ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO 44 (2015): 178-193, doi:10.1007/s13280-014-0545-4.
    Description: Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.
    Description: 2015-07-19
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04011, doi:10.1029/2007JG000538.
    Description: Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.
    Description: The authors received funding for this work from the Department of Energy, National Science Foundation, and the Dartmouth College Dean of Faculty and Earth Sciences.
    Keywords: Sulfur ; Soil organic matter ; XANES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 7 (2016): e01251, doi:10.1002/ecs2.1251.
    Description: Nitrogen (N) supply often limits the productivity of temperate forests and is regulated by a complex mix of biological and climatic drivers. In excess, N is linked to a variety of soil, water, and air pollution issues. Here, we use results from an elevation gradient study and historical data from the long-term Hubbard Brook Ecosystem Study (New Hampshire, USA) to examine relationships between changes in climate, especially during winter, and N supply to northern hardwood forest ecosystems. Low elevation plots with less snow, more soil freezing, and more freeze/thaw cycles supported lower rates of N mineralization than high elevation plots, despite having higher soil temperatures and no consistent differences in soil moisture during the growing season. These results are consistent with historical analyses showing decreases in rates of soil N mineralization and inorganic N concentrations since 1973 that are correlated with long-term increases in mean annual temperature, decreases in annual snow accumulation, and a increases in the number of winter thawing degree days. This evidence suggests that changing climate may be driving decreases in the availability of a key nutrient in northern hardwood forests, which could decrease ecosystem production but have positive effects on environmental consequences of excess N.
    Description: U.S. National Science Foundation; Andrew W. Mellon Foundation; Spanish Ministry of Education; Portuguese Ministry of Education and Science Grant Number: SFRH/BDP/87966/2012
    Keywords: Carbon ; Global change ; Microbial activity mineralization ; Nitrification ; Nitrogen ; Soil frost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Biogeochemical responses to changing climate and atmospheric deposition were investigated using nitrogen (N) and sulfur (S) mass balances, including dry deposition and organic solutes in the Arbutus Lake watershed in the Adirondack Mountains, New York State. Long-term monitoring of wet-only precipitation (NADP/NTN, 1983–2001) and dry deposition (AIRMoN, 1990–2001) at sites adjacent to the watershed showed that concentrations of SO42− in precipitation, SO42− in particles,and SO2 vapor all declined substantially (P〈0.005) in contrast to no marked temporal changes observed for most N constituents (NH4+ in precipitation, HNO3 vapor, and particulate NO3−), except for NO3− in precipitation, which showed a small decrease in the late 1990s. From 1983 to 2001, concentrations of SO42− in the lake outlet significantly decreased (−2.1 μeq L−1 yr−1, P〈0.0001), whereas NO3− and dissolved organic N (DON) concentrations showed no consistent temporal trends. With the inclusion of dry deposition and DON fluxes into the mass balance, the retained portion of atmospheric N inputs within the main subcatchment increased from 37% to 60%. Sulfur outputs greatly exceeded inputs even with the inclusion of dry S deposition, while organic S flux represented another source of S output, implying substantial internal S sources. A significant relationship between the annual mean concentrations of SO42− in lake discharge and wet deposition over the last two decades (r=0.64, P〈0.01) suggested a considerable influence of declining S deposition on surface water SO42− concentrations, despite substantial internal S sources. By contrast, interannual variations in both NO3− concentrations and fluxes in lake discharge were significantly related to year-to-year changes in air temperature and runoff. Snowmelt responses to winter temperature fluctuations were crucial in explaining large portions of interannual variations in watershed NO3− export during the months preceding spring snowmelt (especially, January–March). Distinctive response patterns of monthly mean concentrations of NO3− and DON in the major lake inlet to seasonal changes in air temperature also suggested climatic regulation of seasonal patterns in watershed release of both N forms. The sensitive response of N drainage losses to climatic variability might explain the synchronous patterns of decadal variations in watershed NO3− export across the northeastern USA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 5 (1987), S. 258-264 
    ISSN: 1432-0789
    Keywords: C-bonded S ; Mineralization ; Organic S
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Total S, organic S and sulfate were measured in foliage, litter, roots, soil and solutions at a hardwood site within the Adirondack Mountains of New York. Sulfate as a percentage of total S was similar in foliage and litter (10%), but was greater in roots (30%). Sulfur constituents in the hardwood forest ecosystem were dominated by C-bonded S (60 g m−2) and ester sulfate (16 g m−2) which are formed by biological processes. Because sulfur mineralization (1.42 g m−2 yr−1) was greater than wet precipitation inputs (0.82 g m−2 yr−1), those factors that influence mineralization-immobilization processes are important in evaluating S cycling and sulfate fluxes in this ecosystem. Ester sulfate was formed within the forest floor by the soil biota and was leached to mineral horizons. Annual turnover of this pool was high (25%) within the mineral forest floor. Forest-floor C-bonded S was derived from root and above-ground litter, and substantial amounts were leached to mineral horizons. Calculated storage + outputs (1.64 g m−2 yr−1) was much greater than wet inputs (0.82 g m−2 yr−1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0417
    Keywords: paleolimnology ; diatoms ; diatom-inferred pH ; trace metals ; sulfur ; lakewater chemistry ; seepage lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract McNearney Lake is an acidic (pH=4.4) lake in the Upper Peninsula of Michigan with low acid neutralizing capacity (ANC=-38 μeq L-1) and high SO inf4 sup2- and aluminium concentrations. Oligotrophy is indicated by high Secchi transparency and by low chlorophyll a, total phosphorus, and total nitrogen concentrations. The lake water is currently acidic because base cations are supplied to the lake water at a low rate and because SO inf4 sup2- from atmospheric deposition was not appreciably retained by the lake sediments or watershed and was present in the water column. This interdisciplinary paleolimnological study indicates that McNearney Lake is naturally acidic and has been so since at least 4000 years B.P., as determined from inferred-pH techniques based on contemporary diatom-pH relationships. Predicted pH values ranged from 4.7 to 5.0 over the 4000-year stratigraphy. Considerable shifts in species composition and abundance were observed in diatom stratigraphy, but present-day distributions indicate that all abundant taxa most frequently occur under acidic conditions, suggesting that factors other than pH are responsible for the shifts. The diatom-inferred pH technique as applied to McNearney Lake has too large an uncertainly and is not sensitive enough to determine the subtle recent changes in lakewater pH expected from changes in atmospheric deposition because: (1) McNearney Lake has the lowest pH in the contemporary diatom data set in the region and confidence intervals for pH predictions increase at the extremes of regressions; (2) other factors in addition to pH may be responsible for the diatom species distribution in the lake and in the entire northern Great Lakes region; (3) McNearney Lake has a well-buffered pH as a consequence of its low pH and high aluminium concentrations and is not expected to exhibit a large pH change as a result of changes in atmospheric deposition; and (4) atmospheric deposition in the region is modest and would not cause a pH shift large enough to be discernable in McNearney Lake. Elevated atmospheric deposition is indicated in recent sediments by Pb, V, and polycyclic aromatic hydrocarbon accumulation rates and to a lesser extent by those of Cu and Zn; however, these accumulation rates are substantially lower than those observed for acidified lakes in the northeastern United States. Although atmospheric loadings of materials associated with fossil fuel combustion have recently increased to McNearney Lake and apparently are continuing, the present study of the diatom subfossil record does not indicate a distinct, recent acidification (pH decrease).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 4 (1990), S. 1-22 
    ISSN: 1573-0417
    Keywords: sulfate ; carbon ; nitrogen ; hydrogen ; organic matter ; enrichment factor ; lake sediments ; paleolimnology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract This paper discusses the use of S as a paleolimnological tracer of limnetic sulfate concentration. A positive relationship (p〈0.05) was found between limnetic sulfate and sediment S concentrations for the Great Lakes, English Lakes, and lakes from the Adirondack and Northern New England regions. There is a positive correlation (p〈0.05) between C and S concentration in sediment across all regions studied. The importance of C in affecting S content in sediment was also examined by a series of cores taken at different water depths in Big Moose Lake (Adirondacks). There was a strong relationship between C and S among cores with sediment from deeper water having higher C and S concentrations (r 2=0.99). Sulfur from the shallower cores had greater concentrations of chromium-reducible S (pyrite), while cores from deeper waters had a greater proportion of organic S fractions including C-bonded S and ester sulfates. For assessing historical changes in S accumulation in sediments, enrichment factors were calculated for the PIRLA lakes. Pre-1900 net sediment accumulation rates of S were very similar across all regions. Sulfur enrichment was greatest in Adirondack sediment which had total post-1900 S accumulation of 1.1 to 7.4 times pre-1900 S accumulation. Sediment from Northern New England (NNE) generally had lower S concentration than Adirondack sediments and S enrichment factors ranged from 1.2 to 2.1. Sediment from the Northern Great Lakes States region had similar S concentration and distribution with depth to NNE sediment. In two Northern Florida lakes, sediment showed little variation in S concentration with depth, but in two other lakes from the same region, there was higher S concentration in deeper layers. Lakes which had the greatest enrichment factors also exhibited the most marked changes in C:S ratios. Ratios of C:N showed little variation (10.6 to 26.1) among the PIRLA lakes. A first order model indicated slow decomposition within these organic rich sediments. Elemental concentrations and ratios of sediment from a variety of lakes and reservoirs were complied. Maximum and minimum elemental ratios for all the data were 28 to 8.1 for C:N, 0.81 to 0.11 for C:H, and 675 to 12.5 for C:S, respectively. For the C:S ratios in all regions except the Great Lakes, the maximum ratio was less than 231. Both the maximum and minimum amount of N and H concentration of organic matter is related to biotic processes. The minimum concentration of S is regulated not only by nutrient demands but also by non-assimilatory processes. Sulfur incorporation into sediments is a function of a complex of factors, but limnetic sulfate concentration and organic matter content play a major role in regulating the S content of sediment. Further quantification of S incorporation pathways will aid in the paleolimnological interpretation of sediment S profiles. Such information is also important in assessing how S sediment pools will respond to decreases in limnetic sulfate concentration which may occur with decreases in inputs from acidic deposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0417
    Keywords: acid deposition ; Adirondacks ; diatoms ; lake acidification ; paleoecology ; sediment chemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Paleoecological analysis of the sediment record of 12 Adirondack lakes reveals that the 8 clearwater lakes with current pH 〈 5.5 and alkalinity 〈 10 μeq l-1 have acidified recently. The onset of this acidification occurred between 1920 and 1970. Loss of alkalinity, based on quanitative analysis of diatom assemblages, ranged from 2 to 35 μeq l-1. The acidification trends are substantiated by several lines of evidence including stratigraphies of diatom, chrysophyte, chironomid, and cladoceran remains, Ca:Ti and Mn:Ti ratios, sequentially extracted forms of Al, and historical fish data. Acidification trends appear to be continuing in some lakes, despite reductions in atmospheric sulfur loading that began in the early 1970s. The primary cause of the acidification trend is clearly increased atmospheric deposition of strong acids derived from the combustion of fossil fuels. Natural processes and watershed disturbances cannot account for the changes in water chemistry that have occurred, but they may play a role. Sediment core profiles of Pb, Cu, V, Zn, S, polycyclic aromatic hydrocarbons, magnetic particles, and coal and oil soot provide a clear record of increased atmospheric input of materials associated with the combustion of fossil fuels beginning in the late 1800s and early 1900s. The primary evidence for acidification occurs after that period, and the pattern of water chemistry response to increased acid inputs is consistent with current understanding of lake-watershed acidification processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-2932
    Keywords: atmospheric deposition ; ecosystem ; hydrology ; nitrogen ; sulfur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Information on atmospheric inputs, water chemistry and hydrology were combined to evaluate elemental mass balances and assess temporal changes in elemental transport from 1983 through 1992 for the Arbutus Lake watershed. This watershed is located within a northern hardwood ecosystem at the Huntington Forest within the central Adirondack Mountains of New York (USA). Changes in water chemistry, including increasing NO3 − concentrations (1.1 μmol c , L−1 yr-1), have been detected during this study period. Starting in 1991 hydrological flow has been measured from Arbutus Lake and these measurements were compared with predicted flow using the BROOK2 hydrological simulation model. The model adequately (r2=0.79) simulated flow from this catchment and was used to estimate drainage for earlier periods when direct hydrological measurements were not available. Modeled drainage water losses coupled with estimates of wet and dry atmospheric deposition were used to calculate solute budgets. Export of SO4 2− (831 mol c ha−1 yr−1) from the greater Arbutus Lake watershed exceeded estimates of atmospheric deposition in an adjacent hardwood stand suggesting an additional source of S. These large drainage losses of SO4 2− also contributed to the drainage fluxes of basic cations (Ca2+, Mg2+, K+ and Na+). Most of the atmospheric inputs of inorganic N were retained (average of 74% of wet precipitation and 85% total deposition) in the watershed. There were differences among years (56 to 228 mol ha−1 yr−1) in drainage water losses of N with greatest losses occurring during a warm, wet period (1989–1991).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 62 (1998), S. 272-280 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: 4 )2SO4 (all sites at 1000 and 2000 molc ha-1 yr-1), H2SO4 (WL and HF at 1000 molc ha-1 yr-1), or (Ca,Mg)SO4 (WL and HF at 1000 molc ha-1 yr-1). At WL and HF additional sets of plots were also treated with HNO3 (1000 molc ha-1 yr-1). Soil solutions were sampled at 15 and 50-cm depths. Changes in the S constituents of the soil were evaluated by buried mineral soil bags installed below the forest floor. Additions of SO2- 4 increased solution SO2- 4 and total S and phosphate-extractable SO2- 4 in soil. Although organic S constituted 〉71% of the total soil S, no treatment effects on organic S were found. The response of SO-2 4 was not influenced by the form of addition. Extractable sulfate and soil solution SO2- 4 both increased with increases of (NH4)2SO4. For the three hardwood sites (WL, PHC, and HF), there was a positive relationship (P 〈 0.05) between soil solution SO2- 4 concentration at 15 cm and extractable SO2- 4 in soil bags, suggesting that these Haplorthod soils responded similarly to S inputs. For the Typic Udipsamment at PF, beneath red pine (Pinus resinosa Aiton), no such relationship was found. The similarity of response of Haplorthod soils suggests that similar soils across the Adirondack Mountains will show synchronous responses to S inputs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...