ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • phosphorus  (125)
  • Springer  (125)
  • 1995-1999  (124)
  • 1970-1974  (1)
  • 1999  (73)
  • 1997  (51)
  • 1973  (1)
Collection
Keywords
Publisher
Years
  • 1995-1999  (124)
  • 1970-1974  (1)
Year
  • 1
    ISSN: 1432-0789
    Keywords: Key words Phosphorus dynamics ; Olsen ; phosphorus ; Soil phosphorus fractions ; Manure ; Soybean-wheat rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 30 (1997), S. 224-230 
    ISSN: 1432-0495
    Keywords: Key words Sediment ; Washington ; DC ; Pollution ; phosphorus ; nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Sediments in the rivers and basins around Washington, DC, have high concentrations of phosphorus, which, based on geographic distributions, is largely derived from urban runoff and municipal sewage. Dissolved-particulate phosphate exchange reactions and biological uptake of dissolved phosphorus from the water column may be an added source of phosphorus to the sediments. Concentrations of total sedimentary phosphorus ranged from 24 to 56 μm P/g-dw, and were highest in areas near combined sewer outfalls. As a part of this study, sedimentary phosphorus was fractionated into Fe-P, Ca-P, Al-P, and organic phases using a selective-sequential leaching procedure. The distribution of the phases in all sediments analyzed follow the order , Fe-P〉Ca-P〉Al-P. Spatial variations in the amounts of phosphorus in the different phases is related to the sources of phosphorus to the area. The proportions of occluded Al-P and organic P are 10–20% of the total P, respectively. This suggests that phosphorus from natural sources is small compared to anthropogenic inputs in this area. The high leachable Fe-P and Ca-P in these sediments might contribute a substantial amount of P to the water column under conditions of remobilization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0417
    Keywords: carbon isotopes ; diatoms ; lake management ; nitrogen isotopes ; phosphorus ; radium-226 ; sediments ; trophic state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract We explored the use of carbon and nitrogen isotopes (δ13C and δ15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low δ13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher δ13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the δ15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both δ13C and δ15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that δ13C and δ15N reflect shifts in historic lake trophic state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-0417
    Keywords: diatoms ; Everglades ; phosphorus ; wetland ; calibration ; multivariate ; Florida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The relationship between diatom taxa preserved in surface soils and environmental variables at 31 sites in Water Conservation Area 2A (WCA-2A) of the Florida Everglades was explored using multivariate analyses. Surface soils were collected along a phosphorus (P) gradient and analyzed for diatoms, total P, % nitrogen (N), %carbon (C), calcium (Ca), and biogenic silica (BSi). Phosphorus varied from 315-1781 μg g-1, and was not found to be correlated with the other geochemical variables. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlated most closely with the distributions in diatom taxa. Canonical correspondence analysis with forward selection, constrained and partial CCA, and Monte Carlo permutation tests of significance show the most significant changes in diatom assemblages along the P gradient (p 〈 0.01), with additional species differences correlated with soil C, N, Ca, and BSi. Weighted-averaging (WA) regression and calibration models of diatom assemblages to P and BSi were developed. The diatom-based inference model for soil [P] had a high apparent r2 (0.86) with RMSEboot = 218 μg g-1. Indicator diatom species identified by assessing species WA optima and WA tolerance to [P], such as Nitzschia amphibia and N. palea for high [P] (~1300-1400 μ g-1) and Achnanthes minutissima var. scotica and Mastogloia smithii for low [P] (~400-600 μg g-1), may be useful as monitoring tools for eutrophication in WCA-2A as well as other areas of the Everglades. Diatom assemblages analyzed by cluster analysis were related to location within WCA-2A, and dominant taxa within clusters are discussed in relation to the geochemical variables measured as well as hydrology and pH. Diversity of diatom assemblages and a ‘Disturbance Index’ based on diatom data are discussed in relation to the historically P-limited Everglades ecosystem. Diatom assemblages should be very useful for reconstructions of [P] through time in the Florida Everglades, provided diatoms are well preserved in soil cores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European journal of plant pathology 105 (1999), S. 61-76 
    ISSN: 1573-8469
    Keywords: core sampling ; foliar nutrient concentrations ; minirhizotrons ; nitrogen ; phosphorus ; potassium ; Rhizolab
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Potato-cyst nematodes (Globodera pallida) cause severe yield losses in potato. Plants infected with potato-cyst nematodes generally have reduced concentrations of nitrogen, phosphorus and potassium in the foliage. This study investigated whether reduced growth of nematode-infected potato is caused by nutrient limitation. Experiments in the field and in containers showed that phosphorus concentration correlated best with total crop biomass at early stages of growth. The role of phosphorus in nematode damage was further investigated in the field and in the Wageningen Rhizolab. The experimental field was infested with potato-cyst nematodes and two levels of nematode density were established by fumigation with a nematicide. Prior applications of calcium carbonate resulted in pHKCl levels of 4.8 and 6.1. Two levels of phosphorus fertiliser were applied: either 0 or 225 kg P ha−1. In the Wageningen Rhizolab, soil of both pH levels from the field was used after treatment with 1 MRad gamma irradiation to kill the nematodes. Subsequently, half of the soil was inoculated with cysts to give a nematode density of 30 viable juveniles per gram of soil. In the field, nine weeks after planting, the total crop biomass ranged from 107 g m−2 for the treatment with nematodes at pHKCl 6.1 without phosphorus fertiliser to 289 g m−2 for the fumigated treatment at pHKCl 4.8 with phosphorus fertiliser. The differences in total biomass for the various treatments were explained by differences in foliar phosphorus concentration. Nematodes induced or aggravated P deficiency and reduced total biomass. This was not the only damage mechanism as at high, non-limiting levels of foliar phosphorus concentration, nematodes still reduced total biomass. In the Wageningen Rhizolab, directly after planting, the number of roots visible against minirhizotrons was reduced by nematodes. However, the increase of root number in the nematode treatment continued longer than in the control, until root number was higher than that of the control. The compensary root growth of the nematode treatment was restricted to the top 30 cm and nematodes reduced rooting depth. High soil pH reduced growth, mainly by reducing the availability of phosphate. Both nematodes and high soil pH reduced nutrient uptake per unit root length. Our results lead us to suggest an interaction between nematodes and soil pH, with nematode damage being higher at pHKCl 6.1 than at pHKCl 4.8.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: acidification ; anthropogenic nitrogen ; cations ; nitrate leaching ; nitric oxide ; nitrous oxide ; nutrient limitation ; phosphorus ; productivity ; tropical ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soil-water and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 46 (1999), S. 179-202 
    ISSN: 1573-515X
    Keywords: carbon dioxide ; grazing ; nitrogen fixation ; nitrogen limitation ; phosphorus ; shade
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The widespread occurrence of N limitation to net primary production (NPP) and other ecosystem processes, despite the ubiquitous occurrence of N-fixing symbioses, remains a significant puzzle in terrestrial ecology. We describe a simple simulation model for an ecosystem containing a generic nonfixer and a symbiotic N fixer, based on: (1) a higher cost for N acquisition by N fixers than nonfixers; (2) growth of fixers and fixation of N only when low N availability limits the growth of nonfixers, and other resources are available; and (3) losses of fixed N from the system only when the quantity of available N exceeds plant and microbial demands. Despite the disadvantages faced by the N fixer under these conditions, N fixation and loss adjust N availability close to the availability of other resources, and biomass and NPP in this simple model can be substantially but only transiently N limited. We then modify the model by adding: (1) losses of N in forms other than excess available N (e.g., dissolved organic N, trace gases produced by nitrification); and (2) constraints to the growth and activity of N fixers imposed by differential effects of shading, P limitation, and grazing. The combination of these processes is sufficient to describe an open system, with input from both precipitation and N fixation, that is nevertheless strongly N-limited at equilibrium. This model is useful for exploring causes and consequences of constraints to N fixation, and hence of N limitation, and we believe it will also be useful for evaluating how N fixation and limitation interact with elevated CO2 and other components of global enviromental change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 25-38 
    ISSN: 1573-515X
    Keywords: Hedley fractionation ; phosphorus ; Ruttenberg fractionation ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We used l6 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2 = 0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 25-38 
    ISSN: 1573-515X
    Keywords: Hedley fractionation ; phosphorus ; Ruttenberg fractionation ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We used 16 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2=0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 7 (1999), S. 165-175 
    ISSN: 1572-9834
    Keywords: flow ; loading ; models ; phosphorus ; removal limits ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phosphorus concentrations exported from wetlands are explored via data and a first order model. The graph of outlet concentration versus areal phosphorus loading is used to display these data and the model. For a given wetland, data and models show that P concentrations show an ‘S’ curve response to increasing P loadings. The lower plateau is the background concentration and the upper plateau is the inlet concentration. The position of the ascending limb between the two plateaus is positioned differently for different wetlands. Phosphorus (P) removal in wetlands is often typified by a stable decreasing gradient of P concentrations from inlet to outlet, and an accompanying stable decreasing gradient in P assimilation. Limits to removal are inherent in the physical, chemical and biological processes. A lower outlet concentration limit exists because of the P cycle in the un-impacted wetland. The loading at which the outlet concentration departs from background, the lower knee in the loading curve, varies from wetland to wetland. An upper outlet concentration limit is imposed by the source concentration for extremely high inflows. The first order mass balance equation interpolates between these limits. The model gives further insights about performance within an overall envelope. The water carrying capacity of the wetland precludes flows in excess of the hydraulic conveyance capacity, thus limiting the possible P loadings to the system. Conversely, extremely low hydraulic loadings cause the wetland to be dominated by atmospheric additions and losses. The central tendency of inter-system data in the North American Database is shown to be inadequate to draw generalized conclusions about ecosystem processes in an individual wetland. The proposed ‘one gram rule’ of Richardson, et al. (1997) is shown to be an over-simplification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Reaction kinetics and catalysis letters 66 (1999), S. 177-181 
    ISSN: 1588-2837
    Keywords: Silica ; surface ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The interaction of gaseous PCl3 and POCl3 with dried and wetted pyrogenic silica has been studied by IR spectroscopy. The acceleration of the chemisorption accompanied by the formation of Si−O−P bonds in the presence of water vapor has been observed only with phosphorus trichloride.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Reaction kinetics and catalysis letters 66 (1999), S. 257-263 
    ISSN: 1588-2837
    Keywords: Alkylation ; toluene ; ZSM-5 ; phosphorus ; chromium ; nickel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract H-ZSM-5 zeolite was modified with phosphorus. The obtained P/ZSM-5 catalyst was subjected to further treatments with chromium and nickel. The distribution and strength of different acid sites of zeolites were investigated by means of temperature-programmed desorption of ammonia. The active and strong acid sites were confirmed by measuring the rate constants for cracking ofn-hexane, as a probe molecule. Reduction of pore opening size of the modified ZSM-5 was monitored by a standard test reaction of probe molecules ofm-xylene and ethylbenzene. Selective alkylation of toluene with methanol top-xylene was studied over ZSM-5 and modified zeolite catalysts. The P/ZSM-5 zeolite was the most selective catalyst top-xylene but the toluene conversion decreased drastically. The addition of chromium to P/ZSM-5 zeolite increased the toluene conversion and the yield ofp-xylene was very close to P/ZSM-5 catalyst. The addition of nickel did not exhibit a significant improvement of the catalyst performance. The deactivation of catalysts, due to coke deposition during run, was also considered. P/ZSM-5 zeolite showed the lowest stability with time on stream. The addition of chromium and nickel to P/ZSM-5 zeolite increased the stability of the catalyst.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 38 (1997), S. 51-76 
    ISSN: 1572-9680
    Keywords: nitrogen ; nutrient cycling ; phosphorus ; soil fertility ; soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Trees can influence both the supply and availability of nutrients in the soil. Trees increase the supply of nutrients within the rooting zone of crops through (1) input of N by biological N2 fixation, (2) retrieval of nutrients from below the rooting zone of crops and (3) reduction in nutrient losses from processes such as leaching and erosion. Trees can increase the availability of nutrients through increased release of nutrients from soil organic matter (SOM) and recycled organic residues. Roots of trees frequently extend beyond the rooting depth of crops. Research on a Kandiudalfic Eutrudox in western Kenya showed that fast-growing trees with high N demand (Calliandra calothyrsus, Sesbania sesban and Eucalyptus grandis) took up subsoil nitrate that had accumulated below the rooting depth of annual crops. Sesbania sesban was also more effective than a natural grass fallow in extracting subsoil water, suggesting less leaching loss of nutrients under S. sesban than under natural uncultivated fallows. Nutrient release from SOM is normally more dependent on the portion of the SOM in biologically active fractions than on total quantity of SOM. Trees can increase inorganic soil N, N mineralization and amount of N in light fraction SOM. Among six tree fallows of 2- and 3-year duration on an Ustic Rhodustalf in Zambia, inorganic N and N mineralization were higher for the two tree species with lowest (lignin + polyphenol)-to-N ratio (mean = 11) in leaf litter than for the two tree species with highest ratio (mean = 20) in leaf litter. Trees can also restore soil fauna, which are important for SOM and plant residue decomposition. Some agroforestry trees have potential to provide N in quantities sufficient to support moderate crop yields through (i) N inputs from biological N2 fixation and retrieval of nitrate from deep soil layers and (ii) cycling of N from plant residues and manures. The cycling of P from organic materials is normally insufficient to meet the P requirements of crops. Sustained crop production with agroforestry on P-deficient soils will typically require external P inputs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 215-244 
    ISSN: 1572-9680
    Keywords: biodiversity ; disturbance ; nitrogen ; phosphorus ; resilience ; resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient and hydrologic cycles in harvested native forests in southern Australia are largely balanced. For example, we have little or no evidence of any decline in nutrient capital or availability in harvested forests. Short-term and small-scale reductions in evapotranspiration due to loss of leaf area after harvesting are adequately balanced at the landscape scale by large areas of regenerating or older-age forest. In contrast, agricultural systems on similar soils are a) dependent on large inputs of fertilisers to maintain growth and b) frequently subject to increasing salinity and waterlogging or other forms of degradation. The large-scale replacement of long-lived communities of perennial and often deep- rooting native species with annual crops or other communities of shallow-rooting species might be better managed within the framework of knowledge developed from studies of native plant communities. However, application of such a mimic concept to systems of low natural productivity is limited when agricultural systems require continued high productivity. Nonetheless, the mimic concept may help in developing sustainable management of agriculture on marginal lands, and contribute to the nutritional resilience of agroecosystems. Relevant characteristics for mimic agroecosystems in south western Australia include: high species diversity, diversity of rooting attributes, utilisation of different forms of nutrients (especially of N and P) in space and time, and the promotion of practices which increase soil organic matter content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 43-50 
    ISSN: 1572-9729
    Keywords: biodegradation ; nitrogen ; nutrients ; phenanthrene ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Environmental and resource economics 10 (1997), S. 341-362 
    ISSN: 1573-1502
    Keywords: Baltic Sea ; eutrophication ; nitrogen ; phosphorus ; cost effective
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Notes: Abstract Due to eutrophication caused by heavy loads of nitrogen and phosphorus, the biological conditions of the Baltic Sea have been disturbed: large sea bottom areas without any biological life, low stocks of cods, and toxic blue green algaes. It is recognized that the nitrogen and phosphorus loads to the Baltic Sea must be reduced by 50% in order to restore the sea. The main purpose of this paper is to calculate cost effective nitrogen and phosphorus reductions to the Baltic Sea from the nine countries surrounding the Baltic Sea. The results show a significant difference in minimum costs of decreasing nitrogen and phosphorus loads to the Sea: approximately 12 000 millions of SEK per year and 3 000 millions of SEK respectively for reductions by 50%. It is also shown that a change from a policy of cost-effective nutrient reductions to a policy where each country reduces the nutrient loads by 50% increase total costs for both nitrogen and phosphorus reductions by about 300%. The results are, however, sensitive to several of the underlying assumptions and should therefore be interpreted with much caution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 27 (1997), S. 1198-1206 
    ISSN: 1572-8838
    Keywords: alloy ; amorphous ; anomalous ; hydrogen ; iron ; nickel ; phosphorus ; plating
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract In this study we have investigated the electrodeposition of amorphous iron–nickel–phosphorus alloys from a sulfate electrolyte. Fe-Ni alloys are known to exhibit an ’anomalous‘ type of plating behaviour in which deposition of the less noble metal is favoured. We have found that the codeposition of phosphorus from hypophosphite in the electrolyte led to a reversal to a ’normal‘ behaviour. This reversal was due both to the suppression of iron and enhancement of nickel partial currents. The overall deposition process is dominated by the hydrogen evolution reaction. This is exacerbated by the low pH needed to codeposit sufficient phosphorus to achieve an amorphous structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 29 (1999), S. 1171-1176 
    ISSN: 1572-8838
    Keywords: alloys ; cyclic voltammetry ; electrodeposition ; electroless deposition ; nickel ; phosphorus ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Electroless Ni–Zn–P alloy deposition from a sulphate bath, containing sodium hypophosphite as reducer, was investigated. To increase the plating rate, the deposition parameters were optimized. The effect of process parameters (T, pH and [Zn2+]) on the plating rate and deposit composition was examined and it was found that the presence of zinc in the bath has an inhibitory effect on the alloy deposition. As a consequence, the percentage of zinc in the electroless Ni–Zn–P alloys never reaches high values. Using cyclic voltammetry the electrodeposition mechanism of Ni–Zn–P alloys was investigated. It was observed that the zinc deposition inhibits the nickel discharge and, as a consequence, its catalytic activity on hypophosphite oxidation. It was also found that increase in temperature or pH leads to the deposition of nickel rich alloys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1572-8838
    Keywords: alloys ; electroless ; microstructure ; morphology ; nickel ; phosphorus ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Electroless Ni–Zn–P alloy coatings were obtained on an iron substrate from a sulfate bath at various pH values. The effects of changes in bath pH on alloy composition, morphology, microstructure and corrosion resistance were studied. Scanning electron microscopy was performed to observe the morphological change of the deposits with bath pH. Coating crystallinity was investigated by grazing incidence asymmetric Bragg X-ray diffraction and transmission electron microscopy. A transition from an amorphous to polycrystalline structure was observed on increasing the bath alkalinity, and thus decreasing the phosphorus content of the alloys. A single crystalline phase corresponding to face-centred-cubic nickel was identified in the alloys obtained from a strong alkaline solution. An increase in zinc percentage up to 23% in the deposits does not change the f.c.c. nickel crystalline structure. Corrosion potential and polarization resistance measurements indicated that the corrosion resistance of electroless Ni–Zn–P alloys depends strongly on the microstructure and chemical composition. The deposits obtained at pH 9.0–9.5 and with 11.4–12.5% zinc and 11.8–11.2% phosphorous exhibited the best corrosion resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1573-0867
    Keywords: leaching ; phosphorus ; poultry litter ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To determine P loadings, added through poultry litter, sufficient to cause downward movement of P from the cultivated layer of a sandy soil, six rates of poultry litter were applied annually for four years to a site in central England. (total loading 0 – 1119 kg P ha-1). A single extra plot also received an extra 1000 kg ha-1 as triple superphosphate (TSP; total loading 2119 kg P ha-1) and three other treatments received 200 – 800 kg ha-1 P as TSP only. Annual soil sampling in 30-cm increments to 1.5-m depth provided information on P build-up in the topsoil and P movement to depth. There were strong linear trends between P balance (P applied – P removed in crops) and total P, Olsen bicarbonate extractable P and water-soluble P in the topsoil. Phosphorus from TSP and poultry litter fell on the same regression lines, suggesting that both would be equally effective as fertilizer sources. We calculated that 100 kg ha-1 surplus total P would increase the Olsen extractable P content by c. 6 mg kg-1 and the water-soluble P by c. 5 mg kg-1. Thus, relatively large amounts of P would need to be applied to raise soil P status. We found some evidence of P movement into the soil layers immediately below cultivation depth. However, neither soil sampling nor soil solution extracted through Teflon water samplers showed evidence of movement into the deep subsoil (1 m) despite large P loadings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 54 (1999), S. 259-266 
    ISSN: 1573-0867
    Keywords: bahiagrass ; manure ; pasture fertilization ; phosphorus ; phosphorus cycling ; Spodosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Bahiagrass (Paspalum notatum Flugge) pasture fertilization recommendations have traditionally been based upon clipping studies. Inclusion of P from manure, not originally considered when P recommendations were developed for pastures, may minimize the need for P fertilization without reducing bahiagrass production or P uptake. The objective of this research was to determine if manure contributes greatly to the P crop nutrient requirement. A 2-year field study utilized a factorial arrangement of 0 and 6.9 Mg air-dried manure ha-1 with 0, 17, 34, 51, and 68 kg inorganic P ha-1 from triple superphosphate to evaluate bahiagrass yield, root distribution, and P uptake response on a Myakka fine sand (sandy, siliceous, hyperthermic Aeric Alaquod). Because air-dried manure was used in the field study, a greenhouse study was employed to confirm that there were no differences in bahiagrass yield or P uptake from either air-dried or fresh cattle (Bos spp.) manure sources. There were no manure or manure by P interaction effects on yield or P uptake of bahiagrass indicating that manure source did not effect grass production in the greenhouse. In the field study, bahiagrass roots were distributed into the Bh horizon, and the Bh horizon had at least four times more Mehlich-1 extractable P than that of the Ap horizon. This horizon was most likely acting as a main source for P-uptake by the grass. This observation was further confirmed by no yield response to levels of inorganic P application in 1989. A linear-response-and-plateau (R2=0.196) relationship with a critical point of 15.4 kg P ha-1 was found in 1990. Bahiagrass yield and P uptake were not dependent on P fertilization, either from manure or inorganic P, due to the availability of P from the Bh horizon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 7-14 
    ISSN: 1573-0867
    Keywords: fertiliser formulation ; nutrients ; phosphorus ; relative humidity ; soil moisture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus lost in runoff from agricultural land leads to the enrichment of surface waters and contributes to algal blooms. Fertilisers are one source of this P. To compare the water available P of different fertiliser formulations in the laboratory it is necessary to control environmental conditions, temperature, relative humidity and soil water content, prior to simulating rainfall. Two chambers were designed in which relative humidity and soil water content were controlled using salt solutions. An initial design comprising a sealed chamber with three layers of soil samples over a salt bath was found to be inferior to a single layer design. The changes in water content of soil samples were used to test the single layer chamber in a constant temperature environment (15 °C) using a saturated KCl solution (90% relative humidity). Based on the final soil water content of the samples, the spatial variation within the chamber was within tolerable limits. The single layer chamber was used for a simulation experiment comparing the water available P of two commercial fertilisers. Using a saturated resorcinol solution (95% relative humidity) soil samples were equilibrated at 15 °C for 21 days, fertiliser added, and the water available P measured up to 600 h after fertiliser application. The results indicate that the amount of water available P was related to the fertiliser compound and exponentially related to the time since fertiliser application. It was concluded that the single layer chamber is suitable for controlling relative humidity and soil water content in trials such as these where the water available P of fertilisers are being compared.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1573-0867
    Keywords: dairy systems ; feeds ; fertilizers ; phosphorus ; P surplus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inputs of phosphorus (P) above requirements for production on dairy farms lead to surplus P with increased risk of P transfer in land run-off to surface waters causing eutrophication. The impact of reducing surplus P inputs in purchased feeds and fertilizers on milk and forage production was investigated in a comparison of three dairy farm systems on chalkland soils in southern England over a 3-year period. In accordance with current commercial practice, no attempt was made to regulate P inputs in system 1, which accumulated an average annual surplus of 23 kg P ha-1. Progressive reductions in purchased feed and/or fertilizer inputs into systems 2 and 3 decreased surplus P to 17 and 3 kg ha-1, respectively, without apparently limiting either milk or herbage dry matter production. The estimated reduction in faecal P output from system 3 cows fed a low P diet compared to system 1 cows fed a high P diet was 26%. Milk P concentrations significantly (P 〈0.001) increased in systems 2 and 3 which included maize in the diet. Output of P in milk and meat products, as a proportion of the total dietary P inputs, increased from 28% in system 1 to 36% in system 3. Surplus P was greatest in continuous maize fields receiving both dairy manure and starter P fertilizer. Withholding P fertilizer in system 3 did not reduce P offtake in cut herbage on soils of moderate P fertility. Total annual losses of P in storm run-off and leaching were no greater than annual inputs of P from the atmosphere (0.5 kg ha-1). The results indicate there is scope to reduce surplus P on commercial dairy farms without sacrificing production targets at least in the short term. Purchased feeds are the largest of the P inputs on intensive dairy farms, yet these are rarely quantified on commercial holdings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 393 (1999), S. 35-43 
    ISSN: 1573-5117
    Keywords: eutrophication ; modelling ; biogeochemical cycles ; nitrogen ; phosphorus ; load reduction ; Baltic Sea ; Gulf of Finland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The entire Baltic Sea, as well as many of its different sub-regions, are subject to eutrophication due to high nutrient inputs. To plan expensive water management measures one needs a tool to quantify effects of different water management policy decisions. The tools implemented here are simulation models based on similar descriptions of biochemical interactions in the water and sediments but coupled to different hydrodynamical models. For the Baltic Proper a 1D physical model with high vertical resolution but horizontally integrated was used. Simulations for 20 years made with 50% load reduction each 5 year show that for this domain and at these scales the recovery would take decades. The most effective is reduction of phosphorus, while reduction of only nitrogen leads to a dramatic increase in cyanobacteria blooms. For the Gulf of Finland a high-resolution 3D hydrodynamic model was coupled to a more crude 3D-box biogeochemical model describing concrete conditions during August and November 1991. In the Eastern Gulf of Finland the effects of a 50% load reduction from the St. Petersburg region are pronounced even after two weeks. Here, nitrogen reduction would be more beneficial than that of phosphorus, both locally and at a larger scale. The conclusion from these simulations is that the difference in effects of nitrogen versus phosphorus reduction is dependent on scales and locations of management.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 389-401 
    ISSN: 1573-5117
    Keywords: legislation ; eutrophication ; phosphorus ; nitrogen ; wildlife conservation ; SSSI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There is no single piece of legislation which comprehensively addresses the problem of eutrophication of freshwater lakes. An examination is made of the extent to which national and EU laws applicable in England and Wales may be used to reduce phosphorus inputs to eutrophicated lakes. This case study is then used to outline the shortcomings of existing legislation and the future challenges for lake eutrophication control. Applicable legislation may be divided into that relating to nature conservation, to water quality and to agricultural extensification. Nature conservation laws are applicable, in that lakes designated as Sites of Special Scientific Interest (SSSIs), are theoretically safeguarded from degradation. The main limitation of the SSSI system lies in the boundary definition process under which, as a rule, no other category of legally protected land may be designated. Thus, the use of surrounding buffer land to protect water quality at the catchment level is generally precluded. The introduction of consultation areas around SSSIs of international importance under the EU Directive on Habitats is unlikely to alleviate the problem, since the area involved remains minimal compared to the extent of the majority of catchments. Intensive agricultural practices are responsible for significant nutrient enrichment of rivers and lakes, so that legislation aimed at extensification is also relevant. Examples of agricultural extensification include the Environrnentally Sensitive Areas programme and various options available for Set-Aside land. However, the prime purpose of such initiatives is the alleviation of surplus and budgetary problems and, as such, they fall short of a fully integrated approach to the ecological management of farmland. Nutrient enrichment is, essentially, a water quality issue, but policy and legislation in this area are not yet sufficiently developed to address the problem comprehensively. The current regulatory process for water quality carries the potential to work comparatively well for point sources under the system of consents to discharge. This potential is limited, however, by the paucity of information available on ecologically acceptable concentrations of phosphorus in discharges. In addition, the consents system is not constructed to deal effectively with diffuse agricultural losses of phosphorus, since, unlike point sources, these tend to arise from the cumulative effect of many activities. The main legislative challenge for lake eutrophication control lies in the area of diffuse agricultural losses of phosphorus. In this respect, experience in the U.S.A. reveals that the use of comprehensive and catchment-wide ‘Best Management Practices’ is capable of producing significant water quality improvements, providing that some degree of mandatory compliance is incorporated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5117
    Keywords: Integrated lake management ; biomanipulation ; lake recovery ; phosphorus ; nitrogen ; eutrophication ; restoration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The majority of Danish lakes are highly eutrophic due to high nutrient input from domestic sources and agricultural activities. Reduced nutrient retention, and more rapid removal, in catchments as a result of agricultural drainage of wetlands and lakes and channelisation or culverting of streams also play a role. Attempts have recently been made to reduce nutrient loading on lakes by intervening at the source level and by improving the retention capacity of catchment areas. The former measures include phosphorus stripping and nitrogen removal at sewage works, increased use of phosphate-free detergents, and regulations concerning animal fertiliser storage capacity, fertiliser application practices, fertilisation plans and green cover in winter. In order to improve nutrient retention capacity of catchments, wetlands and lakes have been re-established and channelised streams have been remeandered. In addition, cultivation-free buffer strips have been established alongside natural streams and there has been a switch to manual weed control. These measures have resulted in a 73% reduction of the mean total phosphorus concentration of point-source polluted streams since 1978; in contrast, there has been no significant change in the total nitrogen concentration. Despite the major reduction in stream phosphorus concentrations, lake water quality has often not improved. This may reflect a too high external or internal phosphorus loading or biological resistance. Various physico-chemical restoration measures have been used, including dredging and oxidation of the hypolimnion with nitrate and oxygen. Biological restoration measures have been employed in 17 Danish lakes. The methods include reducing the abundance of cyprinids, stocking with 0+ pike ( Esox lucius) to control 0+ cyprinids, and promoting macrophyte recolonization by protecting germinal submerged macrophyte beds against grazing waterfowl and transplanting out macrophyte shoots. In several lakes, marked and long-lasting improvements have been obtained. The findings to date indicate that fish manipulation has a long-term effect in shallow lakes, providing nutrient loading is reduced to a level so low as to ensure an equilibrium lake water phosphorus concentration of less than 0.05–0.1 mg phosphorus l−1. If nitrogen loading is very low, however, positive results may be obtained at higher phosphorus concentrations. Macrophyte refuges and transplantation seem to be the most successful as restoration measures in the same nutrient-phosphorus regime as fish manipulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 41-60 
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; non-point source ; export ; catchment modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sustainable lake management for nutrient-enriched lakes must be underpinned by an understanding of both the functioning of the lake, and the origins of changes in nutrient loading from the catchment. To date, limnologists have tended to focus on studying the impact of nutrient enrichment on the lake biota, and the dynamics of nutrient cycling between the water column, biota and sediments within the lake. Relatively less attention has been paid to understanding the specific origins of nutrient loading from the catchment and nutrient transport pathways linking the lake to its catchment. As such, when devising catchment management strategies to reduce nutrient loading on enriched lakes, assumptions have been made regarding the relative significance of non-point versus point sources in the catchment. These are not always supported by research conducted on catchment nutrient dynamics in other fields of freshwater science. Studies on nutrient enrichment in lakes need to take account of the history of catchment use and management specific to each lake in order to devise targeted and sustainable management strategies to reduce nutrient loading to enriched lakes. Here a modelling approach which allows quantification of the relative contribution of nutrients from each specific point and non-point catchment source over the course of catchment history is presented. The approach has been applied to three contrasting catchments in the U.K. for the period 1931 to present. These are the catchment of Slapton Ley in south Devon, the River Esk in Cumbria and the Deben Estuary in Suffolk. Each catchment showed marked variations in the nature and intensity of land use and management. The model output quantifies the relative importance of point source versus non-point livestock and land use sources in each of the catchments, and demonstrates the necessity for an understanding of site-specific catchment history in devising suitable management strategies for the reduction of nutrient loading on enriched lakes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 149-159 
    ISSN: 1573-5117
    Keywords: sediment ; diatoms ; phosphorus ; acidification ; eutrophication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Palaeolimnology has developed rapidly over the last two decades to deal with problems of eutrophication, and acidification. This paper reveiew the techniques for coring, dating and interpreting sediments. The applications of palaeolimnology in interpreting the past through ‘transfer functions’ calculated from biological indices are reviewed. Rates of change, the causes of change, and the restoration of lakes to some predefined target are reviewed and the direction of future developments considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 293-308 
    ISSN: 1573-5117
    Keywords: phosphorus ; sediments ; eutrophication ; Scotland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper considers the range of management techniques which are currently available for the remediation of eutrophic lakes, with respect to two lochs within southwest Scotland. Preliminary studies of sources of nutrients identified the need for the development of different management prescriptions for each. Such studies will ensure that the management is tailored to meet the specific needs of the site. The two lochs, Carlingwark Loch at Castle Douglas and Castle Loch at Lochmaben, both support algal blooms but have different nutrient sources. Carlingwark Loch appears to be receiving large quantities of nutrients from the surrounding catchment, whereas Castle Loch shows a net loss of nutrients over its surface inflows, indicating release from the sediments and/or input from overwintering wildfowl. In these cases, if preliminary studies had not been undertaken, the management programmes developed may not have used the most effective control measures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/l) and lowest in bare plots in the shrubland (0.55 mg/l). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands – consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1× 104 kg nitrogen and 3.91×104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7×104 kg (676 kg/ha) nitrogen and 3.88×104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55×104 kg nitrogen and 0.40×104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m−2 yr−1 were made toSphagnum magellanicurn cores at two-week intervalsin situ at four sites across Europe, i.e. Lakkasuo (Finland). Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N∶P ratio 68) and greatest in Moidach More (N∶P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4 + in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3 − were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition bySphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-515X
    Keywords: acidification ; anthropogenic nitrogen ; cations ; nitrate leaching ; nitric oxide ; nitrous oxide ; nutrient limitation ; phosphorus ; productivity ; tropical ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 46 (1999), S. 179-202 
    ISSN: 1573-515X
    Keywords: carbon dioxide ; grazing ; nitrogen fixation ; nitrogen limitation ; phosphorus ; shade
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The widespread occurrence ofN limitation to net primary production (NPP) and other ecosystem processes, despite the ubiquitous occurrence ofN-fixing symbioses, remains a significant puzzle in terrestrial ecology. We describe a simple simulation model for an ecosystem containing a generic nonfixer and a symbioticN fixer, based on: (1) a higher cost forN acquisition byN fixers than nonfixers; (2) growth of fixers and fixation ofN only when lowN availability limits the growth of nonfixers, and other resources are available; and (3) losses of fixedN from the system only when the quantity of availableN exceeds plant and microbial demands. Despite the disadvantages faced by theN fixer under these conditions,N fixation and loss adjustN availability close to the availability of other resources, and biomass and NPP in this simple model can be substantially but only transientlyN limited. We then modify the model by adding: (1) losses ofN in forms other than excess availableN (e.g., dissolved organicN, trace gases produced by nitrification); and (2) constraints to the growth and activity ofN fixers imposed by differential effects of shading,P limitation, and grazing. The combination of these processes is sufficient to describe an open system, with input from both precipitation andN fixation, that is nevertheless stronglyN-limited at equilibrium. This model is useful for exploring causes and consequences of constraints toN fixation, and hence ofN limitation, and we believe it will also be useful for evaluating howN fixation and limitation interact with elevatedCO 2 and other components of global enviromental change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-5036
    Keywords: aluminium ; cellulose ; coal combustion by-product ; lime ; Lolium perenne ; phosphate rock ; phosphorus ; ryegrass ; Ultisol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Remediation of soil acidity is crucial for increasing crop production and improving environmental quality of acid infertile soils. Soil incubation and greenhouse pot experiments were carried out to examine the interactions between phosphate rock (PR), coal combustion by-product (BP), dolomitic lime (L), and cellulose (C) in an acidic soil and their effects on ryegrass (Lolium perenne L. cv ‘Linn’) growth. BP and PR application increased plant P content and dry matter yield (DMY) of shoots and roots by improving soil Ca availability and reducing Al toxicity. Application of BP at low rates (5 to 10 g BP kg-1) with PR appeared to decrease both plant P content and DMY compared to PR application alone. The reduced DMY is due to an increased Al concentration in soil solution as a result of displacement of sorbed Al by Ca of BP. Increases in DMY were obtained by addition of lime along with PR and BP at low rates or by increasing BP application rates above 15 g kg-1. This improved plant response was likely related to alleviation of Al toxicity by CaCO3 contained in the BP. In addition to raising the pH to an acceptable level for plant growth, the dolomitic lime supplied needed Mg for plants, thereby maintaining a good balance between available Ca and Mg for plants in the BP- and PR-amended soils. The addition of cellulose to the BP- and PR-amended soils reduced water-soluble Al and increased DMY. Plant growth increased PR dissolution by 2.4 to 243% in a soil with low available P. Use of BP at moderate rates with PR and dolomitic lime appears to be the best combination in increasing crop yields on infertile acidic soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 195 (1997), S. 351-364 
    ISSN: 1573-5036
    Keywords: barrier island ; environmental effects ; litter quality ; nitrogen ; phosphorus ; root decomposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A root decomposition study using the litterbag approach was conducted along a dune and swale chronosequence on the Virginia Coast Reserve-Long Term Ecological Research Site in Virginia, USA to evaluate how environmental and substrate quality factors influence belowground decay and associated nutrient dynamics. Gradients in moisture levels and nitrogen availability associated with the chronosequence provided the experimental framework. Spartina patens roots were buried at all sites as a standard substrate to evaluate environmental influences. Roots native to each site were buried to evaluate community decay dynamics and the influence of litter quality. Spartina decay was reduced in the wet, anoxic soils of swale sites (k = 0.21–0.33 yr-1) relative to decay in dunes soils (k = 0.52–0.72 yr-1). Increasing soil nitrogen availability from younger to older sites had no effect on the rate of Spartina root decay. Native root decay across the Hog Island chronosequence exhibits certain trends expected in response to nitrogen limitation and moisture availability. Increased nitrogen content of root material corresponds to increased soil nitrogen availability. Among dune sites, native root decay increased in concert with increased root nitrogen (6 year k = 0.34 yr-1, 120 year dune: k = 0.97 yr-1). Litter quality, alone, does not explain this trend since Spartina roots decayed more slowly than native dune roots and had a higher initial nitrogen content. Among swales, increased moisture levels and associated soil anoxia inhibited native root decomposition and minimized the effects of litter quality on decay. In general, phosphorus was rapidly lost from decaying roots while nitrogen immobilization was low to nonexistent. The low nitrogen immobilization of decaying roots in a nitrogen limited ecosystem warrants further study and may reveal that belowground decay increases the rate of nutrient cycling relative to decay aboveground.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1573-5036
    Keywords: arbuscular mycorrhizae ; banana ; Glomus mosseae ; interaction ; Meloidogyne incognita ; Musa AAA ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of the interaction between the arbuscular mycorrhizal fungus Glomus mosseae and the root-knot nematode Meloidogyne incognita on growth and nutrition of micropropagated ‘;Grand Naine’ banana (Musa AAA) cultivar was studied under greenhouse conditions. Inoculation with two G. mosseae isolates significantly increased growth of plants in relation to non-mycorrhizal plants. Response to mycorrhizae was as effective as with an optimum P fertilization in promoting plant development for most growth parameters. Meloidogyne incognita had no apparent effect on the percentage of root colonization in mycorrhizal plants. In contrast, G. mosseae suppressed root galling and nematode buildup in the roots. The percentage of mycorrhizal colonization was high (over 80%) in low P fertilized plants, but optimum P rates for bananas (four times higher than low P) significantly reduced mycorrhizal colonization. Most elements were within sufficiency levels for banana with exception of N which was low for all treatments. Mycorrhizal plants fertilized with a low P rate showed higher N, P, K, Ca, and Mg contents as compared to non-mycorrhizal plants low in P with or without the nematode. Inoculation with G. mosseae favours growth of banana plants by enhancing plant nutrition and by suppressing nematode reproduction and galling during the early stages of plant development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 211 (1999), S. 103-110 
    ISSN: 1573-5036
    Keywords: bioavailability ; isotopic evaluation ; phosphate ion exchange ; phosphorus ; rhizosphere ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The uptake of phosphorus (P) by roots results in a depletion of phosphate ions (PO4) in the rhizosphere. The corresponding decrease in PO4 concentration in the soil solution (CP) gives rise to a replenishment of P from the solid phase which is time- and CP-dependent. This PO4 exchange which reflects the buffer power of the soil for PO4 also varies with the composition and the physico-chemical conditions of the soil. As root activity can modify these physico-chemical conditions in the rhizosphere, the question arises whether these modifications affect the ability of PO4 bound to the soil solid phase to exchange with PO4 in soil solution. The aim of the present work was to measure and compare the parameters which describe the amount of PO4 bound to soil solid phase that is capable to replenish solution P for both rhizosphere and bulk soils. The soil sample was a P-enriched, calcareous topsoil collected from a long-term fertiliser trial. Rhizosphere soil samples were obtained by growing dense mats of roots at the surface of 3 mm thick soil layer for one week. Three plant species were compared: oilseed rape (Brassica napus L., cv Goeland) pea (Pisum sativum L., cv. Solara) and maize ( Zea mays L., cv. Volga). The time- and CP-dependence of the PO4 exchange from soil to solution were described using an isotopic dilution method. The measured CP values were 0.165 mg P L−1 for bulk soil and 0.111, 0.101 and 0.081 mg P L−1 for rhizosphere soils of maize, pea and rape, respectively. The kinetics of the PO4 exchange between liquid and solid phases of soil were significantly different between rhizosphere and bulk soils. However, when changes in CP were accounted for, the parameters describing the PO4 exchange with time and CP between soil solution and soil solid phase were found to be very close for bulk and rhizosphere soils. For this calcareous and P-enriched soil, plant species differed in their ability to deplete PO4 in solution. The resulting changes in the ability of the soil solid phase to replenish solution PO4 were almost fully explained by the depletion of soil solution P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; drainage waters ; sediments ; sorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Łuknajno, a shallow (max. depth 3 m) and relativelylarge(630 ha) water body situated in the Great Masurian Lakessystem(Poland) is strongly affected by its agricultural watershed.Thetotal volume of drainage waters pumped into the lake in 1993amounted 2.84 × 106m3 which is equivalentto65% of the lake volume. In spring and autumn drainage waterswereextremely rich in nitrogen (especially nitrates) and the N:Pratioreached 57 in spring. In summer, drainage waters containedrelatively more phosphorus so the N:P ratio decreased tonearly 10.Nutrient concentrations in lake water followed the changes ininflowing waters. High concentrations of nitrates and ammoniawerenoted in lake water in spring but summer concentrations oftheseions were close to zero. Soluble reactive phosphorus variedbetween10 and 20 µg P l−1 throughout the season. A constantoutflow of nitrogen to the lower Lake Śniardwy was assumedbased ona permanent concentration gradient between waters of these twolakes.Lake Łuknajno is a hard water lake. Co-precipitation ofphosphorus with calcium carbonate is likely to occur though nosignificant P accumulation in bottom sediments was found.Sorptionof phosphorus on sediments as measured under experimentalconditions has minor effects on P cycling. Bottom sedimentscomposed mainly of calcareous gyttja do not accumulate eitherorganic matter or mineral forms of nutrients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 345 (1997), S. 39-44 
    ISSN: 1573-5117
    Keywords: Crystal Lake ; phosphorus ; 210Pb ; 137Cs ; geochronology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Isotopes like 210Pb and 137Cs are effectivetools for determining chronology in lake sediments. Once the chronology is established, environmentalchanges in lakes can be investigated, and the causesfor those changes can often be inferred. 210Pband 137Cs profiles were constructed for thesediments of Crystal Lake, Connecticut, USA. Thegeochronology was used to determine the historicalchanges in organic matter and P accumulationin the sediment. Those profiles showed twosignificant periods of sedimentation which correlatewith major precipitation events. DecreasingP accumulation in the sediments of the lakein the last decade was also correlated with increasingeutrophication as documented by increases inepilimnetic P and decreases intransparency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1573-5117
    Keywords: fish food ; faeces ; nutrient ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The fish food and faeces were fractioned into the differentcomponents of phosphorus and nitrogen. There was a rapid release ofphosphorus from the fish food and faeces and a decrease thereafterwhereas ammonium release was slow at first with the rate increasingwith time. Both temperature and pH affected the release of nutrientsfrom fish food and faeces. The release of phosphorus and nitrogen washigher at higher temperatures. The maximum release of phosphorus wasat pH 4.0 whereas nitrogen release was maximum at neutral (7.0) toalkaline (10.0) media.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1573-5117
    Keywords: phytoplankton ; zooplankton ; planktivorous fish ; phosphorus ; biomanipulation ; trophic interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Water chemistry, phytoplankton, zooplankton and fish populations werestudied over several years in three shallow, non-stratified lakes withdiffering nutrient loadings and fish communities in southwest Finland. LakePyhäjärvi was weakly mesotrophic in 1980–1996, LakeKöyliönjärvi was highly eutrophic in 1991–1996, andLake Littoistenjärvi was mesotrophic in 1993–1996 and eutrophicin 1992. In Lake Pyhäjärvi, natural year-class fluctuations ofvendace and smelt (range of combined biomass 5–28 kgha™1) caused significant variation in planktivory. The verydense fish stocks of Lake Köyliönjärvi (mainly roach, breamand smelt) were decimated from 〉175 kg ha™1 in 1991 toabout 50 kg ha−1 in 1996 by removal fishing. The roach stockof Lake Littoistenjärvi declined from about 71 kg ha−1 toabout 28 kg ha−1 during 1993–1996. In LakePyhäjärvi, strong stocks of planktivorous fish were accompaniedwith depressed crustacean zooplankton biomass, reduced role of calanoids andcladocerans, a low proportion of larger cladocerans (length 〉 0.5 mm),and a high chlorophyll level. In the lakes Littoistenjärvi andKöyliönjärvi, zooplankton was dependent on both fish andphytoplankton: in spite of dense fish stocks, a high crustacean biomassdeveloped in a phytoplankton peak year, but it was dominated by very smallcladocerans. In Lake Pyhäjärvi, late summer chlorophyllconcentration was predictable from total phosphorus in water and cladoceranbiomass (r2 = 0.68), both factors explaining roughlysimilar fraction of total variation. In combined data from all three lakes,chlorophyll was almost solely dependent on total phosphorus, while thecladocerans were regulated both from below by productivity and from above byfish. Our data from Pyhäjärvi lend support to consumer regulationof late summer phytoplankton; low chlorophyll values prevailed whenplanktivorous fish biomass was below 15 kg ha−1. In largeeutrophic lakes it may be difficult to reduce fish stocks to such a lowlevel: in Lake Köyliönjärvi, after six years of removalfishing, fish biomass still remained higher, and changes in plankton wereaccordingly small. Unexpectedly, in 1993–1996, phytoplankton biomassin Littoistenjärvi remained low in spite of low crustacean zooplanktonbiomass; submerged macrophytes probably regulated the water quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1573-5117
    Keywords: lake sediment ; bioturbation ; chironomid larvae ; organic matter decomposition ; nutrient exchange ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The importance of Chironomus plumosus larvae onbenthic metabolism and nutrient exchange across thesediment–water interface was evaluated in a shalloweutrophic lake (Lake Arreskov, Denmark) following aphytoplankton sedimentation. Chironomus plumosuslarvae were added to laboratory sediment microcosms,corresponding to a density of 2825 larvae m−2.Non-inhabited microcosms served as controls. Asedimentation pulse of organic matter was simulated byadding fresh algal material (Chlamydomonasreinhardii) to sediment cores (36 g dryweight m−2). The mineralization was followed bymeasuring fluxes of O2, CO2, dissolvedinorganic nitrogen and phosphate. A rapid clearance ofalgae from the water column in faunated microcosmssuggested that chironomids may be of major importancein controlling phytoplankton concentrations in shalloweutrophic lakes. Chironomids increased the sedimentO2 uptake ≈ 3 times more than what wouldbe expected from their own respiration, indicating astimulation of microbial activity and decomposition oforganic matter in the sediment. Addition of algaeenhanced the release of CO2, NH+ 4 ando-P. The excess inorganic C, N and P released inamended non-inhabited sediment after 36 dayscorresponded to 65, 31 and 58% of the C, N and P inthe added algae. In sediment inhabited by Chironomus plumosus the corresponding numbers were147, 45 and 73%, indicating that mineralization oforganic matter also from the indigenous sediment poolwas stimulated by chironomids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; phytoplankton biomass ; Daphnia grazing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The role of nitrogen as a factor controllingphytoplankton biomass was studied in nutrientenrichment incubations in the laboratory using waterfrom pelagic region of two mesotrophic lakes ineastern Finland, Lake Kallavesi (in year 1994) andLake Juurusvesi (in year 1995). We used differentcombinations of phosphorus and nitrogen additions ina total of eight experiments. Furthermore, we includedDaphnia grazing treatment to the experimentaldesign in Lake Juurusvesi experiments. The nitrogentreatments did not increase chlorophyll aconcentration in any of the experiments compared withthe controls. Chlorophyll a content was highestin those nutrient treatments where phosphorus wasadded with or without nitrogen. Daphnia grazingdecreased chlorophyll a concentration comparedwith non-grazed treatments. In some cases grazing alsocaused higher ammonium concentrations. Theseexperiments, as well as the nutrient ratio of the lakewater used, suggest that phosphorus is likely tocontrol the amount of phytoplankton biomass.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; pore water ; macrophyte ; floodplain ; Paraná River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 394 (1999), S. 93-102 
    ISSN: 1573-5117
    Keywords: acidification ; phosphorus ; oligotrophication ; cyanophyceans ; desmids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton development in the acidified Lakes Östra Nedsjön and Ömmern, situated in SW Sweden, was followed during 1973–92. The former lake was first limed in 1971–73 which increased the pH value from ca 5.3 to 6, without affecting the plankton markedly. In Lake Ömmern, acidification lowered the pH value from ca 6 to 5.3 during 1976–1981, which caused oligotrophication and reduced number of species. In 1981/82 both lakes were limed, and during the following period treatments were regularly made, resulting in average pH levels of 7.2 and 6.9, respectively. The concentrations of humic compounds and phosphorus increased and the distribution of the major plankton groups was markedly changed. In both lakes the cyanophycean volume decreased, whereas diatoms became quantitatively important. Especially in relation to the acidic period 1979–81, there was increased species richness in both lakes. However, in contrast to the development in Lake Ömmern, the desmids were eliminated in Lake Ö.Nedsjön, where the pre-acidification phytoplankton was not restored.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 325-333 
    ISSN: 1573-5117
    Keywords: reservoir ; phosphorus ; algal blooms ; water treatment ; ferric dosing ; macrophytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The impact of phosphorus control on the nutrient dynamics and biological activity of Foxcote Reservoir, a small impounded reservoir operated by Anglian Water are discussed. Phosphorus precipitation using iron salts was commenced in 1981 to improve the treatability of previously algal-laden water and continued until 1994 when the reservoir was closed as a water supply source. A marked decrease in algal biomass was observed after an initial delay, which coincided with an increase in the abundance of aquatic macrophytes. There were also marked shifts in the macrophyte community during the following 10 years, with an increase in Elodea and an initial increase then decline in Chara. The zooplankton community also changed with an increase in the larger bodied Daphma pulex. No overall change in the rate of denitrification was observed, although patterns of silica depletion showed changes in frequency. Trends in wildfowl counts over this period reflect changes in the ecology of the reservoir.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1573-5117
    Keywords: sedimentation ; carbon ; nitrogen ; phosphorus ; resuspension ; export production ; Baltic Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal changes of total particulate material (TPM), particulate organic carbon (POC), nitrogen (PON) and phosphorus (PTP) concentrations in the water column, in sediment traps and on the sediment surface were studied in the SW coast of Finland, Baltic Sea, from March to November 1992. Sampling was carried out along a coastal gradient from the fjord-like, semi-enclosed Pojo Bay to the outer archipelago and open sea area. In Pojo Bay, TPM sedimentation rates were high and relatively constant, and had low organic carbon contents throughout the seasonal cycle. Resuspension was estimated to contribute 〉 90% of total sedimentation of POC and PON. Clear seasonality in sedimentation with high settling rates of primary organic material in spring, low sedimentation rates during summer and a considerable increase of resuspension during autumn was found in the outer archipelago and open sea. The C:N:P ratios of suspended, settled and sediment surface material indicated greater sedimentary loss of N (as compared to P and C) and closer coupling between pelagial and benthos in the archipelago and open sea area than in Pojo Bay. The sedimentation of P was 20–50% more effective (as compared to N and C) in Pojo Bay than elsewhere. These results indicate that the shift of planktonic nutrient limitation (from P to N limitation) is enhanced due to the more efficient sedimentation of the main limiting element along the estuarine gradient. The primary sedimentation of organic carbon (approximating export flux from the pelagic system) during the whole study period was estimated to be 30–48% of the total net primary production. This indicates that despite the differences in the salinity, nutrient dynamics and planktonic community structure along the coastal gradient, a relatively constant fraction of the annual primary production is exported from the pelagic system by sedimentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 131-144 
    ISSN: 1573-5117
    Keywords: phosphorus ; model ; excretion ; grazing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 19-26 
    ISSN: 1573-5117
    Keywords: sediment ; phosphorus ; eutrophication ; biomanipulation ; fish ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Ringsjön did not respond with decreased algal production following a substantial reduction in external phosphorus loading. This is typical of many shallow lakes which for decades have received excessive amounts of nutrients. The inertia is due to large amounts of phosphorus (P) stored in sediments and biota, causing internal phosphorus loading. Much of this phosphorus is thought to be released from the organic-rich profundal sediments. In Lake Ringsjön, only one third of the total bottom area is covered by such sediments, the rest being dominated by sand and silt. In the profundal sediments bulk P content was not exceptionally high (approximately 2 mg P·g DW−1), while the pore water phosphate concentrations, especially in Sätofta Basin, were very high, indicating large potential for phosphorus release to the water. This is also indicated by the large proportion of Fe- and Al-bound P in the sediments of Sätofta Basin. Although there are no direct quantifications of phosphorus release from the sediments in Lake Ringsjön, measurements of phosphorus concentrations in the water mass as well as budget calculations for the three basins clearly show a high capacity for internal loading. Phosphorus concentrations generally increase during summer, when external additions are minimal. Until 1980, the annual external phosphorus addition to Lake Ringsjön greatly exceeded the output, showing that the lake was an efficient phosphorus trap. Since then, input and output have been balanced, but in recent years signs that the lake is once again retaining phosphorus on an annual basis are evident. There are marked differences between the three basins, with Western Basin generally retaining phosphorus, while the upstream Eastern Basin and Sätofta Basin during the 1980s often exported phosphorus. It is not possible to evaluate the effects of the fish biomanipulation on the internal loading of phosphorus from the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 27-40 
    ISSN: 1573-5117
    Keywords: phytoplankton ; fish reduction ; phosphorus ; biomanipulation ; blue-green algae ; cyanobacteria ; Microcystis ; Anabaena ; Aphanizomenon ; Aulacoseira ; cryptomonads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The algal record from Lake Ringsjön covers a period of more than 100 years. Towards the end of the 19th century, the lake had a well-functioning commercial fishery, when a brownish mess began to appear in the water, clogging-up the fishing nets and making fishing difficult. This was the first record of algal problems in the lake. Following complaints from the fishermen, the algal flora was investigated and the mess was stated to be a mass development of diatoms belonging to the genus Melosira ( Aulacoseira). Diatom maxima then appeared regularly in spring and autumn, whereas blue-green algae only occurred occasionally and in low abundances. Between 1900 and 1950, nutrient concentrations slowly increased in the lake. Algal blooms of Anabaena lemmermannii and Gloeotrichia echinulata began to appear in summer. Between 1960 and 1980, the lake developed into a hypertrophic status with extensive blooms of blue-green algae from May to October, including high biomasses of mainly Microcystis spp. This severe pollution started with increased usage of the lake, increased tourism and recreation, intensified farming with the introduction of artificial fertilization, and also the diversion of sewage water from a sewage treatment plant. In 1968, cattle death was reported and in 1981, algal toxicity was verified by mouse bioassay. After a period of extremely poor water quality, the lake began to show signs of improvement as a result of the nutrient and fish reduction programmes. The very heavy blooms of blue-green algae decreased and the duration of blooms became shorter. The Microcystis species were to a certain extent replaced by Anabaena and Aphanizomenon species, and biodiversity of algae increased. With respect to the algal community, the lake has improved considerably, but is still eutrophic and suffers summer blooms of toxic blue-green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 307-316 
    ISSN: 1573-5117
    Keywords: macrophytes ; turbidity ; phytoplankton ; zooplankton ; nutrients ; phosphorus ; model ; grazing ; top-down control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A review of the literature suggests that aquatic macrophytes can enhance water clarity and reduce phytoplankton biomass through shading, reduction of nutrient availability, excretion of allelopathic substances and reduction of resuspension. In addition, vegetation fields are reported to enhance grazing on phytoplankton by providing a day-time refuge against fish predation for planktonic filter feeders such as Daphniaand by providing a suitable habitat for macrophyte associated filter feeders such as Sida crystallina, Eurycercus lamellatusand Simocephalus velutus. I use a graphical and a simple mathematical model to explore how top-down control by these grazers may interact with the effect of reduced phytoplankton production due to the other factors mentioned. The analysis suggests that grazing tends to be an all-or-none effect, driving phytoplankton to a very low biomass once a certain threshold level of grazing pressure is exceeded. This threshold level is predicted to increase with the productivity of the phytoplankton. Thus, the model suggests that, in plant beds, productivity reducing factors such as shading and reduced nutrient concentrations can pave the way for top-down control of phytoplankton even by a relatively moderate population of filter-feeders, and that phytoplankton biomass will decrease sharply beyond a critical macrophyte (or grazer) density. Indeed such a discontinuous response is observed in field experiments. Also, the idea that filter feeding cladocerans such as Daphniaplay a key role is in line with the observation that brackish lakes where Daphniadoes not thrive tend to be turbid despite the often dense weed beds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 375-387 
    ISSN: 1573-5117
    Keywords: eutrophication ; multi-lake studies ; phosphorus ; nitrogen ; chlorophyll-a ; transparency ; zooplankton ; macrophytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Monitoring data obtained from 231 freshwater lakes and ponds in the Netherlands, covering the period 1980–1996, were used to analyse the relationships between (a) transparency and chlorophyll-a, and the effect of system characteristics on this relationship, (b) chlorophyll-aand nutrient concentrations, and the effect of biological variables and (c) nutrient concentrations and nutrient loading. (a) Chlorophyll-aimposes a maximum on water transparency, but deviations from this maximum can be large. Reducing chlorophyll-a, therefore, does not guarantee a sufficient improvement of transparency. Soil type and the average depth of a lake were shown to influence the relationship between chlorophyll-aand transparency. (b) The maximum ratios of both chlorophyll-a: total-P and chlorophyll-a: total-N were higher in systems dominated by filamentous cyanobacteria than in systems dominated by other algae, indicating the efficiency of the former group with respect to nutrients. In systems with an areal coverage with submersed macrophytes above 5%, concentrations of chlorophyll-aand nutrients were lower than in systems with lower coverages. The ratios between chlorophyll-aand nutrients were lower at coverages larger than 10%. This indicates both bottom-up and top-down control of algae by macrophytes. Grazing pressure by zooplankton was also found to lower the chlorophyll-a: nutrient ratios. (c) System specific linear relationships were found between the average concentrations of total-P and total-N in the incoming water and the summer mean concentration in the lake. This allows the assessment of admissible loads for individual lakes, with narrower confidence limits compared to traditional relationships based on combined data from many lakes. From the analysis, it is concluded that the chain of relationships from nutrient loading to transparency is complex, and depends on biological variables as well as system characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 389-394 
    ISSN: 1573-5117
    Keywords: mictic type ; water transparency ; nitrogen ; phosphorus ; chlorophyll:nutrient ratio ; chlorophyll:seston ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Data for comparison are from 17 dimictic and four polymictic lakes interconnected to form a system of the Great Masurian Lakes. Both summer epilimnetic total phosphorus and chlorophyll were higher in dimictic than in polymictic lakes. Chlorophyll was probably not limited either by phosphorus or by nitrogen in shallow lakes. Utilization of phosphorus in terms of chlorophyll:particulate phosphorus and chlorophyll:particulate nitrogen ratios was similar in the two groups of lakes. Significant differences were found, however, in the chlorophyll:seston ratio, higher in dimictic lakes. These observations together suggest that seston in shallow lakes contains a significant, though unpredictable contribution of detritus/mineral particles much poorer in phosphorus than those in dimictic lakes. Secchi disc depth was better explained in shallow lakes by seston variability than by chlorophyll. Thus, algal production in shallow masurian lakes seems to be limited by light conditions resulting from resuspension of non-living particles while the production in deep lakes is nutrient (both nitrogen and phosphorus) limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 359-365 
    ISSN: 1573-5117
    Keywords: eutrophication ; trends ; lakes ; phosphorus ; nitrogen ; chlorophyll-a ; transparency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relation between (inter)national programs aiming at nutrient load reduction and changes in eutrophication has been studied for 231 Dutch lakes over the period 1980–1996. Trends in total-phosphorus (P) and total-nitrogen (N) were negative, as determined by analysis of both individual lakes and the complete data set. The relative trends in the nutrient concentrations as well as in the N/P ratio correspond with the significantly reduced P emission and the limited reduction of N emission in The Netherlands since the beginning of the 1980s. Negative trends in chlorophyll-aand positive trends in Secchi-disc transparency may be partly explained by reduced nutrient concentrations. Perspectives for the nearby future are discussed. Lake characteristics had only a minor impact on the trends. The improvement of the water quality was found for all subsets of average depth, surface area, hydraulic retention time and soil type. Furthermore, the effect of restoration measures and meteorological conditions on the trends were studied. Biomanipulation resulted in an additional improvement of several water quality variables compared to lakes that were only subject to (inter)national programs on nutrient load reduction. Specific measures resulting in additional P load reduction resulted only in lowered P concentrations. Severe winters resulted in lower chlorophyll-aconcentrations in the following summer and dry conditions in spring were favourable for all eutrophication variables in the following summer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 415 (1999), S. 117-122 
    ISSN: 1573-5117
    Keywords: vegetation ; floristic associations ; habitat ; enrichment ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During River Habitat Surveys on the physical structure of watercourses in Britain between 1995 and 98, detailed assessments of the floristic associations, physical habitat and water chemistry were made at 165 sites over a wide range of vegetation types. Botanical data from a total of 340 relevés from within these RHS were recorded. The vegetation was classified phyto-sociologically on the basis of the abundance of characteristic species, resulting in 45 aquatic, swamp and mire associations being identified together with nine other communities which could not be completely classified phyto-sociologically. The associations were assigned to 22 alliances, 13 orders and 11 classes excluding communities dominated by filamentous algae. Water enrichment (as soluble and total phosphorus) was the most significant factor for the differentiation of the communities but pH, conductivity and alkalinity were also important.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 37 (1997), S. 237-252 
    ISSN: 1573-515X
    Keywords: freshwater ; limitation ; marine ; nitrogen ; phosphorus ; ratio ; stoichiometry ; trace elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen supply is often assumed to limitmarine primary production. A global analysis of totalnitrogen (N) to phosphorus (P) molar ratios shows thattotal N:P is low (〈16:1) in some estuarine andcoastal ecosystems, but up to 100:1 in open oceans.This implies that elements other than N may limitmarine production, except in human impacted, estuarineor coastal ecosystems. This pattern may reconcileconflicting enrichment studies, because N additionfrequently increases phytoplankton growth where totalN:P is expected to be low, but P, Fe, or Si augmentphytoplankton growth in waters where total N:P ishigh. Comparison of total N:P stoichiometry betweenmarine and freshwaters yields a model of the form ofthe aquatic N:P cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-5117
    Keywords: eutrophication ; phosphorus ; bioavailability ; nutrient balance ; agriculture ; models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study assesses the effects of external and internalloading on the nutrient concentrations in an agriculturallyloaded shallow lake. Using 13 years of observations of thelake's input and outflow, we calculated the long-term balancesof Tot-P and Tot-N. A more detailed balance, which includeddissolved nutrients and suspended solids, was estimated for anice-free period of one year. The contribution of the externalload was assessed using a mass-balance model. The internalload was estimated from the nutrient balances and on the basisof sedimentation measurements and bioassays. The drainagebasin of the lake provided most of the external nutrientinput; the remaining load was derived from atmosphericdeposition to the lake. The proportions of river-transported Pand N in dissolved form were 25% and 77%, respectively. Thelake retained 〉80% of the external load. Particulatenutrients settled to the bottom and were probably resuspendedseveral times before permanent sedimentation. Dissolvednutrients were bound by primary producers and a highproportion of dissolved P was removed with the fish catch.Dissolved N was also lost via denitrification. Themass-balance model showed that external loading only partlyregulated the mean annual nutrient concentrations in the lake.The regulation was probably due to internal loading, which washigh despite the efficient net retention of nutrients. Duringthe ice-free period, the temporal variations in nutrientconcentrations were controlled almost solely by internalprocesses, such as resuspension of inorganic and organicbottom matter. Although the internal load of bioavailable Pmay, under favourable conditions, exceed the external load,the mechanism by which bioavailable P is translocated from thebottom sediments to the water could not be fully identified. Abbreviations used in this paper follow the editor'srules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1573-5117
    Keywords: drainage area ; reservoir ; sedimentcomposition ; phosphorus ; phosphate extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The study of four drinking-water reservoirsdemonstrates how the anthropogenic land use of acatchment may affect binding and mobility ofphosphorus in the sediment. Pdiss concentrationgradients at the sediment–water interface weremeasured to calculate potential diffusive releaserates. P binding forms were determined by sequentialextraction of fresh sediment and settling seston. Mainstudy sites were Saidenbach Reservoir (mesotrophic,densely populated drainage area with 73% agriculturalland use) and Neunzehnhain Reservoir (oligotrophic,unpopulated drainage area forested to 80%) in thesilicate-rich Erzgebirge mountains of eastern Germany.Tot-P concentrations and P binding forms of typicalerosive matter from each catchment were similar to thesediment of both pre-reservoirs and reservoirs' mouth.In Saidenbach Reservoir, diatoms responded to highnutrient loading by incorporating ortho-P. Whilesettling, the org-P was partly transformed toFe(OOH) ≈ P. Apart from hypolimnetic O2depletion, this P binding form dominated in thesurface sediment mainly in front of the dam. Withincreasing sediment depth, org-P and Fe(OOH) ≈ Pnot only redissolved into the pore water, but alsoadsorbed onto Al compounds. In Neunzehnhain Reservoir,acidification of the low buffered catchment favouredloading of humic compounds and Al3+ ions, whichprecipitated and redox-independently adsorbed ortho-Pdue to a pH increase in the lake. Neunzehnhainsediment was able to immobilize Fe(OOH) ≈ P fromSaidenbach sediment in a batch experiment. Comparativesequential P extraction of sediment from SosaReservoir (oligo-mesotrophic, sparsely populateddrainage area forested to 94%) and Kleine KinzigReservoir (nearly unpopulated drainage area forestedto 98%) also demonstrated effective P immobilizationby Al-/humic compounds. It is concluded that the absence of settlements in thecatchment, together with forestry as dominating landuse, favour not only oligotrophic conditions in thereservoir but also confine internal P loading from thesediment. But attention should be paid toacidification problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 345 (1997), S. 15-20 
    ISSN: 1573-5117
    Keywords: phosphorus ; phosphorus budget ; retention ; sedimentation ; sediment traps ; sediment cores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared P retention with direct measures of Psedimentation, estimated fromsediment cores (annual P sedimentation) and sedimenttraps (daily P sedimentation),to quantify P sedimentation in Eau Galle Reservoir,Wisconsin. Mean annual Pretention was similar to mean annual P sedimentation,as estimated from sediment corerates integrated over the entire lake basin,indicating that annual P mass balanceapproximated annual net P sedimentation in thisreservoir. However, sediment trap Prates, measured over the summer stratified period,overestimated P retention ratesdetermined over the same period, suggestingsubstantial deposition of internally-derived P.Inclusion of measured internal P loadings from avariety of sources in EauGalle Reservoir in a P mass balance only accounted foran additional 24% of thesummer sediment trap P rate, indicating substantialuncertainty in the overall P budget.Imbalances in the P budget may also suggest depositionof sediment from other as yetunquantified internal sources. Potential internalsources of P include sedimentresuspension and chemical release and direct uptake ofP from the sediment byphytoplankton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 1573-5117
    Keywords: alkaline phosphatase ; chlorophyll a ; phosphorus ; algae ; phosphorus regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Alkaline phosphatase activity (APA) of unfiltered andfractionated (algae, bacteria, dissolved) surface watersamples was measured using a spectrophotometric method in LakeŁuknajno from May to September 1993. The total enzymaticactivity varied between 0.44–2.35 µmol l−1h−1.Algae were major producers of alkaline phosphatase activity insurface water of the lake from May to August, and theiractivity constituted on the average 67% of the total APAactivity in the water. APA activity in bacterial size fractionwas low and constituted 9.6% (mean) of the total activity.The activities of free (dissolved in water) enzymes wererelative high during the time of study. This study show thathydrolysis of organic phosphomonoesters by alkalinephosphatase was negligible in the recycling of phosphorus inŁuknajno Lake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 342-343 (1997), S. 1-8 
    ISSN: 1573-5117
    Keywords: model ; phosphorus ; eutrophication ; hysteresis ; lake ; restoration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract There is increasing evidence that, within a range of nutrientloadings, shallow lakes may have two alternative stablestates. One is dominated by phytoplankton and the other one bysubmerged macrophytes as the main primary producer. Thequestion arises at what level of nutrient loading a transitionmay occur between the two states. This question was addressedby means of the integrated lake model PCLake. The modeldescribes the competition between phytoplankton andmacrophytes, within the framework of closed nutrient cycles inthe lake system, including the upper sediment. Top-downeffects via the food web were regarded as well. The model wasrun for a hypothetical shallow lake, representative for thesituation in The Netherlands. Long-term simulations werecarried out for a realistic range of nutrient loadings andstarting from different initial conditions. The results showeda highly non-linear response, which also showed hysteresis:the loading level at which a transition occurs turned out tobe dependent on the initial conditions. The results werecompared with empirically derived chlorophyll a tophosphorus relations. Factors influencing the ’criticalnutrient level‘ were the lake dimensions and the netsedimentation rate. The model was also used to evaluate therole of food web management in lake restoration. The resultssuggest that a long-term effect of additional management ispossible only if combined with a decrease in nutrient loading.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1573-5117
    Keywords: lake ; phosphorus ; loading ; restoration ; Loch Leven ; Scotland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eight tonnes of phosphorus in all forms (total phosphorus, TP) entered Loch Leven from its catchment in 1995, compared to 20 t in 1985. Diffuse run-off from the land, and waste from over-wintering geese contributed 59% of the total loading in 1995 cf. 42% in 1985. Point-sources of sewage, and waste-water from fish-rearing ponds, produced the rest. Inputs of phosphorus in soluble reactive form (SRP) totalled 5 t, i.e. 63% of the TP loading in 1995, as compared with 1985 values of 11.8 t and 59%. Point-sources of SRP contributed 54% of the total SRP input in 1995 cf. 69% in 1985. Loadings from three sewage treatment works (STW) totalled 3.1 t TP in 1995 as compared with 5.3 t in 1985; this included 2.6 t SRP (cf. 3.6 t). Daily per capita outputs of the upgraded Kinross North and Milnathort STWs were 0.68 g and 0.81 g TP, respectively, compared with pre-upgrade values of 1.77 g and 2.03 g. Nett reductions in TP and SRP loadings between 1985 and 1995, are 55% and 59% respectively. These values are attributable as much to the lower rainfall of 890 mm over the period of study in 1995, compared to 1250 mm in 1985, as to ‘managed’ elimination of P usage at a major industrial source, and upgrades of STWs. In spite of these cutbacks, a combination of the lower rainfall and an extraordinarily hot summer in 1995 negated the expected reduction in lake phosphorus and chlorophyll levels. The lowered specific areal loading of ca. 0.7 g P m−2 estimated for 1995 still considerably exceeds the ideal maximum for the loch. These statistics nevertheless ignore the significance of a reduction of ca. 7 t in P entering the system in bio-available form, a recently completed upgrade of a major STW and channelling of effluent from a small works out of the catchment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 19-26 
    ISSN: 1573-5117
    Keywords: sediment ; phosphorus ; eutrophication ; biomanipulation ; fish ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Ringsjön did not respond with decreased algal production following a substantial reduction in external phosphorus loading. This is typical of many shallow lakes which for decades have received excessive amounts of nutrients. The inertia is due to large amounts of phosphorus (P) stored in sediments and biota, causing internal phosphorus loading. Much of this phosphorus is thought to be released from the organic-rich profundal sediments. In Lake Ringsjön, only one third of the total bottom area is covered by such sediments, the rest being dominated by sand and silt. In the profundal sediments bulk P content was not exceptionally high (approximately 2 mg P·g DW−1), while the pore water phosphate concentrations, especially in Sätofta Basin, were very high, indicating large potential for phosphorus release to the water. This is also indicated by the large proportion of Fe- and Al-bound P in the sediments of Sätofta Basin. Although there are no direct quantifications of phosphorus release from the sediments in Lake Ringsjön, measurements of phosphorus concentrations in the water mass as well as budget calculations for the three basins clearly show a high capacity for internal loading. Phosphorus concentrations generally increase during summer, when external additions are minimal. Until 1980, the annual external phosphorus addition to Lake Ringsjön greatly exceeded the output, showing that the lake was an efficient phosphorus trap. Since then, input and output have been balanced, but in recent years signs that the lake is once again retaining phosphorus on an annual basis are evident. There are marked differences between the three basins, with Western Basin generally retaining phosphorus, while the upstream Eastern Basin and Sätofta Basin during the 1980s often exported phosphorus. It is not possible to evaluate the effects of the fish biomanipulation on the internal loading of phosphorus from the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 27-40 
    ISSN: 1573-5117
    Keywords: phytoplankton ; fish reduction ; phosphorus ; biomanipulation ; blue-green algae ; cyanobacteria ; Microcystis ; Anabaena ; Aphanizomenon ; Aulacoseira ; cryptomonads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The algal record from Lake Ringsjön covers a period of more than 100 years. Towards the end of the 19th century, the lake had a well-functioning commercial fishery, when a brownish mess began to appear in the water, clogging-up the fishing nets and making fishing difficult. This was the first record of algal problems in the lake. Following complaints from the fishermen, the algal flora was investigated and the mess was stated to be a mass development of diatoms belonging to the genus Melosira ( Aulacoseira). Diatom maxima then appeared regularly in spring and autumn, whereas blue-green algae only occurred occasionally and in low abundances. Between 1900 and 1950, nutrient concentrations slowly increased in the lake. Algal blooms of Anabaena lemmermannii and Gloeotrichia echinulata began to appear in summer. Between 1960 and 1980, the lake developed into a hypertrophic status with extensive blooms of blue-green algae from May to October, including high biomasses of mainly Microcystis spp. This severe pollution started with increased usage of the lake, increased tourism and recreation, intensified farming with the introduction of artificial fertilization, and also the diversion of sewage water from a sewage treatment plant. In 1968, cattle death was reported and in 1981, algal toxicity was verified by mouse bioassay. After a period of extremely poor water quality, the lake began to show signs of improvement as a result of the nutrient and fish reduction programmes. The very heavy blooms of blue-green algae decreased and the duration of blooms became shorter. The Microcystis species were to a certain extent replaced by Anabaena and Aphanizomenon species, and biodiversity of algae increased. With respect to the algal community, the lake has improved considerably, but is still eutrophic and suffers summer blooms of toxic blue-green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 131-144 
    ISSN: 1573-5117
    Keywords: phosphorus ; model ; excretion ; grazing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1573-5117
    Keywords: shallow lake ; nutrient loading ; retention ; nitrogen ; phosphorus ; release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The shallow (mean depth 4.9 m), polymictic and eutrophic lake Müggelsee was highly loaded with phosphorus (6 gP m-2a-1) and nitrogen (170 gN m-2a-1) by the river Spree up to the end of the 1980s. Annual load declined by 40–50% during the last years (1991–97). Phosphorus retention fluctuated strongly during the seasonal cycle between −200 and +100 kgP d-1and from year to year between −44% and + 26% of the P import. At the end of the eighties, the P retention capacity of the sediment was exceeded and Müggelsee became a source of phosphorus. The lake regained its ability to retain P in the sediments after external load reduction in the 1990s. However, the internal load of P reached the level of the external one. The release of P during summer was strongly related to the import of nitrate. On long-term average (1979–1997), less than 1% of the P input was retained in Müggelsee. About 24% of the nitrogen load were removed in the lake on annual mean. This rate decreased during the last years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1573-5117
    Keywords: shallow lake ; sediment ; dy ; phosphorus ; calcium ; metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A chemical characterization of the surficial sediment (0–20 cm) of type `dy' (org-Cpart/TNpart〉10) of the anthropogenically polluted shallow Lake Petersdorf is presented. Eighty samples were analyzed for a set of parameters, i.e. dry weight, loss on ignition (LOI), total inorganic carbon (TIC), N, S, P, Ca, Si, As, Fe, Al, Mn, Zn, Cd, and Pb. LOI, TIC, N, S, Ca, P, and Zn tend to accumulate at a water depth 〉2 m (70.6% of the lake surface) in contrast to Mn and Fe which are more widely distributed, and Cd and Pb which are accumulated in the lake part close to a road. The enrichment factors of certain elements, e.g. Al (23.9%), Si (31.5%), P (12.2%), and Ca (68.7%) from 20 cm sediment depth up to the surface, are attributed to incisive changes in the immediate catchment. Erosion, fertilization, amelioration, and separation of the peatland north of the lake by a dam within the last 60 yrs resulted in the change of Lake Petersdorf from a dystrophic to a eutrophic stage. This enhanced the mineralization of its meso-humic (LOI/TNpart=20.6) sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 410 (1999), S. 111-122 
    ISSN: 1573-5117
    Keywords: phosphorus ; nitrogen ; retention ; river systems ; specific runoff ; hydraulic load
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The total nutrient inputs (emissions) from point and diffuse sources into 100 different river basins in Europe are compared with the measured load (transport). The catchment areas range between 121 and 194 000 km2. Other characteristic parameters of the basins, including specific runoff, surface water area and the nutrient concentration show large differences. Independent of the different methods applied for estimating nutrient emissions, these are in general higher than the actual transport. The ratio of the transport to the emission was used to exclude the effects of basin size and to facilitate comparisons between river basins. A statistical model of the retention, including net sedimentation and denitrification, is derived for the description of the discrepancy between the measured transport and the estimated total emission of nutrients, which is assumed to reflect retention of nutrients in a river system. It was found that the load-weighted retention of phosphorus is controlled practically only by the specific runoff of the basin. The load- weighted retention of nitrogen is further dependent on the proportion of the basin area occupied by surface water, the basin size itself and the mean annual nitrogen concentration at a specific monitoring station. Application of the statistical model reduces the mean deviation between the calculated emissions and the values given by different authors from about 40% to 20%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1573-5117
    Keywords: biofilter ; productivity ; phosphorus ; water quality ; Azolla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aquatic pteridophyte Azolla, a small-leaf floating plant, which lives in symbiosis with a nitrogen fixing cyanobacteria, Anabaena azollae, was widespread throughout water channels and hydrographic basins of Portugal. Azolla is also the aim of a study for its utilization as a biofilter for wastewater purification, namely for phosphorus removal (± 36%). The goal of this work is to compare the growth characteristics and biomass composition of this water fern in natural ecosystems with those obtained in some wastewaters. Plant growth rate (0.107± 0.037 d-1) and productivity (5.8 g dw m-2 d-1) suggest that Azolla can grow well in partially treated domestic wastewater, but not in diluted pig wastes. This fact, associated to its biomass composition, namely in phosphorus content (1.38 ±0.20%), increase the possibility of this plant being used to improve wastewater discharge quality. It may also be possible to use the biomass as a biofertiliser or as a feed supplement for aquatic and terrestrial animals due to its protein, crude fiber and mineral content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 37 (1997), S. 63-75 
    ISSN: 1573-515X
    Keywords: nutrient limitation ; soil development ; nitrogen ; phosphorus ; chronosequence ; Hawai'i
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Walker & Syers (1976) proposed a conceptual model that describesthe pattern and regulation of soil nutrient pools and availability during long-term soil and ecosystem development. Their model implies that plantproduction generally should be limited by N on young soils and by P on oldsoils; N and P supply should more or less equilibrate onintermediate-aged soils. We tested the application of this model to nutrientlimitation, using a well characterized substrate age sequence in Hawaiianmontane rain forest. Earlier experiments had evaluated nutrient limitationin forests on a young (300 y) and an old (4,100,000 y) substrate on the samedevelopmental sequence; N alone limited tree growth on the youngsubstrate, while P alone did so on the old one. An additional fertilizerexperiment based on replicated treatments with N, P, and all othernutrients combined, applied in individually and in all factorialcombinations, was established in an intermediate-aged site in theLaupahoehoe Forest Reserve, Hawaii. Here, diameter increments of thedominant tree Metrosideros polymorpha increased slightly with Nadditions, and nearly doubled when N and P were added together.Additions of elements other than N and P had no significant effecton growth. These results show that N and P had equilibrated (relativeto plant requirements) in the intermediate aged site. Together withthe earlier experiments, these results suggest that the Walker and Syersmodel provides a useful starting point for explaining the nature anddistribution of nutrient limitation in forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1573-515X
    Keywords: carbon ; nitrogen ; Ohio River ; phosphorus ; Red field ratios ; dissolved organic matter ; rivers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A 12-month study was conducted to measure the concentrations ofdissolved organic matter (DOC, TDN, TDP) in four sites within a119 km long reach of the Ohio River, near Louisville, KY. In thisstudy we test whether specific geomorphological and biologicalfactors influenced variations in dissolved organic matter.Concentrations of DOC in the river averaged ≈1200μmol/L, and varied by nearly two orders of magnitudeseasonally (mean DOC during base flow ≈620 μmol/L).Peak periods for DOC at all sites were during April–May. Thesite nearest a navigation dam (deeper, lower current velocities)had significantly lower concentrations of TDN and greater C:Nratios than upstream sites. The largest tributary entering thisreach (Kentucky River) had no significant effect on levels of DOMin the main river, despite having significantly greaterconcentrations of TDN and lower levels of DOC during most monthsof the year. Concentrations of DOC, TDN, and TDP were notsignificantly different in littoral and pelagic habitats at allsites studied, suggesting little floodplain influence on DOM inthis constricted-channel section of the Ohio River. C:N ratios ofDOM in the Ohio were significantly different among seasons; C:Nexceeded or equaled Redfield ratios in summer and fall (6 to 10),but were below Redfield (1.8 to 3.0) during winter and spring.Regression models suggest that total phytoplankton densities andflow conditions are the two most important factors regulating DOMin this very large river.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1 × 104 kg nitrogen and 3.91 × 104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7 × 104 kg (676 kg/ha) nitrogen and 3.88 × 104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55 × 104 kg nitrogen and 0.40 × 104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m-2 yr-1 were made to Sphagnum magellanicum cores at two-week intervals in situ at four sites across Europe, i.e. Lakkasuo (Finland), Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N:P ratio 68) and greatest in Moidach More (N:P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4+ in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3- were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition by Sphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 45 (1999), S. 197-221 
    ISSN: 1573-515X
    Keywords: intertidal marshes ; phosphorus ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22%.) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 21∶1 to 31∶1 mol∶mol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7±11.1μmol P g dw−1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%.) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23%. in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%.) than in the salt marshes (33–85%.). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5117
    Keywords: periphyton ; algae ; wetlands ; Everglades ; Eutrophication ; phosphorus ; biomass ; primary productivity ; nutrient cycling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We sampled periphyton in dominant habitats at oligotrophic and eutrophic sites in the northern Everglades during the wet and the dryseasons to determine the effects of nutrient enrichment on periphytonbiomass, taxonomic composition, productivity, and phosphorus storage. Arealbiomass was high (100–1600 g ash-free dry mass [AFDM]m−2) in oligotrophic sloughs and in stands of the emergentmacrophyte Eleocharis cellulosa, but was low in adjacent stands of sawgrass,Cladium jamaicense (7–52 g AFDM m−2). Epipelon biomasswas high throughout the year at oligotrophic sites whereas epiphyton andmetaphyton biomass varied seasonally and peaked during the wet season.Periphyton biomass was low (3–68 g AFDM m−2) and limitedto epiphyton and metaphyton in open-water habitats at eutrophic sites andwas undetectable in cattail stands (Typha domingensis) that covered morethan 90% of the marsh in these areas. Oligotrophic periphytonassemblages exhibited strong seasonal shifts in species composition and weredominated by cyanobacteria (e.g., Chroococcus turgidus, Scytonema hofmannii)during the wet season and diatoms (e.g. Amphora lineolata, Mastogloiasmithii) during the dry season. Eutrophic assemblages were dominated byCyanobacteria (e.g., Oscillatoria princeps) and green algae (e.g., Spirogyraspp.) and exhibited comparatively little seasonality. Biomass-specific grossprimary productivity (GPP) of periphyton assemblages in eutrophic openwaters was higher than for comparable slough assemblages, but areal GPP wassimilar in these eutrophic (0.9–9.1 g C m−2d−1) and oligotrophic (1.75–11.49 g C m−2d−1) habitats. On a habitat-weighted basis, areal periphytonGPP was 6- to 30-fold lower in eutrophic areas of the marsh due to extensiveTypha stands that were devoid of periphyton. Periphyton at eutrophic siteshad higher P content and uptake rates than the oligotrophic assemblage, butstored only 5% as much P because of the lower areal biomass.Eutrophication in the Everglades has resulted in a decrease in periphytonbiomass and its contribution to marsh primary productivity. These changesmay have important implications for efforts to manage this wetland in asustainable manner.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 363 (1997), S. 117-126 
    ISSN: 1573-5117
    Keywords: nutrient limitation ; eutrophication ; nitrogen ; phosphorus ; Archipelago Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eutrophication is the most acute environmentalproblem in the Archipelago Sea, SW Finland. Whenanalysing the factors behind this escalatingeutrophication the determination of limitingnutrient at a given time is essential. Besidesexperimentations, nutrient limitation of planktonhas been extensively studied by direct chemicalanalyses. We used the latter approach in this work.Nutrient limitation was studied by calculatingdifferent nutrient ratios – totalnitrogen:phosphorus, inorganic nitrogen:phosphorus,and nutrient balance ratio. Results showed thatphosphorus usually limited primary production onlynear the coast line. In the middle zone of theArchipelago Sea the limiting factor variedtemporally. Outer in the open sea nitrogen limitedprimary production during most of the year.Phosphorus limited phytoplankton growth especiallyin spring and in summer and nitrogen in late summerand in autumn. Our results suggested that nitrogenis an important limiting nutrient in the ArchipelagoSea. In recent years when the eutrophication hasproceeded there has been a shift from productionlimitation by both nutrients to limitation bynitrogen alone. But if we want to define andcharacterize the nutrient limitation of the entireecosystem of the Archipelago Sea, budgets have to becalculated for both N and P and internal recyclingmust be taken into account as well as externalsupply of nutrients and loss processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1573-5117
    Keywords: biomanipulation ; nutrient reduction ; zooplankton ; phytoplankton ; bottom-up ; top-down ; phosphorus ; submerged vegetation ; benthic macrofauna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-5117
    Keywords: biomanipulation ; nutrient reduction ; zooplankton ; phytoplankton ; bottom-up ; top-down ; phosphorus ; submerged vegetation ; benthic macrofauna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 45 (1999), S. 197-221 
    ISSN: 1573-515X
    Keywords: intertidal marshes ; phosphorus ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22‰) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 21:1 to 31:1 mol:mol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7 ± 11.1 µmol P g dw-1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23% in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%) than in the salt marshes (33–85%). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    New forests 14 (1997), S. 33-44 
    ISSN: 1573-5095
    Keywords: nutrient concetration ; frost hardiness ; growth cessation ; Pinus sylvestris ; visual damage ; nitrogen ; phosphorus ; potassium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In this study the effect of summer fertilization on the initiation of frost hardening of containerized second-year Scots pine (Pinus sylvestris L.) seedlings is studied. During the second growing season three different fertilization programs (water soluble NPK with micronutrients) determined by electrical conductivity of peat water extract (0.2, 0.5 and 1.2 mS cm-1) were initiated. The growth and nutrient concentrations of needles were monitored during the fertilization period. The frost hardiness of seedlings was assessed on four separate occasions at two week intervals from August 7 to September 18. This assessment was based on artificial freezing tests and visual damage scoring of tissue browning on current-year needles. Clear differences in foliar N, P and K concentrations were observed between the fertilization treatments. Fertilization prolonged the growing period of needles and increased root collar diameter. In all the tests, the highest fertilization level resulted in the highest level of frost hardiness. The difference between the fertilization treatments ranged from 1 °C to 2.2 °C. Frost hardiness increased with an increase in foliar nitrogen concentration and slightly less consistently with increases in foliar phosphorus and potassium concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1573-5087
    Keywords: foliar fertilization ; forage yield ; gibberellic acid ; Lotus tenuis ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Lotus tenuis is a perennial legume with a good adaptation to infertile, heavy and waterlogging soils. It can replace alfalfa in these sites with a similar feeding value. An important constraint is its weak competitive capacity with other graminae and weed species in permanent pastures, having consequently a poor forage yield. The objective of the present research is to overcome this disadvantage, enhancing its competitive ability with foliar applications of GA3 (GA) and phosphorus (P), increasing L. tenuis forage yield. Field experiments were conducted during 1994 with foliar application of GA (50 mg.l-1) and during 1995 with foliar application of GA (25 and 50 mg.l-1), phosphorus (8 kg.ha-1, as P2O5) and their combinations, in permanent pastures with L. tenuis and other companion grasses. In 1994 GA 50 increased significantly L. tenuis dry matter (DML) in 64.6% but not the dry matter of graminae fraction (DMG) and in consequence the total dry matter of the pasture (TDMP) was increased. In 1995 all GA treatments and their combinations with phosphorus enhanced DML but not DMG. In this sense GA 25 + P was the most effective treatment with a 151% increment of DML. Consequently TDMP was significantly increased due to a larger participation of L. tenuis in the forage yield. This increase was achieved due to a greater length and diameter of L. tenuis branches, with a logical modification in leaf:stem ratio. Moreover GA treatments reduced L. tenuis flower number. Phosphorus treatment, applied alone, showed an increase in the DML. GA treatments did not modify the feeding value of the forage in L. tenuis and graminae fractions, except GA 50 and GA 50 + P in acid detergent fiber (ADF), neutral detergent fiber (NDF) and crude protein (CP), respect to the control. The total crude protein (CP.m-2) was enhanced in all GA and GA + P treatments. Foliar GA3 and phosphorus spray applications increased the competitiveness of trefoil for light, on account of morphological changes in the spatial disposition of L. tenuis stems reaching faster the top of the pasture canopy. This practice can be an adequate alternative to increase the forage yield and total crude protein in permanent and cultivated pastures with a low cost-benefit ratio.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1573-5036
    Keywords: fire ; nitrogen ; phosphorus ; soil nutrient heterogeneity ; tree effects ; tropical dry forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 1573-5036
    Keywords: hydraulic conductivity ; leaf growth ; phosphorus ; Rhizoctonia ; water status ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Wheat seedlings infected with a pure inoculum of the root-rotting fungus Rhizoctonia solani were grown in pots designed to fit in pressure chambers, to allow the effects of the Rhizoctonia infection on leaf growth to be studied while maintaining the leaves at elevated water status. Wheat was grown to the third leaf stage in soil inoculated with three different levels of Rhizoctonia, and the pots were then pressurised for seven days to maintain the leaf xylem at the point of bleeding (ie. the leaves were at full turgor). The reduction in leaf expansion caused by Rhizoctonia was not overcome by pressurisation, indicating that a reduced supply of water to the leaves was not responsible for reduced leaf growth. The addition of phosphorus to pots marginally deficient in P did not increase the leaf growth of Rhizoctonia-infected plants, despite increased P uptake to the leaves. These results indicate that a reduced supply of water to the leaves and a supply of phosphorus that was bordering on deficient was not the cause of the growth reduction in seedlings with Rhizoctonia infection. The nature of this reduced growth remains uncertain but may involve growth regulators produced by the fungus, or by the plant as a result of the infection process. The mechanism of these growth reductions is of interest as it may provide a key to the development of plant resistance mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 188 (1997), S. 279-297 
    ISSN: 1573-5036
    Keywords: ecosys ; modelling ; phosphorus ; root systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The uptake of P by plant root systems is believed to be controlled by the concentration of soluble orthophosphate at the root surface. If a P transformation model in which this concentration is calculated were coupled to a root and mycorrhizal growth model in which this concentration is used to calculate P uptake, then it should be possible to simulate P uptake under different soil and climate conditions if soil properties relevant to the control of P concentration are known. To test this idea, models for the transformation and transport of inorganic and organic P were coupled to ones for root growth and nutrient uptake as part of the ecosys modelling program. Seasonal estimates of soluble P concentration, root growth and P uptake from the combined models were tested with data measured from barley under fertilized and unfertilized treatments in a long term P fertilizer experiment conducted on two different soils. In both soils the fertilizer treatment increased simulated and measured soluble P concentrations from 0.1-0.2 to 0.2-0.4 g m-3, annual P uptake from 0.6-0.7 to 1.2-1.4 g m-2, and annual DM accumulation from 400-500 to 700-800 g m-2. Increases in soluble P concentrations caused by fertilizer P were reproduced in the model from changes in the balance between the desorption and dissolution of solid P on one hand, and the uptake of P by root and mycorrhizal systems on the other. Increases in P uptake caused by fertilizer P were reproduced in the model from higher solution P concentrations, root uptake kinetics, and from functional equilibria for C and P exchange simulated among mycorrhizal, root and shoot components of the plant. There was a tendency in the model to overestimate P uptake later in the growing season in the unfertilized treatment which could be corrected if parameters for root uptake kinetics were reduced after anthesis. Because the model is constructed independently of data for P uptake, and avoids the use of site-specific parameters, it may provide a means of estimating uptake under different managements and climates from soils of known properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1573-5036
    Keywords: cell wall ; groundnut ; phosphorus ; root surface ; sorghum ; soybean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Groundnuts have a superior ability to take up P from soils with low P fertility compared to sorghum and soybean. Previous experiments showed that this ability was neither attributable to better root development nor to root exudates capable of solubilizing Fe- and Al-bound P, the sparingly soluble P forms in soils. Direct "contact reactions" between cell wall components from these 3 plant species (groundnut, soybean and sorghum) and P-fixing Fe and Al minerals were examined. Cell wall preparations from groundnut roots showed a superior P solubilizing ability than those of soybean and sorghum. Cell wall activity of groundnut roots may thus at least partly explain the superior growth of this crop under P-deficient conditions. To characterize the active site responsible for P solubilization, effects of pH, heat, addition of cations, and digestion with enzymes (pectinase and cellulase) or HCl on P solubilization were investigated. Conclusion are 1) Solubilizing ability is not related to root CEC because soybean with higher root CEC showed an inferior solubilizing ability compared to groundnut. 2) The reaction site of cell-walls of groundnut roots is stable against heating and digestion with cellulase and pectinase. 3) Solubilizing ability was severely reduced by digestion with HCl. 4) Pre-treating cell walls with either Al3+, Fe3+, or Ga3+ decreased solubilizing ability but cations with lower valency such as Na+, K+, Ca2+ or Mg2+ had no effect. Soaking roots of groundnuts grown in solution culture in 0.5 M NaOH for 30 seconds prior to cell wall preparation led to a 30% reduction in solubilization of P from FePO4 without permanently damaging plants. This suggests that 5) the active component of the cell walls was located on the root epidermal cell surfaces. Based on these results a phosphorus solubilizing mechanism is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1573-5036
    Keywords: eutrophication ; herons ; nesting site ; nitrogen ; nitrophyllous species ; phosphorus ; similarity index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effects of colony nesting of herons on soil properties and herb layer composition in Pinus densiflora forest were studied at Pomaeri, Kangwon Province in Korea. Herons have used this habitat as a nesting site from January to October every year. In 1995, more than 500 herons were observed in this habitat. Nutrient content of soil was much higher at the nesting site than that of the non-nesting site (control). Total nitrogen concentration of soil at the nesting site and the control site was 14.8±1.85 mg g-1 and 2.8±0.35 mg g-1, respectively. Phosphorus content of soil in the nesting site was 32 times greater than that of the control site. This is evidently due to the addition of feces of the herons, and decomposition of thin twigs and organic debris from the canopy of dead trees and bird nests. Light intensity at herb layer of the nesting site and of the control site was 80% and 20%, respectively, of incident on outside forest. Species diversity of herb layer in the nesting site (9 species) was quite lower than that in the control site (14 species). Similarity index of the herb layer between the two sites was 0.07. The nesting site was dominated by indicator species of soil eutrophication such as Humulus japonicus, Persicaria perfoliata, Persicaria fauriei, Commelina communis, Chelidonium majus var. asiaticum. Changes of herb species composition in the nesting site was evidently due to the eutrophication of the soil and increased light intensity of the herb layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1573-5036
    Keywords: DRIS ; nitrogen ; perennial ryegrass ; phosphorus ; potassium ; sulphur
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Herbage analysis offers a definitive means of determining the N, P, K and S status of perennial ryegrass swards. Unfortunately, the results of such analyses can be difficult to interpret, simply because the minimum or 'critical' concentration of a nutrient in plant tissue for optimum growth, varies both with crop age and with changes in the concentrations of other nutrients. The Diagnosis and Recommendation Integrated System (DRIS) could help to improve the reliability of such interpretations. Diagnoses made using DRIS are based on relative rather than on absolute concentrations of nutrients in plant tissue, and as such should be comparatively independent of crop age. The aim of this study was to establish and test DRIS methodology for high-yielding perennial ryegrass swards. Because of prohibitive costs, setting up a whole new series of field experiments to evaluate DRIS model parameters for perennial ryegrass was out of the question. Instead, the diagnostic norms and associated coefficients of variation for the model were evaluated using data from a single (large) multi-factorial glasshouse experiment. Of the nutrient ratios selected to form the diagnostic norms, K/N and S/N had the clearest physiological rationale, whereas those involving Ca and Mg in combination with N, P, K and S appeared to have little physiological basis. It was reasoned, though, that because Ca and Mg uptake by plants are largely passive processes (ultimately governed by plant growth), the DRIS indices for these nutrients, together reflected the degree to which growth may be limited by non-nutritional (environmental) factors relative to nutritional ones. Both indices were combined to form a single reference (Ri) index. Without such an internal reference, plant growth could be limited by multiple nutrient deficiencies, and yet N, P, K and S indices might all be close to, or equal to zero (i.e. the optimum), simply because the absolute concentrations of each nutrient (while low) had been in the correct state of balance. Moreover, by effectively using Ca and Mg as internal reference parameters in DRIS, 'nutrient concentrations' which previously formed the basis of the critical value approach, were essentially incorporated into the DRIS model, thus combining the strengths of the two diagnostic approaches; the only difference being that Ca and Mg, and not dry matter, were the internal references against which the levels of the major nutrients were compared.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1573-5036
    Keywords: bioavailability ; competition ; phosphorus ; sorption ; sulfate ; uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The adsorption of phosphate on metal (hydr)oxides may be influenced by the pH and by the adsorption of other ions. In this study, the influence of sulphate and pH on phosphate adsorption on goethite and the availability to plants of adsorbed phosphate was examined. Maize plants were grown on suspensions of goethite with adsorbed phosphate, containing the same total amount of phosphate and either 0.11 mM or 2.01 mM sulphate at pH 3.7, 4.6 or 5.5. The uptake of phosphorus by the plants increased with the larger sulphate concentration and decreasing pH. Mean P uptake in the treatment with 2.01 mM sulphate and pH 3.7 was 55 µmol plant-1, whereas in the treatment with 0.11 mM sulphate and pH 5.5 it was 2 µmol plant-1. Batch adsorption experiments using32 P and speciation modelling of ion adsorption showed that in the presence of sulphate, the phosphate concentration in solution strongly increased with decreasing pH, due to competitive adsorption between sulphate and phosphate on goethite. Modelled phosphate concentrations in solution in the uptake experiment were all below 0.6 µM and correlated well with the observed P uptake. This correlation indicates that the strong influence of the sulphate concentration and pH on the plant-availability of adsorbed phosphate results from the competition between sulphate and phosphate for adsorption on goethite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 173-181 
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphatase activity ; phosphorus ; protease activity ; soil microbial biomass ; substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Estimating in situ N and P status of the soil microbiota is complicated because microbiological features reflect potentials rather than field conditions. Complementary microbiological assays were, therefore, combined to evaluate the N and P requirement of the microbiota in seven agricultural, grassland and forest topsoils of the Bornhöved Lake district as follows: (i) the sensitivity of the substrate-induced respiration (SIR) to supplemental addition of N and P was monitored during microbial growth and (ii) soil protease and phosphatase activities were analysed and related to soil mass and microbial biomass content. Nitrogen addition increased the maximal SIR rate in all except one soil indicating that the growth of organisms is restricted by this element when easily degradable C source is present. Supplemental N (and in some cases also P) retarded the respiratory response within the first 24 h which suggests microbial sensitivity and/or greater anabolic efficiency. With additional N the maximal SIR rate was most strongly enhanced in topsoils of the beech forest and the dystric alder forest. Thus, the microbial growth in these soils that were below litter horizons seems to be mostly restricted by N. Supplemental P positively affected respiratory response of soils under monoculture, wet grassland and dystric alder forest. In the dystric alder forest soil, high rates of alkaline and unbuffered phosphatase activity were observed when activity was related to either soil mass or microbial biomass content. The data of proteolytic and phospholytic enzymes are discussed with reference to nutrient deficiency and microbial strategy for N and P adsorption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 283-295 
    ISSN: 1573-5036
    Keywords: leaf emergence ; phosphorus ; photosynthesis ; tillering ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1573-5036
    Keywords: ectomycorrhizae ; Eucalyptus regnans ; forest burns ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 196 (1997), S. 123-131 
    ISSN: 1573-5036
    Keywords: ectomycorrhiza ; ergosterol ; Paxillus ; phosphorus ; Suillus ; weathering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The objectives of the study are firstly to test the ability of ectomycorrhizal pine seedlings to use apatite as a P source in comparison with non-mycorrhizal pine seedlings and secondly, to determine if there is a relation between exudation of organic acids and the ability to use apatite as a P source. Non-mycorrhizal Pinus sylvestris (L.) seedlings and seedlings ectomycorrhizal with 4 different isolates of ectomycorrhizal fungi were grown for 220 days in sand/peat filled pots with apatite (Ca5(F,OH)(PO4)3) as the sole P source. In an additional experiment, non-mycorrhizal Pinus sylvestris (L.) seedlings and seedlings ectomycorrhizal with 2 different isolates of ectomycorrhizal fungi were grown without any P source for 250 days. All other nutrients were supplied in a balanced nutrient solution. Ectomycorrhizal seedlings grew less than non-mycorrhizal seedlings but ectomycorrhizal seedlings produced a large external mycelium not included in the biomass estimates. All seedlings in the present study had low shoot:root ratios compared to seedlings growing under optimal conditions. All seedlings grown with apatite as P source had higher foliar P concentrations (0.71–2.11 mg/g) than seedlings growing without any P source (0.57–0.75 mg/g) indicating a significant ability to use apatite as a P source. Seedlings colonized by Suillus variegatus and Paxillus involutus had higher concentrations and total contents of P in shoots compared with non-mycorrhizal seedlings, indicating significant improvement of P uptake by these fungi in comparison with non-mycorrhizal seedlings or seedlings colonized Piloderma croceum. No clear relationship between exudation of organic acids and uptake of P was found. Seedlings colonized by S. variegatus reduced the pH of the soil more than seedlings colonized by P. involutus or non-mycorrhizal seedlings. It is suggested that S. variegatus colonization improves the P uptake by reducing the pH of the soil while P. involutus improves P uptake by having a greater ability to absorb dissolved phosphate than non-mycorrhizal roots or roots colonized by the other fungi used in the study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 98 (1997), S. 177-182 
    ISSN: 1573-5060
    Keywords: Genetic ; mineral nutrition ; phosphorus ; rhizosphere ; root hairs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Length and density (number mm-1 root) of root hairs of two barley (Hordeum vulgare L.) cultivars Salka and Zita and their capability to absorb phosphorus (P) from nutrient solution as well as from rhizosphere soil were studied. The cultivars were chosen because they differed most among 30 cultivars in ability to absorb P from low P soil in two field conditions. In nutrient solution culture, Salka had 32±4 root hairs mm-1 root, 1.02±0.22 mm long. Zita had 21±3 hairs mm-1 root, 0.54±0.14 mm long. In soil, the root hairs of both the cultivars were slightly longer (Salka 1.10 ±0.16 mm; Zita 0.63±0.18 mm) than in solution culture but the difference was non-significant (p〈0.05). The root hairs increased the effective root surface area of Salka by 206% and that of Zita by 81%. In solution culture, Salka produced 163±9 m g-1 and Zita 153±11 m g-1 dry roots in 21 days. Salka produced 1.65±0.22 g and Zita 1.51±0.31 g of green dry matter (DM). The cultivars did not differ in uptake of P from nutrient solution culture. The P content of DM was 0.42±0.1% in Salka and 0.41±0.08% in Zita. In soil, Salka depleted two times more P from rhizosphere than Zita. The longer root hairs of Salka increased the extension of the depletion zone for NaHCO3-Pi (inorganic P extracted with 0.5 M NaHCO3) in the rhizosphere. The cultivars also depleted NaOH-Pi (inorganic P extracted with 0.1 M NaOH) from the rhizosphere soil, but the difference between the cultivars was non-significant (p〈0.05). The results suggested that the ability of Salka to absorb more inorganic soil P was due to its longer and denser root hairs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1573-5036
    Keywords: Frankia ; phosphatase activity ; phosphorus ; protein ; viability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An in vitro experiment was conducted to investigate the effects of different sources and levels of P supply on growth, viability and phosphatase activity of three tropical Frankia strains isolated from Casuarina. P concentration for optimum growth was between 0.1 and 10.0 μM in the absence of external combined nitrogen. Specific viability was not influenced by P supply. Morphological features of Frankia, such as hyphal length and vesicle numbers, were found to largely mirror growth. Phosphatase activity was detected in all three Frankia strains and was highest when P was omitted from the culture solution. There were more than 10-fold differences between the Frankia strains in the level of phosphatase activities shown. This study suggested that soils low in P are unlikely to restrict micro-symbiont growth activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...