a three-alpha-helix bundle, with the carboxyl-terminal helix inserted into the major groove of DNA, and two flanking extended polypeptide chains that contact bases in the minor groove. The overall structure displays features resembling both a prototypical bacterial helix-turn-helix and the eukaryotic homeodomain, and in many respects is an intermediate between these two DNA-binding motifs. In addition, a new structural motif is seen: the six-amino acid carboxyl-terminal peptide of the Hin domain runs along the minor groove at the edge of the recombination site, with the peptide backbone facing the floor of the groove and side chains extending away toward the exterior. The x-ray structure provides an almost complete explanation for DNA mutant binding studies in the Hin system and for DNA specificity observed in the Hin-related family of DNA invertases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, J A -- Johnson, R C -- Dickerson, R E -- GM-31299/GM/NIGMS NIH HHS/ -- GM-38509/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):348-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278807" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Nucleotidyltransferases/chemistry/*metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1994-12-16
    Description: The three-dimensional structure of a Staphylococcus aureus superantigen, toxic shock syndrome toxin-1 (TSST-1), complexed with a human class II major histocompatibility molecule (DR1), was determined by x-ray crystallography. The TSST-1 binding site on DR1 overlaps that of the superantigen S. aureus enterotoxin B (SEB), but the two binding modes differ. Whereas SEB binds primarily off one edge of the peptide binding site of DR1, TSST-1 extends over almost one-half of the binding site and contacts both the flanking alpha helices of the histocompatibility antigen and the bound peptide. This difference suggests that the T cell receptor (TCR) would bind to TSST-1:DR1 very differently than to DR1:peptide or SEB:DR1. It also suggests that TSST-1 binding may be dependent on the peptide, though less so than TCR binding, providing a possible explanation for the inability of TSST-1 to competitively block SEB binding to all DR1 molecules on cells (even though the binding sites of TSST-1 and SEB on DR1 overlap almost completely) and suggesting the possibility that T cell activation by superantigen could be directed by peptide antigen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, J -- Urban, R G -- Strominger, J L -- Wiley, D C -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997880" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Toxins ; Binding Sites ; Crystallography, X-Ray ; Enterotoxins/*chemistry/metabolism ; HLA-DR1 Antigen/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; *Staphylococcus aureus ; Superantigens/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1994-07-15
    Description: Mutations in the p53 tumor suppressor are the most frequently observed genetic alterations in human cancer. The majority of the mutations occur in the core domain which contains the sequence-specific DNA binding activity of the p53 protein (residues 102-292), and they result in loss of DNA binding. The crystal structure of a complex containing the core domain of human p53 and a DNA binding site has been determined at 2.2 angstroms resolution and refined to a crystallographic R factor of 20.5 percent. The core domain structure consists of a beta sandwich that serves as a scaffold for two large loops and a loop-sheet-helix motif. The two loops, which are held together in part by a tetrahedrally coordinated zinc atom, and the loop-sheet-helix motif form the DNA binding surface of p53. Residues from the loop-sheet-helix motif interact in the major groove of the DNA, while an arginine from one of the two large loops interacts in the minor groove. The loops and the loop-sheet-helix motif consist of the conserved regions of the core domain and contain the majority of the p53 mutations identified in tumors. The structure supports the hypothesis that DNA binding is critical for the biological activity of p53, and provides a framework for understanding how mutations inactivate it.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cho, Y -- Gorina, S -- Jeffrey, P D -- Pavletich, N P -- NCI CA08748-29/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):346-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023157" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; Genes, p53 ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; *Mutation ; Nucleic Acid Conformation ; *Protein Conformation ; Protein Structure, Secondary ; Tumor Suppressor Protein p53/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1994-09-02
    Description: A family of uniform periodic polypeptides has been prepared by bacterial expression of the corresponding artificial genes, with the objective of exploring the potential for control of supramolecular organization in genetically engineered protein-based polymeric materials. The repeating units of the polypeptides consist of oligomeric alanyl-glycine sequences interspersed with glutamic acid residues inserted at intervals of 8 to 14 amino acids. Crystallization of such materials from formic acid produces beta-sheet structures in the solid state, as shown by vibrational spectroscopy, nuclear magnetic resonance spectroscopy, and wide-angle x-ray diffraction. The diffraction results, together with observations from electron microscopy, are consistent with the formation of needle-shaped lamellar crystals whose thickness is controlled by the periodicity of the primary sequence. These results can be used to control solid-state structure in macromolecular materials.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krejchi, M T -- Atkins, E D -- Waddon, A J -- Fournier, M J -- Mason, T L -- Tirrell, D A -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1427-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Polymer Science and Engineering, University of Massachusetts, Amherst 01003.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073284" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Computer Simulation ; Crystallization ; Crystallography, X-Ray ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry ; *Protein Engineering ; *Protein Structure, Secondary ; Recombinant Proteins/*chemistry/ultrastructure ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, C -- Parry, D A -- AR17346/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 28;263(5146):488-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254-9110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8290957" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; *DNA-Binding Proteins ; Fungal Proteins/chemistry ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry ; Leucine Zippers ; Models, Molecular ; Protein Kinases/chemistry ; *Protein Structure, Secondary ; *Protein Structure, Tertiary ; *Saccharomyces cerevisiae Proteins ; Spectrin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 1994-01-21
    Description: Mechanistic information and structure-based design methods have been used to design a series of nonpeptide cyclic ureas that are potent inhibitors of human immunodeficiency virus (HIV) protease and HIV replication. A fundamental feature of these inhibitors is the cyclic urea carbonyl oxygen that mimics the hydrogen-bonding features of a key structural water molecule. The success of the design in both displacing and mimicking the structural water molecule was confirmed by x-ray crystallographic studies. Highly selective, preorganized inhibitors with relatively low molecular weight and high oral bioavailability were synthesized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, P Y -- Jadhav, P K -- Eyermann, C J -- Hodge, C N -- Ru, Y -- Bacheler, L T -- Meek, J L -- Otto, M J -- Rayner, M M -- Wong, Y N -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):380-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology Research, DuPont Merck Pharmaceutical Company, Wilmington, DE 19880.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278812" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Animals ; Azepines/*chemistry/metabolism/pharmacokinetics/pharmacology ; Binding Sites ; Biological Availability ; Cell Line ; Crystallography, X-Ray ; Dogs ; *Drug Design ; Drug Evaluation, Preclinical ; HIV Protease/chemistry/metabolism ; HIV Protease Inhibitors/*chemistry/metabolism/pharmacokinetics/pharmacology ; HIV-1/drug effects/physiology ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Molecular Weight ; Rats ; Recombinant Proteins/chemistry/metabolism ; Urea ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1994-10-07
    Description: Bacteriorhodopsin was selectively spin labeled at residues 72, 101, or 105 after replacement of the native amino acids by cysteine. Only the electron paramagnetic resonance spectrum of the label at 101 was time-dependent during the photocycle. The spectral change rose with the decay of the M intermediate and fell with recovery of the ground state. The transient signal is interpreted as the result of movement in the C-D or E-F interhelical loop, or in both, coincident with protonation changes at the key aspartate 96 residue. These results link the optically characterized intermediates with localized conformational changes in bacteriorhodopsin during the photocycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steinhoff, H J -- Mollaaghababa, R -- Altenbach, C -- Hideg, K -- Krebs, M -- Khorana, H G -- Hubbell, W L -- EY05216/EY/NEI NIH HHS/ -- GM28289/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):105-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Biophysik, Ruhr-Universitat Bochum, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939627" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriorhodopsins/*chemistry/genetics ; Electron Spin Resonance Spectroscopy ; Light ; Models, Molecular ; Mutagenesis, Site-Directed ; *Protein Conformation ; Protein Structure, Secondary ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1994-12-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steitz, T A -- Smerdon, S J -- Jager, J -- Joyce, C M -- GM28550/GM/NIGMS NIH HHS/ -- GM39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):2022-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7528445" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA Polymerase I/*chemistry/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; HIV Reverse Transcriptase ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; RNA-Directed DNA Polymerase/*chemistry/metabolism ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 1994-09-02
    Description: Mechanisms of guanosine triphosphate (GTP) hydrolysis by members of the G protein alpha subunit-p21ras superfamily of guanosine triphosphatases have been studied extensively but have not been well understood. High-resolution x-ray structures of the GTP gamma S and GDP.AlF4- complexes formed by the G protein Gi alpha 1 demonstrate specific roles in transition-state stabilization for two highly conserved residues. Glutamine204 (Gln61 in p21ras) stabilizes and orients the hydrolytic water in the trigonal-bipyramidal transition state. Arginine 178 stabilizes the negative charge at the equatorial oxygen atoms of the pentacoordinate phosphate intermediate. Conserved only in the G alpha family, this residue may account for the higher hydrolytic rate of G alpha proteins relative to those of the p21ras family members. The fold of Gi alpha 1 differs from that of the homologous Gt alpha subunit in the conformation of a helix-loop sequence located in the alpha-helical domain that is characteristic of these proteins; this site may participate in effector binding. The amino-terminal 33 residues are disordered in GTP gamma S-Gi alpha 1, suggesting a mechanism that may promote release of the beta gamma subunit complex when the alpha subunit is activated by GTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coleman, D E -- Berghuis, A M -- Lee, E -- Linder, M E -- Gilman, A G -- Sprang, S R -- DK 46371/DK/NIDDK NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1405-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dallas, TX.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073283" target="_blank"〉PubMed〈/a〉
    Keywords: Aluminum Compounds/metabolism ; Arginine/chemistry ; Binding Sites ; Catalysis ; Computer Graphics ; Crystallography, X-Ray ; Fluorides/metabolism ; GTP-Binding Proteins/*chemistry/metabolism ; Glutamine/chemistry ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Helix-Loop-Helix Motifs ; Hydrogen Bonding ; Hydrolysis ; Models, Molecular ; *Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1994-10-07
    Description: The structure of a protein triple helix has been determined at 1.9 angstrom resolution by x-ray crystallographic studies of a collagen-like peptide containing a single substitution of the consensus sequence. This peptide adopts a triple-helical structure that confirms the basic features determined from fiber diffraction studies on collagen: supercoiling of polyproline II helices and interchain hydrogen bonding that follows the model II of Rich and Crick. In addition, the structure provides new information concerning the nature of this protein fold. Each triple helix is surrounded by a cylinder of hydration, with an extensive hydrogen bonding network between water molecules and peptide acceptor groups. Hydroxyproline residues have a critical role in this water network. The interaxial spacing of triple helices in the crystal is similar to that in collagen fibrils, and the water networks linking adjacent triple helices in the crystal structure are likely to be present in connective tissues. The breaking of the repeating (X-Y-Gly)n pattern by a Gly--〉Ala substitution results in a subtle alteration of the conformation, with a local untwisting of the triple helix. At the substitution site, direct interchain hydrogen bonds are replaced with interstitial water bridges between the peptide groups. Similar conformational changes may occur in Gly--〉X mutated collagens responsible for the diseases osteogenesis imperfecta, chondrodysplasias, and Ehlers-Danlos syndrome IV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bella, J -- Eaton, M -- Brodsky, B -- Berman, H M -- AR 19626/AR/NIAMS NIH HHS/ -- GM 21589/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):75-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Rutgers University, New Brunswick, NJ 08855.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7695699" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/chemistry ; Amino Acid Sequence ; Collagen/*chemistry ; Computer Graphics ; Crystallography, X-Ray ; Glycine/chemistry ; Hydrogen Bonding ; Hydroxyproline/chemistry ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Peptides/*chemistry ; *Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1994-10-07
    Description: Para-hydroxybenzoate hydroxylase inserts oxygen into substrates by means of the labile intermediate, flavin C(4a)-hydroperoxide. This reaction requires transient isolation of the flavin and substrate from the bulk solvent. Previous crystal structures have revealed the position of the substrate para-hydroxybenzoate during oxygenation but not how it enters the active site. In this study, enzyme structures with the flavin ring displaced relative to the protein were determined, and it was established that these or similar flavin conformations also occur in solution. Movement of the flavin appears to be essential for the translocation of substrates and products into the solvent-shielded active site during catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, D L -- Palfey, B A -- Lah, M S -- Entsch, B -- Massey, V -- Ballou, D P -- Ludwig, M L -- GM 11106/GM/NIGMS NIH HHS/ -- GM 16429/GM/NIGMS NIH HHS/ -- GM 20877/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Oct 7;266(5182):110-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939628" target="_blank"〉PubMed〈/a〉
    Keywords: Benzoate 4-Monooxygenase ; Binding Sites ; Catalysis ; Computer Graphics ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/*chemistry/metabolism ; Hydrogen Bonding ; Mixed Function Oxygenases/*chemistry/metabolism ; Models, Molecular ; Molecular Conformation ; Oxidation-Reduction ; Parabens/metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowan, S W -- Rosenbusch, J P -- New York, N.Y. -- Science. 1994 May 13;264(5161):914-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biozentrum, University of Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178151" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Bacteriorhodopsins/chemistry ; Cell Membrane/chemistry ; Hydrogen Bonding ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Porins/chemistry ; *Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1994-03-11
    Description: Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 A resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5'-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel beta sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belrhali, H -- Yaremchuk, A -- Tukalo, M -- Larsen, K -- Berthet-Colominas, C -- Leberman, R -- Beijer, B -- Sproat, B -- Als-Nielsen, J -- Grubel, G -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1432-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EMBL Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/chemical synthesis/metabolism ; Adenosine Monophosphate/*analogs & derivatives/chemical synthesis/metabolism ; Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Serine/*analogs & derivatives/chemical synthesis/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-07-29
    Description: The helical path of the DNA in filamentous bacteriophage Pf1 was deduced from different kinds of existing structural information, including results from x-ray fiber diffraction. The DNA has the same pitch, 16 angstroms, as the surrounding helix of protein subunits; the rise and rotation per nucleotides are 6.1 angstroms and 132 degrees, respectively; and the phosphates are 2.5 angstroms from the axis. The DNA in Pf1 is, therefore, the most extended and twisted DNA structure known. On the basis of the DNA structure and extensive additional information about the protein, a model of the virion is proposed. In the model, the DNA bases reach out, into the protein, and the lysine and arginine side chains reach in, between the DNA bases, to stabilize the paraxial phosphate charges; the conformation of the protein subunit is a combination of alpha and 3(10) helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, D J -- Day, L A -- GM42286/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jul 29;265(5172):671-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, New York, NY 10016.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8036516" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*chemistry ; *Capsid Proteins ; DNA, Viral/*chemistry ; Inovirus/chemistry/genetics/*ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/analysis ; Protein Structure, Secondary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1994-03-11
    Description: The crystal structure of Thermus thermophilus seryl-transfer RNA synthetase, a class 2 aminoacyl-tRNA synthetase, complexed with a single tRNA(Ser) molecule was solved at 2.9 A resolution. The structure revealed how insertion of conserved base G20b from the D loop into the core of the tRNA determines the orientation of the long variable arm, which is a characteristic feature of most serine specific tRNAs. On tRNA binding, the antiparallel coiled-coil domain of one subunit of the synthetase makes contacts with the variable arm and T psi C loop of the tRNA and directs the acceptor stem of the tRNA into the active site of the other subunit. Specificity depends principally on recognition of the shape of tRNA(Ser) through backbone contacts and secondarily on sequence specific interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biou, V -- Yaremchuk, A -- Tukalo, M -- Cusack, S -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1404-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128220" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Base Composition ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Amino Acyl/*chemistry/metabolism ; Serine-tRNA Ligase/*chemistry/metabolism ; Substrate Specificity ; Thermus thermophilus/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1994-03-25
    Description: The three-dimensional structure of a member of the beta subfamily of chemokines, human macrophage inflammatory protein-1 beta (hMIP-1 beta), has been determined with the use of solution multidimensional heteronuclear magnetic resonance spectroscopy. Human MIP-1 beta is a symmetric homodimer with a relative molecular mass of approximately 16 kilodaltons. The structure of the hMIP-1 beta monomer is similar to that of the related alpha chemokine interleukin-8 (IL-8). However, the quaternary structures of the two proteins are entirely distinct, and the dimer interface is formed by a completely different set of residues. Whereas the IL-8 dimer is globular, the hMIP-1 beta dimer is elongated and cylindrical. This provides a rational explanation for the absence of cross-binding and reactivity between the alpha and beta chemokine subfamilies. Calculation of the solvation free energies of dimerization suggests that the formation and stabilization of the two different types of dimers arise from the burial of hydrophobic residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lodi, P J -- Garrett, D S -- Kuszewski, J -- Tsang, M L -- Weatherbee, J A -- Leonard, W J -- Gronenborn, A M -- Clore, G M -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134838" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemokine CCL4 ; Computer Graphics ; Cytokines/*chemistry ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Interleukin-8/chemistry ; Macrophage Inflammatory Proteins ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Monokines/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gronenborn, A M -- Clore, G M -- New York, N.Y. -- Science. 1994 Jan 28;263(5146):536.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8290964" target="_blank"〉PubMed〈/a〉
    Keywords: Hydrogen Bonding ; Interleukin-1/*chemistry ; Models, Molecular ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-08-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, C -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1176-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8066459" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/biosynthesis ; Crystallization ; Crystallography, X-Ray ; Intracellular Membranes/enzymology ; Mitochondria/enzymology ; Models, Molecular ; Protein Conformation ; Proton-Translocating ATPases/*chemistry/metabolism ; Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1373.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128216" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Tyrosine Phosphatases/*chemistry/metabolism ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1994-11-18
    Description: Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, S -- Chen, J K -- Yu, H -- Simon, J A -- Schreiber, S L -- GM44993/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 18;266(5188):1241-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526465" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Alanine/chemistry ; Amino Acid Sequence ; Arginine/chemistry ; Binding Sites ; GRB2 Adaptor Protein ; Glycine/chemistry ; Guanine Nucleotide Exchange Factors ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/chemistry/*metabolism ; Peptides/chemistry/metabolism ; Proline/chemistry ; Proline-Rich Protein Domains ; Protein Conformation ; Protein Structure, Secondary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Proteins/chemistry/metabolism ; Proto-Oncogene Proteins pp60(c-src)/chemistry/*metabolism ; src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-01-14
    Description: The structure of the DNA binding domain, determined at 1.8 angstrom resolution, contains a three-helix bundle that is capped by a four-stranded antiparallel beta sheet. This structure is a variant of the helix-turn-helix motif, typified by catabolite activator protein. In the heat shock transcription factor, the first helix of the motif (alpha 2) has an alpha-helical bulge and a proline-induced kink. The angle between the two helices of the motif (alpha 2 and alpha 3) is about 20 degrees smaller than the average for canonical helix-turn-helix proteins. Nevertheless, the relative positions of the first and third helices of the bundle (alpha 1 and alpha 3) are conserved. It is proposed here that the first helix of the three-helix bundle be considered a component of the helix-turn-helix motif.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, C J -- Bohm, A A -- Nelson, H C -- GM08295/GM/NIGMS NIH HHS/ -- GM44086/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Jan 14;263(5144):224-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8284672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA/*metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; *Heat-Shock Proteins ; *Helix-Loop-Helix Motifs ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Transcription Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...