ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nitrogen  (146)
  • Springer  (146)
  • American Meteorological Society
  • Institute of Physics
  • 1995-1999
  • 1990-1994  (146)
  • 1940-1944
  • 1994  (46)
  • 1992  (51)
  • 1990  (49)
Collection
Publisher
  • Springer  (146)
  • American Meteorological Society
  • Institute of Physics
Years
  • 1995-1999
  • 1990-1994  (146)
  • 1940-1944
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 64 (1992), S. 225-238 
    ISSN: 1570-7458
    Keywords: Lymantria dispar (L.) ; diet switching ; nitrogen ; specialization ; plant-animal interactions ; insect behavior
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)) larvae were reared from hatch on 1.25% N or 3.5% N artificial diet (previous diet) and switched reciprocally to the other diet (current diet) after molting into the second, third, fourth, or fifth instar. The nitrogen concentration of food consumed during previous instars had a strong residual effect on the growth rate in subsequent instars when a diet switch was made during instars two through four, but did not affect growth rate of fifth-instar larvae despite effects on food consumption and utilization. In early instars, larvae reared on 1.25% N artificial diet and then switched to 3.75% N diet had lower mass-adjusted growth rates than larvae continuously reared on 3.75% N diet. Conversely, larvae reared on 3.75% N diet and switched to 1.25% N had higher mass-adjusted growth rates than larvae reared continuously on 1.25% N diet. Relative to larvae previously reared on 1.25% N diet, fifth-instar male larvae previously reared on 3.75% N diet had slightly lower consumption rates, higher net growth efficiency (ECD), and higher gross growth efficiency (ECI). Larvae previously reared on 3.75% N diet tended to have lower food assimilation efficiency (AD) and lower nitrogen assimilation efficiency (AD(N)). Although both previous and current diet nitrogen concentration strongly affected larval growth and food utilization, the interaction term between these was not significant for any response variables except ECD and ECI. Because the interaction term reflects the effect of switching per se, the results indicate that there was a metabolic cost associated with switching, but no inherent net cost or benefit of diet-switching to growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 13 (1992), S. 45-53 
    ISSN: 1572-879X
    Keywords: Ammonia ; synthesis ; nitrogen ; rate-determining step ; potassium promotion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The simple concept of a single rate-determining step, the dissociation of N2(a), in ammonia synthesis is inconsistent with experimental results. It is proposed that three reaction steps, N2(a) → 2N(a) (1) N(a) + H(a)→NH(a) (2) NH3(a)→NH3(g) (3) are dominant in determining the rate of synthesis. Under industrial conditions reactions (2) and (3) are more important than (1). The role of K+ as promoter in these reactions is discussed, especially as an “anchor” for adsorbed oxygen.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 16 (1992), S. 159-164 
    ISSN: 1572-879X
    Keywords: Chemisorption ; nitrogen ; carbon dioxide ; platinum ; water gas shift reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The relationship between sites responsible for nitrogen chemisorption and sites responsible for stronger adsorption of carbon dioxide on platinum black is reported. A 2 to 1 ratio has been found between molecules of more strongly adsorbed carbon dioxide and molecules of nitrogen chemisorbed on individual samples. This relationship has allowed us to deduce the structure of chemisorbed carbon dioxide. Carbon dioxide is relatively weakly chemisorbed on platinum. Reasons for the weakness of this chemisorption are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Entomologia experimentalis et applicata 62 (1992), S. 29-36 
    ISSN: 1570-7458
    Keywords: Alkaloids ; cinnabar moth ; insect genetics ; larval performance ; Lepidoptera ; nutritional ecology ; nitrogen ; sugar ; Tyria jacobaeae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a laboratory experiment using full-sibs, 60% of the variation in pupal weight of the monophage Tyria jacobaeae L. (Lepidoptera, Arctiidae) could be explained by variation in the nitrogen concentration of the food plant, Senecio jacobaea L. and only 4% by variation in sugar concentration. Larval weight and growth rates of young and old larvae were also positively correlated with nitrogen and sugar concentration. Developmental time was negatively correlated with nitrogen concentration. In a second experiment full-sib families differed significantly in larval weight at day 7, mortality, growth rate and developmental time. Pupal weight did not differ significantly among families, but was positively correlated with nitrogen concentration of Senecio. Larval performance was not significantly influenced by concentrations of sugars or alkaloids. We conclude that larval performance of Tyria during most of the larval period is mainly determined by genetic factors, but pupal weights are primarily determined by nitrogen concentration of the food plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0417
    Keywords: Great Basin ; climatic variations ; productivity ; organic matter ; nitrogen ; phosphorus ; hardwater lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Sediment cores from the shallow and deep basins of Pyramid Lake, Nevada, revealed variations in composition with depth reflecting changes in lake level, river inflow, and lake productivity. Recent sediments from the period of historical record indicate: (1) CaCO3 and organic content of sediment in the shallow basin decrease at lower lake level, (2) CaCO3 content of deep basin sediments increases when lake level decreases rapidly, and (3) the inorganic P content of sediments increases with decreasing lake volume. Variations in sediment composition also indicate several periods for which productivity in Pyramid Lake may have been elevated over the past 1000 years. Our data provide strong evidence for increased productivity during the first half of the 20th Century, although the typical pattern for cultural eutrophication was not observed. The organic content of sediments also suggests periods of increased productivity in the lake prior to the discovery and development of the region by white settlers. Indeed, a broad peak in organic fractions during the 1800's originates as an increase starting around 1600. However, periods of changing organic content of sediments also correspond to periods when inflow to the lake was probably at extremes (e.g. drought or flood) indicating that fluctuations in river inflow may be an important factor affecting sediment composition in Pyramid Lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 4 (1990), S. 1-22 
    ISSN: 1573-0417
    Keywords: sulfate ; carbon ; nitrogen ; hydrogen ; organic matter ; enrichment factor ; lake sediments ; paleolimnology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract This paper discusses the use of S as a paleolimnological tracer of limnetic sulfate concentration. A positive relationship (p〈0.05) was found between limnetic sulfate and sediment S concentrations for the Great Lakes, English Lakes, and lakes from the Adirondack and Northern New England regions. There is a positive correlation (p〈0.05) between C and S concentration in sediment across all regions studied. The importance of C in affecting S content in sediment was also examined by a series of cores taken at different water depths in Big Moose Lake (Adirondacks). There was a strong relationship between C and S among cores with sediment from deeper water having higher C and S concentrations (r 2=0.99). Sulfur from the shallower cores had greater concentrations of chromium-reducible S (pyrite), while cores from deeper waters had a greater proportion of organic S fractions including C-bonded S and ester sulfates. For assessing historical changes in S accumulation in sediments, enrichment factors were calculated for the PIRLA lakes. Pre-1900 net sediment accumulation rates of S were very similar across all regions. Sulfur enrichment was greatest in Adirondack sediment which had total post-1900 S accumulation of 1.1 to 7.4 times pre-1900 S accumulation. Sediment from Northern New England (NNE) generally had lower S concentration than Adirondack sediments and S enrichment factors ranged from 1.2 to 2.1. Sediment from the Northern Great Lakes States region had similar S concentration and distribution with depth to NNE sediment. In two Northern Florida lakes, sediment showed little variation in S concentration with depth, but in two other lakes from the same region, there was higher S concentration in deeper layers. Lakes which had the greatest enrichment factors also exhibited the most marked changes in C:S ratios. Ratios of C:N showed little variation (10.6 to 26.1) among the PIRLA lakes. A first order model indicated slow decomposition within these organic rich sediments. Elemental concentrations and ratios of sediment from a variety of lakes and reservoirs were complied. Maximum and minimum elemental ratios for all the data were 28 to 8.1 for C:N, 0.81 to 0.11 for C:H, and 675 to 12.5 for C:S, respectively. For the C:S ratios in all regions except the Great Lakes, the maximum ratio was less than 231. Both the maximum and minimum amount of N and H concentration of organic matter is related to biotic processes. The minimum concentration of S is regulated not only by nutrient demands but also by non-assimilatory processes. Sulfur incorporation into sediments is a function of a complex of factors, but limnetic sulfate concentration and organic matter content play a major role in regulating the S content of sediment. Further quantification of S incorporation pathways will aid in the paleolimnological interpretation of sediment S profiles. Such information is also important in assessing how S sediment pools will respond to decreases in limnetic sulfate concentration which may occur with decreases in inputs from acidic deposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 38 (1994), S. 53-59 
    ISSN: 1573-0867
    Keywords: controlled-release fertilizer ; gel ; iron ; manganese ; nitrogen ; polyacrylamide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using diverse technological approaches, many types of delivery devices have been used to supply plant nutrients at a controlled rate in the soil. One new approach is the use of hydrophilic polymers as carriers of plant nutrients. These polymers may be generally classified as 1) natural polymers derived from polysaccharides, 2) semi-synthetic polymers (primarily cellulose derivatives), and 3) synthetic polymers. By controlling the reaction conditions when forming the polymers, various degrees of cross-linking, anionic charge, and cationic charge can be added, thereby changing their effectiveness as fertilizer carriers. When fertilizer-containing solutions are mixed with hydrophilic polymers to form a “gel” prior to application in the soil, the release of soluble nutrients can be substantially delayed compared with soluble fertilizer alone. The effectiveness of a specific controlled-release polymeric system is determined in part by its specific chemical and physical properties, its biodegradation rate, and the fertilizer source used. Addition of some polymers with nutrients has been shown to reduce N and K leaching from well-drained soils and to increase the plant recovery of added N, P, Fe, and Mn in some circumstances
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 40 (1994), S. 165-173 
    ISSN: 1573-0867
    Keywords: Animal manure ; eutrophication ; ground water ; nitrogen ; phosphorus ; surface runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract With the rapid growth of the poultry industry in Oklahoma, U.S.A., more litter is applied to farm land. Thus, information is required on the impact of applications on regional soil and water resources. The effect of soil and poultry litter management on nitrogen (N) and phosphorus (P) loss in runoff and subsurface flow from four 16 m2 plots (Ruston fine sandy loam, 6 to 8% slope) was investigated under natural rainfall. Plots under Bermudagrass (Cynodon dactylon) received 11 Mg litter ha−1, which amounts to contributions of approximately 410 kg N and 140 kg P ha−1 yr−1. In spring, litter was broadcast on 3 of the plots; the upper half of one and total area of the other two. One of the total-area broadcast plots was tilled to 6 cm, the other remained as no till. The fourth plot served as a control. Relative to the control, litter application increased mean concentrations of total N and total P in runoff during the 16-week study for no-till (15.4 and 5.8 mg L−1) and tilled treatments (16.7 and 6.1 mg L−1). However, values for the half-area application (5.6 and 2.0 mg L−1) were similar to the control (5.7 and 1.3 mg L−1). Interflow (subsurface lateral flow at 70 cm depth) P was not affected by litter application; however, nitrate-N concentrations increased from 0.6 (control) to 2.9 mg L−1 (no till). In all cases, 〈 2 % litter N and P was lost in runoff and interflow, maintaining acceptable water quality concentrations. Although litter increased grass yield (8518 kg ha−1) compared to the control (3501 kg ha−1), yields were not affected by litter management. An 8-fold increase in the plant available P content of surface soil indicates long-term litter management and application rates will be critical to the environmentally sound use of this nutrient resource.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-0867
    Keywords: Wheat ; nitrogen ; grain protein content ; grain filling ; urea spraying
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objective of this work was to determine the effect of foliar urea spraying during or after anthesis, on dry matter and nitrogen accumulation in the wheat grain of two cultivars, differing in grain protein content. The experiment was carried out in the field, and 20 kg N ha−1 as urea (46-0-0) was sprayed at anthesis, 7 or 14 days after anthesis. Dry weight, N content and N percentage of the grain were determined at several stages of its development. Neither the rate nor the duration of dry matter accumulation in the grain was significantly modified by N sprayings at anthesis or later and, consequently, not its final weight. Nitrogen sprayings at anthesis or later increased the grain N content and N percentage at ripeness in both cultivars, but to a greater extent in the low grain protein cultivar. Greater N content in the grain was attributed to a rapid uptake of the N applied and not to a longer duration of the period of N accumulation. The different responses of the cultivars to N sprayings can be related to differences in N demand, and is probably associated, also, to a genetic ability to accumulate N in the grain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 37 (1994), S. 107-113 
    ISSN: 1573-0867
    Keywords: Ensete ventricosum ; fertilizer response ; nitrogen ; phosphorus ; potassium ; sulphur ; starch
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ensete (Ensete ventricosum W. Cheesm.) is a root crop which stores starch in the root and in the lower part of the stem. It is grown in the southwest of Ethiopia and due to its drought resistance, it is of outstanding importance for the supply of food to the local population. Until now virtually nothing is known about the response of Ensete to fertilizer application. Field trials carried out on three representative soils in Ethiopia showed that Ensete biomass yields were increased significantly on all three soils by nitrogen and phosphorus application. Potassium had only marginal effect on biomass growth but favourably influenced starch production. Sulfate application had no major impact on growth and starch yield. The yield response was well related to the level of available nutrients in the soil, as determined by electroultrafiltration (EUF). Leaf analysis provided preliminary evidence that optimum levels of N, P, and K may be 3.8%, 0.3%, and 4.8%, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 32 (1992), S. 55-59 
    ISSN: 1573-0867
    Keywords: 15N ; nitrogen ; rice ; soil N ; N fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the southern U.S. rice belt it is recommended that rice (Oryza sativa L.) grown in the dry-seeded, delayed flood cultural system have the preflood N fertilizer applied and the field flooded at the fourth to fifth leaf stage of plant development. The objective of this field study was to determine if delaying the flood and preflood N application past the fifth leaf stage was detrimental to rice total N and fertilizer15N uptake, total dry matter, and grain yield. This study was conducted on a Crowley silt loam (Typic Albaqualfs) and a Perry clay (Vertic Haplaquepts). The preflood N fertilizer and flood were delayed 0, 7, 14, or 21 d past the fourth to fifth leaf stage, after which time a permanent flood was established and maintained until maturity. All treatments received 20.5 g N m−2 as15N-labeled urea in three topdress applications. All plant and soil samples were taken at maturity. Harvest index increased as the preflood N and flood were delayed past the 4 to 5 leaf stage. Total N in the grain + straw either decreased or showed a decreasing trend as the N and flood were delayed. Similarly, uptake of native soil N decreased as flood was delayed. Conversely, percent recovery of fertilizer N in the rice plant and the plant-soil system increased as the preflood N and flood were delayed. Rice grain yield was not significantly affected by delaying the preflood N and flood up to 21 d.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 37 (1994), S. 227-234 
    ISSN: 1573-0867
    Keywords: catch crop ; mineralization ; nitrogen ; plant species ; residual effects ; soil depletion ; winter hardiness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ten widely different plant species were compared for their ability to reduce soil mineral nitrogen levels in the autumn and their ability to improve the nitrogen nutrition of the succeeding crop. The species included monocots and dicots, crops that survived the winter (persistent) or were winter killed (non-persistent) as well as legumes and non legumes. Their ability to reduce soil mineral nitrogen content was dependent on both root depth and persistency of the crops in the autumn. For non-persistent catch crops most of the mineralization of plant nitrogen occurred during the winter, and for some of these so early as to allow leaching of some mineralized nitrogen. For persistent crops most of the mineralization occurred shortly after incorporation in the spring. The effect of the catch crops on nitrogen uptake by the succeeding barley crop varied from 13 to 66 kg N ha−1 and the differences between the crops could not be related to any single character, but to a combination of root depth, persistency, plant nitrate accumulation, and depletion of the soil mineral nitrogen pool in spring.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 21 (1990), S. 167-170 
    ISSN: 1573-0867
    Keywords: Mo ; interaction ; soybean ; deficiency ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Recent on-farm liming experiments showed that Mo deficiency in soybean [Glycine max (L.) Merr.] is widespread in northern Alabama. In contrast, a long-term, fertility-rotation experiment in the same area showed no response to Mo during 33 yr when Mo was added bienially to corn [Zea mays L.] in the rotation; however, soybean foliage had the chlorotic appearance of Mo deficiency. The objective of this study was to determine if Mo deficiency was being missed by comparing only two fertilizer treatments. Each rotation-fertilizer treatment plot was split into two, with one-half receiving MO at a 100 g ha−1 foliar rate after seedling emergence, while the other half received none. Yields were increased by Mo in 13 to 16 fertilizer treatments in 1985 and 15 out of 16 in 1986. Leaf-N concentrations and seed weight had comparable increased amounts by the Mo supplement. Without the Mo supplement, there was a response to lime but not to P, K, or a Mo-containing micronutrient mixture; with the Mo supplement, there was no response to liming, but a definite response to P and K (in addition to Mo). The lack of response to Mo when applied to corn in a 2-yr rotation over 33 yr led to the erroneous conclusion that these soils were not Mo deficient for soybean.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 22 (1990), S. 71-78 
    ISSN: 1573-0867
    Keywords: Boron ; critical level ; grain ; nitrogen ; nodulation ; nutrition ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A two year field study on the effect of nitrogen N and boron B fertilization on the nodulation, mineral nutrition and grain yield of cowpea was carried out in the Nigerian savanna where fairly widespread B deficiency has been reported. Treatments consisted of four levels of N (0, 15, 30 and 60 kg/ha in 1986 and 0, 15, 30 and 45 kg/ha in 1987) and three levels of B (0, 1.5 and 3.0 kg/ha). Cowpea responded positively though nonsignificantly to N fertilization up to 30 kg N/ha. However, N had no effect on the N, P, K and B content of index leaves. Boron application consistently reduced grain yield. Like N, applied B had no effect on the N, P, K concentration of index leaves but increased B concentration highly significantly (P 〈 0.001). The critical level of B toxicity in index leaves was approximated to be 21pm under field condition. Application of N and B depressed nodulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 23 (1990), S. 97-103 
    ISSN: 1573-0867
    Keywords: Carbon ; mineralization ; nitrogen ; organic fertilizer ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The C and N mineralization characteristics of two organic N fertilizers were determined in a soil-less incubation system at three temperature regimes. Protox (derived from activated sewage sludge) initially degraded more rapidly by microbial action compared with dried blood. However, dried blood released more CO2-C and inorganic N towards the end of the incubation periods. The rate of microbial degradation increased with temperature. Mineralization characteristics of protein-based N sources are discussed in relation to organic N nutrition of vegetable crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 23 (1990), S. 105-112 
    ISSN: 1573-0867
    Keywords: Ammonium ; fertigation ; nitrate ; nitrogen ; trickle irrigation ; urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The movement and transformations of ammonium-, urea- and nitrate-N in the wetted volume of soil below the trickle emitter was studied in a field experiment following the fertigation of N as ammonium sulphate, urea and calcium nitrate. Effects on soil pH in the wetted volume were also investigated. During a fertigation cycle (emitter rate 2lh−1) applied ammonium was concentrated in the surface 10 cm of soil immediately below the emitter and little lateral movement occurred. In contrast, because of their greater mobility in the soil, fertigated urea and nitrate were more evenly distributed down the soil profile below the emitter and had moved laterally in the profile to 15 cm radius from the emitter. The conversion of applied N to nitrate-N was more rapid when urea rather than ammonium-N was applied suggesting that the accumulation of large amounts of ammonium below the emitter in the ammonium sulphate treatment probably retarded nitrification. Following their conversion to nitrate-N, both fertigated ammonium sulphate and urea caused acidification in the wetted soil volume. Acidification was confined to the surface 20 cm of soil in the ammonium sulphate treatment, however because of its greater mobility, fertigation with urea (2lh−1) resulted in acidification occurring down to a depth of 40 cm. Such subsoil acidity is likely to be very difficult to ameliorate. Increasing the trickle discharge rate from 2lh−1 to 4lh−1 reduced the downward movement of urea and encouraged its lateral spread in the surface soil. As a consequence, acidification was confined to the surface (0–20 cm) soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 39 (1994), S. 223-228 
    ISSN: 1573-0867
    Keywords: drip-fertigation ; efficiency ; nitrogen ; sugar cane ; uptake ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen (N) fertilizer use efficiency by sugar cane in Mauritius rarely exceeds 40%. Since drip-irrigation delivers water uniformly and directly to the root zone with little run-off, application of N via the drip-irrigation system could therefore provide a means of enhancing fertilizer N use by sugar cane. A study was initiated in Mauritius to determine what benefits would accrue from applying urea (120 kg N per ha) to sugar cane through the drip-irrigation network. The data obtained showed that the efficiency of fertilizer N when measured at harvest was nearly doubled by supplying the N daily over 10 to 20 weeks by fertigation. Increased yields of sugar or cane did not, however, accompany the improved N use efficiency. Furthermore, when N was applied through the drip-irrigation network, recovery of N at harvest did not accurately reflect N use efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 39 (1994), S. 199-203 
    ISSN: 1573-0867
    Keywords: farmyard manure ; floodwater ; nitrogen ; Oryza sativa L. ; partial pressure of ammonia ; urea ; Vietnam
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Farmyard manure (FYM) applied to rice-growing soils can substitute for industrial fertilizers, but little is known about the influence of FYM on the effectiveness and optimal management for industrial N fertilizers. A field experiment was conducted in northern Vietnam on a degraded soil in the spring season (February to June) and summer season (July to November) to determine the effect of FYM on optimal timing for the first application of urea. The experimental design was a randomized complete block with two rates of basal incorporated FYM (0 or 6 Mg ha−1) in factorial combination with two timings of the first application of 30 kg urea-N ha−1 (basal incorporated before transplanting or delayed until 14 to 16 d after transplanting). The FYM was formed by composting pig manure with rice straw for 3 months. Basal incorporation of FYM, containing 23 kg N ha−1, increased rice grain yield in both seasons. The yield increase cannot be attributed to reduced ammonia loss of applied urea-N, because FYM did not reduce partial pressure of ammonia (pNH3) following urea application in either season. Basal and delayed applications of urea were equally effective in the absence of FYM, but when FYM was applied rice yields in both seasons were higher for delayed (mean = 3.2 Mg ha−1) than basal (mean = 2.9 Mg ha−1) application of urea. Results suggest that recommendations for urea timing in irrigated lowland rice should consider whether farmers apply FYM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic sciences 54 (1992), S. 58-76 
    ISSN: 1420-9055
    Keywords: Eutrophication ; lake management ; phosphorus ; nitrogen ; chlorophyll-a ; slope estimator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We estimate the response of chl-a (mg · m−3) to changes in concentrations of total phosphorus (TP) by calculating the slopeS = Δchl-a/ΔTP in chl-a =f(TP) graphs. Results show that in years where algae are P-limited oligotrophic lakes respond less (median slope 0.21) to changes in nutrient concentrations than eutrophic lakes, (median slope 0.31) and these again less than hypereutrophic lakes, (median slope 1.02). We find no saturation value for the slope within the TP range considered (6–480 mg · m−3). Chl-a in eutrophic lakes responds more frequently to non-nutrient factors than oligotrophic and hypereutrophic lakes. Results obtained by replacing TP with a new nutrient parameter, TP′ = 0.056 · TP · IN0.226, in which inorganic nitrogen, IN, is factored in, suggest that nitrogen has an influence on chl-a in oligotrophic lakes. Blue-green algae respond less to changes in TP than other algal species, e.g., diatoms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic sciences 56 (1994), S. 16-28 
    ISSN: 1420-9055
    Keywords: Chlorophyll-a ; phosphorus ; nitrogen ; lake ecosystem ; nutrient limitation ; regression analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Regression results based on data from 46 northern temperate lakes show that total phosphorus (TP) is the best predictor for phytoplankton (as chl-a) at lower trophic levels, TP 〈 200 mg · m−3. A regression including both TP and TN as regressors is the best predictor for lakes with TP 〉 200 mg · m−3. However, the good correlation is probably due to a high correlation between lake average chl-a (all years observed) and lake average TP and TN. Within single hypereutrophic lakes, TN alone is the best predictor. It was not possible to identify a medium trophic domain where TN and TP in combination was the best predictor for chl-a. The ratio TN:TP in the water decreases from about 40 to about 5 with increasing trophic level. Optimum TN:TP ratio for algal species with high abundance during late summer and autumn reflects this decreasing ratio, but within a lesser range, i.e., 20 to 5. In contrast, TN:TP ratios for species abundant during the early vernal period showed no, or an inverse, relation to the TN:TP ratio of the water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 14 (1994), S. 451-490 
    ISSN: 1572-8986
    Keywords: Transport coefficients ; transport properties ; viscosity ; thermal conductivity ; electrical conductivity ; diffusion coefficient ; Chapman Enskog method ; argon ; nitrogen ; oxygen ; plasma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Calculated values of the viscosity, thermal conductivity, and electrical conductivity of argon, nitrogen, and oxygen plasmas, and mixtures of argon anti nitrogen and of argon anti oxygen, are presented. In addition, combined ordinary, pressure, and thermal diffusion coefficients are given for the gas mixtures. These three combined diffusion coefficients fully describe di fusion of the two gases, irrespective of their degree of dissociation or ionizati on. The calculations, which assume local thermodynamic equilibrium, are performed! for atmospheric-pressure plasmas in the temperature range /torn 300 to 30,000 K. A number of the collision integrals used in calculating the transport coefficients are significantly more accurate than values used in previous theoretical studies, resulting in more reliable values of the transport coefficients. The results are compared with those of published theoretical and experimental studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Potato research 35 (1992), S. 355-364 
    ISSN: 1871-4528
    Keywords: cultivar ; nitrate ; nitrogen ; Solanum tuberosum L. ; tuber
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The duration of dormancy of seed potatoes varies between years and between origins. Therefore, the effects of conditions during crop growth on dormancy of progeny tubers were studied. The effect of nitrogen during tuber bulking on the duration of dormancy was investigated in three field experiments with two cultivars. In addition to an application of 125 kg N/ha at planting, top dressings of 0–150 kg N/ha were given about 2 weeks after tuber initiation. Haulm was pulled about 4 weeks later. The effect of nitrogen rate at planting was also examined in one experiment. Nitrogen top dressings shortened dormancy in all experiments by 5–8 days. An increased nitrogen rate at planting resulted in a shorter dormancy when the duration of dormancy was expressed in days after tuber initiation, but not when it was expressed in days after haulm pulling, probably because extra nitrogen also delayed tuber initiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Potato research 35 (1992), S. 365-375 
    ISSN: 1871-4528
    Keywords: cultivar ; heat sprouting ; nitrogen ; second growth ; Solanum tuberosum L. ; sprout ; tuber
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In two indoor experiments under short day conditions, the effect of temperature during tuber bulking on dormancy of tubers was investigated for cvs Diamant and Désirée. Temperature treatments started after tuber initiation and lasted for 4 weeks, after which the haulm was removed. In Experiment 1, the day/night temperature regimes 18/12, 22/22, 26/18 and 32/12 °C (T18/12 etc.) were compared. In Experiment 2, three day temperatures (18, 24 and 30 °C) were combined with three night temperatures (12, 18 and 24 °C), resulting in nine treatments. The dormancy of cv. Diamant was shortest after very high day temperatures (30–32 °C), but intermediate day temperatures (22–26 °C) had no shortening effect compared to T18/12. Dormancy of cv. Désirée was not shortened, but rather tended to be prolonged by high temperatures (22–32 °C) during growth. High temperatures during growth resulted in more sprouts per tuber after dormancy had ended.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 28 (1994), S. 117-133 
    ISSN: 1573-5125
    Keywords: checklist ; diatoms ; The Netherlands ; pH ; salinity ; nitrogen ; oxygen ; saprobity ; trophic state ; moisture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This first comprehensive checklist of the diatoms from fresh and weakly brackish water in The Netherlands comprises 948 taxa, belonging to 776 species in 56 genera. The generaNavicula, which has a very wide ecological amplitude, andNitzschia, which has many pollution tolerant species, are most numerous. Each taxon is identified with a unique eight-letter code, to facilitate computer processing of data. Ecological indicator values for pH, salinity, nitrogen uptake metabolism, oxygen, saprobity, trophic state and moisture are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5176
    Keywords: amino acids ; biomass ; fatty acids ; Isochrysis ; nitrogen ; starvation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Growth of cells ofIsochrysis galbana with either nitrate or ammonium as the N-source, and the effects of subsequent N-starvation of these cells, were compared. During exponential N-sufficient growth nitrate-grown cells had double the fatty acid content of the ammonium-grown cells but lower concentrations of a few amino acids. Following resuspension in N-free medium the fatty acid content of the ammonium-grown cells increased to that of the nitrate-grown cells, but there was no further increase in fatty acid content on a C-biomass or cellular basis during the following 4 days for either culture. Fatty acid synthesis was continuous during N-starvation, while it occurred during the light-phase only in exponential growth. The proportion of 18:1n9 fatty acid increased from 10 to 25% total fatty acids during N-starvation. Intracellular free amino acid content decreased in a similar manner in both cultures on N-starvation, the ratio of intracellular free amino-N/cell-C falling more rapidly than overall cellular N/C. It was concluded that optimal amino acid and fatty acid content would be attained by growth in the presence of excess nitrate. Measurements of chlorophyll and carotenoid content and ofin vivo fluorescence indicated that these parameters had potential for monitoring the C and N biomass in cultures grown under relatively constant (not necessarily continuous) illumination.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5036
    Keywords: disturbance ; fertilizer ; nitrogen ; nutrient enrichment ; phosphorus ; secondary succession ; species richness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of annual additions of mineral N and P (100 kg ha−1) on plant species composition and annual aboveground net primary production (ANPP) were investigated during the first three years following disturbance in a semi-arid ecosystem. Additions of N reduced richness of perennial plant species during years 2 and 3, while P reduced the number of perennial species only in year 3. From year 1 to year 2, annual and biennial species richness declined in all treatments while ANPP of annual species increased greatly. Added N increased ANPP of annual species while it decreased ANPP of most perennial species relative to the unfertilized control treatment. Community similarities were higher for the control and native vegetation than for other pairs of treatments using both species presence and plant production data. Nitrogen additions have retarded but not completely arrested secondary succession in this system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5036
    Keywords: eucalypt ; foliar analysis ; legume ; nitrogen ; phosphorus ; plant nutrients ; plant analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The sensitivity of tissue nutrient concentrations to changes in plant age and the supply of P and N was compared between leaves and associated twigs in two forest species. In a young regrowth stand, tissues were sampled on three occasions from the mid-crown position of karri (Eucalyptus diversicolor F. Muell.) and Bossiaea laidlawiana Tovey and Morris, a major understorey legume. Leaves and twigs were also sampled from young plants of B. laidlawiana growing in a mature eucalypt stand to which P treatments had been applied. Nitrogen application increased N concentrations in twigs of karri and B. laidlawiana, but not in leaves. Phosphorus application increased P concentrations in both leaves and twigs of karri but the average increases were proportionally greater in twigs (65%) than in leaves (36%). Over the sampling period, P concentrations in leaves declined, while those in twigs were relatively stable. In B. laidlawiana, P supply also had a larger effect on P concentrations in twigs than in leaves. Addition of 200 kg P ha−1 increased average P concentrations in twigs by 109% in the regrowth stand and by 215% in the mature stand while the corresponding increases in leaves were only 11% and 27%. Concentrations of other nutrients in both species were also affected by N and P application, the most notable being a decline in the concentrations of the minor nutrients, Zn and Cu, with increased P supply. The increased N concentrations in twigs of karri, and the increased P concentrations in tissues of both species, were associated with responses of karri to added N and P, and of B. laidlawiana to added P. This indicates that tissue concentrations of N and P were generally below critical concentrations where N and P were not applied. The results show that for these species twigs may be a better tissue than leaves for diagnosing deficiencies or predicting N and P requirements. The ratio of P concentrations in twigs to P concentrations in leaves also increased with added P. It is suggested that this ratio may be a useful index if it reduces the variability caused by sampling position within the crown or genetic differences between plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 123 (1990), S. 67-71 
    ISSN: 1573-5036
    Keywords: Dalbergia sissoo ; fertilization ; nitrification ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The influence of added ammonium, phosphorus, potassium, and gypsum on net nitrogen mineralization was studied in soil beneath a six-year-old plantation of the N2-fixing tree Dalbergia sissoo in Pakistan. Soil with and without amendments was placed in polyethylene bags and incubated, buried in the soil, for 30 days. After that time the soil was analyzed and net ammonium and nitrate production and net nitrogen mineralization were calculated. The addition of ammonium stimulated nitrification indicating that the process was substrate limited. The inhibition of nitrification by Nitrapyrin showed that the process is autotrophic in these soils. Gypsum addition lowered soil pH from 8.0 to 7.2 and significantly stimulated ammonification, nitrification and net nitrogen mineralization. The addition of potassium more than tripled the soil K:Na ratio. Net ammonium and nitrate production and net nitrogen mineralization all increased in this treatment. The addition of phosphorus had no significant effect on soil nitrogen dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 127 (1990), S. 213-218 
    ISSN: 1573-5036
    Keywords: dry matter yield ; nickel ; nitrogen ; nutrient concentration ; wheat roots ; wheat tops
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A glasshouse experiment was conducted to study the effect of Ni on the growth and nutrients concentration in wheat (Triticum aestivum Cv. WH 291) in the presence and absence of applied N as urea. Responses to N application were observed up to 120 μg N g−1 soil. No response to Ni was observed in the dry matter yield of wheat tops (leaves + stem) in the absence of applied N while in the presence of applied N, significant yield increases were obtained at 12.5μg Ni g−1 soil. Nickel was not toxic to wheat up to 50μg Ni g−1 soil in the presence of 120μg N g−1 soil. Nitrogen and Ni concentration in wheat tops and roots increased with increasing levels of applied N and Ni, respectively. Applied Ni had an antagonistic effect on N concentration. Similarly, N reduced the Ni concentration in the wheat tissues. Positive growth responses to Ni were associated with 22 and 15μg Ni g−1 in wheat tops, in the presence of applied N at 60 and 120μg N g−1 soil, while Ni toxicity was associated with 63, 92.5 and 112.5μg Ni g−1 in wheat tops, in the absence and presence of applied N at 60 and 120μg N g−1 soil, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 128 (1990), S. 21-30 
    ISSN: 1573-5036
    Keywords: allocation ; clearcut ; mineralization ; nitrogen ; prescribed fire
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Past and current work on biological processes related to nitrogen fluxes and cycling in natural and disturbed Mediterranean forest sites are discussed. In natural conditions, the main point reviewed is mineral nitrogen availability in the soil, and particularly the process of mineralization (ammonification, nitrification) in the field as well as nitrogen uptake by Pinus pinea. Some aspects of nitrogen translocation within the trees are also considered. Perturbation of the nitrogen status, and especially nitrogen mineralization, as a result of manipulation of forest sites are discussed by comparing both a holm oak coppice with a clearcut and a Pinus halepensis woodland before and after prescribed fire.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 139 (1992), S. 285-294 
    ISSN: 1573-5036
    Keywords: Brassica ; B. campestris ; B. carinata ; B. juncea ; B. naptus ; B. nigra ; B. oleracea ; calcium ; chloride ; potassium ; magnesium ; nitrogen ; sodium ; nutrients ; salinity ; salt-tolerance ; seawater
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The growth of six rapid-cycling lines of Brassica species, B. napus, B. campestris, B. nigra, B. juncea, B. oleracea and B. carinata was inhibited by seawater salinity. Based on the change in dry matter reduction relative to the control at varying concentrations of salts (4, 8 and 12 dS m-1), the relative salt tolerance of these species was evaluated. B. napus and B. carinata were the most tolerant and most sensitive species, respectively, while the other four species were moderately tolerant. The influence of seawater on the concentrations of 12 elements including macronutrients and micronutrients in the shoots of these Brassica plants was characterized to determine the relationship between nutritional disturbance and relative salt tolerance. It was found that seawater salinity had a significant effect on the concentrations of Ca, Mg, K, Cl, Na and total N in the shoots of these plants but only the change in Ca concentration was significantly related to the relative salt tolerance of these six rapid-cycling Brassica species according to a rank analysis of the data. This finding indicates that Ca may play a regulatory role in the responses of Brassica species to saline conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 142 (1992), S. 157-166 
    ISSN: 1573-5036
    Keywords: Acacia ; Eucalyptus regnans ; decomposition ; litterfall ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The N and P contents of the litter layer and the return of these nutrients in litterfall were measured in seven stands of Mountain Ash (Eucalyptus regnans) ranging in age from 5 years to about 250 years. Both annual litterfall and nutrient return were correlated with stand basal area and were high compared with other productive eucalypt forests. In contrast, the fall of dead eucalypt leaves was constant with stand age, demonstrating that sites are fully occupied at an early age. Similarly, amounts of N and P in total leaf fall (overstorey plus understorey) were constant with stand age, except for low amounts in the stand aged 40 years where Acacia spp., important fixers of atmospheric N, were not prevalent. The decomposition constant (k) of organic matter in the litter layer decreased with stand age, from 0.31 year-1 at age 5 years to 0.23 year-1 at age 250 years. These constants also applied to N and P, indicating a tight coupling between organic matter decomposition and release of these nutrients from litter. The litter layer released about 30 kg ha-1 of N at age 5 years, and about 70 kg ha-1 at age 80 years. These results are discussed in relation to growth of Mountain Ash following fire, and the subsequent retention and accumulation of N during stand development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 142 (1992), S. 167-176 
    ISSN: 1573-5036
    Keywords: Eucalyptus regnans ; mineralization ; nitrification ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory and in situ rates of N mineralization in soils from Mountain Ash (Eucalyptus regnans) forests were measured fortnightly for two years in stands aged 9, 40, 80 and about 250 years (overmature), and for one year in stands aged 5 and 46 years. Rates of anaerobic mineralization (the laboratory test) showed little seasonal or annual variation. In contrast, rates of in situ mineralization varied markedly with season, being highest in spring and summer. Anaerobic mineralization was highly correlated with stand age to 80 years, but decreased between ages 80 and 250 years. In situ mineralization also decreased between these two ages, but otherwise was not related to stand age. Hence, the correlation between anaerobic and in situ mineralization along the age sequence was weak, suggesting that the anaerobic test is of maximum utility when this pool is in balance with inputs from decomposing litter (‘steady-state’ ecosystems). Nitrification was strong in stands aged 9, 46, 80 and 250 years and weak in stands aged 5 and 40 years. Within stands, the rate of nitrification during each period of in situ containment was highly dependent on the supply of NH4 ions. Between stands, annual rates of nitrification appear to be related to the balance between the N capital of the site, its rate of turnover, and the demand for N by heterotrophs and vegetation so that if NH4 supply is depleted, little is left for autotrophic nitrifiers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 125 (1990), S. 19-27 
    ISSN: 1573-5036
    Keywords: amino acid ; deficiency ; essentiality ; malate ; micronutrient ; nickel ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Barley (Hordeum vulgare L. cv. ‘Onda’) plants were grown in nutrient solutions supplied either 0 (no Ni added), 0.6, or 1.0 μM NiSO4. Plants supplied 0 μM Ni developed Ni deficiency symptoms; Ni deficiency resulted in the disruption of nitrogen metabolism, and affected the concentration of malate and various inorganic anions in roots, shoots, and grain of barley. The concentrations of 10 of the 11 soluble amino acids determined were 50–200% higher in 30-day-old shoots of plants supplied inadequate Ni levels than in shoots of Ni-supplied plants. The total concentration of all amino acids determined was higher in roots and grain of Ni-deficient plants. Concentrations of NO3 - and Cl- were also higher in Ni-deficient barley shoots than in Ni-sufficient barley shoots. In contrast, the concentration of alanine in shoots of Ni-deficient barley was reduced to one-third of the concentration in Ni-sufficient plants. The shoot concentrations of malate and SO4 2- were also depressed under Ni-deficient conditions. Total nitrogen concentration in grain, but not in shoots, of Ni-deficient plants was significantly increased over that found in Ni-adequate plants. Nickel deficiency results in marked disruptions of N metabolism, malate and amino acid concentrations in barley. These results are discussed in view of the possible roles of Ni in plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 125 (1990), S. 119-128 
    ISSN: 1573-5036
    Keywords: ammonia ; application method ; application rate ; environment ; grassland ; nitrogen ; slurry ; volatilization ; wind speed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three experiments were conducted to examine the influence of slurry application rate, wind speed and applying slurry in narrow bands on ammonia (NH3) volatilization from cattle slurry surface-applied to grassland. The experiments were conducted in the field using a system of small wind tunnels to measure NH3 loss. There was an inverse relationship between slurry application rate and the proportion of NH4 +-N volatilized. From slurry applied at 20, 40, 60, 80, 100 and 120 m3 ha-1, the respective proportions of NH4 +-N lost by NH3 volatization in 6 days were 60, 56, 49, 40, 44 and 44%. The negative relationship was most pronounced in the first 24 hours after application when 57–77% of the total loss for 6 days occurred. Wind speed had a positive effect on NH3 volatilization, although the effect was small in relation to the total loss; increasing the wind speed from 0.5 to 3.0 m s-1 increased the total 5 day loss by a factor of 0.29. The effect of wind speed was also most pronounced in the first 24 hours when much of the NH3 loss took place. The effect of reducing the surface area of the applied slurry was examined by comparing NH3 volatilization from slurry broadcast across plots with that applied in narrow bands. Although the rate of NH3 volatilization was considerably smaller from the banded application immediately after the slurry was applied, the difference between the treatments progressively narrowed until 2 days after application, after which a higher rate was maintained from the banded slurry. After 5 days the total loss from the banded application was 83% of that from broadcast slurry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 125 (1990), S. 109-117 
    ISSN: 1573-5036
    Keywords: ammonia ; environment ; grassland ; mechanical separation ; nitrogen ; slurry ; volatilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Three experiments were conducted using a system of small wind tunnels to measure ammonia (NH3) volatilization from cattle slurry after surface application to land. In each experiment slurry was applied at a rate equivalent to 80 m3 ha-1, providing the equivalent of approximately 100 kg NH4 +-N ha-1. The first experiment compared NH3 volatilization from the liquid fraction obtained by mechanical separation of slurry with that from unseparated slurry. The total NH3 loss over six days from unseparated and separated slurry were very similar, being 38 and 35% respectively of the NH4 +-N applied. For the first five hours, the rate of NH3 loss was higher from the unseparated slurry, thereafter it was consistently lower. In the second experiment, slurry was ponded in a tray to examine whether impeded infiltration or changes in the NH4 + concentration or overall pH of the slurry influenced the rapid decline in rate soon after application that is characteristic of NH3 volatilization from animal slurries applied to land. It appeared, however, that other factors such as resistance to diffusion within the slurry and/or at the slurry surface were mostly responsible for the rapid decline in rate. In the third experiment, in which NH3 volatilization was measured from slurry applied to grassland or bare soil, the total loss from slurry applied to grassland was approximately 1.5 times that from slurry applied to bare soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphorus ; revegetation ; silica ; succession ; shrubland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fire is the principal means of stand renewal in big sagebrush-steppe communities of western North America. Plant growth following fire may be influenced by heat-induced changes in the nutrient status of the soil. Moreover, post-wildfire pioneer plant species may alter soil properties, and thereby, impact subsequent plant recruitment. Our study compared the growth and elemental content of big sagebrush (Artemisia tridentata), squirreltail (Elymus elymoides), cheatgrass (Bromus tectorum), and Indian ricegrass (Achnatherum hymenoides), grown under greenhouse conditions in post-wildfire and similar unburned soil. We also examined soil attributes following plant growth. Cheatgrass and squirreltail, grown in post-wildfire soil, had significantly (p≤0.05) greater aboveground mass than plants grown in unburned soil. As compared with unburned soil, post-wildfire soil engendered the following significant (p≤0.05) differences in leaf elemental content: 1) big sagebrush had higher levels of P and lower levels of Mn; 2) squirreltail accumulated more P and N; and 3) all grass species had higher SiO2 content. Following harvest of plants, post-wildfire soil generally contained significantly (p≤0.05) more KCl-extractable ortho-P, NH inf4 + , and SO 4 − , than unburned soil. Plant growth in both burned and unburned soils fostered a significant (p≤0.05) increase in the bicarbonate-extractable pool of P as compared with unplanted controls. Soil Kjeldahl-N was significantly (p≤0.05) greater after plant growth in burned treatments as compared with the control. This study demonstrates that post-wildfire soil can have a stimulatory effect on plant growth for some species. Squirreltail deserves consideration as a post-wildfire revegetation species. Furthermore, pioneer plant growth following wildfires can attenuate soil properties and therefore influence plant succession.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1573-5036
    Keywords: ammonium ; citrus ; nitrate ; NO3 −/NH4 + ratio ; nitrogen ; nutrient solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In short-term water culture experiments with different 15N labeled ammonium or nitrate concentrations, citrus seedlings absorbed NH4 + at a higher rate than NO3 −. Maximum NO3 − uptake by the whole plant occurred at 120 mg L−1 NO3 −-N, whereas NH4 + absorption was saturated at 240 mg L−1 NH4 +-N. 15NH4 + accumulated in roots and to a lesser degree in both leaves and stems. However, 15NO3 − was mostly partitioned between leaves and roots. Adding increasing amounts of unlabeled NH4 + (15–60 mg L−1 N) to nutrient solutions containing 120 mg L−1 N as 15N labeled nitrate reduced 15NO3 − uptake. Maximum inhibition of 15NO3 − uptake was about 55% at 2.14 mM NH4 + (30 mg L−1 NH4 +-N) and it did not increase any further at higher NH4 + proportions. In a long-term experiment, the effects of concentration and source of added N (NO3 − or NH4 +) on nutrient concentrations in leaves from plants grown in sand were evaluated. Leaf concentration of N, P, Mg, Fe and Cu were increased by NH4 + versus NO3 − nutrition, whereas the reverse was true for Ca, K, Zn and Mn. The effects of different NO3 −-N:NH4 +-N ratios (100:0, 75:25, 50:50, 25:75 and 0:100) at 120 mg L−1 total N on leaf nutrient concentrations, fruit yield and fruit characteristics were investigated in another long-term experiment with plants grown in sand cultures. Nitrogen concentrations in leaves were highest when plants were provided with either NO3 − or NH4 + as a sole source of N. Lowest N concentration in leaves was found with a 75:25 NO3 −-N/NH4 +-N ratio. With increasing proportions of NH4 + in the N supply, leaf nutrients such as P, Mg, Fe and Cu increased, whereas Ca, K, Mn and Zn decreased. Yield in number of fruits per tree was increased significantly by supplying all N as NH4 +, although fruit weight was reduced. The number of fruits per tree was lowest with the 75:25 NO3 −-N:NH4 +-N ratio, but in this treatment fruits reached their highest weight. Rind thickness, juice acidity, and colour index of fruits decreased with increasing NH4 + in the N supply, whereas the % pulp and maturity index increased. Percent of juice in fruits and total soluble solids were only slightly affected by NO3 −:NH4 + ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5036
    Keywords: biological method ; chemical method ; mineralization potential ; nitrogen ; soil incubation ; temperate humid-zone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The potentially mineralizable organic N of 33 different soils was estimated by a chemical test (hot extraction with 2N KCl) and the values compared with those previously obtained by a biological method (aerobic incubation in the laboratory). On average, the organic N solubilized by the chemical procedure was significantly lower than that mineralized by a two weeks aerobic incubation for all the soils as a whole. The same was true for soils developed over acid rocks and over sediments. However, the values obtained for the soils developed over limestone and basic rocks were similar by both methods. The values obtained by both methods were not significantly correlated neither when considering all soils together nor when considering different groups according to soil management or parent material. Significant correlations between both methods were only found when the soils were separated into two groups according to their organic N content: soils with less than 400 mg N 100 g−1 soil and soils with more than 400 mg N 100 g−1 soil. The organic N solubilized by the chemical procedure was significantly correlated with the hexosamine-N content; however, it was not correlated with the factors that control the biological mineralization of the organic N, except with the soluble Al content. Therefore, the chemical extraction did not seem to address the biologically active N pool in a selective way.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-5036
    Keywords: mineralization rate ; nitrogen ; stabilized organic matter ; crop rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A simple model was developed to estimate the contribution of nitrogen (N) mineralization to the N supply of crops. In this model the soil organic matter is divided into active and passive pools. Annual soil mineralization of N is derived from the active pool. The active pool comprises stabilized and labile soil organic N. The stabilized N is built up from accumulated inputs of fresh organic N during a crop rotation but the labile N is a fraction of total N added, which mineralizes faster than the stabilized N. The passive pool is considered to have no participation in the mineralization process. Mineralization rates of labile and stabilized soil organic N from different crop residues decomposing in soil were derived from the literature and were described by the first-order rate equation dN/dt =-K*N, where N is the mineralizable organic N from crop residues andK is a constant. The data were groupedK 1 by short-term (0–1 year) andK 2 by long-term (0–10 years) incubation. Because the range of variation inK 2 was smaller than inK 1 we felt justified in using an average value to derive N mineralization from the stabilized pool. The use of a constant rate ofK 1 was avoided so net N mineralization during the first year after addition is derived directly from the labile N in the crop residues. The model was applied to four Chilean agro-ecosystems, using daily averages of soil temperature and moisture. The N losses by leaching were also calculated. The N mineralization varied between 30 and 130 kg N ha−1 yr−1 depending on organic N inputs. Nitrogen losses by leaching in a poorly structured soil were estimated to be about 10% of total N mineralized. The model could explain the large differences in N- mineralization as measured by the potential N mineralization at the four sites studied. However, when grassland was present in the crop rotation, the model underestimated the results obtained from potential mineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 158 (1994), S. 129-134 
    ISSN: 1573-5036
    Keywords: Betula lenta L. ; black birch ; nitrogen ; root architecture ; soil heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inorganic soil nitrogen is often heterogeneously distributed, both spatially and in form (ammonium versus nitrate). Here we present information on the architecture of black birch (Betula lenta L.) root systems exposed to homogeneous and heterogeneous nitrogen environments. The major effects on root architecture were at the whole root system level in response to heterogeneity of nitrogen form rather than the effect of local of local nitrate or ammonium supply on local root growth. In the heterogeneous treatment, plant root systems had greater link lengths and more simple branching patterns. Root architectural responses to heterogeneous nitrogen, independent of localized responses to patches, suggest that in a seedling of B. lenta whole plant integration of its environment may override local control of root growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 165 (1994), S. 21-32 
    ISSN: 1573-5036
    Keywords: allocation ; CO2 ; image analysis ; loblolly pine ; nitrogen ; root morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1573-5036
    Keywords: blue grama ; Bouteloua gracilis ; C4 grass ; CO2 enrichment ; mycorrhizae ; nitrogen ; phosphorus ; VAM ; water relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to better elucidate fixed-C partitioning, nutrient acquisition and water relations of prairie grasses under elevated [CO2], we grew the C4 grass Bouteloua gracilis (H.B.K.) lag ex Steud. from seed in soil-packed, column-lysimeters in two growth chambers maintained at current ambient [CO2] (350 μL L−1) and twice enriched [CO2] (700 μL L−1). Once established, plants were deficit irrigated; growth chamber conditions were maintained at day/night temperatures of 25/16°C, relative humidities of 35%/90% and a 14-hour photoperiod to simulate summer conditions on the shortgrass steppe in eastern Colorado. After 11 weeks of growth, plants grown under CO2 enrichment had produced 35% and 65% greater total and root biomass, respectively, and had twice the level of vesicular-arbuscular mycorrhizal (VAM) infection (19.8% versus 10.8%) as plants grown under current ambient [CO2]. The CO2-enriched plants also exhibited greater leaf water potentials and higher plant water use efficiencies. Plant N uptake was reduced by CO2 enrichment, while P uptake appeared little influenced by CO2 regime. Under the conditions of the experiment, CO2 enrichment increased root biomass and VAM infection via stimulated growth and adjustments in C partitioning below-ground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1573-5044
    Keywords: carbohydrate ; germination ; Impatiens L. ; Impatiens platypetala L. ; nitrogen ; tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In vitro germination of 20-day old immature ovules of Impatiens platypetala Lindl. was inhibited at concentrations as low as 50 mM sucrose or mannitol and 100 mM glucose. Younger ovules (12, 14, and 16 days old) were similarly inhibited at 100 mM sucrose. Inorganic nitrogen concentration did not affect germination regardless of ovule age, but seedling fresh weight was significantly less and abnormal development of seedlings was significantly increased by total inorganic nitrogen concentrations higher or lower than 30 mM (at a ratio of 20: 10 mM NO3 -: NH4 +) in the culture medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1573-5044
    Keywords: carbon ; elevated CO2 ; nitrogen ; suspension culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A photoautotrophic soybean suspension culture (SB-P) was used to study CO2 assimilation while exposed to elevated or ambient CO2 levels. These studies showed that under elevated CO2 (5% v/v) malate is the dominant fixation product, strongly suggesting that phosphoenolpyruvate carboxylase (PEPCase) is the primary enzyme involved in carbon fixation in these cells under their normal growth conditions. Citrate and [aspartate + glutamate] were also significant fixation products during fifteen minutes of exposure to 14CO2. During the ten minute unlabeled CO2 chase however, 14C-malate continued to increase while citrate and [aspartate + glutamate] declined. Fixation of 14CO2 under ambient CO2 levels (0.037%) showed a very different product pattern as 3-phosphoglycerate was very high in the first one to two minutes followed by increases in [serine + glycine] and [aspartate + glutamate]. Hexose phosphates were also quite high initially but then declined relatively rapidly. Thus, the carbon fixation pattern at ambient CO2 levels resembles somewhat that seen in C3 leaf cells while that seen at elevated CO2 levels more closely resembles that of a C4 plant. The initial fixation product of C3 plants, 3-PGA, was never detectable under high CO2 conditions. These data suggest that an in vitro photoautotrophic system would be suitable for studying carbon fixation physiology during photosynthetic and non-photosynthetic growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 139 (1992), S. 247-251 
    ISSN: 1573-5036
    Keywords: ammonium ; lupins ; nitrate ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two cultivars of Lupinus angustifolius L. were grown in a glasshouse in solutions containing NO3 -, NH4 + or NH4NO3 with a total nitrogen concentration of 2.8 M m-3 in each treatment. One cultivar chosen (75A-258) was relatively tolerant to alkaline soils whereas the other (Yandee) was intolerant to alkalinity. Controlled experiments were used to assess the impact of cationic vs. anionic forms of nitrogen on the relative performance of these cultivars. Relative growth rates (dry weight basis) were not significantly different between the two cultivars when grown in the presence of NO3 -, NH4 + or NH4NO3. However, when NO3 - was supplied, there was a modest decline in relative growth rates in both cultivars over time. When plants grown on the three sources of nitrogen for 9 days were subsequently supplied with 15NH4NO3 or NH4 15NO3 for 30 h, NH4 + uptake was generally twice as fast as NO3 - uptake, even for plants grown in the presence of NO3 -. Low rates of NO3 - uptake accounted for the decrease in growth rates over time when plants were grown in the presence of NO3 -. It is concluded that the more rapid growth of 75A-258 than Yandee in alkaline conditions was not due to preferential uptake of NH4 + and acidification of the external medium. In support of this view, acidification of the root medium was not significantly different between cultivars when NH4 + was the sole nitrogen source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-5036
    Keywords: critical concentration ; deficiency ; diagnosis ; growth rate ; lettuce ; luxury consumption ; nitrogen ; nitrate ; nutrient requirement ; petiole sap ; phosphorus ; phosphate ; potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A method is described for determining the way in which growth rate varies with plant nutrient concentration using a simple nutrient interruption technique incorporating only 2 treatments. The method involves measuring the changes in growth and nutrient composition of otherwise well-nourished plants after the supply of one particular nutrient has been withheld. Critical concentrations are estimated from the relationship between the growth rate (expressed as a fraction of that for control plants of the same size which remained well-nourished throughout) and the concentration of the growth-limiting nutrient in the plants as deficiency developed. Trials of the method using young lettuce plants showed that shoot growth rate was directly proportional to total N (nitrate plus organic N) concentration, and linearly or near-linearly related to K and P concentration over a wide range; the corresponding relationship for nitrate was strongly curvi-linear. Critical concentrations (corresponding to a 10% reduction in growth rate) determined from these results were similar to critical values calculated from models derived from field data, but were generally higher than published estimates of critical concentration (based on reductions in shoot weight) for plants of a similar size. Reasons for these discrepancies are discussed. Nitrate, phosphate or potassium concentrations in sap from individual leaf petioles were highly sensitive to changes in shoot growth rate as deficiency developed, with the slope of the relationships varying with leaf position, due to differences both in their initial concentration and in the rates at which they were utilized in individual leaves. Each nutrient was always depleted more quickly in younger leaves than in older ones, providing earlier evidence of deficiency for diagnostic purposes. Although the plants were capable of accumulating nitrate, phosphate and potassium well in excess of that needed for optimum dry matter production during periods of adequate supply, the rate of mobilization of these reserves was insufficient to prevent reductions in growth rate as the plants became deficient. This brings into question the validity of the conventional concept that luxury consumption provides a store of nutrients which are freely available for use in times of shortage. The implications of these results for the use of plant analysis for assessing plant nutrient status are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1573-5036
    Keywords: Alternaria alternata ; black point ; fertilization ; irrigation ; nitrogen ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Agronomic studies were conducted to examine the effect of fertilizer N on black point incidence in Fielder soft white spring wheat (Triticum aestivum L. em Thell.). Black point incidence rose with increases in the amount of N supplied either as fertilizer applied during the growing season in irrigation water or as soil N, specifically nitrate, from fertilizer N application in previous years. A comparison of four different irrigation regimes demonstrated that black point incidence was highest under frequent irrigation (irrigate to field capacity at 75% available moisture) and lowest under conventional irrigation (irrigate to field capacity at 50% available soil moisture). In each irrigation regime, disease incidence increased as N rates were raised from 0 to 120 kg ha-1. A residual fertilizer-N study demonstrated in 1985 and 1986 that black point incidence generally rose with increasing levels of nitrogen from either preplant applications in the spring or soil nitrate from the previous year. However, additions of fertilizer N were shown to slightly reduce black point incidence at soil nitrate levels above 150 kg ha-1. A two-year fertilizer N study demonstrated that in treatments receiving the same amount (90 kg ha-1) of fertilizer N, the amount broadcast as a preplant treatment versus the amount applied in irrigation water in a fertigation treatment had no effect on black point incidence, but all fertilized treatments had significantly higher levels of disease than the unfertilized check.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 142 (1992), S. 19-30 
    ISSN: 1573-5036
    Keywords: barley ; fertilizer ; green manure ; legume ; lentil ; nitrogen ; non-nutritional response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Green manure application may benefit subsequent crops not only by improving nitrogen (N) fertility but also via non-nutritional mechanisms. The quantification of the latter effect, however, is complicated by the confounding effect of N fertility. Two experiments were conducted in controlled environments to partition the yield response of barley to green manure between N and non-nutritional effects. Each experiment included a factorial of fertilizer N application rates and green manure application rates. The fertilizer was labelled with 15N to facilitate discrimination between N sources. Approximately 24% of the N applied in green manure was assimilated by barley after 45 days (Experiment 1) and 32% was recovered by barley grown to maturity (Experiment 2). Apparent recovery of green manure-N by barley was not appreciably affected by fertilizer application. Regression analysis of the relationship between dry matter yield and plant N uptake demonstrated that yield responses to green manure application were not entirely attributable to improved N fertility. For a given amount of N assimilated by the crop, yields were higher in green manure-amended treatments than in those receiving no green manure. In barley grown to maturity, barley response to N and non-nutritional effects were estimated to be 5.3 and 2.2g pot−1, respectively. The relationship between dry matter yield and N uptake is suggested as a method for distinguishing nutritional and non-nutritional yield responses. This approach assumes that no other nutrient is limiting growth. The presence of non-nutritional benefits observed in this study demonstrates that the agronomic value of green manure is not limited to N release and casts doubt on the assumptions inherent to calculation of fertilizer equivalents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-5036
    Keywords: calcium ; copper ; desert ; ground water ; iron ; magnesium ; manganese ; nitrogen ; phosphorus ; Prosopis glandulosa ; rooting patterns ; sodium ; symbiotic nitrogen fixation ; trace metals ; water table ; water use efficiency ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Mesquite plants (Prosopis glandulosa var. Torreyana) were grown in 2-m long columns 20 cm in diameter, and provided with a constant, stable ground water source 10 cm above the sealed base of the column. Ground water contained 0, 1 or 5 mM nitrate, or a mixed salt solution (1.4, 2.8, or 5.6 dS m-1) with the ionic ratios of ground water found in a field stand of Prosopis at Harper's Well (2.8 dS m-1). Water uptake in the highly salinized columns began to decrease relative to low salt columns when soil salinity probes 30 cm above the column base read approximately 28 dS m-1, a potential threshold for mesquite salt tolerance. Prosopis growth increased with increasing nitrate, and decreased with increasing salinity. Water use efficiency was little affected by treatment, averaging approximately 2 g dry matter L-1 water used. Most fine roots were recovered from a zone about 25 cm above the ground water surface where water content and aeration appeared to be optimal for root growth. Root-shoot ratio was little affected by nitrate, but increased slightly with increasing salinity. Plant tissue P concentrations tended to increase with increasing salinity and decrease with increasing N, approaching potentially deficient foliage concentrations at 5 mM nitrate. The whole-plant leaf samples increased in sodium concentration both with added salt and with added nitrate. Foliar manganese concentrations increased with increasing salt in the absence of nitrate. Concentrations of sodium in leaves were low (〈10 g kg-1), considering the high salt concentrations in the ground water. Prosopis appears to exclude sodium very effectively, especially from its younger leaves. Although Prosopis is highly salt tolerant, the degree to which it utilizes soil nitrate in place of biologically fixed N may lower its salinity tolerance and affect its nutrient relations in phreatic environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1573-5036
    Keywords: mineralization capacity ; nitrogen ; principal components analysis ; soil incubation ; temperate humid zone ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The N mineralization capacity of 41 temperate humid-zone soils of NW Spain was measured by aerobic incubation for 15 days at 28°C and 75% of field capacity. The main soil factors affecting organic N dynamics were identified by principal components analysis. Ammonification predominated over nitrification in almost all soils. The mean net N mineralization rate was 1.63% of the organic N content, and varied according to soil parent materials as follows: soils on basic and ultrabasic rocks 〈 soils over acid metamorphic rocks 〈 soils developed over sediments 〈 soils over acid igneous rocks 〈 soils on limestone. The N mineralization capacity was lower in natural soils than in cropped soils or pastures. The accumulation of organic matter (C and N) seems to be due to poor mineralization which was caused, in decreasing order of importance, by high exchangeable H-ion levels, high Al and Fe gel contents and, to a lesser extent (though more markedly in cropped soils), by silty clay texture and exchangeable Al ions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 164 (1994), S. 187-193 
    ISSN: 1573-5036
    Keywords: apatite ; biotite ; forest soil ; mineralization ; nitrogen ; nutrient additions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of slow (apatite, biotite) and fast-release nutrients (P, K, Mg) on C and N mineralization in acid forest soil were studied. These nutrients were applied alone or together with urea or urea and limestone. The production of CO2 in the soil samples taken one and three growing seasons after the application was lower in the soils treated with the fast-release nutrients than in the untreated soils. Similar reduction of microbial activity was not seen after the apatite and apatite+biotite treatments. In the first growing season, urea and urea+limestone enhanced CO2 production, but after three growing seasons, the opposite was true. Apatite and apatite+biotite added together with urea did not compensate for the decreasing effect of urea on the CO2 production. The addition of fast-release salts increased somewhat the concentration of NH inf4 sup+ in the soil and more NH4 + accumulated during laboratory incubation in the soil samples taken one growing season after the application. The urea addition immediately increased the concentrations of NH4 + and of NO3 − in the soil, but, three growing seasons after application, urea had only a slight increasing effect on mineral N content of the soil. Slow-release nutrients seem to have a more favourable effect than fast-release salts on nutrient turnover in acid forest soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1573-5036
    Keywords: cultivars ; grains ; maize ; nitrogen ; phosphorus ; potassium ; tropical climate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An earlier study revealed considerable genotypic variation in grain N, P and K concentrations (GNC, GPC and GKC, respectively) in tropical maize. The expression of varietal differences in GNC, GPC and GKC, however, may depend on environmental conditions such as the N status of the soil. Two tropical maize hybrids (Suwan 2301 and CP 1) with comparable yielding capacity, but contrasting GNCs, GPCs and GKCs, were therefore grown at four levels of N in a field experiment at Farm Suwan (Thailand, latitude 14.5°N). Suwan 2301 exhibited a higher GNC than did CP 1 at all rates of N, but large differences in GPC and GKC were found only at high N fertilization. This was obviously due to individual grain yield responses of the cultivars to increasing rates of N fertilizer, demonstrating that grain nutrient concentrations are, at least in part, functions of the amount of grain carbohydrates which dilute a genetically and environmentally fixed amount of grain P and K. As compared to Suwan 2301, CP 1 accumulated less N, P and K in the grains at almost all levels of N fertilization, confirming our hypothesis that the cultivation of maize genotypes with low grain mineral nutrient concentrations may help third-world cash-crop farmers to reduce the need for scarce and costly mineral fertilizers. This finding has to be verified at reduced availability of soil −P, −K, and water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 161 (1994), S. 241-250 
    ISSN: 1573-5036
    Keywords: carbon ; microorganisms ; nitrogen ; plant succession ; range grasses ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen and rhizosphere microorganism effects on nitrogen and carbon dynamics of Sitanion hystrix (early successional species), Stipa comata and Poa secundu which are (mid-successional species), and Agropyron spicatum (late successional species) were evaluated in a growth chamber study. Rhizosphere inocula resulted in increased nitrogen in both root and shoot tissue, and also of water-extractable carbon in the rhizosphere. Plant species, rhizosphere inocula and nitrogen level showed a three-way significant interaction for total and plant-available nitrogen. Rhizosphere microbe presence resulted in higher plant-available nitrogen in the rhizosphere of S. hystrix and less with A. spicatum, suggesting nitrogen immobilization with the later successional grass. Higher nitrogen resulted in decreased active bacteria in the rhizosphere of all plants tested, and decreased fungal hyphal lengths in the rhizosphere of the later successional P. secunda and A. spicutum. Exudate carbon in the rhizosphere of the late successional species A. spicatum, was more recalcitrant, which also may contribute to nitrogen immobilization. These differential responses of early- and late-successional grasses may be important factors contributing to plant succession.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1573-5036
    Keywords: ammonium sulphate ; fine roots ; needles ; nitrogen ; Norway spruce ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1573-5036
    Keywords: abiotic factors ; ectorganic layer ; forest ; mineralization ; moisture ; nitrification ; nitrogen ; pH ; regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The relationships between nitrogen transformations and moisture and pH in coniferous forest litter were determined using laboratory incubation experiments. A linear relation between gravimetric moisture content and nitrification was found within the whole studied range of moisture conditions (10–290% ODW). Net nitrogen mineralization increased linearly with moisture content up to 140% ODW. At higher moisture contents, net mineralization was found to be independent of moisture. Relative nitrification was found to be a linear function of moisture content. The dependence of the CO2 production rates on moisture in the coniferous litter decreased from low to high moisture availability. Due to a nearly linear relationship between gravimetric moisture content and log-(water potential) within the investigated moisture range, the same type of relationships were found with this latter parameter as well. The relationship between nitrogen transformations and pH was studied by means of the addition of different amounts of HCl and NaOH during short incubation experiments (1 week). Nitrification was found to be a negative linear function of the H-ion concentration within the range of 0.04 (pH 4.40) and 0.36 (pH 3.45) mmol H-ion L−1. At a higher H-ion concentration and thus at a lower pH than 3.45, no nitrate was produced any more. No relationship between net mineralization and pH was found.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 163 (1994), S. 121-130 
    ISSN: 1573-5036
    Keywords: decomposition rates ; enriched CO2 ; lignin ; litter respiration ; microcosms ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ash (Fraxinus excelsior L.), birch (Betula pubescens Ehrh.), sycamore (Acer pseudoplatanus L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) leaf litters were monitored for decomposition rates and nutrient release in a laboratory microcosm experiment. Litters were derived from solar domes where plants had been exposed to two different CO2 regimes: ambient (350 μL L-1 CO2) and enriched (600 μL L-1 CO2). Elevated CO2 significantly affected some of the major litter quality parameters, with lower N, higher lignin concentrations and higher ratios of C/N and lignin/N for litters derived from enriched CO2. Respiration rates of the deciduous species were significantly decreased for litters grown under elevated CO2, and reductions in mass loss at the end of the experiment were generally observed in litters derived from the 600 ppm CO2 treatment. Nutrient mineralization, dissolved organic carbon, and pH in microcosm leachates did not differ significantly between the two CO2 treatments for any of the species studied. Litter quality parameters were examined for correlations with cumulative respiration and decomposition rates: N concentration, C/N and lignin/N ratios showed the highest correlations, with differences between litter types. The results indicate that higher C storage will occur in soil as a consequence of litter quality changes resulting from higher atmospheric concentrations of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 160 (1994), S. 193-199 
    ISSN: 1573-5036
    Keywords: gaps ; ion uptake ; nitrogen ; nutrient acquisition ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree seedlings that colonize large treefall gaps are generally shade-intolerant species with high potential relative growth rates. Nutrient availability may be significantly elevated in disturbance-induced gaps, however, little is known about the role of differences in nutrient uptake capacities of different species in structuring the community response to gap openings in eastern North American deciduous forests. Seven tree species were grown from seed under both a high and a low nutrient regime, and uptake kinetics of phosphate, ammonium, and nitrate were studied. Yellow birch, a species with intermediate shade tolerance and relative growth rate, had the highest maximum rates of uptake of all ions, while tulip tree, a gap-colonizing species with high relative growth rate, had the lowest rate of phosphate uptake and intermediate rates of ammonium and nitrate uptake. Beech and hickory, which have low relative growth rates and are not gap-colonizing species, had intermediate levels of nutrient uptake. There was no evidence that species with the highest maximum uptake rates measured at high supply concentrations had relatively low uptake at low nutrient supply concentrations. Although birch increased phosphate absorption capacity when grown under a low nutrient regime, this pattern did not hold for nitrate or ammonium uptake, and other species showed no change in nutrient uptake capacity according to nutrient growth regime. Clearly, factors other than nutrient absorption capacity, such as nutrient use efficiency or allocation to root vs. shoot biomass, underlie differences in species' capacities to colonize and maintain a high relative growth rate in canopy gaps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1573-5036
    Keywords: CO2 ; gas exchange ; nitrogen ; Populus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil N availability may play an important role in regulating the long-term responses of plants to rising atmospheric CO2 partial pressure. To further examine the linkage between above- and belowground C and N cycles at elevated CO2, we grew clonally propagated cuttings of Populus grandidentata in the field at ambient and twice ambient CO2 in open bottom root boxes filled with organic matter poor native soil. Nitrogen was added to all root boxes at a rate equivalent to net N mineralization in local dry oak forests. Nitrogen added during August was enriched with 15N to trace the flux of N within the plant-soil system. Above-and belowground growth, CO2 assimilation, and leaf N content were measured non-destructively over 142 d. After final destructive harvest, roots, stems, and leaves were analyzed for total N and 15N. There was no CO2 treatment effect on leaf area, root length, or net assimilation prior to the completion of N addition. Following the N addition, leaf N content increased in both CO2 treatments, but net assimilation showed a sustained increase only in elevated CO2 grown plants. Root relative extension rate was greater at elevated CO2, both before and after the N addition. Although final root biomass was greater at elevated CO2, there was no CO2 effect on plant N uptake or allocation. While low soil N availability severely inhibited CO2 responses, high CO2 grown plants were more responsive to N. This differential behavior must be considered in light of the temporal and spatial heterogeneity of soil resources, particularly N which often limits plant growth in temperate forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1573-5036
    Keywords: carbon dioxide ; nitrogen ; ponderosa pine ; soil respiration ; soil carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-5036
    Keywords: grassland ; leaching ; leaf litter ; macro-organic matter ; mineralization ; nitrogen ; ploughing ; roots ; stubble
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The amounts of organic matter in the stubble, litter, root and soil macro-organic matter fractions of two swards of perennial ryegrass that had received normal applications of either fertilizer or cattle urine were, on average for the four fractions, about 3000, 500, 11,500 and 8,800 kg ha−1. The swards had been established 8 or 15 years previously and each was sampled at intervals over a period of about one year. The amounts of N contained in the four fractions were, on average, 68, 12, 249 and 240 kg ha−1, a total of 569 kg N ha−1. With other swards, increasing rates of application of fertilizer N were found to have little effect on the amounts of organic matter in stubble and roots. Concentrations of N in the organic matter of the stubble and roots, however, increased significantly with increasing rate of fertilizer application, though, with stubble, moderate rates of application had little effect. Assessments based on these data, together with other published information, indicate that the amount of N mineralized from the combined stubble, litter, root and macro-organic matter fractions during the first year after ploughing may range from about 40 kg to at least 360 kg N ha−1 depending on the age of the sward and its recent management. The amount mineralized is likely to increase with age of sward, with increasing rate of fertilizer N and with utilisation by grazing rather than cutting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 123 (1990), S. 155-159 
    ISSN: 1573-5036
    Keywords: cultivars ; nitrogen ; roots ; tropic climate ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Due to the high price of fertilizer the input of N for grain maize production must be kept low in many parts of the world. Low input cultivars have been suggested to meet this requirement. Screening of a group of tropical cultivars revealed two high input, two low input and two intermediate cultivars with regard to N utilization. One of the causes of an interaction between genotype and N fertilization might be differences in root morphology. Screening for such differences at an early seedling stage would facilitate the selection for low input varieties. This hypothesis was tested by growing seedlings of the six varieties at different levels of N until the fourth leaf stage. There was no significant interaction between genotypes and N supply. At low and medium N supply, the total seedling biomass was the same but at low N a higher proportion of dry weight was found in the roots. Total biomass was reduced at high N. Low input and intermediate cultivars had higher shoot and root dry weights than did high input cultivars but no significant differences in root surface area were found. Root surface area was greatest at low N. Number and total length of seminal roots were significantly lower for high input varieties which, in combination with a relatively high root surface area, points to an intensive root type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 124 (1990), S. 33-37 
    ISSN: 1573-5036
    Keywords: leaf area ; nitrogen ; mineral nutrition ; phosphorus ; photoperiod ; Triticum ; wheat ; spikelet initiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of N and P on the number of spikelets of spring wheat (Triticum aestivum L.), grown in nutrient solution, were studied under 8 h and 16 h photoperiods. The effect of P was apparent only at a high rate of N supply and the effects of N were increased significantly at a high rate of P supply. Increasing N supply increased the number of spikelets due to a promotion of the rate of spikelet initiation. It also increased the leaf-blade area and the dry matter weight of the plants at the stage of terminal spikelet initiation. These effects of N were much greater under the short photoperiod than under the long photoperiod. The practical significance of these findings for winter-grown wheat in temperate regions is pointed out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 128 (1990), S. 97-101 
    ISSN: 1573-5036
    Keywords: calcium ; magnesium ; nitrogen ; nitrogen saturation ; Norway spruce ; nutritional imbalance ; Picea abies ; soil solution ; sulphur/nitrogen ratio ; tree nutrition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Differences in nitrogen cycling and in the nutrition of trees are significantly coupled to the levels of nitrogen input and to the nitrate levels in the soil solution. Relatively high nitrogen supply can cause unbalanced nutrition on sites which contain either low or moderate amounts of other nutrients. This is indicated by low cation/nitrogen ratios in foliage and also by the S/N ratio falling temporarily below 0.030.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 139 (1992), S. 253-263 
    ISSN: 1573-5036
    Keywords: carbon ; exudation ; mineralisation ; nematode ; nitrogen ; protozoa ; rhizosphere ; root ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The possibility is examined that carbon (C) released into the soil from a root could enhance the availability of nitrogen (N) to plants by stimulating microbial activity. Two models are described, both of which assume that C released from roots is used by bacteria to mineralise and immobilise soil organic N and that immobilised N released when bacteria are grazed by bacterial-feeding nematodes or protozoa is taken up by the plant. The first model simulates the individual transformations of C and N and indicates that root-induced N mineralisation could supply only up to 10% of the plant's requirement, even if unrealistically ideal conditions are assumed. The other model is based on evidence that about 40% of immobilised N is subsequently taken up by the plant. A small net gain of N by the plant is shown (i.e. the plant takes up more N than it loses through exudation), although with exudate of up to C:N 33:1 less than 6% of the plant's requirement is supplied by root-induced N mineralisation. It is argued, however, that rhizosphere bacteria do not use plant-derived C to mineralise soil organic N to any great extent and that in reality root-induced N mineralisation is even less important than these models indicate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 141 (1992), S. 57-67 
    ISSN: 1573-5036
    Keywords: aquatic legumes ; Azolla ; Cyanobacteria ; flooded rice soils ; nitrogen ; N2 fixation ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper summarizes recent achievements in exploiting new biological nitrogen fixation (BNF) systems in rice fields, improving their management, and integrating them into rice farming systems. The inoculation of cyanobacteria has been long recommended, but its effect is erratic and unpredictable. Azolla has a long history of use as a green manure, but a number of biological constraints limited its use in tropical Asia. To overcome these constraints, the Azolla-Anabaena system as well as the growing methods were improved. Hybrids between A. microphylla and A. filiculoides (male) produced higher annual biomass than either parent. When Anabaena from high temperature-tolerant A. microphylla was transferred to Anabaena-free A. filiculoides, A. filiculoides became tolerant of high temperature. Azolla can have multiple purposes in addition to being a N source. An integrated Azolla-fish-rice system developed in Fujian, China, could increase farmers' income, reduce expenses, and increase ecological stability. A study using Azolla labeled with 15N showed the reduction of N losses by fish uptake of N. The Azolla mat could also reduce losses of urea N by lowering floodwater-pH and storing a part of applied N in Azolla. Agronomically useful aquatic legumes have been explored within Sesbania and Aeschynomene. S. rostrata can accumulate more than 100kg N ha-1 in 45 d. Its N2 fixation by stem nodules is more tolerant of mineral N than that by root nodules, but the flowering of S. rostrata is sensitive to photoperiod. Aquatic legumes can be used in rainfed rice fields as N scavengers and N2 fixers. The general principle of integrated uses of BNF in rice-farming systems is shown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1573-5036
    Keywords: nitrogen ; precoditioning ; roots ; sycamore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Acer pseudoplatanus L. trees were grown in sand culture for 2 years and, in 1988, supplied with either 1.0 mol N m-3 (low N) or 6.0 mol N m-3 (high N) to precondition their growth. In 1989, the same trees received either high or low nitrogen, producing four treatments; High N in 1988/High N in 1989; High N in 1988/Low N in 1989; Low N in 1988/Low N in 1989; and Low N in 1988/High N in 1989. Plant growth was affected by N supply in both years. In 1989 the Low N/High N treated trees had the same overall mass, leaf mass and stem girth as the High N/High N treatment. Early spring growth of foliage and roots was conditional on nitrogen supplied in the previous season. Later, the rapid increases in leaf, stem and root growth under high N was through root uptake. Internal partitioning of growth was affected, with the Low N/High N treatment producing more new leaves on axillary shoots, and more new white roots on existing structures, than the Low N/Low N treatment. Despite effects of the N preconditioning on the structure of both canopy and root system, nitrogen uptake was solely dependent on the current nitrogen supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1573-5036
    Keywords: enzymes ; fine root vitality ; nitrogen ; Picea abies ; Pinus sylvestris ; triphenyltetrazolium chloride
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The present study is an attempt to investigate whether triphenyltetrazolium chloride (TTC), a chemical compound which measures dehydrogenase activity, could be used to study fine-root vitality from two different points of view: (i) in relation to ageing; (ii) as an indicator of environmental stress, in this case of excess nitrogen. The study was performed with excavated fine-roots from middle-aged Norway spruce and Scots pine stands. The ageing aspect was investigated by applying TTC to fine roots separated into different vitality classes, based on certain morphological characteristics. A significant difference in activity was demonstrated only in the case of roots that could be referred to as living and dead, respectively. The use of TTC on fine roots grown at different nitrogen supply levels indicates a possible increase in dehydrogenase activity with increasing nitrogen supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1573-5044
    Keywords: Fatty acids ; hyoscyamine ; Hyoscyamus muticus ; nitrogen ; sucrose ; transformed root cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abatract The effect of carbon and nitrogen sources on two well-established hairy root clones, LBA1S and C58A, of Hyoscyamus muticus strain Cairo, were investigated. Both clones exhibited completely different patterns with regards to their growth rate, hyoscyamine accumulation, and fatty acid contents. Clone C58A grew faster and yielded more biomass (17.4 g l-1, in 21 days), but produced less hyoscyamine. The maximum hyoscyamine content (120 mg l-1) in clone LBA1S was reached in 28 days. Neither of the clones could use lactose or fructose as the sole carbon source, nor ammonium as the sole nitrogen source. The growth in the medium containing glucose was significantly reduced compared to that containing sucrose. Clone LBA1S was sensitive to the changes in sucrose concentration and an increase in ammonium in the culture medium, whereas C58A tolerated these changes better but was more sensitive to the increase in total nitrogen. Lipid synthesis was active in the exponential growth phase, and the total fatty acid content varied from 5 to 34 mg g-1 of dry root material. The major fatty acids were linoleic, palmitic and linolenic. There were considerable differences in the total amount of lipids and in their relative ratios when different nutrients were applied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-5117
    Keywords: phytoplankton collapses ; hypertrophic ; nitrogen ; phosphorus ; sedimentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Short-term changes in phytoplankton and zooplankton biomass have occurred 1–3 times every summer for the past 5 years in the shallow and hypertrophic Lake Søbygård, Denmark. These changes markedly affected lake water characteristics as well as the sediment/water interaction. Thus during a collapse of the phytoplankton biomass in 1985, lasting for about 2 weeks, the lake water became almost anoxic, followed by rapid increase in nitrogen and phosphorus at rates of 100–400 mg N M−2 day−1 and 100–200 mg P m−1 day−1. Average external loading during this period was about 350 mg N m−2 day−1 and 5 mg P m−2 day−1, respectively. Due to high phytoplankton biomass and subsequently a high sedimentation and recycling of nutrients, gross release rates of phosphorus and nitrogen were several times higher than net release rates. The net summer sediment release of phosphorus was usually about 40 mg P m−2 day−1, corresponding to a 2–3 fold increase in the net phosphorus release during the collapse. The nitrogen and phosphorus increase during the collapse is considered to be due primarily to a decreased sedimentation because of low algal biomass. The nutrient interactions between sediment and lake water during phytoplankton collapse, therefore, were changed from being dominated by both a large input and a large sedimentation of nutrients to a dominance of only a large input. Nitrogen was derived from both the inlet and sediment, whereas phosphorus was preferentially derived from the sediment. Different temperature levels may be a main reason for the different release rates from year to year.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1573-5117
    Keywords: submerged macrophyte ; Ceratophyllum demersum ; litter ; decomposition ; pyrolysis mass spectra ; residual mass ; carbon ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A study was made of decomposition ofCeratophyllum demersum litter over a 17-day period under controlled conditions of temperature and oxygen (5, 10 and 18 °C; aerobic and anaerobic) and over a 169-day period in the field (Lake Vechten, The Netherlands). Litter, water and sediment were sampled on the 0, 2, 4, 7 and 17th day under controlled conditions and on the 0, 17, 49, 127 and 169th day in the field. The litter was analyzed quantitatively for dry mass, ash, carbon, nitrogen, phosphorus and qualitatively of organic composition by pyrolysis mass spectrometry. The water was analyzed for the elemental concentrations of organic carbon (total and dissolved), nitrogen (total, ammonia and particulate) and phosphorus (total and orthophosphate) and for the concentrations of photosynthetic pigments and bacteria. The sediment was analyzed for the elemental concentrations of nitrogen, carbon and phosphorus, and for bacterial numbers. The pattern of litter mass loss fitted an exponential model fairly well. Mass decreased faster under controlled aerobic than under anaerobic conditions and the decrease was stimulated by increasing temperature, relatively more in the range of 5 to 10 °C (by 20%) than in the range of 10 of 18 °C (by 2%). The residual mass ranged from 73 to 43% of initial under controlled aerobic conditions and from 84 to 65% under anaerobic conditions after 17 days. It decreased far less in the field, to 38% of initial mass in the field after 169 days. The litter initially lost a carbohydrate fraction by leaching in all treatments. The protein content decreased initially as well but increased subsequently at increasing temperature stimulated under anaerobic conditions. The changes in organic composition were correlated with those in nitrogen but not with those in carbon and phosphorus contents. The organic composition of litter incubated in the field differed from that of litter incubated in the laboratory. The field residues contained less proteinaceous material than the laboratory residues. The changes in carbon, nitrogen and phosphorus concentrations in the litter showed different patterns. The carbon concentration generally increased, the nitrogen concentration initially dropped and increased subsequently, and the phosphorus concentration initially dropped and remained relatively constant subsequently. Chemical immobilization of the decomposition process may have occurred in the laboratory, but was unlikely in the field. Carbon, nitrogen and phosphorus left the litter initially largely in particulate form and were recovered in the water. The ratio dissolved: total nutrient concentration was lower under controlled aerobic than under anaerobic conditions. Increasing temperature stimulated bacterial use of dissolved organic carbon and nitrogen. A rapid nutrient flow occurred from macrophyte litter, via water to sediment. The phytoplankton biomass in the water was greatly stimulated by substances freed from the decomposing litter. Diatoms increased generally relatively more than green algae, predominating alternatively with green algae under aerobic conditions and continuously under anaerobic conditions. Bacterial numbers in the water initially increased, partly due to transgression of bacteria from the sediment-water interface to the water and partly due to an actual increase in community biomass. The bacteria returned largely to the sediment-water interface, stimulated by increasing temperature, as most of the substrate readily usable by them had left the litter in the litter-bag and was associated with the upper sediment layers. It is feasible that the annual die-off of theC. demersum population of Lake Vechten barely affects nutrient cycling in the lake, because the contribution to the nutrient pools of the lake when fully mixed is only small. However, small particles originating from decomposingC. demersum litter may influence the lake considerably by decreasing water transparency and serving as a food source for filter-feeders and detritivorous macrofauna.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 202 (1990), S. 61-69 
    ISSN: 1573-5117
    Keywords: Gulls ; phosphorus ; nitrogen ; eutrophication ; excretion ; nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nutrient excretion rates and the annual contribution of P from the feces of the gullsLarus argentatus andL. marinus (and of N fromL. argentatus) to the nutrient budget of Gull Pond (Wellfleet), a soft water seepage lake, have been estimated. Intensive year-round gull counts by species were combined with determinations of defecation rate and the nutrient content of feces to quantitatively assess the P loading rates associated with regular gull use of this coastal pond on a seasonal and annual basis. Total P loading from gulls was estimated to be 52 kg yr−1, with 17 kg fromL. argentatus and 35 kg fromL. marinus, resulting from about 5.0 × 106 h yr−1 and 1.7 × 106 h yr−1 of pond use. This compares with P loading estimates of 67 kg yr−1 from upgradient septic systems, 2 kg yr−1 from precipitation and 3 kg yr−1 from unpolluted ground water. Fifty-six percent of annual gull P loading was associated with migratory activity in late fall. Estimated annual N loading byL. argentatus was 14 kg TKN, 206 g NO3-N, and 1.85 g g NH3-N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; bluegill ; plankton ; mesocosm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We conducted an outdoor mesocosm experiment of factorial design consisting of three levels of nutrient supply (no nutrient addition and additions of nitrogen and phosphorus in ratios of 10:1 and 45:1) cross-classified with two levels of bluegill (Lepomis macrochirus) (presence and absence). Nutrient supply significantly affected total phosphorus (TP), total nitrogen (TN), TN: TP ratio, turbidity, Secchi depth, phytoplankton chlorophyll, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers. The presence of bluegill significantly increased TP, turbidity, diatoms, unicellular green algae, colonial blue-green algae, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers, and decreased Secchi depth, cladocerans, cyclopoid copepodids, copepod nauplii and chironomid tube densities. Nutrient supply and fish effects were not independent of each other as shown by significant nutrient × fish interaction effects for TP, Secchi depth, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1573-5117
    Keywords: River Rhine ; phytoplankton ; suspended material ; carbon ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The spatial and temporal distribution of element concentrations were monitored together with chlorophyll a as an indicator of algal density to assess the effect of phytoplankton on the elemental composition (C, N, P) of suspended materials in the lower Rhine. The high concentrations of particulate C, N and P in the river were found to decrease in the delta and to increase again in the estuarine turbidity zone. Phytoplankton blooms increased the concentrations of particulate C, N, and P significantly in the upstream part of the river. In summer 1989, 15–65% of the particulate C and 20–75% of the particulate N were attributable to phytoplankton. Together with published data these observations indicate that in eutrophic rivers, the input of organic materials from the catchment is strongly modified and supplemented by in situ growth of phytoplankton. During seaward transport the phytoplankton and the particulate elements disappeared from the river water concomitantly with the suspended matter, indicating an increased retention of these elements due to sedimentation. In contrast, soluble ammonia, nitrite and phosphate increased in the tidal reaches of the river because of local input in the harbour and city of Rotterdam and because of mineralization. Therefore the total nutrient load of the Rhine estimated at the German/Dutch border does not reflect the actual input into the sea.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 230 (1992), S. 193-200 
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; ricefield system ; drainage channels ; mediterranean Deltas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nitrogen and phosphorus released into the water of a main drainage channel in the Ebro Delta was measured during a period of rice cultivation. An increase in total nitrogen and phosphorus in its different forms in accordance with the increase in cultivated area drained was observed. A significant correlation between the release of nutrients into the water and the nutrient load, for both nitrogen and phosphorus, if we consider the release of nutrients per unit of length of the channel and increased total phosphorus content of the water that flows through it during the period of rice cultivation. Physical and chemical changes in the water as a result of ricefield metabolism may explain the differences observed in nitrogen and phosphorus cycles between Ebro and Rhône Deltas, two mediterranean deltaic systems where a large area with similar drainage system is used for rice cultivation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 275-276 (1994), S. 359-369 
    ISSN: 1573-5117
    Keywords: agriculture ; blue-green algae ; eutrophication ; internal loading ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The impact of agriculture was estimated on two shallow, eutrophic lakes, Lake Kotojärvi and Lake Villikkalanjärvi in southern Finland. The main emphasis was on phosphorus and nitrogen budgets and on the phytoplankton dynamics. Special attention was paid to internal P loading and blue-green algal blooms. The mean Tot-P load from agricultural land was 1.2 kg ha-1 a-1 in both basins and Tot-N loads were 19 kg ha-1 a-1 in L. Villikkalanjärvi and 12 kg ha-1 a-1 in L. Kotojärvi. The Tot-P input to L. Kotojärvi was on an average 0.62 g m-2 a-1 (per lake surface area), and the Tot-N input 9.1 g m-2 a-1. The corresponding inputs to L. Villikkalanjärvi were 3.1 and 57 g m-2 a-1, respectively. The annual variation followed the runoff volumes. About half of the Tot-P and one third of the Tot-N load was retained in L. Kotojärvi. In L. Villikkalanjärvi the retention was only 24% for Tot-P and 19% for Tot-N. The difference was very probably due to a longer theoretical retention time in L. Kotojärvi. In L. Villikkalanjärvi the mean concentration of Tot-P was 120 µg 1-1 and that of Tot-N 1700 µg 1-1 and the corresponding figures in L. Kotojärvi 67 and 990 µg 1-1, respectively. The mean chlorophyll a concentration was, however, higher in L. Kotojärvi (26 µg 1-1) than in L. Villikkalanjärvi (20 µg 1-1). This was probably due to an internal P load in L. Kotojärvi: in 1988 the internal load of dissolved P was estimated to be as much as twofold the external load. In L. Villikkalanjärvi the internal dissolved P load was only up to 50% of the external input. In L. Kotojärvi the high internal P load coupled with a low DIN:DIP ratio resulted in a strong blue-green algal bloom in the summer of 1988. In L. Villikkalanjärvi blue-green algae were observed only in small amounts. Even in August 1990, when the DIN:DIP ratio was low enough to favor the occurrence of blue-green algae, they contributed only up to 10–15% of the total phytoplankton biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 277 (1994), S. 17-39 
    ISSN: 1573-5117
    Keywords: carbon ; phosphorus ; nitrogen ; silica ; sedimentation ; mineralization ; meromixis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dynamics of seston and dissolved elements in a meromictic lake with high concentrations of manganese and iron in the monimolimnion were studied through an annual cycle. This publication presents results for assimilation, sedimentation and recovery of nutrients (C, N, P, and Si) in the trophogenic zone. Phosphorus deficiency kept the productivity of the diatom dominated phytoplankton at an oligotrophic level. High concentrations of iron in influent streams and redistribution followed by precipitation of iron during periods of partial turnover removed phosphorus from the water. High concentrations of manganese and sulfate did not have the anticipated fertilizing effect, and recovery of nutrients from the depth of the lake was negligible. Mass balance calculations indicate that liberation of phosphorus from the sediments in the trophogenic zone was most important for the maintenance of primary production. 75% of carbon, 80% of nitrogen and 25% of phosphorus assimilated by the phytoplankton was mineralized in the trophogenic zone. Silica was effectively regenerated from the littoral zone during the decline of diatom blooms. Nitrogen and silica retention was 45% of the external load compared to 66% for phosphorus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1573-5117
    Keywords: eutrophication ; birds ; lake ; nitrogen ; phosphorus ; eutrophisation ; oiseaux ; lac ; azote ; phosphore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Résumé Le plus grand lac de plaine français, Grand-Lieu, est actuellement largement eutrophisé. Le but de cette étude est d'estimer l'importation annuelle de N et P par les fientes des oiseaux qui s'alimentent à l'extérieur du lac, et de la comparer avec les apports des rivières alimentant le lac. Deux années sont comparées: 1981–82 et 1990–91. Les populations nicheuses (jusqu'à 956 couples de hérons cendrés et 136 couples de grands cormorans et 30 000 canards) et hivernantes (jusqu'à 17 000 canards, 1100 grands cormorans, 15 000 goélands et 2,4 millions d'étourneaux) ont respectivement importé 5800 kg de N total en 1981–82 et 7640 en 1990–91, soit 0,7% et 0,4% des entrées totales du système, et 2000 à 2530 kg de P total soit 2,4 et 6,6% des entrées. Les étourneaux sont responsables des trois quarts des apports d'azote par les oiseaux, et les canards de l'essentiel du reste, tandis que la part des étourneaux baisse pour le phosphore (36% en 1981–82 et 41% en 1990–91), au profit des Canards et des Hérons (respectivement 35% et 27% en 1981–82, 22% et 24% en 1990–91). Mais pendant la phase de croissance végétale (avril–septembre), la part des oiseaux monte jusqu'à 37% des entrées totales de phosphore. L'action localisée des colonies d'oiseaux piscivores est significative, avec une teneur de phosphore 42 fois plus grande dans l'eau sous la colonie qu'à l'extérieur des colonies. A l'échelle du l'ac, l'action actuelle globalement mineure des oiseaux sur les apports totaux d'azote et de phosphore est largement due à l'augmentation catastrophique des apports d'origine humaine (agriculture intensive et stations d'épuration). La teneur moyenne des rivières atteint désormais 10 mg l−1 de N (jusqu'à 23 mg en crue) et 394 mg m−3 de P (jusqu'à 468 mg en crue). Avant cette pollution généralisée, l'eau des rivières bretonnes ne contenait dans les années 1960 que 0,1 à 1,1 mg l−1 de N et 1 à 5 mg m−3 de P lors des périodes de débits maximum. A cette époque, les oiseaux représentaient probablement jusqu'à 36% des apports de N et 95% des apports de P dans les entrées du système lacustre.
    Notes: Abstract The largest natural lake in France, Grand-Lieu, has suffered eutrophication. The objective of the study was to estimate the annual input of nutrients (N, P) resulting from avian excrement, deposited by birds feeding out of the lake and returning to its waters for breeding or roosting, as compared to the input by the rivers that enter in the lake. Two years are compared: 1981–82 and 1990–91. About 1600–2000 breeding herons and cormorants, 20 000–33 000 wintering ducks, gulls and cormorants and 1–2.4 million starlings deposited about 5800 kg total N in 1981–82 and 7640 kg in 1990–91. Respectively, 2000 and 2530 kg total P were deposited over the same time periods. These represent 0.7% and 0.4% of the total N input of the lake and 2.4 and 6.6% of the total P input in 1981–82 and 1990–91. Starlings account for 74% of the N and mallards most of the rest. P input by starlings (36% in 1981–82, 41% in 1990–91), and by mallards and herons (35% and 27% in 1981–82 and 22% and 24% in 1990–91 respectively) plays an appreciable role among birds. During the plant growing period (April–September), the contribution by birds can increase to 37% of total P input of the lake. Piscivorous bird colonies concentrate Phosphorus 42 times more within the colony than outside the colony. Overall, the role birds play in total N and P input is relatively small due to very high inputs from human sewage and agriculture run off. The monthly mean concentration of the water of the two rivers reaches currently 10 mg l−1 of N (to 23 mg during peak floods) and 394 mg m−3 of P (to 468 mg during peak floods). Earlier, for example in the 1960's, water in Brittany only contained 0.1 to 1.1 mg 1−1 of N and 1 to 5 mg m−3 of P during the maximum flow period. At this time, birds could probably have represented annually up to 37% of the N input and up to 95% of the P input to the lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 202 (1990), S. 61-69 
    ISSN: 1573-5117
    Keywords: Gulls ; phosphorus ; nitrogen ; eutrophication ; excretion ; nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nutrient excretion rates and the annual contribution of P from the feces of the gulls Larus argentatus and L. marinus (and of N from L. argentatus) to the nutrient budget of Gull Pond (Wellfleet), a soft water seepage lake, have been estimated. Intensive year-round gull counts by species were combined with determinations of defecation rate and the nutrient content of feces to quantitatively assess the P loading rates associated with regular gull use of this coastal pond on a seasonal and annual basis. Total P loading from gulls was estimated to be 52 kg yr−1, with 17 kg from L. argentatus and 35 kg from L. marinus, resulting from about 5.0 × 106 h yr−1 and 1.7 × 106 h yr−1 of pond use. This compares with P loading estimates of 67 kg yr−1 from upgradient septic systems, 2 kg yr−1 from precipitation and 3 kg yr−1 from unpolluted ground water. Fifty-six percent of annual gull P loading was associated with migratory activity in late fall. Estimated annual N loading by L. argentatus was 14 kg TKN, 206 g NO3-N, and 1.85 g g NH3-N.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5117
    Keywords: nutrient regeneration ; phosphorus ; nitrogen ; sediment ; lakes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mineralization of phosphorus and nitrogen from seston was studied in consolidated sediment from the shallow Lake Arreskov (July and November) and in suspensions without sediment (July). In the suspension experiment, phosphorus and nitrogen were mineralized in the same proportions as they occurred in the seston. During the 30 days suspension experiment, 47 and 43% of the particulate phosphorus and nitrogen, respectively, was mineralized with constant rates. Addition of seston to the sediment had an immediate enhancing effect on oxygen uptake, phosphate and ammonia release, whereas nitrate release decreased due to denitrification. The enhanced rates lasted for 2–5 weeks, while the decrease in nitrate release persisted throughout the experiment. The increase in oxygen uptake (equivalent to 21% of the seston carbon) was, however, only observed in the July experiment. The release of phosphorus and nitrogen from seston decomposing on the sediment surface differed from the suspension experiments. Thus, between 91 and 111% of the phosphorus in the seston was released during the experiments. Due to opposite directed effects on ammonium and nitrate release, the resulting net release of nitrogen was relatively low. A comparison of C/N/P ratios in seston, sediment and flux rates indicated that nitrogen was mineralized faster than phosphorus and carbon. Some of this nitrogen was lost through denitrification and therefore not measurable in the flux of inorganic nitrogen ions. This investigation also suggests that decomposition of newly settled organic matter in sediments have indirect effects on sediment-water exchanges (e.g. by changing of redox potentials and stimulation of denitrification) that modifies the release of mineralized phosphate and nitrogen from the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 286 (1994), S. 155-165 
    ISSN: 1573-5117
    Keywords: decomposition ; marsh ; litter ; nitrogen ; Scolochloa festucacea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of seasonal inundation on the decomposition of emergent macrophyte litter (Scolochloa festucacea) was examined under experimental flooding regimes in a northern prairie marsh. Stem and leaf litter was subjected to six aboveground inundation treatments (ranging from never flooded to flooded April through October) and two belowground treatments (nonflooded and flooded April to August). Flooding increased the rate of mass loss from litter aboveground but retarded decay belowground. Aboveground, N concentration decreased and subsequently increased earlier in the longer flooded treatments, indicating that flooding decreased the time that litter remained in the leaching and immobilization phases of decay. Belowground, both flooded and nonflooded litter showed an initial rapid loss of N, but concentration and percent of original N remaining were greater in the nonflooded marsh throughout the first year. This suggested that more N was immobilized on litter under the nonflooded, more oxidizing soil conditions. Both N concentration and percent N remaining of belowground litter were greater in the flooded than the nonflooded marsh the second year, suggesting that N immobilization was enhanced after water-level drawdown. These results suggest different mechanisms by which flooding affects decomposition in different wetland environments. On the soil surface where oxygen is readily available, flooding accelerates decomposition by increasing moisture. Belowground, flooding creates anoxic conditions that slow decay. The typical hydrologic pattern in seasonally flooded prairie marshes of spring flooding followed by water-level drawdown in summer may maximize system decomposition rates by allowing rapid decomposition aboveground in standing water and by annually alleviating soil anoxia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1573-5095
    Keywords: foliage ; grafting ; nitrogen ; phosphorus ; Pinus caribaea ; rootstock ; scion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Both scion and rootstock clones significantly influenced scion elongation and concentrations of nitrogen and phosphorus in the scion foliage. Scion clone was the more important determinant. Scion clone × rootstock clone interactions were not significant. The ability of a clone to elongate as a scion was not correlated with its capacity to promote or retard scion elongation when used as a rootstock. Genetic differences in foliar nutrient concentrations appeared to reflect levels of nutrient demand, rather than the ability of roots to absorb nutrients. Nutrient demand of the rootstock can also explain negative correlations between nitrogen levels in rootstock clones and levels of both nitrogen and phosphorus in the scions. There was no significant relationship between scion elongation and foliar nitrogen concentrations of either rootstock or scion. The weak relationship between scion elongation and concentration of phosphorus in the rootstock apparently resulted from tissue dilution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 203 (1990), S. 93-97 
    ISSN: 1573-5117
    Keywords: sediments ; nitrogen ; phosphorus ; nutrient limitation ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A diffusion enrichment technique is presented which allows for chemical enrichment of soft surficial and shallow subsurface sediments and subsequent measurement of O2 production. The sediment is enriched by inserting a perforated tube containing dialysis tubing filled with a nutrient/agar mixture. O2 production by surficial sediment is measured using an inverted, translucent, polyethylene chamber over the sediment. The inside of the chamber contains a collapsible bag connected to the water outside the chamber. When water overlying the sediment is withdrawn from a sampling port, it is displaced with water from outside the chamber, thus preventing contamination of water samples with pore water from below. The technique was tested by enriching near-shore sediments in a large oligotrophic lake with inorganic N and P. NHinf4/p+ additions significantly stimulated benthic primary production as measured by 02 production, whereas enrichment with POinf4/3- had no effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphate ; phytoplankton ; Mediterranean lagoon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A network of 63 stations was used on four occasions (June 1986, October 1986, February 1987, and May 1987) to study the spatio-temporal distribution of inorganic nutrients in Thau Lagoon (‘l'étang de Thau’), which covers 7500 hectares on the French Mediterranean coast. Three environmental factors, revealed by multiple regression models, govern the distributions observed. Allochthonous inputs from the watershed enrich the environment with nitrogen and phosphorus compounds in the winter and autumn. Internal sources are essentially localized in the shellfish breeding zone of the lagoon. In the summer, shellfish excretions and the rapid remineralization of organic deposits produce ammonium ions. Uptake by phytoplankton has a much larger impact on the seasonal variation of inorganic nitrogen than on that of phosphorus; the latter is present in excess in the lagoon waters. Thus, nitrogen appears to be the primary limiting nutrient for the development of the chorophyllous biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1573-5117
    Keywords: eutrophication ; lake restoration ; flushing ; Veluwemeer ; algal species ; transparency ; phosphorus ; nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Total phosphorus and chlorophyll decreased significantly after reduction of the external phosphorus loading and the start of flushing Veluwemeer with polder water in 1979. Flushing of Veluwemeer has had a large impact on nutrient dynamics. Especially in the first winter, dilution was the main cause of changes in water quality. On a longer term the increase of the inactivation of phosphorus in sediments is important. Oscillatoria agardhii has been brought to the margins of its habitat. Three successive cold winters were an additional causal factor in the disappearance of Oscillatoria agardhii and the dominance of diatoms and green algae from 1985 onwards. Due to higher detritus and inorganic suspended matter concentrations transparency increased less than expected. Since 1985 chlorophyll only contributes for a small percentage to the transparency. In the present situation further improvement of the water quality of Veluwemeer is questionable, as the phosphorus concentration in the lake and the polder water is almost the same. Therefore it is recommanded to shift flushing operations, at least in the winter period, from Veluwemeer towards Wolderwijd.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 238 (1992), S. 37-52 
    ISSN: 1573-5117
    Keywords: ammonium ; cyanobacteria ; diel ; diurnal ; mixing ; nitrate ; nitrogen ; periodicity ; phytoplankton ; protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The transport and assimilation of the various forms of biologically available nitrogen by phytoplankton, and the subsequent biosynthesis of N-containing macromolecules, have the potential to respond in different ways during the daily growth cycle. This review examines five types of effect that may influence the daily pattern of nitrogen uptake and metabolism: light versus dark (the day/night cycle); changes in irradiance during the day (including the diurnal rise and fall in photon fluence rates); circadian rhythms (endogenous patterns of variation which may continue in the absence of external environmental forcing); periodic variations in exogenous nitrogen supply; and the 24-hour dynamics of stratification and mixing. The hydrodynamic effects operate through a variety of direct and indirect controls, and can substantially modify the diel rhythmicity of phytoplankton growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1573-5117
    Keywords: fertilization ; phosphorus ; nitrogen ; phytoplankton ; zooplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Hecklan, in central Sweden, was fertilized with phosphorus and nitrogen during thermal stratification (late May-early Oct) 1984–1987. The nutrient additions were relatively small and raised the total phosphorus concentrations from 6 to 10 µg l−1. The working hypothesis was that this moderate increase in the phosphorus concentration could increase the phytoplankton biomass without adverse changes in the planktonic community structure. The fertilization increased the phytoplankton biomass from 0.1 to a maximum of 2 mm3 l−1. Chrysophyceae and Cryptophyceae dominated throughout the experimental period. Thus, the phytoplankton composition remained typical for a Swedish forest lake and provided a potential for increased zooplankton growth. An increased growth of zooplankton was indicated by increased biomass of Cladocera and Copepoda in 1984 and 1985, and by increased fecundity of herbivorous zooplankton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 10 (1990), S. 67-79 
    ISSN: 1573-515X
    Keywords: deserts ; ecosystem ; nitrogen ; nutrient cycling ; soils ; southwestern United States
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A lower limit for nitrogen loss from desert ecosystems in the southwestern United States was estimated by comparing nitrogen inputs to the amount of nitrogen stored in desert soils and vegetation. Atmospheric input of nitrogen for the last 10 000 years was conservatively estimated to be 2.99 kg N/m2. The amount of nitrogen stored in desert soils was calculated to be 0.604 kg N/m3 using extant data from 212 profiles located in Arizona, California, Nevada, and Utah. The average amount of nitrogen stored in desert vegetation is approximately 0.036 kg N/m2. Desert conditions have existed in the southwestern United States throughout the last 10 000 years. Under such conditions, vertical leaching of nitrogen below a depth of 1 m is small (ca. 0.028 kg N/m2 over 10 000 years) and streamflow losses of nitrogen from the desert landscape are negligible. Thus, the discrepancy found between nitrogen input and storage represents the amount of nitrogen lost to the atmosphere during the last 10 000 years. Loss of nitrogen to the atmosphere was calculated to be 2.32 kg N/m2, which is 77% of the atmospheric inputs. Processes resulting in nitrogen loss to the atmosphere from desert ecosystems include wind erosion, ammonia volatilization, nitrification, and denitrification. Our analysis cannot assess the relative importance of these processes, but each is worthy of future research efforts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 11 (1990), S. 1-22 
    ISSN: 1573-515X
    Keywords: disturbance ; ecosystems ; forests ; indirect interactions ; landscape ecology ; Minnesota ; nitrogen ; nutrient cycling ; path analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Path analysis was used to determine the importance of long-term disturbance regime and the relative importances of correlations among vegetation patterns, disturbance history, and nitrogen (N) mineralization in old-growth forests of northwestern Minnesota. Leaf biomass (estimated by allometric equations), fire history (from fire scars on Pinus resinosa trees), and N mineralization rates (estimated from incubationsin situ) were determined from sample plots dominated by Betula papyrifera, Populus tremuloides, andP. grandidentata a mixture ofAcer saccharumandTilia americana, or Quercus borealis andOstrya virginiana. Results showed that topographic and soil-moisture controls on N mineralization, vegetation patterns, and disturbance are substantially stronger than is suggested by direct correlation. Indirect interactions among ecosystem variables played in important role. These interactions probably include the tendency for species that cycle large amounts of N to colonize more mesic sites that burned rarely in the past. Soil moisture was correlated both directly with N mineralization and indirectly, through its effects on vegetation pattern, and thus, litter quality. Although disturbance regime also depended on topography, the strengths of relationships between disturbance regime and other variables were relatively weak. These dependencies suggested that long-term fire regime is probably more a consequence than a cause for vegetation and fertility patterns. Topography, through its effects on soil moisture and microclimate, is an overriding influence on ecosystem properties, which in turn influence fire regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1573-515X
    Keywords: cumulative ; flow ; GIS ; landscape ; lead ; nitrogen ; phosphorus ; suspended solids ; watershed ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A method was developed to evaluate the cumulative effect of wetland mosaics in the landscape on stream water quality and quantity in the nine-county region surrounding Minneapolis—St. Paul, Minnesota. A Geographic Information System (GIS) was used to record and measure 33 watershed variables derived from historical aerial photos. These watershed variables were then reduced to eight principal components which explained 86% of the variance. Relationships between stream water quality variables and the three wetland-related principal components were explored through stepwise multiple regression analysis. The proximity of wetlands to the sampling station was related to principal component two, which was associated with decreased annual concentrations of inorganic suspended solids, fecal coliform, nitrates, specific conductivity, flow-weighted NH4 flow-weighted total P, and a decreased proportion of phosphorus in dissolved form(p 〈 0.05). Wetland extent was related to decreased specific conductivity, chloride, and lead concentrations. The wetland-related principal components were also associated with the seasonal export of organic matter, organic nitrogen, and orthophosphate. Relationships between water quality and wetlands components were different for time-weighted averages as compared to flow-weighted averages. This suggests that wetlands were more effective in removing suspended solids, total phosphorus, and ammonia during high flow periods but were more effective in removing nitrates during low flow periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 11 (1990), S. 23-43 
    ISSN: 1573-515X
    Keywords: acid precipitation ; ammonium ; mass balance ; nitrate ; nitrogen ; retention
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The relative contribution of HN03 to precipitation acidity in eastern Canada has increased in recent years leading to some concern that the relative importance of NO− 3 deposition in acidification of terrestrial and aquatic ecosystems may increase. To gauge the extent of this impact, annual mass balances for N0− 3 and NH+ 4 were calculated for several forested catchments and lakes in Ontario. Retention of NH+ 4 (R NH4) by forested catchments was consistently high compared to retention of NO3 − (R NO3) which was highly variable. Retention of inorganic nitrogen was influenced by catchment grade and areal water discharge. In lakes, the reciprocals of retention of N0− 3 and NH+ 4 were linearly related to the ratio of lake mean depth to water residence time (z/τ; equal to areal water discharge), and retention did not appear to be a function of degree of acidification of the lakes. Net N consumption-based acidification of lakes, defined as the ratio of annual NH; mass to N0− 3 mass consumption, was negatively correlated with /τ and N consumption-related acidification was most likely to occur when − was 〈 1.5 m yr−1. If retention mechanisms are unaffected by changes in deposition, changes in deposition will still result in changes in surface water concentrations although the changes will be of similar proportions. Therefore, ‘NO− 3 saturation’ should not be defined by concentrations alone, but should be defined as decreasing long-term, average NO− 3 retention in streams and lakes in response to long-term increases in NO− 3 deposition. Analysis o f survey data will be facilitated by grouping lakes and catchments according to similar characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1573-515X
    Keywords: N2O ; CH4 ; red spruce ; balsam fir ; spruce-fir ; forests ; nitrogen ; deposition ; nitrification ; mineralization ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured the exchange of N2O and CH4 between the atmosphere and soils in 5 spruce-fir stands located along a transect from New York to Maine. Nitrous oxide emissions averaged over the 1990 growing season (May–September) ranged from 2.1 ug N2O-N/m2-hr in New York to 0.4 ug N2O-N/m2-hr in Maine. The westernmost sites, Whiteface Mtn., New York and Mt. Mansfield, Vermont, had the highest nitrogen-deposition, net nitrification and N2O emissions. Soils at all sites were net sinks for atmospheric CH4 Methane uptake averaged over the 1990 growing season ranged from 0.02 mg CH4-C/M2-hr in Maine to 0.05 mg CH4-C/m2-hr in Vermont. Regional differences in CH4 uptake could not be explained by differences in nitrogen-deposition, soil nitrogen dynamics, soil moisture or soil temperature. We estimate that soils in spruce-fir forests at our study sites released ca. 0.02 to 0.08 kg N2O-N/ha and consumed ca. 0.74 to 1.85 kg CH4 C/ha in the 1990 growing season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 25 (1994), S. 19-39 
    ISSN: 1573-515X
    Keywords: denitrification ; mineralization ; nitrification ; nitrogen ; riparian ; stream ; wetland ; New Jersey ; Pennsylvania ; Pinelands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Denitrification (N2 production) and oxygen consumption rates were measured at ambient field nitrate concentrations during summer in sediments from eight wetlands (mixed hardwood swamps, cedar swamps, heath dominated shrub wetland, herbaceous peatland, and a wetland lacking live vegetation) and two streams. The study sites included wetlands in undisturbed watersheds and in watersheds with considerable agricultural and/or sewage treatment effluent input. Denitrification rates measured in intact cores of water-saturated sediment ranged from ≤ 20 to 260 μmol N m-2 h-1 among the three undisturbed wetlands and were less variable (180 to 260 μmol N M-2 h-1) among the four disturbed wetlands. Denitrification rates increased when nitrate concentrations in the overlying water were increased experimentally (1 up to 770 μM), indicating that nitrate was an important factor controlling denitrification rates. However, rates of nitrate uptake from the overlying water were not a good predictor of denitrification rates because nitrification in the sediments also supplied nitrate for denitrification. Regardless of the dominant vegetation, pH, or degree of disturbance, denitrification rates were best correlated with sediment oxygen consumption rates (r 2 = 0.912) indicating a relationship between denitrification and organic matter mineralization and/or sediment nitrification rates. Rates of denitrification in the wetland sediments were similar to those in adjacent stream sediments. Rates of denitrification in these wetlands were within the range of rates previously reported for water-saturated wetland sediments and flooded soils using whole core15N techniques that quantify coupled nitrification/denitrification, and were higher than rates reported from aerobic (non-saturated) wetland sediments using acetylene block methods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Journal of aquatic ecosystem stress and recovery 3 (1994), S. 27-34 
    ISSN: 1573-5141
    Keywords: nutrient limitation ; critical tissue concentrations ; nitrogen ; phosphorus ; macroalgae ; biomonitoring
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Discs of the macroalga,Ulva lactuca L., were transplanted around an ocean outfall and at a reference site in Køge Bay, Denmark, to assess the influence of the outfall on the nutrient availability. At 2-wk intervals, samples were collected and analyzed for growth, nitrogen, and phosphorus content. The tissue concentrations of nitrogen and phosphorus decreased with distance to the outfall, showing that the tissue concentrations are suitable for monitoring nutrient availability in coastal areas and provide a time-integrated measure of the nutrient availability. The lowest tissue concentrations of nitrogen were recorded at the reference station, where the internal concentrations generally were below the critical concentration level, showing that nitrogen limited the growth. At the station located close to the outfall, the flux of nitrogen was sufficient to maintain the maximum growth rate. The tissue concentrations of phosphorus were only below the critical concentration level on one occasion, and the result showed a net uptake throughout the study period. It was concluded that in the Køge Bay, nitrogen was the main limiting factor for macroalgae growth during the summer. The applicability of tissue concentrations for assessment of nutrient availability is discussed and it is considered that the method, when evaluated against established critical concentrations, provides a valuable tool for assessing ecosystem health with regard to eutrophication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 15 (1992), S. 213-228 
    ISSN: 1573-515X
    Keywords: immobilization ; leaf litter decomposition ; lignin ; Mediterranean ecosystem ; nitrogen ; tannin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen immobilization in relation to the dynamics of lignin and tannins in nine different types of leaf litter was investigated during a 2-yr study at two Mediterranean ecosystems of SW Spain. Net nitrogen immobilization for all the species was higher in a forest than in the more nutrient-poor soil of a shrubland. Absolute amount of lignin increased in both ecosystems in the first 2–4 months whereas tannin rapidly decreased in the same time period. Increases in lignin were significantly correlated to losses of tannins during decomposition. Initial tannin content was the best predictor of the maximum amount of immobilized nitrogen in litter in both ecosystems. Mechanisms that could explain the immobilization of nitrogen in litter are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 18 (1992), S. 19-35 
    ISSN: 1573-515X
    Keywords: Dinitrogen fixation ; nitrogen ; phosphorus ; competition ; legumes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract An analysis of data compiled from the literature confirms a strong inverse relationship between annual rates of nitrogen fixation and the soil nitrogen content in agricultural and pastoral ecosystems. However, this inverse relationship is strongly modified by the rate of application of phosphorus fertilizer, which strongly influences the activities of both symbiotic and non-symbiotic nitrogen fixing organisms. In the case of symbiotic legumes, the response of N-fixation to N and P is in part a result of changes in legume dominance within the plant community. These results, as well as supporting data presented from a review of experiments on nitrogen fixation in a variety of other terrestrial and aquatic ecosystems, provide important support for the hypothesis that phosphorus availability is a key regulator of nitrogen biogeochemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 18 (1992), S. 1-17 
    ISSN: 1573-515X
    Keywords: microbial biomass-N ; desert ; carbon ; nitrogen ; shrubland ; grassland ; playa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Microbial biomass nitrogen was measured in unamended (dry) and wetted soils in ten shrubland and grassland communities of the Chihuahuan desert, southern New Mexico, by the fumigation-extraction method. Microbial biomass-N in dry soils was undetectable. Average microbial biomass-N in wetted soils among all plant communities was 15.3 μg g-1 soil. Highest values were found in the communities with the lowest topographic positions, and the minimum values were detected in the spaces between shrubs. Microbial biomass was positively and significantly correlated to soil organic carbon and extractable nitrogen (NH4 + + NO3 -). In a stepwise multiple regression, organic carbon and extractable nitrogen accounted for 40.9 and 5.6%, respectively, of the variance in microbial biomass-N among all the samples. Among communities, the soil microbial biomass was affected by the ratio of carbon to extractable nitrogen. Our results suggest a succession in the control of microbial biomass from nitrogen to carbon when the ratio of carbon to nitrogen decreases during desertification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-515X
    Keywords: nitrogen ; phosphorus ; soil fertility ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg−1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 − and S (SO4 2−). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1573-515X
    Keywords: nitrogen ; snow ; flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Increased emissions of nitrogen compounds to the atmosphere by human activities have been well documented. However, in order to better quantify these anthropogenic emissions, better knowledge of natural emissions rates must be known. In addition, variation in natural emissions through time should be documented. In this note we present data collected and/or analyzed by us for NO3 − in recent snow from remote regions of the world. We also summarize existing data sets from other remote regions. This is done to establish a better understanding of NO3 − deposition rates in these regions as well as to add more information to our global understanding of NO3 − deposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 21 (1990), S. 185-189 
    ISSN: 1573-5044
    Keywords: ammonium nitrate ; Malus ; nitrogen ; potassium nitrate ; tissue culture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of some macronutrients, especially NH4NO3 and KNO3, on root development of microcuttings from 3 apple scion cultivars is discussed. A reduction of the level of NH4NO3 in the medium from full strength to 1/4 strength significantly increased the percentage rooting of ‘Gala’ and ‘Royal Gala’, but not ‘Jonagold’. Further reduction of NH4NO3 level from 1/4 strength to zero significantly reduced the percentage of rooting in ‘Gala’ but not ‘Royal Gala’. ‘Jonagold’ rooted best at zero concentration NH4NO3. Without NH4NO3, rooting percentages were as high as 100% for all 3 cultivars when KNO3 was provided at full strength. The results show that adventitious roots can be induced on apple scion cultivars by media manipulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...