ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (122)
  • Turbulence  (50)
  • Oceanographic instruments  (45)
  • Baroclinic flows
  • American Meteorological Society  (68)
  • Woods Hole Oceanographic Institution  (54)
  • MDPI Publishing
  • 1
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(1),(2022): 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.
    Description: Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
    Description: The OSMOSIS experiment was funded by the U.K. Natural Environment Research Council (NERC) through Grants NE/1019999/1 and NE/101993X/1. ACNG acknowledges the support of the Royal Society and the Wolfson Foundation, and XY that of a China Scholarship Council PhD studentship.
    Keywords: Ageostrophic circulations ; Dynamics ; Eddies ; Energy transport ; Frontogenesis/frontolysis ; Instability ; Mesoscale processes ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Small scale processes ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-09-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1677-1691, https://doi.org/10.1175/jpo-d-21-0269.1.
    Description: Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed.
    Description: This work was generously funded by NSF Grants OCE-1912302, OCE-1912125 (Drushka), and OCE-1912325 (Abernathey) as part of the Ocean Energy and Eddy Transport Climate Process Team.
    Keywords: Eddies ; Energy transport ; Mesoscale processes ; Turbulence ; Oceanic mixed layer ; Altimetry ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Description: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Description: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Keywords: Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(9), (2021): 2721–2733, https://doi.org/10.1175/JPO-D-20-0298.1.
    Description: A linear numerical model of an island or a tall seamount is used to explore superinertial leaky resonances forced by ambient vertically and horizontally uniform current fluctuations. The model assumes a circularly symmetric topography (including a shallow reef) and allows realistic stratification and bottom friction. As long as there is substantial stratification, a number of leaky resonances are found, and when the island’s flanks are narrow relative to the internal Rossby radius, some of the near-resonant modes resemble leaky internal Kelvin waves. Other “resonances” resemble higher radial mode long gravity waves as explored by Chambers. The near-resonances amplify the cross-reef velocities that help fuel biological activity. Results for cases with the central island replaced by a lagoon do not differ greatly from the island case which has land at the center. As an aside, insight is provided on the question of offshore boundary conditions for superinertial nearly trapped waves along a straight coast.
    Keywords: Baroclinic flows ; Internal waves ; Kelvin waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.
    Description: Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
    Description: This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Arctic ; Diapycnal mixing ; Diffusion ; Fluxes ; Instability ; Mixing ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-12-12
    Description: Instructions for installing pressure-temperature recorder including location of parts on the submarine and the general description of the apparatus. The instrument is composed of two main elements: a) the pressure-sensitive element; and b) the temperature-sensitive element.
    Keywords: Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-30
    Description: As described in the methods section of “Direct Observation of Wave-coherent Pressure Work in the Atmospheric Boundary Layer”: Measurements were made from an open-lattice steel tower deployed in roughly 13 m water depth in Buzzards Bay, MA. Buzzards Bay is a 48 km by 12 km basin open on the SW side to Rhode Island Sound. The average depth is 11 m, with a tide range of 1 to 1.5 m, depending on the neap/spring cycles. Winds in Buzzards Bay are frequently aligned on the long-axis (from the NE or SW), and are commonly strong, particularly in the fall and winter. The tower was deployed near the center of the bay at 41.577638 N, 70.745555 W for a spring deployment lasting from April 12, 2022 to June 13th, 2022. Atmospheric measurements included three primary instrument booms that housed paired sonic anemometers (RM Young 81000RE) and high-resolution pressure sensors (Paros Scientific). The pressure sensor intakes were terminated with static pressure heads, which reduce the dynamic pressure contribution to the measured (static) pressure. The tower booms were aligned at 280 degrees such that the NE and SW winds would be unobstructed by the tower's main body. A fourth sonic anemometer (Gill R3) was extended above the tower such that it was open to all wind directions and clear of wake by the tower structure. A single point lidar (Riegl LD90-3i) was mounted to the highest boom, such that the lidar measured the water surface elevation underneath the anemometer and pressure sensors to within a few centimeters horizontally. All instruments were time synchronized with a custom "miniNode" flux logger, that aggregated the data streams from each instrument. Additional atmospheric and wave measurements on the tower included short-wave and long-wave radiometers (Kipp & Zonen), two RH/T sensors (Vaisala), and a standard lower-resolution barometer (Setra).
    Description: National Science Foundation, Division of Ocean Sciences (OCE) Award 2023020
    Keywords: Air/sea interaction ; Surface waves ; Boundary layers ; Turbulence ; Pressure work
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-11-18
    Description: In the fall of 1967 an extended program of tests was begun to evaluate several types of acoustic anchor release devices available on the market. This program was.prompted by a.need to isolate and correct problems which came to light after, several years of use of the O.R.E. system. Two other systems, one made by Raytheon and the other by American Machine and Foundry Co., were tested. This report deals with previous use of O.R.E.'s system by the W.H.O.I. Buoy Project and the testing program in 1968 and with the Raytheon and A.M.F. test series. Detailed description of these systems and their operation will not be undertaken in this report. Reference is made to data published by the respective manufacturers.
    Description: Submitted to the Office of Naval Research under Contract N00014-66-C0241, NR 083-004.
    Keywords: Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spingys, C. P., Garabato, A. C. N., Legg, S., Polzin, K. L., Abrahamsen, E. P., Buckingham, C. E., Forryan, A., & Frajka-Williams, E. E. Mixing and transformation in a deep western boundary current: a case study. Journal of Physical Oceanography, 51(4), (2021): 1205-1222, https://doi.org/10.1175/JPO-D-20-0132.1
    Description: Water-mass transformation by turbulent mixing is a key part of the deep-ocean overturning, as it drives the upwelling of dense waters formed at high latitudes. Here, we quantify this transformation and its underpinning processes in a small Southern Ocean basin: the Orkney Deep. Observations reveal a focusing of the transport in density space as a deep western boundary current (DWBC) flows through the region, associated with lightening and densification of the current’s denser and lighter layers, respectively. These transformations are driven by vigorous turbulent mixing. Comparing this transformation with measurements of the rate of turbulent kinetic energy dissipation indicates that, within the DWBC, turbulence operates with a high mixing efficiency, characterized by a dissipation ratio of 0.6 to 1 that exceeds the common value of 0.2. This result is corroborated by estimates of the dissipation ratio from microstructure observations. The causes of the transformation are unraveled through a decomposition into contributions dependent on the gradients in density space of the: dianeutral mixing rate, isoneutral area, and stratification. The transformation is found to be primarily driven by strong turbulence acting on an abrupt transition from the weakly stratified bottom boundary layer to well-stratified off-boundary waters. The reduced boundary layer stratification is generated by a downslope Ekman flow associated with the DWBC’s flow along sloping topography, and is further regulated by submesoscale instabilities acting to restratify near-boundary waters. Our results provide observational evidence endorsing the importance of near-boundary mixing processes to deep-ocean overturning, and highlight the role of DWBCs as hot spots of dianeutral upwelling.
    Description: CS, ACNG, AF, and EFW were supported by the U.K. Natural Environment Research Council (NERC) Grant NE/K013181/1. ACNG was supported by the Royal Society and Wolfson Foundation. EPA and CEB were supported by NERC Grant NE/K012843/1. CEB was funded by an MSCA grant (No. 798319) from the European Union’s Horizon 2020 program. EPA was supported by NERC Grant NE/N018095/1. SL and KP were supported by U.S. National Science Foundation Grants OCE-1536453 and OCE-1536779. SL acknowledges support of Award NA18OAR4320123 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the authors, and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, or the U.S. Department of Commerce.
    Keywords: Bottom currents ; Diapycnal mixing ; Turbulence ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Description: Funding for DIMES was provided by U.K. Natural Environment Research Council (NERC) Grants NE/E007058/1 and NE/E005667/1. JMC acknowledges the support of a NERC PhD studentship, and ACNG that of the Royal Society and the Wolfson Foundation. NV acknowledges support from the ARC Centre of Excellence for Climate Extremes (CLEX) Honours Scholarship and the ANU PBSA Partnership - Spotless Scholarship. CJS acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National University Futures Scheme award. Numerical simulations were conducted on the National Computational Infrastructure (NCI) facility, Canberra, Australia. This study has been conducted using E.U. Copernicus Marine Service Information. We thank two anonymous reviewers for their comments which helped to improve the manuscript significantly. Codes and output files are available online at the project repository (https://github.com/jessecusack/DIMES_eddy_wave_interactions).
    Keywords: Southern Ocean ; Eddies ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Digital computing techniques have been used in special computing applications in underwater acoustics at WHOI for many years, but recently we have commenced intensive application of digital data handling and computing facilities to a variety of computing, data storage, and data handling problems. Progress in these applications is described under Acoustic Instrumentation below. Some bathymetric studies carried out recently under another contract have shown that even very narrow-beam, single-beam echo sounders simply cannot provide reliable depth sounding information where the topography is complex. In this work we have been experimenting with the inverted echo sounder, discussed below, originally developed to measure depth of the sound velocimeter. The inverted echo sounder is lowered to a position within a few feet of the bottom. The total acoustic travel time from surface to bottom may be read as the sum of the travel times from the instrument to the bottom and surface . True depth is then computed in the usual way with appropriate s cnmd velocity data. In its present form the inverted echo sounder is suitable for mapping ~mall areas~ a few square miles, provided there is a suitable means of positioning the instrument. We have experimented with radio-acoustic navigation, and intend to experiment with vertical triangulation from the suspending ship as well. Steady demands for new, modified, and improved instrumentation have been responded to in echo sounding, seismic profiling, and spectrum analysis, as detailed below.
    Description: Undersea Warfare Branch Office of Naval Research Under Contracts Nonr-1367(00)NR261-102 and Nonr-2129(00)NR261-104
    Keywords: Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: This is a report of the research program under contracts Nonr-4029 (1 May - 31 October 1963), and Nonr-3243 (1 May - 31 October 1963} . Both contracts are with the Office of Naval Research, Code 466. Contract Nonr-4029 is a continuation of Contract Nonr-1367. Under Contract Nonr-4029, ATLANTIS· II and CHAIN, in May and August, were employed in searching for the sunken submarine THRESHER by various means. Under the same contract, activities were devoted also to the development of systems or components of systems for search and for navigational control required in such operations. One system of submerged navigation was employed for locating suspended instruments by acoustic ranging from the ship. A second navigation system was also tested which depends on acoustic ranging either from the ship or from the suspended instrument to a hydrophone buoyed near the bottom. This hydrophone is connected to a radio link in a surface buoy. This system will be useful not only for navigation but also for bottom reflection studies. A program has been started to print and mount all photos taken by WHOI on the THRESHER search; it will be coordinated with other similar efforts in the continuing investigation of the disaster. Under Contracts Nonr-4029 and Nonr-3243 considerable progress has been made in other research, which is described in this report .
    Description: Submitted to Under sea Warfare Branch Office of Naval Research Under· Contracts Nonr- 4029(00)NR261-10 2 and Nonr- 3243(00) NR261-136
    Keywords: Submarine geology ; Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Geophysical investigations were carried out aboard R /V CHAIN in the Indian Ocean, the Mediterranean Sea, and the North Atlantic Ocean. Observations underway were continuous seismic profiling, gravity, magnetic, and echo sounding measurements. At stations rocks were dredged, cores were taken (about 10 meters long, photographic montages of the sea floor were made, and the sound velocity of the water was measured as a function of depth. Progress is being made in filtering and correlation techniques for seismic profiling, while seismic receiving arrays were improved to make them quieter. The analysis of internal wave data is continuing, but further observations at sea will be required in order to fully understand the mechanism of propagation. Seven papers were published during this period and thirteen were submitted for publication. These papers are concerned with seismic profiling, seismic refraction profiles, sediment ponding, sound transmission, thermal fronts, and biological papers dealing with sound production by marine mammals and deep-sea fish natural history gained from bottom photographs. A new thermistor string intended to replace and improve upon the original thermistor chain was the principal new instrumental development.
    Description: Undersea Warfare Branch Office of Naval Research under Contracts Nonr-4029(00)NR260-101 and Nonr-3243(00)NR260-108
    Keywords: Submarine geology ; Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: In July 1962 a short cruise was made on CHAIN to investigate the hypothesis (Worthington 1962) that the major circulation of the North Atlantic is divided into two anti-cyclonic eddies or gyres. Evidence from International Geophysical Year data indicated that the thermocline water east of the Grand Banks had different characteristics from Sargasso Sea water. In particular, the dissolved oxygen content throughout the thermocline was at a much higher level in the more northerly waters than in the Sargasso Sea. It was deduced from this that the Gulf Stream, which transports a large volume of water of the Sargasso Sea type, does not turn south around the Tail of the Banks, but that the strong, narrow currents found to the East of the Banks transport water of different origin.
    Description: The Geqphysics Branch, Office of Naval Research Under Contract-Nonr-2196(00) (NR-083-004)
    Keywords: Oceanography--North Atlantic Ocean ; Ocean circulation--North Atlantic Ocean ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Pratt, L. J., Pearson-Potts, K. A., & Tan, S. Persistent turbulence in the Samoan Passage. Journal of Physical Oceanography, 49(12), (2019): 3179-3197, doi: 10.1175/JPO-D-19-0116.1.
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Description: The authors thank Zhongxiang Xao and Jody Klymak, who provided earlier setups of the numerical model, and also Arjun Jagannathan for insightful discussions on the subject of flow over topography. We also thank John Mickett and Eric Boget for their assistance in designing, deploying, and recovering the moorings. In addition, we also thank the crew and scientists aboard the R/V Revelle and R/V Thompson, without whom the data presented in this paper could not have been gathered. Ilker Fer and two anonymous reviewers provided thoughtful feedback that improved the paper. This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870, and OCE-1658027.
    Keywords: Gravity waves ; Turbulence ; Abyssal circulation ; Mixing ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This manual describes the objectives, design, operation, and maintenance of the Precision Graphic Recorder (PGR), emphasizing its application to echo-sounding. The words "precision graphic recording" describe a method for displaying data by means of successive, precisely-timed rectilinear sweeps of a recording point or "stylus" across a long, moving strip of sensitized paper (Veatch and Smith, 1939, p. 61-63). The recorded data appear as dye-markings, shaded in proportion to signal amplitude along the sweep of the moving recording point.
    Description: The Bureau of Ships Under Contract NObsr-72521 and Office of Naval Research Under Contract Nonr-1367 (00) (NR-261-102)
    Keywords: Sonar ; Echo sounding ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: This progress report contains findings in 1) physical oceanography, 2) marine biology, 3) geology and geophysics, and 4) hydroacoustics. 1) Long-period internal waves are deduced from sound-velocity data between Bermuda and the Antilles . The region of the thermal front (usually found near 30°N) was thought on one occasion to be a generator of internal waves. 2) Midwater fishes were four times more abundant north of the front than south and midwater reverberation levels varied similarly. 3) Evidence obtained southeast of Charleston, S.C. shows that the continental shelf has been building out over the Blake Plateau. The gravity characteristics of many major rifts of the world reveal that as the width of the rift increases, the Bouguer anomalies become increasingly positive. 4) Observations support the hypothesis that diffraction effects are required to explain the sound propagation in convergence zones in the Mediterranean. A major engineering accomplishment was the installation and use of Sea Spider on the Blake Plateau. Sea Spider is a near motionless platform for scientific measurements in the deep ocean. The development of an automatic digital depth-reading system for use with echo sounders on ships were successfully completed, improvements in seismic profiling techniques were made, and special coherency studies of towed hydrophone array noise have progressed.
    Description: Undersea Warfare Branch Office of Naval Re search under Contract Nonr-4029(00) NR 260-101
    Keywords: Submarine geology ; Underwater acoustics ; Oceanographic instruments ; Blake Plateau
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3),(2020): 595-613, doi:10.1175/JPO-D-19-0108.1.
    Description: Small estuaries in Mediterranean climates display pronounced salinity variability at seasonal and event time scales. Here, we use a hydrodynamic model of the Coos Estuary, Oregon, to examine the seasonal variability of the salinity dynamics and estuarine exchange flow. The exchange flow is primarily driven by tidal processes, varying with the spring–neap cycle rather than discharge or the salinity gradient. The salinity distribution is rarely in equilibrium with discharge conditions because during the wet season the response time scale is longer than discharge events, while during low flow it is longer than the entire dry season. Consequently, the salt field is rarely fully adjusted to the forcing and common power-law relations between the salinity intrusion and discharge do not apply. Further complicating the salinity dynamics is the estuarine geometry that consists of multiple branching channel segments with distinct freshwater sources. These channel segments act as subestuaries that import both higher- and lower-salinity water and export intermediate salinities. Throughout the estuary, tidal dispersion scales with tidal velocity squared, and likely includes jet–sink flow at the mouth, lateral shear dispersion, and tidal trapping in branching channel segments inside the estuary. While the estuarine inflow is strongly correlated with tidal amplitude, the outflow, stratification, and total mixing in the estuary are dependent on the seasonal variation in river discharge, which is similar to estuaries that are dominated by subtidal exchange flow.
    Description: We thank two anonymous reviewers for constructive comments, the staff of the South Slough National Estuarine Research Reserve for providing time series data, and Parker MacCready for sharing LiveOcean boundary conditions. This work was partially sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145). Computations were performed on the University of Oregon high performance computer Talapas.
    Description: 2020-08-26
    Keywords: Estuaries ; North Pacific Ocean ; Baroclinic flows ; Channel flows ; Dispersion ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.
    Description: A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
    Description: This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu).
    Keywords: Dispersion ; Fronts ; Mesoscale processes ; Subgrid-scale processes ; Trajectories ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1619-1637, doi:10.1175/JPO-D-18-0175.1.
    Description: Although the hydrodynamics of river meanders are well studied, the influence of curvature on flow in estuaries, with alternating tidal flow and varying water levels and salinity gradients, is less well understood. This paper describes a field study on curvature effects in a narrow salt-marsh creek with sharp bends. The key observations, obtained during times of negligible stratification, are 1) distinct differences between secondary flow during ebb and flood, with helical circulation as in rivers during ebb and a reversed circulation during flood, and 2) maximum (ebb and flood) streamwise velocities near the inside of the bend, unlike typical river bend flow. The streamwise velocity structure is explained by the lack of a distinct point bar and the relatively deep cross section in the estuary, which means that curvature-induced inward momentum redistribution is not overcome by outward redistribution by frictional and topographic effects. Through differential advection of the along-estuary salinity gradient, the laterally sheared streamwise velocity generates lateral salinity differences, with the saltiest water near the inside during flood. The resulting lateral baroclinic pressure gradient force enhances the standard helical circulation during ebb but counteracts it during flood. This first leads to a reversed secondary circulation during flood in the outer part of the cross section, which triggers a positive feedback mechanism by bringing slower-moving water from the outside inward along the surface. This leads to a reversal of the vertical shear in the streamwise flow, and therefore in the centrifugal force, which further enhances the reversed secondary circulation.
    Description: This project was funded by NSF Grant OCE-1634490. During this work W.M. Kranenburg was supported as USGS Postdoctoral Scholar at Woods Hole Oceanographic Institution. A.M.P. Garcia was supported by the Michael J. Kowalski Fellowship in Ocean Science and Engineering (AMPG), and the Diversity Fellowship of the MIT Office of the Dean of Graduate Education (AMPG). The authors thank Jay Sisson for the technical support and Peter Traykovski for providing the bathymetric data. Also, the suggestions for improvement by Dr. K. Blanckaert and an anonymous reviewer are thankfully acknowledged.
    Keywords: Estuaries ; Advection ; Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1561-1575, doi:10.1175/JPO-D-19-0002.1.
    Description: Within the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces . We show that , where is the isopycnal slope and is the geometric aspect ratio of the flow, and that accounts for 10%–25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while is the largest contributor to vertical velocity, is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of , as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.
    Description: MAF was supported by a National Defense Science and Engineering Graduate Fellowship and AM by NSF OCE-I434788. The authors thank Glenn Flierl and Ruth Curry for helpful conversations, and three anonymous reviewers for comments that improved the manuscript.
    Description: 2020-06-11
    Keywords: Baroclinic flows ; Mesoscale processes ; Small scale processes ; Subgrid-scale processes ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1555-1566, doi:10.1175/JPO-D-17-0231.1.
    Description: A primary challenge in modeling flow over shallow coral reefs is accurately characterizing the bottom drag. Previous studies over continental shelves and sandy beaches suggest surface gravity waves should enhance the drag on the circulation over coral reefs. The influence of surface gravity waves on drag over four platform reefs in the Red Sea is examined using observations from 6-month deployments of current and pressure sensors burst sampling at 1Hz for 4–5min. Depth-average current fluctuations U0 within each burst are dominated by wave orbital velocities uw that account for 80%–90%of the burst variance and have a magnitude of order 10 cm s21, similar to the lower-frequency depth-average current Uavg. Previous studies have shown that the cross-reef bottom stress balances the pressure gradient over these reefs. A bottom stress estimate that neglects the waves (rCdaUavgjUavgj, where r is water density and Cda is a drag coefficient) balances the observed pressure gradient when uw is smaller than Uavg but underestimates the pressure gradient when uw is larger than Uavg (by a factor of 3–5 when uw 5 2Uavg), indicating the neglected waves enhance the bottom stress. In contrast, a bottom stress estimate that includes the waves [rCda(Uavg 1 U0)jUavg 1 U0j)] balances the observed pressure gradient independent of the relative size of uw and Uavg, indicating that this estimate accounts for the wave enhancement of the bottom stress. A parameterization proposed by Wright and Thompson provides a reasonable estimate of the total bottom stress (including the waves) given the burst-averaged current and the wave orbital velocity.
    Description: The Red Sea field program was supported by Awards USA 00002 and KSA 00011 made by KAUST. S. Lentz was supported for the analysis by NSF Award OCE-1558343.
    Description: 2019-01-13
    Keywords: Coastal flows ; Currents ; Dynamics ; Gravity waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 435-453, doi:10.1175/JPO-D-17-0122.1.
    Description: Observations of surface waves, currents, and turbulence at the Columbia River mouth are used to investigate the source and vertical structure of turbulence in the surface boundary layer. Turbulent velocity data collected on board freely drifting Surface Wave Instrument Float with Tracking (SWIFT) buoys are corrected for platform motions to estimate turbulent kinetic energy (TKE) and TKE dissipation rates. Both of these quantities are correlated with wave steepness, which has previously been shown to determine wave breaking within the same dataset. Estimates of the turbulent length scale increase linearly with distance from the free surface, and roughness lengths estimated from velocity statistics scale with significant wave height. The vertical decay of turbulence is consistent with a balance between vertical diffusion and dissipation. Below a critical depth, a power-law scaling commonly applied in the literature works well to fit the data. Above this depth, an exponential scaling fits the data well. These results, which are in a surface-following reference frame, are reconciled with results from the literature in a fixed reference frame. A mapping between free-surface and mean-surface reference coordinates suggests 30% of the TKE is dissipated above the mean sea surface.
    Description: Funding for this project was provided by the Office of Naval Research as part of the RIVET-II DRI, and for the DARLA group.
    Keywords: Ocean ; Estuaries ; Gravity waves ; Turbulence ; Wave breaking ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.
    Description: Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.
    Description: S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.
    Description: 2018-08-26
    Keywords: Indian Ocean ; Baroclinic flows ; Potential vorticity ; Fronts ; Monsoons ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2457-2475, doi:10.1175/JPO-D-17-0186.1.
    Description: A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. These boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.
    Description: This research was supported by the Research Council of Norway project NORTH. Support for the publication was provided by the University of Bergen. Ocean Outlook has supported a research visit for EL to Woods Hole Oceanographic Institute where much of the current work has been carried out. Support forMAS was provided by the National Science Foundation Grant OCE-1558742.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Boundary currents ; Buoyancy ; Freshwater ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2799-2827, doi:10.1175/JPO-D-18-0057.1.
    Description: The fjords that connect Greenland’s glaciers to the ocean are gateways for importing heat to melt ice and for exporting meltwater into the ocean. The transport of heat and meltwater can be modulated by various drivers of fjord circulation, including freshwater, local winds, and shelf variability. Shelf-forced flows (also known as the intermediary circulation) are the dominant mode of variability in two major fjords of east Greenland, but we lack a dynamical understanding of the fjord’s response to shelf forcing. Building on observations from east Greenland, we use numerical simulations and analytical models to explore the dynamics of shelf-driven flows. For the parameter space of Greenlandic fjords, we find that the fjord’s response is primarily a function of three nondimensional parameters: the fjord width over the deformation radius (W/Rd), the forcing time scale over the fjord adjustment time scale, and the forcing amplitude (shelf pycnocline displacements) over the upper-layer thickness. The shelf-forced flows in both the numerical simulations and the observations can largely be explained by a simple analytical model for Kelvin waves propagating around the fjord. For fjords with W/Rd 〉 0.5 (most Greenlandic fjords), 3D dynamics are integral to understanding shelf forcing—the fjord dynamics cannot be approximated with 2D models that neglect cross-fjord structure. The volume flux exchanged between the fjord and shelf increases for narrow fjords and peaks around the resonant forcing frequency, dropping off significantly at higher- and lower-frequency forcing.
    Description: This work was funded by NSF Grant OCE-1536856 and by the NOAA Climate and Global Change Postdoctoral Fellowship.
    Keywords: Estuaries ; Glaciers ; Baroclinic flows ; Coastal flows ; Kelvin waves ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 905-923, doi:10.1175/JPO-D-17-0133.1.
    Description: Observations of turbulent kinetic energy, dissipation, and turbulent stress were collected in the middle reaches of Chesapeake Bay and were used to assess second-moment closure predictions of turbulence generated beneath breaking waves. Dissipation scaling indicates that the turbulent flow structure observed during a 10-day wind event was dominated by a three-layer response that consisted of 1) a wave transport layer, 2) a surface log layer, and 3) a tidal, bottom boundary layer limited by stable stratification. Below the wave transport layer, turbulent mixing was limited by stable stratification. Within the wave transport layer, where dissipation was balanced by a divergence in the vertical turbulent kinetic energy flux, the eddy viscosity was significantly underestimated by second-moment turbulence closure models, suggesting that breaking waves homogenized the mixed surface layer to a greater extent than the simple model of TKE diffusing away from a source at the surface. While the turbulent transport of TKE occurred largely downgradient, the intermittent downward sweeps of momentum generated by breaking waves occurred largely independent of the mean shear. The underprediction of stress in the wave transport layer by second-moment closures was likely due to the inability of the eddy viscosity model to capture the nonlocal turbulent transport of the momentum flux beneath breaking waves. Finally, the authors hypothesize that large-scale coherent turbulent eddies played a significant role in transporting momentum generated near the surface to depth.
    Description: This work was supported by National Science Foundation Grants OCE-1061609 and OCE-1339032.
    Description: 2018-10-19
    Keywords: Mixing ; Turbulence ; Waves, oceanic ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1815-1830, doi:10.1175/JPO-D-17-0275.1.
    Description: Recent progress in direct numerical simulations (DNSs) of stratified turbulent flows has led to increasing attention to the validity of the constancy of the dissipation flux coefficient Γ in the Osborn’s eddy diffusivity model. Motivated by lack of observational estimates of Γ, particularly under weakly stratified deep-ocean conditions, this study estimates Γ using deep microstructure profiles collected in various regions of the North Pacific and Southern Oceans. It is shown that Γ is not constant but varies significantly with the Ozmidov/Thorpe scale ratio ROT in a fashion similar to that obtained by previous DNS studies. Efficient mixing events with Γ ~ O(1) and ROT ~ O(0.1) tend to be frequently observed in the deep ocean (i.e., weak stratification), while moderate mixing events with Γ ~ O(0.1) and ROT ~ O(1) tend to be observed in the upper ocean (i.e., strong stratification). The observed negative relationship between Γ and ROT is consistent with a simple scaling that can be derived from classical turbulence theories. In contrast, the observed results exhibit no definite relationships between Γ and the buoyancy Reynolds number Reb, although Reb has long been thought to be another key parameter that controls Γ.
    Description: This study was supported by MEXT KAKENHI Grant JP15H05824 and JSPS KAKENHI Grant JP15H02131.
    Description: 2019-02-15
    Keywords: Abyssal circulation ; Mixing ; Subgrid-scale processes ; Turbulence ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018):1941-1950, doi:10.1175/JPO-D-17-0194.1.
    Description: Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.
    Description: This work was supported by the Linné FLOW Centre at KTH and the Academy of Finland Center of Excellence Programme Grant 307331 (author Ezhova) and by VR Swedish Research Council GrantVR2014-5001 (author Brandt). Support to author Cenedese was given by NSF Project OCE-1434041.
    Description: 2019-02-27
    Keywords: Buoyancy ; Entrainment ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: This report presents a bibliography of literature on the Persian Gulf and sections concerning design and equipment for a Persian Gulf marine research vessel and for a marine field operation.
    Description: Prepared with funds from the Iranian Department of the Environment.
    Keywords: Marine resources ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 879-894, doi:10.1175/JPO-D-16-0196.1.
    Description: Models show that surface cooling over a sloping continental shelf should give rise to baroclinic instability and thus tend toward gravitationally stable density stratification. Less is known about how alongshore winds affect this process, so the role of surface momentum input is treated here by means of a sequence of idealized, primitive equation numerical model calculations. The effects of cooling rate, wind amplitude and direction, bottom slope, bottom friction, and rotation rate are all considered. All model runs lead to instability and an eddy field. While instability is not strongly affected by upwelling-favorable alongshore winds, wind-driven downwelling substantially reduces eddy kinetic energy, largely because the downwelling circulation plays a similar role to baroclinic instability by flattening isotherms and so reducing available potential energy. Not surprisingly, cross-shelf winds appear to have little effect. Analysis of the model runs leads to quantitative relations for the wind effect on eddy kinetic energy for the equilibrium density stratification (which increases as the cooling rate increases) and for eddy length scale.
    Description: This research was supported by the National Science Foundation Physical Oceanography Program through Grant OCE-1433953.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Eddies ; Instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: A directional wave gage consisting of a two-axis electromagnetic current meter and a pressure sensor, developed by Sea Data Corporation, with modifications specified by the author, was successfully deployed during the joint NOAA/U.S. Army Corps of Engineers Coastal Engineering Research Center's Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) during November, 1980. Data recovery rate was 100%, and instrument function was verified through comparison with a four-element pressure sensor array at the same location, an X-band imaging radar, and with surface meteorological observations charting developing local wave fields. The instrument was proven to be a viable alternative for point measurements of directional wave fields and for estimating the first five fourier coefficients in a directional wave model.
    Description: Prepared for the Department of Commerce, NOAA Office of Sea Grant under Grants NA79AA -D- 00102 and NA80AA-D-00077 and for the U.S. Army Research Office, Contract DAAG29-81-K-0004 .
    Keywords: National Sea Grant Program (U.S.) ; Ocean waves ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: The system described provides wide operational flexibility at any operating frequency from 5 kHz to over 800 kHz (except for a small band around 455 kHz) limited mainly by the availability of transducers. Variable pulse width, variable receiver bandwidth, low receiver noise, various time variable gain functions and wide system dynamic range characterized the system. Built-in time-sharing controls maximize flexibility of graphics display on either dry-paper or fibre-optic CRT recorders.
    Description: Prepared for the NORDA under Contract N00014-77-C-0196; and for the National Oceanic and Atmospheric Administration under Grant 04-8-MO1-43.
    Keywords: Underwater acoustics ; Sonar ; Oceanographic instruments ; Scientific apparatus and instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: The experimental towed multi-port water sampler was designed to provide a shipboard science party with the capability of obtaining continuous water samples from the surface to a 100 meter depth. The device will simultaneously provide six samples spaced one meter apart in a vertical plane, while being towed by a surface support vessel at a forward speed of between two to three knots. The device consists of a bottom fish containing six electric motors, each driving an individual pump. The six water samples are pumped to the surface using separate runs of TFE Teflon tubing. The tube is mounted in a pliant fairing that also houses the lifting cable, power leads, and instrumentation bundle. A drum winch is used to store a total of 150 meters of faired cable, and is capable of raising or lowering the fish while under way. The sampler will provide a discharge flow rate of 5.6 liters per minute from each sample tube, while pumping through 150 meters of 12.7 rnrn bore tubing, against a 4.5 meter head. A depth sensor transducer within the fish provides a top-side readout of the actual operating depth of the fish, while a remote reading temperature sensor provides a continuous display of the water temperature.
    Description: Prepared for the U.S. Department of Commerce, National Oceanic and Atmospheric Administration under Contract NA79AA-D-0044.
    Keywords: Water sampling ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: A Conductivity, Temperature and Depth (CTD) profiler has been designed to make precise fine scale measurements of these physical parameters in the ocean. This CTD system consists of a shipboard Data Terminal deck unit and an underwater unit which provides continuous sampling of the three variables as it is lowered into the water. Additional sensors can be added to measure other variables; the most common is dissolved oxygen. This report is a detailed description of the CTD System and includes the necessary documentation to operate and maintain the equipment.
    Description: Prepared for the Office of Naval Research under Contract N00014-66-C-0241; NR 08,3-004 .
    Keywords: Salinity ; Ocean temperature ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: This report describes the performance of a freely-falling velocity profiler called the Absolute Velocity Profiler (AVP) . The AVP is distinguishable from our previously developed velocity profiler the Electro-Magnetic Velocity Profiler (EMVP) in that acoustic Doppler measurements are used, to determine the reference velocity for the EMVP profiles. The AVP contains the essential measurements of the motional electric currents in the sea as implemented in the EMVP and in addition, collects acoustic Doppler measurements of frequencyshifted bottom echoes. The former measurements yield a profile of the horizontal components of velocity relative to a reference velocity, independent of depth, while the latter measurements determine the absolute velocity of the AVP vehicle with respect to the sea floor. The EM profile is obtained from the sea surface to bottom, and the acoustic Doppler measurements are made within about 300 m of the sea floor. The combination of the EM and acoustic Doppler measurements yields an absolute velocity profile throughout the water column. Performance analyses included in this report set method uncertainties of between 1 and 2 cm/s r.m.s. Measurements of temperature and its gradient are also made.
    Description: Prepared for the National Science Foundation, Office of the International Decade of Ocean Exploration under Grant OCE76-24605.
    Keywords: Doppler effect ; Electromagnetism ; Ocean currents ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Also published as Journal of Geophysical Research, Vol. 83, No. C8, 1978, pp. 4062-4068
    Description: Acoustic data, transmissometer data, and calculations are presented which indicate that high-frequency acoustic backscattering systems can become a valuable tool in the remote monitoring of suspended particle distributions and active resuspension areas. Data are also presented which show that acoustic backscattering systems can be used to remotely detect slope/shelf water frontal zones. Towed acoustic systems should be able to map the extent of the frontal zone and add significantly to the understanding of frontal zone processes.
    Description: Prepared for the Naval Oceanic Research and Development Activity under Contract N00014-77-C-0196.
    Keywords: Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2209-2219, doi:10.1175/JPO-D-18-0070.1.
    Description: Published observations of subinertial ocean current variability show that the vertical structure is often well described by a vertical mode that has a node of horizontal velocity at the bottom rather than the traditional node of vertical velocity. The theory of forced and free linear Rossby waves in a continuously stratified ocean with a sloping bottom and bottom friction is treated here to see if frictional effects can plausibly contribute to this phenomenon. For parameter values representative of the mesoscale, bottom dissipation by itself appears to be too weak to be an explanation, although caution is required because the present approach uses a linear model to address a nonlinear phenomenon. One novel outcome is the emergence of a short-wave, bottom-trapped, strongly damped mode that is present even with a flat bottom.
    Description: Partial funding for this article is provided by the National Science Foundation Physical Oceanography section through Award OCE-1433953.
    Description: 2019-03-17
    Keywords: Baroclinic flows ; Ekman pumping/transport ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as Journal of Geophysical Research, 83(C6), 1978, pp. 2921–2938
    Description: As part of a field study of the relation between fine scale and large‐scale variations of water properties in the western North Atlantic, the waters in the vicinity of Bermuda were investigated in detail. Previous work in the area had revealed regions of intense temperature fine structure confined to the sides of the island. Generally quieter levels of activity elsewhere in the midocean have suggested that significant mixing might only occur at the solid and fluid boundaries of the ocean. During the course of our investigation, two Gulf Stream rings were found in the vicinity of the island. The exchange of water between them caused three regions of strong alongshore flow. In these three areas we find elevated levels of temperature fine structure in the upper 800 m as measured by the variance in the temperature gradient normalized by the square of the mean temperature gradient over the interval. The normalized temperature variances on small scales (0.2–1 m) are most energetic in patches tightly bound to the island sides, whereas the fine structure on larger scales (5–25 m) is also energetic away from the island in a region of outflow. Velocity profiles show that vertical scales shorten as one approaches the island, and the energy increases in the counterclockwise component. There is no correlation evident between the shear measurements of the internal wave field and the intensity of the fine structure. Possible mechanisms for the production of fine structure are explored within the context of these observations.
    Description: This research was carried out with funding from the Office of Naval Research under contracts NOOOI4-74-C- 0262 NR083-004 (N .G.H. and T.B.S.) and the National Science Foundation under grant OCE74-19608 (E.J.K.).
    Keywords: Oceanic mixing ; Turbulence ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The Woods Hole Oceanographic Institution Buoy Group's field work for the international POLYMODE program consisted of deployment and recovery of seventy of the seventy- eight program moorings on eight research cruises. The mooring program consisted of four distinct experiments conducted from June of 1974 to November of 1979. A brief description of the arrays is provided, the mooring design process for a typical POLYMODE mooring is explained, and brief summaries are given of the WHO! deployment and recovery cruises. Appendix I is a schematic presentation of the chronological mooring history; Appendix Il lists details of the seventy WHO! moorings deployed in the POLYMUDE program and Appendix II I lists details of other WHOI moorings that may be of interest to investigators .
    Description: Prepared for the Office of Naval Research under Contracts N00014-66-C-0241; NR 083-004; N00014-74-C-0262; NR 083- 004, N00014-76-C-0197; NR 083-400 and the Office for the International Decade of Ocean Exploration of the National Science Foundation under Grants GX-29054, OCE 75-03962 and OCE-77-19403.
    Keywords: Joint US-USSR Mid-Ocean Dynamics Experiment (POLYMODE) ; Deep-sea moorings ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: The purpose of this report is to discuss the use of a Neil Brown Instrument Systems internal recording CTD. The components of the instrument are described along with the advantages and disadvantages of the internal recording system. Calibration of the pressure and temperature sensors in the laboratory and the method used for in situ calibration of the conductivity sensor is described. A step by step description of the use of the CTD/IR at sea is also included.
    Description: Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083-400 .
    Keywords: Ocean temperature ; Ocean currents ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: A large, open ocean applicable sediment trap has been developed at the Woods Hole Oceanographic Institution in order to assess the fluxes of particles sinking through the deep water column, under the sponsorship of the National Science Foundation. PARFLUX Mark II trap, 1978-79 version for PARFLUX phase 1 program, has been successfully developed and has gathered much meaningful data. A trap opening is 1.5 m2 and consists of 94 hexagonal buffer cells with the nominal form ratio of 2. Sediment particles are concentrated to the receiving cup located at the bottom of the funnel-shaped trap. Two types of receiving cups have been developed; a trap with Type S cup is open at both ends as it sinks to the designated depth. Twenty-four hours after the deployment the receiving cup moves into alignment with the funnel to store the sediment. At the end of deployment a spring mechanism activated by a quartz oscillator based electrical timer-release retracts the receiving cup, seals the collected sample and leave the funnel open at both ends while the trap ascends for recovery. Type C mechanism is installed with a shutter which seals the cup during recovery; this type involves a simple mechanism with less moving parts. Sodium azide/sodium chloride solution is diffused through a series of membrane filters to keep the cup contents in an aseptic condition. Since October 1976 to December 1979, we have deployed and recovered 24 traps successfully along with several moorings as deep as 5,600 m for as long as 112 days. This reports the engineering detail and lists the required parts to assist the construction, operation and maintenance of the PARFLUX Mark II sediment trap.
    Description: Prepared for the National Science Foundation under Grants OCE 76-82063 and OCE 77-27004.
    Keywords: Suspended sediments ; Oceanographic instruments ; Scientific apparatus and instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air–sea interaction on inter-annual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15N, 51W by successive mooring turnarounds. These observations are used to investigate air–sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Ocean Observing and Monitoring Division. This report documents recovery of the NTAS-15 mooring and deployment of the NTAS-16 mooring. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air–Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air–sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V Endeavor (cruise EN590). The cruise took place between January 21 and February 8 2017. The NTAS-16 mooring was deployed on January 30, and the NTAS-15 mooring was recovered on January 31. A 24-hour intercomparison period was conducted on January 29 in front of the NTAS 15 buoy, and again on February 1 in front of the NTAS 16 buoy. During the inter-comparisons, data from instrumentation on the buoys, telemetered through Argos satellite system, and the ship’s meteorological and oceanographic measurements were monitored while the ship was stationed 0.2 nm downwind of the buoys. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during EN590 consisted in the recovery and deployment of the Meridional Overturning Variability Experiment (MOVE) Pressure Inverted Echo Sounders (PIES) at two MOVE arrays (MOVE 1 in the east, and MOVE 3 in the west near Guadeloupe). Acoustic downloads of data from (PIES) and subsurface mooring (MOVE1, 3 and 4) were also conducted. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA14OAR4320158.
    Keywords: Hydrography ; Oceanographic instruments ; Meteorology ; Endeavor (Ship: 1976-) Cruise EN590
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1205-1220, doi:10.1175/JPO-D-16-0258.1.
    Description: The linkage among total exchange flow, entrainment, and diffusive salt flux in estuaries is derived analytically using salinity coordinates, revealing the simple but important relationship between total exchange flow and mixing. Mixing is defined and quantified in this paper as the dissipation of salinity variance. The method uses the conservation of volume and salt to quantify and distinguish the diahaline transport of volume (i.e., entrainment) and diahaline diffusive salt flux. A numerical model of the Hudson estuary is used as an example of the application of the method in a realistic estuary with a persistent but temporally variable exchange flow. A notable finding of this analysis is that the total exchange flow and diahaline salt flux are out of phase with respect to the spring–neap cycle. Total exchange flow reaches its maximum near minimum neap tide, but diahaline salt transport reaches its maximum during the maximum spring tide. This phase shift explains the strong temporal variation of stratification and estuarine salt content through the spring–neap cycle. In addition to quantifying temporal variation, the method reveals the spatial variation of total exchange flow, entrainment, and diffusive salt flux through the estuary. For instance, the analysis of the Hudson estuary indicates that diffusive salt flux is intensified in the wider cross sections. The method also provides a simple means of quantifying numerical mixing in ocean models because it provides an estimate of the total dissipation of salinity variance, which is the sum of mixing due to the turbulence closure and numerical mixing.
    Description: T. Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509), the Fundamental Research Funds for the Central Universities (Grant 2017B03514), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA11010203). W. R. Geyer was supported by NSF Grant OCE 0926427 and ONR Grant N00014-16-1-2948. P. MacCready was supported by NSF Grant OCE-1634148.
    Description: 2017-09-14
    Keywords: Baroclinic flows ; Conservation equations ; Diapycnal mixing ; Diffusion ; Entrainment ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Operations activities of the Woods Hole Oceanographic Institution's Buoy Group for an exploratory array of deep-ocean moorings in the western North Pacific Ocean are described along with specific engineering notes associated with high-current deep moorings. The array, along 152° E. from 28° N. to 41° N., was in place for about two years. After one year the array was successfully recovered and redeployed. Brief summaries of each of three research cruises are provided. An Appendix lists details of the twenty moorings including positions, dates deployed and recovered, instrument types and depths and moored station numbers which are required for specific data retrieval by investigators. The initial scientific publication has been prepared by Schmitz, et al (1982).
    Description: Prepared for the Office of Naval Research under Contracts N00014-76-C-0197; NR 083-400, N00014-79-C-004; NR 083-102 and N00014-75-C-0152; NR 083-005.
    Keywords: Water current meters ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2611-2630, doi:10.1175/JPO-D-16-0259.1.
    Description: This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.
    Description: This work was supported by Linné FLOW Centre at KTH and the Academy of Finland Centre of Excellence program (Grant 307331) (E. E.) and VR Swedish Research Council, Outstanding Young Researcher Award, Grant VR 2014-5001 (L. B.). Support to C. C. was given by the NSF Project OCE-1434041.
    Description: 2018-04-26
    Keywords: Buoyancy ; Internal waves ; Turbulence ; Jets ; Oscillations ; Large eddy simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 85-100, doi:10.1175/JPO-D-15-0234.1.
    Description: Observations and analyses of two tidally recurring, oblique, internal hydraulic jumps at a stratified estuary mouth (Columbia River, Oregon/Washington) are presented. These hydraulic features have not previously been studied due to the challenges of both horizontally resolving the sharp gradients and temporally resolving their evolution in numerical models and traditional observation platforms. The jumps, both of which recurred during ebb, formed adjacent to two engineered lateral channel constrictions and were identified in marine radar image time series. Jump occurrence was corroborated by (i) a collocated sharp gradient in the surface currents measured via airborne along-track interferometric synthetic aperture radar and (ii) the transition from supercritical to subcritical flow in the cross-jump direction via shipborne velocity and density measurements. Using a two-layer approximation, observed jump angles at both lateral constrictions are shown to lie within the theoretical bounds given by the critical internal long-wave (Froude) angle and the arrested maximum-amplitude internal bore angle, respectively. Also, intratidal and intertidal variability of the jump angles are shown to be consistent with that expected from the two-layer model, applied to varying stratification and current speed over a range of tidal and river discharge conditions. Intratidal variability of the upchannel jump angle is similar under all observed conditions, whereas the downchannel jump angle shows an additional association with stratification and ebb velocity during the low discharge periods. The observations additionally indicate that the upchannel jump achieves a stable position that is collocated with a similarly oblique bathymetric slope.
    Description: We acknowledge the financial support of the Office of Naval Research under Awards N00014-10-1-0932 and N00014-13-1-0364.
    Description: 2017-07-04
    Keywords: Estuaries ; Baroclinic flows ; Internal waves ; Microwave observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: The following report describes the scientific motivations for the use of a Sea Floor Winch System for Wireline Re-entry of Deep Sea Boreholes and presents a conceptual design for the winch system.
    Description: This report has been prepared for the Scripps Institution of Oceanography under U.C.S.D. Order # G29733-0901.
    Keywords: Oceanographic instruments ; Winches
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: The Seafloor Borehole Array Seismic System (SEABASS) was originally developed to record autonomously on the seafloor the signals received on a four-sonde three-component borehole geophone array in the VLF band (2-50Hz)(Stephen eta!., 1994). The system is designed to use the wireline re-entry capability (Spiess, 1993; Spiess eta!., 1992) to install and retrieve the seafloor instrumentation (Figures 1 and 2). Following the successful demonstration of this technology on the LFASE (Low Frequency Acoustic-Seismic Experiment) project in September 1989, it was decided to extend the capability to broadband (1000sec-5Hz) borehole seismometers which could be used for permanent seafloor seismic observatories in the Ocean Seismic Network (Orcutt and Stephen, 1993; Purdy and Dziewonski, 1988; Purdy and Orcutt, 1995; Stephen, 1995; Sutton and Barstow, 1990; Sutton eta!., 1988; Sutton eta!., 1965). The Broadband Borehole Seismic System (B3S2) is the prototype system for permanent broadband borehole seismic observatories on the seafloor. It has three major components: i) a broadband borehole seismometer, the Teledyne 54000, modified for seafloor operations by Scripps-IGPP; ii) the re-entry system provided by Scripps-MPL; and iii) the seafloor recording system developed by WHO I. Because of the similarity of the seafloor recording system to SEABASS we have named this new system SEABASS-ll. This report discusses the development of SEABASS-Il at WHOI in the period from July 14, 1992 to January 31, 1996. The motivation for the project and a work statement are contained in WHOI proposals 7016 and 7016.1. This report is a collection of documentation prepared while the work was being carried out. Some of the issues discussed in early memos were subsequently changed. Modifications and further testing of SEABASS-ll, as well as final system integration tests with the borehole andreentry systems (both of which are also still being modified and tested) have still to be carried out in preparation for the OSN Pilot Experiment Cruise in Spring 1997. This is a preliminary report only and presents work in progress. It will be useful to the engineering team as a historical reference of the sequence of events in the development of SEABASS-ll but it should not be considered as a technical manual for the instrumentation.
    Keywords: Seismology ; Borehole gravimetry ; Ocean bottom ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3155-3163, doi:10.1175/JPO-D-16-0123.1.
    Description: Idealized laboratory experiments have been conducted in a two-layer stratified fluid to investigate the leading-order dynamics that control submarine melting and meltwater export near a vertical ice–ocean interface as a function of subglacial discharge. In summer, the discharge of surface runoff at the base of a glacier (subglacial discharge) generates strong buoyant plumes that rise along the glacier front entraining ambient water along the way. The entrainment enhances the heat transport toward the glacier front and hence the submarine melt rate increases with the subglacial discharge rate. In the laboratory, the effect of subglacial discharge is simulated by introducing freshwater at freezing temperature from a point source at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous observational and numerical studies. Buoyant plumes rise vertically until they find either their neutrally buoyant level or the free surface. Hence, the meltwater can deposit within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The heat budget in the tank, calculated following a new framework, gives estimates of submarine melt rate that increase with the subglacial discharge and are in agreement with the directly measured submarine melting. This laboratory study provides the first direct measurements of submarine melt rates for different subglacial discharges, and the results are consistent with the predictions of previous theoretical and numerical studies.
    Description: Support to C. C. was given by the NSF project OCE- 1130008 and OCE-1434041. M. G. received support from the ‘‘Gori’’ Fellowship.
    Description: 2017-04-07
    Keywords: Glaciers ; Buoyancy ; Density currents ; Turbulence ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1309-1321, doi:10.1175/JPO-D-15-0068.1.
    Description: Direct measurements of oceanic turbulent parameters were taken upstream of and across Drake Passage, in the region of the Subantarctic and Polar Fronts. Values of turbulent kinetic energy dissipation rate ε estimated by microstructure are up to two orders of magnitude lower than previously published estimates in the upper 1000 m. Turbulence levels in Drake Passage are systematically higher than values upstream, regardless of season. The dissipation of thermal variance χ is enhanced at middepth throughout the surveys, with the highest values found in northern Drake Passage, where water mass variability is the most pronounced. Using the density ratio, evidence for double-diffusive instability is presented. Subject to double-diffusive physics, the estimates of diffusivity using the Osborn–Cox method are larger than ensemble statistics based on ε and the buoyancy frequency.
    Description: This work was supported by grants from the U.S. National Science Foundation.
    Description: 2016-10-05
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Mixing ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Fronts ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1769-1783, doi:10.1175/JPO-D-15-0193.1.
    Description: High-resolution observations of velocity, salinity, and turbulence quantities were collected in a salt wedge estuary to quantify the efficiency of stratified mixing in a high-energy environment. During the ebb tide, a midwater column layer of strong shear and stratification developed, exhibiting near-critical gradient Richardson numbers and turbulent kinetic energy (TKE) dissipation rates greater than 10−4 m2 s−3, based on inertial subrange spectra. Collocated estimates of scalar variance dissipation from microconductivity sensors were used to estimate buoyancy flux and the flux Richardson number Rif. The majority of the samples were outside the boundary layer, based on the ratio of Ozmidov and boundary length scales, and had a mean Rif = 0.23 ± 0.01 (dissipation flux coefficient Γ = 0.30 ± 0.02) and a median gradient Richardson number Rig = 0.25. The boundary-influenced subset of the data had decreased efficiency, with Rif = 0.17 ± 0.02 (Γ = 0.20 ± 0.03) and median Rig = 0.16. The relationship between Rif and Rig was consistent with a turbulent Prandtl number of 1. Acoustic backscatter imagery revealed coherent braids in the mixing layer during the early ebb and a transition to more homogeneous turbulence in the midebb. A temporal trend in efficiency was also visible, with higher efficiency in the early ebb and lower efficiency in the late ebb when the bottom boundary layer had greater influence on the flow. These findings show that mixing efficiency of turbulence in a continuously forced, energetic, free shear layer can be significantly greater than the broadly cited upper bound from Osborn of 0.15–0.17.
    Description: Holleman was supported by the Devonshire Scholars program. The field study and the coauthors’ contributions were supported by NSF Grant OCE 0926427.
    Description: 2016-11-24
    Keywords: Circulation/ Dynamics ; Mixing ; Shear structure/flows ; Turbulence ; Observational techniques and algorithms ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Atmospheric and Oceanic Technology 33 (2016): 873-890, doi:10.1175/JTECH-D-15-0109.1.
    Description: Direct covariance flux (DCF) measurements taken from floating platforms are contaminated by wave-induced platform motions that need to be removed before computation of the turbulent fluxes. Several correction algorithms have been developed and successfully applied in earlier studies from research vessels and, most recently, by the use of moored buoys. The validation of those correction algorithms has so far been limited to short-duration comparisons against other floating platforms. Although these comparisons show in general a good agreement, there is still a lack of a rigorous validation of the method, required to understand the strengths and weaknesses of the existing motion-correction algorithms. This paper attempts to provide such a validation by a comparison of flux estimates from two DCF systems, one mounted on a moored buoy and one on the Air–Sea Interaction Tower (ASIT) at the Martha’s Vineyard Coastal Observatory, Massachusetts. The ASIT was specifically designed to minimize flow distortion over a wide range of wind directions from the open ocean for flux measurements. The flow measurements from the buoy system are corrected for wave-induced platform motions before computation of the turbulent heat and momentum fluxes. Flux estimates and cospectra of the corrected buoy data are found to be in very good agreement with those obtained from the ASIT. The comparison is also used to optimize the filter constants used in the motion-correction algorithm. The quantitative agreement between the buoy data and the ASIT demonstrates that the DCF method is applicable for turbulence measurements from small moving platforms, such as buoys.
    Description: This work was funded by the National Science Foundation Grant OCE04-24536 as part of the CLIVAR Mode Water Dynamic Experiment (CLIMODE).
    Keywords: Circulation/ Dynamics ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Boundary layer ; Physical Meteorology and Climatology ; Air-sea interaction ; Observational techniques and algorithms ; Buoy observations ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: The broadband borehole seismic system (B3S2) is being developed as one component of the Ocean Seismic Network (OSN) Pilot Experiment which will be carried out at the OSN-1 Site off Hawaii in Winter 1998. The other major instruments being developed for the experiment are a Broadband Ocean Bottom Seismometer and a Shallow Buried Broadband Ocean Bottom Seismometer. B3S2 consists of four major components: 1) a borehole sonde with a re-entry guide, Teledyne 54000 broadband seismometer, and REFTEK digitizing system, 2) a seafloor acquisition and recording system (SEABASS), 3) a control vehicle for deploying the sonde in a borehole, and 4) shipboard command and control electronics. The deployment system is very similar to the SEABASS configuration used on LFASE (Stephen eta!, 1994). The purposes of the tests at Pinon Flat were: 1) to integrate the borehole sonde and seafloor and shipboard electronics which had been constructed by different groups: WHOI and SIO/IGPP; 2) test the combined subsystem in a wet borehole environment using actual cables and simulating seafloor conditions; and 3) acquire seismic ambient noise and earthquake data over approximately a three month period for comparison with known stations at the Pinon Flat Observatory.
    Description: This work was carried out under NSF Grants No. OCE-91-18943 and OCE No. OCE-95-05730: "A Broadband Borehole Seismometer for the Deep Ocean - Development and Land Testing"
    Keywords: Seismology ; Borehole gravity meters ; Ocean bottom ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This document contains two workshop reports and several brief technical reports, all on aspects of ocean data telemetry and platform positioning. The principal topic is a Summary of an Ocean Telemetry Workshop held at the AGU/ ASLO Ocean Sciences Meeting in New Orleans, Louisiana, on 15 January 1986. A brief version of this summary appeared in EOS, Transactions of the American Geophysical Union, 4 March 1986. Both the full summary presented here and the brief form in EOS were coauthored by D. Brooks of Texas A&M University. Included here is a list of the attendees at that workshop (Appendix A), and a description of the goals and membership of the AGU Ocean Sciences Section Technical Committee on Ocean Data Telemetry and Platform Positioning, which was formed at that meeting (Appendix B). An earlier, informal, local workshop on telemetry was held at Woods Hole in March 1985; a report on that meeting is in Appendix C. Technical summaries are given on Meteor-Burst Telemetry (Appendix D), the GEOSTAR positioning system (Appendix E), tradeoffs for various telemetry systems (Appendix F), a proposed communications network [authored by M. Comberiate from NASA Goddard) (Appendix G), and the possibilities of a new kind of HF telemetry system (Appendix H). A small discussion at Woods Hole prior to the January Telemetry Workshop is reported in Appendix I.
    Description: Funding was provided by the Office of Naval Research under Contracts No. N00014-84-C-0134. NR 083-400 and N00014-85-C-0001, NR 083-004.
    Keywords: Oceanographic instruments ; Telemeter ; Artificial satellites in earth sciences
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 1823-1837, doi:10.1175/JPO-D-15-0165.1.
    Description: Measurements just beneath the ocean surface demonstrate that the primary mechanism by which energy from breaking waves is transmitted into the water column is through the work done by the covariance of turbulent pressure and velocity fluctuations. The convergence in the vertical transport of turbulent kinetic energy (TKE) balances the dissipation rate of TKE at first order and is nearly an order of magnitude greater than the sum of the integrated Eulerian and Stokes shear production. The measured TKE transport is consistent with a simple conceptual model that assumes roughly half of the surface flux of TKE by wave breaking is transmitted to depths greater than the significant wave height. During conditions when breaking waves are inferred, the direction of momentum flux is more aligned with the direction of wave propagation than with the wind direction. Both the energy and momentum fluxes occur at frequencies much lower than the wave band, consistent with the time scales associated with wave breaking. The largest instantaneous values of momentum flux are associated with strong downward vertical velocity perturbations, in contrast to the pressure work, which is associated with strong drops in pressure and upward vertical velocity perturbations.
    Description: Funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518
    Keywords: Circulation/ Dynamics ; Energy transport ; Mixing ; Momentum ; Turbulence ; Wave breaking ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-26
    Description: The instrument described was designed to provide sufficient data to relocate a floating object at sea. It provides a line of bearing to the object from the tracking ship. Cost and power consumption were the major driving concerns. There is a minimum of microwave circuitry. The package is reproducible for under $2000.
    Description: Prepared for the National Science Foundation under Grant 0CE-82-15708 and for the Office of Naval Research under Contract N00014-82-C-0019.
    Keywords: Oceanographic instruments ; Oceanographic buoys ; Tracking radar
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: The Northwest Tropical Atlantic Station (NTAS) was established to address the need for accurate air-sea flux estimates and upper ocean measurements in a region with strong sea surface temperature anomalies and the likelihood of significant local air-sea interaction on interannual to decadal timescales. The approach is to maintain a surface mooring outfitted for meteorological and oceanographic measurements at a site near 15°N, 51°W by successive mooring turnarounds. These observations are used to investigate air-sea interaction processes related to climate variability. The NTAS Ocean Reference Station (ORS NTAS) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. This report documents recovery of the NTAS-13 mooring and deployment of the NTAS-14 mooring at the same site. Both moorings used Surlyn foam buoys as the surface element. These buoys were outfitted with two Air-Sea Interaction Meteorology (ASIMET) systems. Each system measures, records, and transmits via Argos satellite the surface meteorological variables necessary to compute air-sea fluxes of heat, moisture and momentum. The upper 160 m of the mooring line were outfitted with oceanographic sensors for the measurement of temperature, salinity and velocity. The mooring turnaround was done by the Upper Ocean Processes Group of the Woods Hole Oceanographic Institution (WHOI), onboard R/V Endeavor, Cruise EN549. The cruise took place between December 5 and 21 December 2014. The NTAS-14 mooring was deployed on December 13, and immediately followed by a 36-hour intercomparison period during which data from the buoy, telemetered through Argos satellite system, and the ship’s meteorological and oceanographic data were monitored. The NTAS-13 buoy had parted on September 23 and was recovered on October 28 while drifting freely near Martinique. The rest of the mooring, which had fallen to the seafloor was recovered during EN549, on December 17. This report describes these operations, as well as other work done on the cruise and some of the pre-cruise buoy preparations. Other operations during EN549 consisted in the recovery and deployment of Pressure Inverted Echo Sounders (PIES) and the acoustic download of data from PIES and subsurface moorings that are part of the Meridional Overturning Variability Experiment (MOVE) array. MOVE is designed to monitor the integrated deep meridional flow in the tropical North Atlantic. Two Argo floats were also deployed during the cruise on behalf of the Argo group at WHOI.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA14OAR4320158.
    Keywords: Endeavor (Ship: 1976-) Cruise EN549 ; Ocean-atmosphere interaction ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-26
    Description: A miniature temperature recorder has been developed to be used with the hydraulic piston sediment corer 〈HPC) on the Deep Sea Drilling Project 〈DSDP). The instrumentation fits into pressure-sealed slots in the wall of the HPC, allowing temperature measurements to be made simultaneously with coring operations. Temperatures from -2 to 70°C are measured to a resolution of about 0.01°C. Up to 1300 13-bit measurements are recorded in random access memory (RAM), at a sampling rate ranging between 0.1 s to over 100 min., as specified by the operator in a program loaded into a microprocessor of the instrument. During recording the instrumentation uses about 3.5 mamp at 7.5 volts, which can be supplied for about 20 hours of operation by a custom-made pack of silver-oxide batteries. The corer is normally left motionless in the sediment for about 10 min. to allow extrapolation of the measured temperatures to equilibrium in-situ temperature. Examples of data from DSDP Leg 86 are given.
    Description: Funding was provided by the National Science Foundation under grant Nos. OCE 82-14658 and OCE 83-00073. Additional support was provided by U.S. Geological Survey of Woods Hole to begin development of instrumentation; and to the Ocean Industry Program of the Woods Hole Oceanographic Institution to complete the development.
    Keywords: Ocean temperature ; Oceanographic instruments ; Temperature measurements
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The development of a reliable miniature molded transducer for the Williams/Koehler acoustic current meter, BASS (Benthic Acoustic Stress Sensor) ls documented. The procedures developed and components selected for manufacturing the transducer assemblies are documented as well as some of those rejected. Engineering tests performed to ensure reliable performance in the field are outlined and discussed as well. The transducers are now routinely molded with great success (over 1200 operational transducer months to date) and commercial sources are being investigated.
    Description: Prepared for the Office of Naval Research under contracts N00014-82-C-0019 and N00014-79-C-0071; and for the National Science Foundation under grant OCE-8014938.
    Keywords: Oceanographic instruments ; Sound ; Hearing ; Transducers
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The dynamic response of electromagnetic current meters (manufactured by Marsh-McBirney, Inc.) has been clarified through a comprehensive laboratory measurement program combined with a thorough literature review. Elucidation of the behavior of these flowmeters under a variety of dynamic conditions has been neglected in the past. Since flow past a spherical body has considerable hydrodynamic complexity for different dynamic conditions, a careful laboratory study was carried out for pure steady, pure oscillatory (horizontal plane), and combined steady/oscillatory conditions at two test facilities. Test results indicate that flowmeter behavior under pure steady flow is excellent in the absence of high levels of free-stream turbulence, with an r.m.s. error of 1-5 cm/sec. These errors could· be reduced with a higher-order polynomial regression fit. Pure oscillatory response was also excellent, with r.m.s. errors of 1-2 cm/sec, and sensitivity which is correlated with the oscillatory Reynolds number, (Re)o, and the Keulegan-Carpenter number, (A/d). Combined steady/oscillatory flows degraded current meter performance with larger residual errors (1-6 em/sec) and significant differences in sensitivity (up to 20°/o). Horizontal cosine response showed systematic deviations from pure cosine behavior, with a notable inter-cardinal undersensitivity and cosine "shoulder" at lower Reynolds numbers. Error analysis shows these current sensors are adequate for many kinematic measurements, but may lead to excessive errors when using velocity to calculate dynamical quantities (such as bottom friction, Reynolds Stress, or log-layer friction velocities). A careful error analysis must precede any use of these meters for estimating dynamical quantities. These studies pointed out a potential difficulty in using these meters in areas of large ambient turbulence levels (20°/o turbulent intensities), which are characteristic of many near-bottom shallow water environments. Further study is needed to clarify this behavior.
    Description: Prepared for the U.S. Army Corps of Engineers, Coastal Engineering Research Center, Waterways Experiment Station, Vicksburg, MS, under contract DACW/2-82-C-0014; work was initiated with funding from the NOAA National Office of Sea Grant under grant number NA80-AA-D-00077; the Coastal Research Center of the Woods Hole Qceanographic Institution provided support.
    Keywords: Ocean currents ; Water current meters ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the Chilean research vessel Cabo de Hornos. During the 2016 cruise on the Cabo de Hornos to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 14) WHOI surface mooring, deployment of the new Stratus 15 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. Surface drifters and ARGO floats were also launched along the track.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA14OAR4320158
    Keywords: Hydrography ; Oceanographic instruments ; Cabo de Hornos (Ship) Cruise Stratus 15
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: A winch has been developed which can be free-dropped to the ocean bottom in full ocean depths. The winch is powered by self-contained batteries and can be programmed to cycle self-recording instruments from close to the bottom to 100 meters above the bottom continuously or in steps. A typical scenario is envisioned as one complete cycle per day for one year with the instruments pausing each five meters for two minutes while measurements of current, temperature and conductivity are made. The upper section of the tripod contains the winch and instrumentation and is recovered by sending an acoustic command to a release mechanism allowing it to come to the surface.
    Description: Prepared for the Office of Naval Research under Contract N00014-82-C-0019
    Keywords: Oceanographic instruments ; Winches
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: This report reviews the working principles of the InterOcean S4 electromagnetic current meter and outlines the practical difficulties and engineering solutions to convert these basic principles into a working instrument. Presented are the test procedures and results performed on three production units placing emphasis on the oceanographic users point of view. These tests, performed by the Ocean Structures and Moorings Laboratory, Ocean Engineering Department, Woods Hole Oceanographic Institution (WHOI), include laboratory, dockside, and both surface and subsurface mooring tests. S4s are compared to each other and to other types of current meters in various intercomparison tests. Results of. this evaluation program are next summarized. Also, suggestions for areas of improvement and further developments are made. Finally, recommendations for the acceptance, calibration, and burning in of new instruments conclude the report.
    Description: Office of Naval Research Contract No. N00014-82-c-0019
    Keywords: Ocean currents ; Water current meters ; Oceanographic instruments ; Electromagnetic devices
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: The following is a report on the findings of a study conducted by the Woods Hole Oceanographic Institution to assess the needs and the means for improving the conventional intermediate winches used in the oceanographic community to lower profiling instruments (CTD for example). Eight major u.s. oceanographic centers were visited to confirm community needs and common problem areas, and to survey existing lowering equipment and techniques. This information was used to develop a set of general requirements for an improved instrument lowering system. Recommended improvements included: compensation of wave induced ship motion, automation of casts, and capability for automatic tracking of oceanographic parameters. A review is presented of additions or modifications which could meet these requirements. These options are compared and the system which offers the best potential for scientific usefulness, ease of fleet implementation and/or retrofitting of existing equipment is described at the conceptual and general specifications level. A plan for the design procurement, test and demonstration of a working prototype concludes the study.
    Description: Prepared for the Office of Naval Research under Contract No. N00014-82-C-0019.
    Keywords: Oceanographic instruments ; Winches
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
    Description: Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
    Description: Tao Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509) and Chinese Scholarship Council. Geyer was supported by by NSF Grant OCE 0926427. Wensheng Jiang was supported by NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406401).
    Description: 2016-05-01
    Keywords: Geographic location/entity ; Estuaries ; Circulation/ Dynamics ; Baroclinic flows ; Dispersion ; Shear structure/flows ; Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Models and modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2381–2406, doi:10.1175/JPO-D-14-0086.1.
    Description: While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.
    Description: “The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED)” supported by MEXT, MIT-Hayashi Seed Fund, ONR (Awards N000140910196 and N000141210101), NSF (Award OCE 0928617, 0928138) for support.
    Description: 2016-03-01
    Keywords: Circulation/ Dynamics ; Frontogenesis/frontolysis ; Fronts ; Internal waves ; Turbulence ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2497–2521, doi:10.1175/JPO-D-14-0128.1.
    Description: Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.
    Description: B.D.M. and S.K.V. gratefully acknowledge the support of the Office of Naval Research under Grants N00014-12-1-0279, N00014-12-1-0282, and N00014-12-1-0938 (Program Manager: Dr. Terri Paluszkiewicz). S.K.V. also acknowledges support of the National Science Foundation under Grant OCE-1151838. L.S.L. acknowledges support for BBTRE by the National Science Foundation by Contract OCE94-15589 and NATRE and IWISE by the Office of Naval Research by Contracts N00014-92-1323 and N00014-10-10315. J.N.M. was supported through Grant 1256620 from the National Science Foundation and the Office of Naval Research (IWISE Project).
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Small scale processes ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Mixing ; Observational techniques and algorithms ; Profilers, oceanic ; Models and modeling ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2621–2639, doi:10.1175/JPO-D-14-0239.1.
    Description: Measurements made as part of a large-scale experiment to examine wind-driven circulation and mixing in Chesapeake Bay demonstrate that circulations consistent with Langmuir circulation play an important role in surface boundary layer dynamics. Under conditions when the turbulent Langmuir number Lat is low (〈0.5), the surface mixed layer is characterized by 1) elevated vertical turbulent kinetic energy; 2) decreased anisotropy; 3) negative vertical velocity skewness indicative of strong/narrow downwelling and weak/broad upwelling; and 4) strong negative correlations between low-frequency vertical velocity and the velocity in the direction of wave propagation. These characteristics appear to be primarily the result of the vortex force associated with the surface wave field, but convection driven by a destabilizing heat flux is observed and appears to contribute significantly to the observed negative vertical velocity skewness. Conditions that favor convection usually also have strong Langmuir forcing, and these two processes probably both contribute to the surface mixed layer turbulence. Conditions in which traditional stress-driven turbulence is important are limited in this dataset. Unlike other shallow coastal systems where full water column Langmuir circulation has been observed, the salinity stratification in Chesapeake Bay is nearly always strong enough to prevent full-depth circulation from developing.
    Description: The funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Convection ; Instability ; Mixing ; Turbulence ; Wave breaking ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: As part of the Coastal Ocean Dynamics Experiment (CODE) field program, moored buoys were instrumented to measure and record wind speed and direction, air and water temperature, insolation, barometric pressure and relative humidity. Appropriate sensors were selected, necessary modifications to the sensors and existing current meters were made, and Vector Averaging Wind Recorders (VAWRs) were assembled. R. M. Young utility rotor and vane wind sets designed by G. Gill, Paroscientific Digiquartz pressure sensors, Eppley pyranometers and Hy-Cal relative humidity and solar sensors were used in two field experiments . Standard VACM direction and temperature sensors were maintained in the wind recorders. Devices were constructed as needed to protect against measurement errors due to wind, sun and ocean spray. Four W.H.O.I. VAWRs with Gill wind sensor sets were deployed CODE-1 in 1981. Seven VAWRs were deployed in CODE-2 in 1982. A modified VMCM (Vector Measuring Current Meter) was used for comparison in CODE-1, and the seventh VAWR deployed in CODE-2 carried an integral sensor set for comparison. Although several VAWRs had minor problems, all but one VAWR in the two experiments returned useful scientific data.
    Description: Funding was provided by and this report prepared for the National Science Foundation under grant Numbers OCE 80-14941 and OCE 84-17769.
    Keywords: Marine meteorology ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: The Patch Experiment (PATCHEX) was a multi-ship experiment that took place in the area near 34 N, 127 W, between 8 and 27 October, 1986. The ships used in the experiment and their chief scientific objectives were the following: R/V THOMPSON, AMP (Advanced Microstructure Profiler) and MSP (micro-structure profiler) drops; USNS DESTEIGUER, ADCP (Acoustic Doppler current Profiler), seasoar and RiNo (Richardson Number) f loat operations; R/V POINT SUR, ADCP and towed fish; and FLIP, Acoustic Doppler and CTD profiling. This report describes the RiNo operations carried out on the USNS DESTEIGUER. Topics discussed include the RiNo float, the sensors used, how it was tracked, some of the preliminary results, and a log of the relevant parts of USNS DESTEIGUER Cruise #84.
    Description: Funding was provided by the Office of Naval Research through contract Number N00014-85-C-0001.
    Keywords: Patch Experiment ; Hydrography ; Oceanographic instruments ; Desteiguer (Ship) Cruise 84
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-26
    Description: A modified clamping system for 30-liter Niskin bottles, consisting of a wire stop, a socket block, and a toggle clamp, has been designed and has been tested at sea. The modified system makes deployment and recovery of the Niskin bottles considerably easier than it is with the standard clamps .
    Description: Funding was provided by the National Science Foundation under grant Number OCE 84-17910, and by the United States Department of Energy under contract Number DE-AC02-76EV03566.
    Keywords: Marine biology ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-26
    Description: The Ocean Bottom Seismometer Augmentation in the North Pacific Experiment (OBSANP, June-July, 2013, R/V Melville) addresses the coherence and depth dependence of deep-water ambient noise and signals. During the 2004 NPAL Experiment in the North Pacific Ocean, in addition to predicted ocean acoustic arrivals and deep shadow zone arrivals, we observed "deep seafloor arrivals" (DSFA) that were dominant on the seafloor Ocean Bottom Seismometer (OBS) (at about 5000m depth) but were absent or very weak on the Distributed Vertical Line Array (DVLA) (above 4250m depth). At least a subset of these arrivals correspond to bottomdiffracted surface-reflected (BDSR) paths from an out-of-plane seamount. BDSR arrivals are present throughout the water column, but at depths above the conjugate depth are obscured by ambient noise and PE predicted arrivals. On the 2004 NPAL/LOAPEX experiment BDSR paths yielded the largest amplitude seafloor arrivals for ranges from 500 to 3200km. The OBSANP experiment tests the hypothesis that BDSR paths contribute to the arrival structure on the deep seafloor even at short ranges (from near zero to 4-1/2CZ). The OBSANP cruise had three major research goals: a) identification and analysis of DSFA and BDSR arrivals occurring at short (1/2CZ) ranges in the 50 to 400Hz band, b) analysis of deep sea ambient noise in the band 0.03 to 80Hz, and c) analysis of the frequency dependence of BR and SRBR paths. On OBSANP we deployed a 32 element VLA from 12 to 1000m above the seafloor, eight short-period OBSs and four long-period OBSs and carried out a 15day transmission program using a J15-3 acoustic source.
    Description: Funding was provided by the Office of Naval Research under contract #'s N00014-10-1-0987 and N00014-10-1-0510
    Keywords: Melville (Ship) Cruise MV1308 ; Underwater acoustics ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: The EG&G Vector Measuring Current Meter (VMCM) used in mooring work provides a 20 ma Serial ASCII Instrumentation Loop (SAIL) communication system. A projected application of the VMCM is to have a surface mooring communicate with a series of VMCMs via a Frequency Shift Keying (FSK) link. While an FSK modem can communicate with the VMCM. a problem exists with the general operation of the VMCM. If the VMCM is addressed to dump data; it remains on until the unit is re-addressed. If a failure in the link occurs. then the VMCM stays on in . a higher power mode and the batteries will be depleted early. The insertion of a processing block between the modem the VMCM provides a way to look at incoming data. qualify it re-transmit it to the VMCM. The VMCM will reply and preprocessor can channel the data to the modem. In the event VMCM malfunction. the preprocessor has a timeout function will turn off the carrier keeping the line quiet.
    Description: Funding was provided by the Office of Naval Research under contract Number N00014-84-C-0134, NR 083-400.
    Keywords: Flow meters ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-25
    Description: This report is the last of a series of three reports on a comprehensive study of CTD instrument lowering mechanics. The first report, WHOI 79-81, "A Study of CTD Cables and Lowering Systems", examines the causes and modes of lowering cable failures, both mechanical and electrical, and makes recommendations to improve existing instrument packages and lowering procedures. The second report, WHOI 81-76, "Hydrodynamics of CTD Instrument Packages", is a theoretical study of instrument package stability when cable lowered or free falling. The model is used to predict the hydrodynamic response of CTD packages in their present or improved configuration. This report, WHOI 83-21, is more factual. It describes the tests performed on scale models and actual CTD packages to actually observe and/or measure their hydrodynamic behavior. Analytical results and experimental data obtained in this study are used to draw recommendations for CTD package improvement and future lowering procedures.
    Description: Prepared for the Office of Naval Research under Contract N00014-72-C-0019.
    Keywords: Oceanographic instruments ; Hydrodynamics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
    Description: The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
    Description: NSF support through Awards OCE-1233832, OCE-1232962, and OCE-1048926 is gratefully acknowledged.
    Description: 2015-04-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Eddies ; Ocean circulation ; Turbulence ; Physical Meteorology and Climatology ; Isopycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: This report is part of a research project conducted at the Woods Hole Oceanographic Institution to improve the flight characteristics of CTD instrument packages. Improvement of these cable lowered instrument packages could allow their use in more severe weather conditions. It could improve the quality of the measurements. This·report presents the development of a simplified mathematical model of the CTD package flight characteristics. This computer model was exercised to perform a sensitivity analysis of different versions of CTD packages. Part of the research project includes scale model testing. The second part of the report discusses pertinent flow similarity criteria and proposes a scheme for building a CTD half scale model. Finally, recommendations to improve the hydrodynamic behaviour of the present CTD configuration are summarized at the end of the report.
    Description: Prepared for the Office of Naval Research under Contract N00014-79-C-0071.
    Keywords: Oceanographic instruments ; Ocean temperature ; Salinity ; Scientific apparatus and instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-26
    Description: This report summarizes the characteristics of the idealized one-dimensional turbulent channel flow for which the 17-Meter Flume was designed, and describes a measurement program designed to determine whether the flume can in fact produce such a flow. The measured quantities include mean velocities, Reynolds stresses, turbulence intensities and velocity spectra. Measured profiles of mean velocity, Reynolds stress and turbulence intensity are consistent with previous theoretical and empirical results. Measured spectra, although consistent with expectations over a wide range of frequencies, indicate a few unexpected features, including a constant spectral density at high frequencies (possibly due to aliasing or high-frequency noise) , motion at a few well-defined high frequencies of order 10 hz (possibly due to structual vibrations), oscillations with time scales of order 30 s (possibly due to low-mode standing surface waves) and irregular motions with time scales of several minutes (possibly due to fluctuations in pump performance) . The unexpected features indicated by the spectra at high and low frequencies do not have a significant effect on mean velocities and low-order statistics, but they may be important in some applications.
    Description: Funding was provided by the Minerals Management Service under contract Number 14-12-0001-30262; Sea Grant under contract Number NA86AA-D-FG090; and the Office of Naval Research Young Investigator Program under contract Number N00014-86-K-0579.
    Keywords: Hydraulic models ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-26
    Description: The recovery package described here was used as the primary retrieval system to recover tripod instrument platforms from a depth of 90 meters. The device uses dual in-line burn wires, one of which is acoustically commanded from the surface ship. The other is set to release by back-up timer, ensuring recovery in the event of a poor acoustic command channel. The burn wire activates spring loaded cam latches which release the float package and pull a ~ inch Dacron line to the surface. The float package is recovered and the line is used to winch the tripod to the surface for recovery by the ship's crane. Major benefits of the system are reliability, low cost, light weight, and use of many off-the-shelf components. The float package provides 50 pounds of buoyancy and is fabricated using commercial fish trawl net floats. The retrieval line container is separate from the float assembly, and is fabricated from plastic storage containers. The line is coiled and restricted to prevent unpackaging due to waves or current action. The system described here is not appropriate in areas of high current or great depth due to drag and dead weight of the lift line.
    Description: Funding was provided by the Office of Naval Research under contract No. N00014-89.J-1058.
    Keywords: Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 319–342, doi:10.1175/JPO-D-13-095.1.
    Description: The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.
    Description: This work was supported by grants to B. Hickey from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA17OP2789 and NA09NOS4780180) and the National Science Foundation (NSF) (OCE0234587 and OCE0942675) as part of the Ecology of Harmful Algal Blooms Pacific Northwest (ECOHAB PNW) and Pacific Northwest Toxin (PNWTOX) projects. I. Shulman was supported by the Naval Research Laboratory.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Models and modeling ; Model evaluation/performance ; Variability ; Intraseasonal variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-05-26
    Description: Stability tests over periods ranging from 3 to 19 months have been carried out on Paroscientific models 215-AT and 760-15A, AIR DB-1A, Rosemount 1201F1B, Setra 270 and Heise 623 electronic barometers. The Paroscientific barometers had the highest accuracy, stability, and price, and the lowest power consumption. The Rosemount 1201FIB had excellent stability but high power consumption as well as price. The AIR DB-1A and Setra 270 have good stability and moderate power consumption and price. The tests are being expanded to include inexpensive sensors.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE-87-09614
    Keywords: Marine meteorology ; Oceanographic instruments
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2143–2152, doi:10.1175/JPO-D-12-027.1.
    Description: Direct measurements of turbulence levels in the Drake Passage region of the Southern Ocean show a marked enhancement over the Phoenix Ridge. At this site, the Antarctic Circumpolar Current (ACC) is constricted in its flow between the southern tip of South America and the northern tip of the Antarctic Peninsula. Observed turbulent kinetic energy dissipation rates are enhanced in the regions corresponding to the ACC frontal zones where strong flow reaches the bottom. In these areas, turbulent dissipation levels reach 10−8 W kg−1 at abyssal and middepths. The mixing enhancement in the frontal regions is sufficient to elevate the diapycnal turbulent diffusivity acting in the deep water above the axis of the ridge to 1 × 10−4 m2 s−1. This level is an order of magnitude larger than the mixing levels observed upstream in the ACC above smoother bathymetry. Outside of the frontal regions, dissipation rates are O(10−10) W kg−1, comparable to the background levels of turbulence found throughout most mid- and low-latitude regions of the global ocean.
    Description: This work was supported by the U.S. National Science Foundation and by the Natural Environment Research Council of the United Kingdom.
    Description: 2013-06-01
    Keywords: Southern Ocean ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 259–282, doi:10.1175/JPO-D-11-0194.1.
    Description: This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.
    Description: SW acknowledges the support of the Grantham Institute for Climate Change, Imperial College London. ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1). KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds.
    Description: 2013-08-01
    Keywords: Diapycnal mixing ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1841–1861, doi:10.1175/JPO-D-12-0231.1.
    Description: In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.
    Description: Project funding was provided by the German Research Foundation (DFG) in the framework of the Project ECOWS (Role of Estuarine Circulation for Transport of Suspended Particulate Matter in the Wadden Sea, BU 1199/11) and by the German Federal Ministry of Research and Education in the framework of the Project PACE [The future of the Wadden Sea sediment fluxes: still keeping pace with sea level rise? (FKZ 03F0634A)].
    Description: 2014-03-01
    Keywords: Channel flows ; Coastal flows ; Mixing ; Transport ; Turbulence ; Single column models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Originally issued as Reference No. 68-62, series later renamed WHOI-.
    Description: A C-54Q aircraft equipped with meteorological instruments was flown three times to India to participate in the International Indian Ocean Expedition. Flights were made out of Bombay, Gan, and Aden to observe winds, temperatures, humidities, clouds, radiation, carbon dioxide, tritium, turbulence, and turbulent fluxes of heat, water vapor, momentum and kinetic energy. The present paper reports the values of 405 measurements of the turbulence and turbulent fluxes and interprets them in terms of the monsoon circulation and the effect upon currents and temperatures of the Arabian Sea. Analyses of other data have been reported and interpreted elsewhere. The aircraft turbulence measuring system used was developed earlier by Bunker (1955) (1960). It consisted of a vertical accelerometer, a strain-guage air-speed transducer, a vertical gyro, a platinum wire thermometer and a microwave refractometer for humidity measurements. The data was recorded on a nine-channel oscillograph. A digitizing reader was used to read and punch the data on cards. The turbulent quantities and fluxes were computed and tabulated by machine. The accuracy and limitations of the system are discussed. While much is left to be desired in terms of accuracies and spectral range, the results are meteorologically useful and comparison shows good agreement with other techniques.
    Description: Submitted to the National Science Foundation under Grants G-22389 and GA-1490.
    Keywords: International Indian Ocean Expedition (1960-1965) ; Eddy flux ; Turbulence ; Aeronautics in oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1083–1098, doi:10.1175/JPO-D-11-015.1.
    Description: Here, the response of a coastally trapped buoyant plume to downwelling-favorable wind forcing is explored using a simplified two-dimensional numerical model and a prognostic theory for the resulting width, depth, and density anomaly and along-shelf transport of the plume. Consistent with the numerical simulations, the analytical model shows that the wind causes mixing of the plume water and that the forced cross-shelf circulation can also generate significant deepening and surface narrowing, as well as increased along-shelf transport. The response is due to a combination of the purely advective process that leads to the steepening of the isopycnals and the entrainment of ambient water into the plume. The advective component depends on the initial plume geometry: plumes that have a large fraction of their total width in contact with the bottom (“bottom trapped”) suffer relatively small depth and width changes compared to plumes that have a large fraction of their total width detached from the bottom (“surface trapped”). Key theoretical parameters are Wγ/Wα, the ratio of the width of the plume detached from the bottom to the width of the plume in contact with it, and the ratio of the wind-generated mixed layer δe to the initial plume depth hp, which determines the amount of water initially entrained into the plume. The model results also show that the cross-shelf circulation can be strongly influenced by the wind-driven response in combination with the geostrophic shear of the plume. The continuous entrainment into the plume, as well as transient events, is also discussed.
    Description: This work has been supported by FONDECYT Grant 1070501. S. Lentz received support by theNational Science Foundation GrantOCE-0751554. C. Moffat had additional support from the National Science Foundation Office of Polar Programs through U.S. Southern Ocean GLOBEC Grants OPP 99-10092 and 06- 23223.
    Description: 2013-01-01
    Keywords: Baroclinic flows ; Boundary currents ; Coastal flows ; Upwelling/downwelling ; Wind ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 855–868, doi:10.1175/JPO-D-10-05010.1.
    Description: Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional processes not accounted for in the traditional tidal straining model: 1) along-channel and 2) lateral advection of horizontal gradients in the vertical salinity gradient and 3) tidal asymmetries in the strength of vertical mixing. As a result, cross-sectionally averaged values of the vertical salinity gradient are shown to increase during the flood tide and decrease during the ebb. Only over a limited portion of the cross section does the observed stratification increase during the ebb and decrease during the flood. These observations highlight the three-dimensional nature of estuarine flows and demonstrate that lateral circulation provides an alternate mechanism that allows for the exchange of materials between surface and bottom waters, even when direct turbulent mixing through the pycnocline is prohibited by strong stratification.
    Description: The funding for this research was obtained from NSF Grant OCE-08-25226.
    Description: 2012-11-01
    Keywords: Mixing ; Ocean circulation ; Shear structure/flows ; Transport ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2223–2241, doi:10.1175/2011JPO4344.1.
    Description: Results are presented from an observational study of stratified, turbulent flow in the bottom boundary layer on the outer southeast Florida shelf. Measurements of momentum and heat fluxes were made using an array of acoustic Doppler velocimeters and fast-response temperature sensors in the bottom 3 m over a rough reef slope. Direct estimates of flux Richardson number Rf confirm previous laboratory, numerical, and observational work, which find mixing efficiency not to be a constant but rather to vary with Frt, Reb, and Rig. These results depart from previous observations in that the highest levels of mixing efficiency occur for Frt 〈 1, suggesting that efficient mixing can also happen in regions of buoyancy-controlled turbulence. Generally, the authors find that turbulence in the reef bottom boundary layer is highly variable in time and modified by near-bed flow, shear, and stratification driven by shoaling internal waves.
    Description: Funding was provided by grants from the National Oceanic and Atmospheric Administration’s National Undersea Research Program, National Science Foundation Grants OCE-0622967 and OCE- 0824972 to SGM, and the Singapore Stanford Program. Kristen Davis was supported by a National Defense Science and Engineering Graduate Fellowship and an ARCS Foundation Fellowship.
    Keywords: Boundary layer ; Turbulence ; Bottom currents ; Mixing ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...