ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (170,641)
  • BioMed Central  (99,630)
  • Frontiers Media  (68,063)
  • American Institute of Physics (AIP)
  • Periodicals Archive Online (PAO)
  • Biology  (170,641)
Collection
Publisher
Years
  • 1
    Publication Date: 2021-08-20
    Description: Ubiquitin-dependent protein degradation plays an important role in many plant developmental processes. We previously identified a class of SINA RING-type E3 ligases of Arabidopsis thaliana (SINATs), whose protein levels decrease in the dark and increase in red and blue light, but the underlying mechanism is unclear. In this study, we created transgenic lines carrying point mutations in SINAT genes and photoreceptors-NLS or -NES transgenic plants to investigate the regulatory mechanism of SINAT protein stability. We demonstrated that the degradation of SINATs is self-regulated, and SINATs interact with photoreceptors phytochrome B (phyB) and cryptochrome 1 (CRY1) in the cytoplasm, which leads to the degradation of SINATs in the dark. Furthermore, we observed that the red light-induced subcellular localization change of phyB and blue light-induced the dissociation of CRY1 from SINATs and was the major determinant for the light-promoted SINATs accumulation. Our findings provide a novel mechanism of how the stability and degradation of the E3 ligase SINATs are regulated by an association and dissociation mechanism through the red light-induced subcellular movement of phyB and the blue light-induced dissociation of CRY1 from SINATs.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: In response to the environmental damage caused by urbanization, Nature-based Solutions (NbS) are being implemented to enhance biodiversity and ecosystem processes with mutual benefits for society and nature. Although the field of NbS is flourishing, experiments in different geographic locations and environmental contexts have produced variable results, with knowledge particularly lacking for the subtidal zone. This study tested the effects of physical complexity on colonizing communities in subtidal habitats in two urban locations: (1) Plymouth, United Kingdom (northeast Atlantic) and (2) Tel Aviv, Israel (eastern Mediterranean) for 15- and 12-months, respectively. At each location, physical complexity was manipulated using experimental tiles that were either flat or had 2.5 or 5.0 cm ridges. In Plymouth, biological complexity was also manipulated through seeding tiles with habitat-forming mussels. The effects of the manipulations on taxon and functional richness, and community composition were assessed at both locations, and in Plymouth the survival and size of seeded mussels and abundance and size of recruited mussels were also assessed. Effects of physical complexity differed between locations. Physical complexity did not influence richness or community composition in Plymouth, while in Tel Aviv, there were effects of complexity on community composition. In Plymouth, effects of biological complexity were found with mussel seeding reducing taxon richness, supporting larger recruited mussels, and influencing community composition. Our results suggest that outcomes of NbS experiments are context-dependent and highlight the risk of extrapolating the findings outside of the context in which they were tested.
    Electronic ISSN: 2296-701X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-20
    Description: Background The results of a previous study verified that umbilical cord mesenchymal stem cells (UCMSCs) have good therapeutic effects for the treatment of HBV-related acute-on-chronic liver failure (ACLF) and liver cirrhosis (LC). Nevertheless, it is still unknown whether the effects of UCMSCs are affected by recipient age. Methods Patients treated with UCMSCs who met the criteria of HBV-related ACLF and liver cirrhosis were identified in this retrospective observational study. Patients were divided into subgroups according to the World Health Organization (WHO) age criteria (
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-20
    Description: Micafungin is an important echinocandin antifungal agent for the treatment of invasive fungal infections. In industry, micafungin is derived from the natural product FR901379, which is a non-ribosomal cyclic hexapeptide produced by the filamentous fungus Coleophoma empetri. The difficulty of genetic manipulation in C. empetri restricts the clarification of FR901379 biosynthetic mechanism. In this work, we developed an efficient genetic manipulation system in the industrial FR901379-producing strain C. empetri MEFC009. Firstly, a convenient protoplast-mediated transformation (PMT) method was developed. Secondly, with this transformation method, the essential genetic elements were verified. Selectable markers hph, neo, and nat can be used for the transformation, and promotors Ppgk, PgpdA, and PgpdAt are functional in C. empetri MEFC009. Thirdly, the frequency of homologous recombination was improved from 4 to 100% by deleting the ku80 gene, resulting in an excellent chassis cell for gene-targeting. Additionally, the advantage of this genetic manipulation system was demonstrated in the identification of the polyketide synthase (PKS) responsible for the biosynthesis of dihydroxynapthalene (DHN)-melanin. This genetic manipulation system will be a useful platform for the research of FR901379 and further genome mining of secondary metabolites in C. empetri.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-20
    Description: Illegal wildlife trade is considered one of the most serious threats to biodiversity worldwide, along with habitat loss/degradation and overfishing of wild stocks. Seahorses are considered at high risk as these fish represent an important component of traditional Chinese medicine but are also sold as curios and ornamental fish. On a worldwide level, illegal trade is controlled by numerous laws and regulations, but it seems to continue by assuming more dynamic routes. In the Mediterranean Sea, Hippocampus guttulatus formed one of the largest populations at Mar Piccolo di Taranto in South-Eastern Italy. During the routine monitoring of this population in 2016, a dramatic density decrease was observed. By using questionnaires and long-term datasets, the present study determined possible causes of this decline by investigating habitat changes, temperature trends and the existence of seahorse trafficking while also examining abundance trends during the last decade. The results indicated a sharp density decline starting from 2015, co-occurring with the period of high temperatures, while habitats remained almost constant. However, interviews with main stakeholders described both illegal and legal fishing activities as the main drivers for the declining seahorse density. Indeed, at one of the studied sites, which was under strict military control, seahorse abundance started to decline only after the intensification of fishing pressure in the basin. The study suggests that Mar Piccolo di Taranto could be one of the sources for international seahorse trade, thus highlighting the need for more intense and effective actions to prevent and combat illegal poaching, while threatened populations are requiring continuous and close monitoring. Due to unfavorable socio-economic conditions, a viable and thriving seahorse population at Mar Piccolo di Taranto could contribute to the revitalization of the coastal economy and the development of environmental awareness.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-20
    Description: Maize stalk rot caused by Fusarium species is one of the most important fungal diseases of maize throughout the world. The disease is responsible for considerable yield losses and has also been associated with mycotoxin contamination of the crop. In this study, a survey of maize stalk rot was performed in seven locations of Yunnan Province in China during the cropping season of 2015 and 2016. Based on morphological and molecular characteristics, 204 isolates belonging to 12 Fusarium spp. from symptomatic stalks of maize were identified. Among the isolated strains, 83 were identified as Fusarium meridionale (40.5%), 46 as Fusarium boothii (22.5%), 34 as Fusarium temperatum (16.5%), 12 as Fusarium equiseti (5.9%), 10 as Fusarium asiaticum (4.9%), six as Fusarium proliferatum (3.0%), four as Fusarium verticillioides (2.0%), four as Fusarium incarnatum (2.0%), two as Fusarium avenaceum (1.0%), one as Fusarium cerealis (0.5%), one as Fusarium graminearum (0.5%), and one as Fusarium cortaderiae (0.5%). Fusarium cortaderiae was the first report on the causal agent of maize stalk rot disease in China. These isolates were divided into five chemotypes: nivalenol (NIV), deoxynivalenol (DON), beauvericin (BEA), zearalenone (ZEN), and fumonisin (FUM). Phylogenetic analysis based on partial sequences of the translation elongation factor 1α (TEF1-α) showed a high degree of interspecific polymorphisms among the isolates. Pathogenicity analysis on maize stalks indicated that all the 12 species of Fusarium were able to cause the disease symptoms with different aggressiveness. This study on population, pathogenicity, and toxigenic chemotypes of Fusarium species associated with maize stalk rot in Yunnan Province of southwest China, will help design an effective integrated control strategy for this disease.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-19
    Description: Pantoea ananatis, a gram negative and facultative anaerobic bacterium is a member of a Pantoea spp. complex that causes center rot of onion, which significantly affects onion yield and quality. This pathogen does not have typical virulence factors like type II or type III secretion systems but appears to require a biosynthetic gene-cluster, HiVir/PASVIL (located chromosomally comprised of 14 genes), for a phosphonate secondary metabolite, and the ‘alt’ gene cluster (located in plasmid and comprised of 11 genes) that aids in bacterial colonization in onion bulbs by imparting tolerance to thiosulfinates. We conducted a deep pan-genome-wide association study (pan-GWAS) to predict additional genes associated with pathogenicity in P. ananatis using a panel of diverse strains (n = 81). We utilized a red-onion scale necrosis assay as an indicator of pathogenicity. Based on this assay, we differentiated pathogenic (n = 51)- vs. non-pathogenic (n = 30)-strains phenotypically. Pan-genome analysis revealed a large core genome of 3,153 genes and a flexible accessory genome. Pan-GWAS using the presence and absence variants (PAVs) predicted 42 genes, including 14 from the previously identified HiVir/PASVIL cluster associated with pathogenicity, and 28 novel genes that were not previously associated with pathogenicity in onion. Of the 28 novel genes identified, eight have annotated functions of site-specific tyrosine kinase, N-acetylmuramoyl-L-alanine amidase, conjugal transfer, and HTH-type transcriptional regulator. The remaining 20 genes are currently hypothetical. Further, a core-genome SNPs-based phylogeny and horizontal gene transfer (HGT) studies were also conducted to assess the extent of lateral gene transfer among diverse P. ananatis strains. Phylogenetic analysis based on PAVs and whole genome multi locus sequence typing (wgMLST) rather than core-genome SNPs distinguished red-scale necrosis inducing (pathogenic) strains from non-scale necrosis inducing (non-pathogenic) strains of P. ananatis. A total of 1182 HGT events including the HiVir/PASVIL and alt cluster genes were identified. These events could be regarded as a major contributing factor to the diversification, niche-adaptation and potential acquisition of pathogenicity/virulence genes in P. ananatis.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-20
    Description: The complexity of the subcellular processes that take place during meiosis requires a significant remodeling of cellular metabolism and dynamic changes in the organization of chromosomes and the cytoskeleton. Recently, investigations of meiotic transcriptomes have revealed additional noncoding RNA factors (ncRNAs) that directly or indirectly influence the course of meiosis. Plant meiosis is the point at which almost all known noncoding RNA-dependent regulatory pathways meet to influence diverse processes related to cell functioning and division. ncRNAs have been shown to prevent transposon reactivation, create germline-specific DNA methylation patterns, and affect the expression of meiosis-specific genes. They can also influence chromosome-level processes, including the stimulation of chromosome condensation, the definition of centromeric chromatin, and perhaps even the regulation of meiotic recombination. In many cases, our understanding of the mechanisms underlying these processes remains limited. In this review, we will examine how the different functions of each type of ncRNA have been adopted in plants, devoting attention to both well-studied examples and other possible functions about which we can only speculate for now. We will also briefly discuss the most important challenges in the investigation of ncRNAs in plant meiosis.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-20
    Description: Background: Acute type B aortic dissection is a highly serious aortic pathology. Aortic geometric parameters may be useful variables related to the occurrence of acute type B aortic dissection (aTBAD). The aim of the study is to delineate the alteration in aortic geometric parameters and analyze the specific geometric factors associated with aTBAD.Methods: The propensity score matching method was applied to control confounding factors. The aortic diameter, length, angulation, tortuosity, and type of aortic arch of the aTBAD and control group were retrospectively analyzed via three-dimensional computed tomography imaging created by the 3mensio software (version 10.0, Maastricht, The Netherlands). The geometric variables of true lumen and false lumen in the descending aorta were measured to estimate the severity of aortic dissection. Multivariable logistic regression models were used to investigate the significant and specific factors associated with aTBAD occurrence. The area under the receiver operating characteristic curve (AUC) was used to estimate the performance of the model.Results: After propensity score matching, 168 matched pairs of patients were selected. The ascending aorta and aortic arch diameters were dilated, and the ascending aorta and total aorta lengths were elongated in aTBAD group significantly (P 〈 0.001). The ascending aorta and aortic arch angulations in the aTBAD group were sharper than those of the controls (P = 0.01, P 〈 0.001, respectively). The aortic arch and total aorta tortuosities were significantly higher in the aTBAD group (P = 0.001, P 〈 0.001, respectively). There were more type III arch patients in the aTBAD group than the controls (67.9 vs. 22.6%). The true lumen angulation was sharper than that in the false lumen (P 〈 0.01). The true lumen tortuosity was significantly lower than that in the false lumen (P 〈 0.001). The multivariable models identified that aortic arch angulation, tortuosity, and type III arch were independent and specific geometric factors associated with aTBAD occurrence. The AUC of the multivariable models 1, 2, 3 were 0.945, 0.953, and 0.96, respectively.Conclusions: The sharper angulation and higher tortuosity of aortic arch and type III arch were the geometric factors associated with aTBAD in addition to the ascending aorta elongation and aortic arch dilation. The angulation and tortuosity of the true and false lumens may carry significant clinical implications for the treatment and prognosis of aTBAD.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-20
    Description: Metafounders are pseudo-individuals that act as proxies for animals in base populations. When metafounders are used, individuals from different breeds can be related through pedigree, improving the compatibility between genomic and pedigree relationships. The aim of this study was to investigate the use of metafounders and unknown parent groups (UPGs) for the genomic evaluation of a composite beef cattle population. Phenotypes were available for scrotal circumference at 14 months of age (SC14), post weaning gain (PWG), weaning weight (WW), and birth weight (BW). The pedigree included 680,551 animals, of which 1,899 were genotyped for or imputed to around 30,000 single-nucleotide polymorphisms (SNPs). Evaluations were performed based on pedigree (BLUP), pedigree with UPGs (BLUP_UPG), pedigree with metafounders (BLUP_MF), single-step genomic BLUP (ssGBLUP), ssGBLUP with UPGs for genomic and pedigree relationship matrices (ssGBLUP_UPG) or only for the pedigree relationship matrix (ssGBLUP_UPGA), and ssGBLUP with metafounders (ssGBLUP_MF). Each evaluation considered either four or 10 groups that were assigned based on breed of founders and intermediate crosses. To evaluate model performance, we used a validation method based on linear regression statistics to obtain accuracy, stability, dispersion, and bias of (genomic) estimated breeding value [(G)EBV]. Overall, relationships within and among metafounders were stronger in the scenario with 10 metafounders. Accuracy was greater for models with genomic information than for BLUP. Also, the stability of (G)EBVs was greater when genomic information was taken into account. Overall, pedigree-based methods showed lower inflation/deflation (regression coefficients close to 1.0) for SC14, WWM, and BWD traits. The level of inflation/deflation for genomic models was small and trait-dependent. Compared with regular ssGBLUP, ssGBLUP_MF4 displayed regression coefficient closer to one SC14, PWG, WWM, and BWD. Genomic models with metafounders seemed to be slightly more stable than models with UPGs based on higher similarity of results with different numbers of groups. Further, metafounders can help to reduce bias in genomic evaluations of composite beef cattle populations without reducing the stability of GEBVs.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-08-21
    Description: Objectives To investigate the safety for clinic use and therapeutic effects of basic fibroblast growth factor (bFGF)-overexpressing human umbilical cord-derived mesenchymal stem cells (HUCMSCs) in mice with completely transected spinal cord injury (SCI). Methods Stable bFGF-overexpressing HUCMSCs clones were established by electrotransfection and then subjected to systematic safety evaluations. Then, bFGF-overexpressing and control HUCMSCs were used to treat mice with completely transected SCI by tail intravenous injection. Therapeutic outcomes were then investigated, including functional recovery of locomotion, histological structures, nerve regeneration, and recovery mechanisms. Results Stable bFGF-overexpressing HUCMSCs met the standards and safety of MSCs for clinic use. In the mouse SCI model, stable bFGF-overexpressing HUCMSCs markedly improved therapeutic outcomes such as reducing glial scar formation, improving nerve regeneration and proliferation of endogenous neural stem cells (NSCs), and increasing locomotion functional recovery of posterior limbs compared with the control HUCMSCs group. Furthermore, bFGF-overexpressing HUCMSCs promoted the proliferation and neuronal differentiation of NSCs in vitro through the PI3K-Akt-GSK-3β pathway. Conclusion bFGF-overexpressing HUCMSCs meet the requirements of clinical MSCs and improve evident therapeutic outcomes of mouse SCI treatment, which firmly supports the safety and efficacy of gene-modified MSCs for clinical application.
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-08-21
    Description: Background Coronary artery disease (CAD) is considered as a multi-faceted chronic inflammatory disease involving reduced blood supply to the myocardium as a result of accumulating lipids in the atrial walls. Visceral adiposity with disrupted release of adipokines play a key role in its pathogenesis. Asprosin is a newly identified fasting-induced glucogenic adipokine that has been related with metabolic disorders such as type II diabetes mellitus and polycystic ovary syndrome. The preset study sought to assess circulating asprosin in context of CAD. Methods In this study, serum levels of asprosin were determined in 88 CAD patients and 88 non-CAD healthy controls. Serum IL-6, TNF-α, asprosin and adiponectin were assessed using ELISA kits. Results: Serum asprosin was found to be higher in CAD patients when compared to non-CAD subjects (7.84 ± 2.08 versus 5.02 ± 1.29 μg/mL, p 
    Electronic ISSN: 1476-511X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-08-20
    Description: Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous clinical manifestations, chronic inflammation has been consistently reported for several LSDs. However, the molecular mechanisms involved in the inflammatory response are still not completely understood. In this study, we performed text-mining and systems biology analyses to investigate the inflammatory signals in three LSDs characterized by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency (ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and then built on the extracted knowledge to investigate the inflammatory signals. We found numerous transcription factors that are putative regulators of cytokine expression in a cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2 as candidate regulators of the monocyte Gaucher disease cytokine network. Overall, our results suggest the presence of a complex inflammatory signaling in LSDs involving many cellular and molecular players that could be further investigated as putative targets of anti-inflammatory therapies.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-08-20
    Description: Large-scale transcriptome data, such as single-cell RNA-sequencing data, have provided unprecedented resources for studying biological processes at the systems level. Numerous dimensionality reduction methods have been developed to visualize and analyze these transcriptome data. In addition, several existing methods allow inference of functional variations among samples using gene sets with known biological functions. However, it remains challenging to analyze transcriptomes with reduced dimensions that are interpretable in terms of dimensions’ directionalities, transferrable to new data, and directly expose the contribution or association of individual genes. In this study, we used gene set non-negative principal component analysis (gsPCA) and non-negative matrix factorization (gsNMF) to analyze large-scale transcriptome datasets. We found that these methods provide low-dimensional information about the progression of biological processes in a quantitative manner, and their performances are comparable to existing functional variation analysis methods in terms of distinguishing multiple cell states and samples from multiple conditions. Remarkably, upon training with a subset of data, these methods allow predictions of locations in the functional space using data from experimental conditions that are not exposed to the models. Specifically, our models predicted the extent of progression and reversion for cells in the epithelial-mesenchymal transition (EMT) continuum. These methods revealed conserved EMT program among multiple types of single cells and tumor samples. Finally, we demonstrate this approach is broadly applicable to data and gene sets beyond EMT and provide several recommendations on the choice between the two linear methods and the optimal algorithmic parameters. Our methods show that simple constrained matrix decomposition can produce to low-dimensional information in functionally interpretable and transferrable space, and can be widely useful for analyzing large-scale transcriptome data.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-20
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-20
    Description: The impaired effector function of exhausted and senescent T cells is implicated in cancer progression and inadequate vaccine responses. Exercise has been shown to improve cancer therapy and vaccine efficacy, most likely by improving immune function. However, given inconsistent terminology and definitions, the interactions between exercise and exhausted and senescent T cells remain unclear. We therefore performed a systematic review to investigate the effect of exercise on senescent and exhausted CD8+ T cell populations clearly defined by protein surface markers. Thirty articles were included, with the majority (n = 24) reporting senescent T cell populations defined according to a variety of surface markers. Repeated exercise was shown to be beneficial through limiting the accumulation of senescent and exhausted CD8+ T cells. This outcome is likely related to exercise-induced preferential mobilization of senescent T cells promoting apoptosis in the peripheral blood compartment. Future studies need to determine the clinical relevance of this effect in cancer prevention and vaccine efficacy. Data regarding exercise and exhausted T cells are limited due to a lack of available high-quality studies. Future studies require the control of confounding variables such as sex and cytomegalovirus (CMV) status, and consistent definitions of exhausted and senescent T cell populations to improve comparisons between studies and interventions.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-08-20
    Description: Kiwifruit (Actinidia eriantha) is a dioecious vine, and the pollen of its male cultivars has a direct effect on the quality of its fruits. In this study, to facilitate molecular breeding and gene identification, we performed genome-wide association studies (GWAS) on 11 traits of flower and leaf. A total of 946,337 highly consistent SNP markers were obtained in the whole genome. Phylogenetic tree analysis and population structure analysis showed that the 143 germplasms can be divided into two groups. The linkage disequilibrium analysis showed that A. eriantha have a relatively fast attenuation rate, and that the average attenuation distance of LD was 0.1–0.3 Kb. The MLM (QK) model was determined as best for correlation analysis, and eight and three SNPs associated with flower- and leaf-related traits were identified, respectively, at 0.01 significance level. However, SNP markers associated with stamen number per flower, pollen viability, total chlorophyll content, and total flavonoid content were not identified at the 0.01 significant level, although it is worth noting that one, one, five, and two SNPs were identified to be associated with these traits at the 0.05 significant level. This study provides insights into the complex flower- and leaf-related biology, and identifies genes controlling important traits in A. eriantha through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in kiwifruits.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-20
    Description: Estrogen enhances long bone longitudinal growth during early puberty. Growth plate chondrocytes are the main cells that contribute to long bone elongation. The role of G-protein-coupled estrogen receptor-1 (GPER-1) in regulating growth plate chondrocyte function remains unclear. In the present study, we generated chondrocyte-specific GPER-1 knockout (CKO) mice to investigate the effect of GPER-1 in growth plate chondrocytes. In control mice, GPER-1 was highly expressed in the growth plates of 4- and 8-week-old mice, with a gradual decline through 12 to 16 weeks. In CKO mice, the GPER-1 expression in growth plate chondrocytes was significantly lower than that in the control mice (80% decrease). The CKO mice also showed a decrease in body length (crown–rump length), body weight, and the length of tibias and femurs at 8 weeks. More importantly, the cell number and thickness of the proliferative zone of the growth plate, as well as the thickness of primary spongiosa and length of metaphysis plus diaphysis in tibias of CKO mice, were significantly decreased compared with those of the control mice. Furthermore, there was also a considerable reduction in the number of proliferating cell nuclear antigens and Ki67-stained proliferating chondrocytes in the tibia growth plate in the CKO mice. The chondrocyte proliferation mediated by GPER-1 was further demonstrated via treatment with a GPER-1 antagonist in cultured epiphyseal cartilage. This study demonstrates that GPER-1 positively regulates chondrocyte proliferation at the growth plate during early puberty and contributes to the longitudinal growth of long bones.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-20
    Description: Clinicians, biologists, physicists, engineers, and computer scientists are coming together to better understand heart disease, which is currently the leading cause of death globally. Optical mapping, a high-speed fluorescence imaging technique that visualizes and measures key cardiac parameters such as action potentials, cytosolic calcium transients, and fibrillation dynamics, is a core research tool that has arisen from such interdisciplinary collaborations. In an effort to broaden its use, especially among clinical scientists and students, we developed a complete and low-cost optical mapping system, including a constant-flow Langendorff perfusion system, which minimizes the economic threshold to widespread use of this powerful tool in cardiac electrophysiology research. The system described here provides high spatiotemporal resolution data about action potentials, intracellular calcium transients and fibrillation wave dynamics in isolated Langendorff-perfused hearts (pigs and rabbits), relevant for translational research. All system components and software elements are fully disclosed with the aim of increasing the use of this affordable and highly versatile tool among clinicians, basic scientists and students wishing to tackle their own research questions with their own customizable systems.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-08-20
    Description: In this study, we investigate the genetic determinants that underlie epilepsy in a captive baboon pedigree and evaluate the potential suitability of this non-human primate model for understanding the genetic etiology of human epilepsy. Archived whole-genome sequence data were analyzed using both a candidate gene approach that targeted variants in baboon homologs of 19 genes (n = 20,881 SNPs) previously implicated in genetic generalized epilepsy (GGE) and a more agnostic approach that examined protein-altering mutations genome-wide as assessed by snpEff (n = 36,169). Measured genotype association tests for baboon cases of epileptic seizure were performed using SOLAR, as well as gene set enrichment analyses (GSEA) and protein–protein interaction (PPI) network construction of top association hits genome-wide (p 〈 0.01; n = 441 genes). The maximum likelihood estimate of heritability for epileptic seizure in the pedigreed baboon sample is 0.76 (SE = 0.77; p = 0.07). Among candidate genes for GGE, a significant association was detected for an intronic SNP in RBFOX1 (p = 5.92 × 10–6; adjusted p = 0.016). For protein-altering variants, no genome-wide significant results were observed for epilepsy status. However, GSEA revealed significant positive enrichment for genes involved in the extracellular matrix structure (ECM; FDR = 0.0072) and collagen formation (FDR = 0.017), which was reflected in a major PPI network cluster. This preliminary study highlights the potential role of RBFOX1 in the epileptic baboon, a protein involved in transcriptomic regulation of multiple epilepsy candidate genes in humans and itself previously implicated in human epilepsy, both focal and generalized. Moreover, protein-damaging variants from across the genome exhibit a pattern of association that links collagen-containing ECM to epilepsy risk. These findings suggest a shared genetic etiology between baboon and human forms of GGE and lay the foundation for follow-up research.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-08-20
    Description: Multidecadal sea level variation in the Baltic Sea is investigated from 1900 to 2020 deploying satellite and in situ datasets. As a part of this investigation, nearly 30 years of satellite altimetry data are used to compare with tide gauge data in terms of linear trend. This, in turn, leads to validation of the regional uplift model developed for the Fennoscandia. The role of North Atlantic Oscillation (NAO) in multidecadal variations of the Baltic Sea is also analyzed. Although NAO impacts the Baltic Sea level on seasonal to decadal time scales according to previous studies, it is not a pronounced factor in the multidecadal variations. The acceleration in the sea level rise of the basin is reported as statistically insignificant in recent studies or even decelerating in an investigation of the early 1990s. It is shown that the reason for these results relates to the global warming hiatus in the 1950s−1970s, which can be seen in all eight tide gauges used for this study. To account for the slowdown period, the acceleration in the basin is investigated by fitting linear trends to time spans of six to seven decades, which include the hiatus. These results imply that the sea level rise is accelerated in the Baltic Sea during the period 1900–2020.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-08-20
    Description: The Mascarenes are sadly famous worldwide for the massive extinction of their native vertebrates since recent human colonization. However, extinction patterns show astonishing disparities between the two main islands and between lineages of forest vertebrates. On Réunion (2,512 km2, 3,070 m) where about a third of native habitats remains, most large-bodied vertebrates, especially frugivores, collapsed by the first half of the 18th century, while several have survived longer and some still exist on Mauritius (1,865 km2, 828 m) where more than 95% of native habitats have been transformed. Considering lineages of forest vertebrates shared by both islands (23 genera, 53 species), we test the hypothesis that differing patterns of lowland suitable habitat destruction is the main cause behind this paradox. Before that, we assess the potential impact of other major drivers of extinctions since first contact with humans. Firstly, Mauritius shows earlier and more numerous introductions of mammal predators known for their devastating impact (except northern islets which have thus become important sanctuaries for several squamates). Secondly, settlers were inveterate hunters on both islands, but while Réunion was overhunted before Mauritius, the burst of human population in the latter in late 18th century has not led to the rapid extinction of all large native vertebrates. These two factors alone therefore cannot explain the observed paradox. Rather, the early destruction of lowland habitats (
    Electronic ISSN: 2296-701X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-08-20
    Description: The biomechanical role of the clasping leaf sheath in stalk lodging events has been historically understudied. Results from this study indicate that in some instances the leaf sheath plays an even larger role in reinforcing wheat against stalk lodging than the stem itself. Interestingly, it appears the leaf sheath does not resist bending loads by merely adding more material to the stalk (i.e., increasing the effective diameter). The radial preload of the leaf sheath on the stem, the friction between the sheath and the stem and several other complex biomechanical factors may contribute to increasing the stalk bending strength and stalk flexural rigidity of wheat. Results demonstrated that removal of the leaf sheath induces alternate failure patterns in wheat stalks. In summary the biomechanical role of the leaf sheath is complex and has yet to be fully elucidated. Many future studies are needed to develop high throughput phenotyping methodologies and to determine the genetic underpinnings of the clasping leaf sheath and its relation to stalk lodging resistance. Research in this area is expected to improve the lodging resistance of wheat.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-06-29
    Description: Background Metabolic stress, as negative energy balance on one hand or obesity on the other hand can lead to increased levels of free fatty acids in the plasma and follicular fluid of animals and humans. In an earlier study, we showed that increased oleic acid (OA) concentrations affected the function of cultured bovine granulosa cells (GCs). Here, we focus on genome wide effects of increased OA concentrations. Results Our data showed that 413 genes were affected, of which 197 were down- and 216 up-regulated. Specifically, the expression of FSH-regulated functional key genes, CCND2, LHCGR, INHA and CYP19A1 and 17-β-estradiol (E2) production were reduced by OA treatment, whereas the expression of the fatty acid transporter CD36 was increased and the morphology of the cells was changed due to lipid droplet accumulation. Bioinformatic analysis revealed that associated pathways of the putative upstream regulators “FSH” and “Cg (choriogonadotropin)” were inhibited and activated, respectively. Down-regulated genes are over-represented in GO terms “reproductive structure/system development”, “ovulation cycle process”, and “(positive) regulation of gonadotropin secretion”, whereas up-regulated genes are involved in “circulatory system development”, “vasculature development”, “angiogenesis” or “extracellular matrix/structure organization”. Conclusions From these data we conclude that besides inhibiting GC functionality, increased OA levels seemingly promote angiogenesis and tissue remodelling, thus suggestively initiating a premature fulliculo-luteal transition. In vivo this may lead to impeded folliculogenesis and ovulation, and cause sub-fertility.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-08-20
    Description: Background Left-right (LR) asymmetry is an essential feature of bilateral animals. Studies in vertebrates show that LR asymmetry formation comprises three major steps: symmetry breaking, asymmetric gene expression, and LR morphogenesis. Although much progress has been made in the first two events, mechanisms underlying asymmetric morphogenesis remain largely unknown due to the complex developmental processes deployed by vertebrate organs. Results We here addressed this question by studying Pitx gene function in the basal chordate amphioxus whose asymmetric organogenesis, unlike that in vertebrates, occurs essentially in situ and does not rely on cell migration. Pitx null mutation in amphioxus causes loss of all left-sided organs and incomplete ectopic formation of all right-sided organs on the left side, whereas Pitx partial loss-of-function leads to milder phenotypes with only some LR organs lost or ectopically formed. At the N1 to N3 stages, Pitx expression is gradually expanded from the dorsal anterior domain to surrounding regions. This leads to activation of genes like Lhx3 and/or Prop1 and Pit, which are essential for left-side organs, and downregulation of genes like Hex and/or Nkx2.1 and FoxE4, which are required for right-side organs to form ectopically on the left side. In Pitx mutants, the left-side expressed genes are not activated, while the right-side genes fail to decrease expression on the left side. In contrast, in embryos overexpressing Pitx genes, the left-side genes are induced ectopically on the right side, and the right-side genes are inhibited. Several Pitx binding sites are identified in the upstream sequences of the left-side and right-side genes which are essential for activation of the former and repression of the latter by Pitx. Conclusions Our results demonstrate that (1) Pitx is a major (although not the only) determinant of asymmetric morphogenesis in amphioxus, (2) the development of different LR organs have distinct requirements for Pitx activity, and (3) Pitx controls amphioxus LR morphogenesis probably through inducing left-side organs and inhibiting right-side organs directly. These findings show much more dependence of LR organogenesis on Pitx in amphioxus than in vertebrates. They also provide insight into the molecular developmental mechanism of some vertebrate LR organs like the lungs and atria, since they show a right-isomerism phenotype in Pitx2 knockout mice like right-sided organs in Pitx mutant amphioxus. Our results also explain why some organs like the adenohypophysis are asymmetrically located in amphioxus but symmetrically positioned in vertebrates.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-08-20
    Description: The microbiota of the pretreatment phase is crucial to the assembly of the microbial community in the saccharification of fuyu-flavor baijiu. This study investigates the shifts in microbial community diversity from the pretreatment of raw materials to the end of saccharification. High-throughput sequencing reveals that Lactobacillus, Weissella, and Bacillus in the bacterial community and Rhizopus, Candida, Pichia, and Aspergillus in the fungal community are predominant during raw material pretreatment and saccharification processes. Also, 11 bacterial genera, including Bacillus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, and Acetobacter, and eight yeast genera, including Candida, Pichia, Saccharomyces, and Wickerhamomyces, were isolated from the initial saccharification stage by culture-dependent approaches. Sourcetracker analysis indicates that the cooling grains and rice husks were the main contributors to the bacterial community composition of the saccharification process, and Qu was the main contributor to the shaping of the fungal community structure during the saccharification process. Abundance variation of the predictive functional profiles of microbial communities encoding for key enzymes involved in pyruvate metabolism, starch and sucrose metabolism, and glycolysis/gluconeogenesis during the pretreatment and saccharification phases were inferred by PICRUSt2 analysis. The results of this study will be utilized to produce consistently high-quality fuyu-flavor baijiu via better controlling the shaping of microbial community structures during the pretreatment and fermentation processes.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-08-20
    Description: Embryo movement is important for tissue differentiation and the formation of functional skeletal elements during embryonic development: reduced mechanical stimulation results in fused joints and misshapen skeletal rudiments with concomitant changes in the signaling environment and gene expression profiles in both mouse and chick immobile embryos. Despite the clear relationship between movement and skeletogenesis, the precise mechanisms by which mechanical stimuli influence gene regulatory processes are not clear. The primary cilium enables cells to sense mechanical stimuli in the cellular environment, playing a crucial mechanosensory role during kidney development and in articular cartilage and bone but little is known about cilia on developing skeletal tissues. Here, we examine the occurrence, length, position, and orientation of primary cilia across developing skeletal rudiments in mouse embryos during a period of pronounced mechanosensitivity and we report differences and similarities between wildtype and muscle-less mutant (Pax3Spd/Spd) rudiments. Strikingly, joint regions tend to have cilia positioned and oriented away from the joint, while there was a less obvious, but still significant, preferred position on the posterior aspect of cells within the proliferative and hypertrophic zones. Regions of the developing rudiments have characteristic proportions of ciliated cells, with more cilia in the resting and joint zones. Comparing wildtype to muscle-less mutant embryos, cilia are shorter in the mutant with no significant difference in the proportion of ciliated cells. Cilia at the mutant joint were also oriented away from the joint line.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-08-20
    Description: Parkinson’s disease (PD) is one of the most common neurodegenerative disorders that is implicated in aging populations. As numerous developed nations are experiencing progressively aging populations today, there is a heightened propensity for the occurrence of PD cases. Alpha-synuclein (α-syn) aggregation has been considered to be the pivotal mechanism leading to PD pathogenesis. Thus, early diagnostic and therapeutic strategies targeting the misfolded α-syn protein can potentially improve the prognosis of PD. With rapid advancements in nanotechnology in the last decade, effective solutions to various neurodegenerative and oncological diseases have been suggested. This review will explore the current innovations in nanotechnology that target the α-syn aggregation pathway, and reinstate the promise they hold as effective early diagnostic and therapeutic solutions to PD.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-08-20
    Description: The abundance and the diversity of insects in Europe have declined considerably during recent decades, while it remains unclear whether similar changes may also have occurred elsewhere. Here we used citizen science for quantifying the abundance of flying insects on windshields of cars across Europe and to a smaller extent in China. We used the abundance of insects killed against windshields of cars during 3,530 transects for a total distance of 83,019 km made by 50 observers as estimates of insect abundance. A total of 124,606 insects were recorded, or approximately 1.5 insect per km. The abundance of insects killed against windshields was highly repeatable among days for the same locality, showing consistent estimates of abundance. The main determinants of insect abundance were features of cars (driving speed and car model that can be considered noise of no biological significance), local weather (temperature, cloud cover and wind speed) and variation across the season and the day. We tested for differences in the abundance of flying insects killed on windshields of cars predicting and finding (1) a reduction in insect abundance in areas with ionizing radiation at Chernobyl compared to uncontaminated control sites in the neighborhood, (2) a reduction in the abundance of flying insects in Western compared to Eastern Europe, (3) a reduction in the abundance of flying insects killed on windshields from southern to northern Europe compared to latitudinal samples of insects from southern to northern China, and (4) a difference in abundance of insects killed on windshields of cars in Spain with a significant interaction between Spain and Denmark. Thus a number of abiotic and biotic factors accounted for temporal and spatial heterogeneity in abundance of insects, providing a useful tool for monitoring and studying determinants of spatial and temporal patterns of insect abundance. This also implies that our estimate of insect abundance may be relevant for the study of competition and for interactions at higher trophic levels.
    Electronic ISSN: 2296-701X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-08-20
    Description: Predicting the functional consequences of single point mutations has relevance to protein function annotation and to clinical analysis/diagnosis. We developed and tested Packpred that makes use of a multi-body clique statistical potential in combination with a depth-dependent amino acid substitution matrix (FADHM) and positional Shannon entropy to predict the functional consequences of point mutations in proteins. Parameters were trained over a saturation mutagenesis data set of T4-lysozyme (1,966 mutations). The method was tested over another saturation mutagenesis data set (CcdB; 1,534 mutations) and the Missense3D data set (4,099 mutations). The performance of Packpred was compared against those of six other contemporary methods. With MCC values of 0.42, 0.47, and 0.36 on the training and testing data sets, respectively, Packpred outperforms all methods in all data sets, with the exception of marginally underperforming in comparison to FADHM in the CcdB data set. A meta server analysis was performed that chose best performing methods of wild-type amino acids and for wild-type mutant amino acid pairs. This led to an increase in the MCC value of 0.40 and 0.51 for the two meta predictors, respectively, on the Missense3D data set. We conjecture that it is possible to improve accuracy with better meta predictors as among the seven methods compared, at least one method or another is able to correctly predict ∼99% of the data.
    Electronic ISSN: 2296-889X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-08-20
    Description: Background After repairing double-strand breaks (DSBs) caused by CRISPR-Cas9 cleavage, genomic damage, such as large deletions, may have pathogenic consequences. Results We show that large deletions are ubiquitous but are dependent on editing sites and cell types. Human primary T cells display more significant deletions than hematopoietic stem and progenitor cells (HSPCs), whereas we observe low levels in induced pluripotent stem cells (iPSCs). We find that the homology-directed repair (HDR) with single-stranded oligodeoxynucleotides (ssODNs) carrying short homology reduces the deletion damage by almost half, while adeno-associated virus (AAV) donors with long homology reduce large deletions by approximately 80%. In the absence of HDR, the insertion of a short double-stranded ODN by NHEJ reduces deletion indexes by about 60%. Conclusions Timely bridging of broken ends by HDR and NHEJ vastly decreases the unintended consequences of dsDNA cleavage. These strategies can be harnessed in gene editing applications to attenuate unintended outcomes.
    Print ISSN: 1465-6906
    Electronic ISSN: 1474-760X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-08-20
    Description: Phytopathogenic members of the Sclerotinia genus cause widespread disease across a broad range of economically important crops. In particular, Sclerotinia sclerotiorum is considered one of the most destructive and cosmopolitan of plant pathogens. Here, were review the epidemiology of the pathogen, its economic impact on agricultural production, and measures employed toward control of disease. We review the broad approaches required to tackle Sclerotinia diseases and include cultural practices, crop genetic resistance, chemical fungicides, and biological controls. We highlight the benefits and drawbacks of each approach along with recent advances within these controls and future strategies.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-08-20
    Description: Finger millet [Eleusine coracana (L.) Gaertn.] is an important climate-resilient nutrient-dense crop grown as a staple food grain in Asia and Africa. Utilizing the full potential of the crop mainly depends on an in-depth exploration of the vast diversity in its germplasm. In this study, the global finger millet germplasm diversity panel of 314 accessions was genotyped, using the DArTseq approach to assess genetic diversity and population structure. We obtained 33,884 high-quality single nucleotide polymorphism (SNP) markers on 306 accessions after filtering. Finger millet germplasm showed considerable genetic diversity, and the mean polymorphic information content, gene diversity, and Shannon Index were 0.110, 0.114, and 0.194, respectively. The average genetic distance of the entire set was 0.301 (range 0.040 – 0.450). The accessions of the race elongata (0.326) showed the highest average genetic distance, and the least was in the race plana (0.275); and higher genetic divergence was observed between elongata and vulgaris (0.320), while the least was between compacta and plana (0.281). An average, landrace accessions had higher gene diversity (0.144) and genetic distance (0.299) than the breeding lines (0.117 and 0.267, respectively). A similar average gene diversity was observed in the accessions of Asia (0.132) and Africa (0.129), but Asia had slightly higher genetic distance (0.286) than African accessions (0.276), and the distance between these two regions was 0.327. This was also confirmed by a model-based STRUCTURE analysis, genetic distance-based clustering, and principal coordinate analysis, which revealed two major populations representing Asia and Africa. Analysis of molecular variance suggests that the significant population differentiation was mainly due to within individuals between regions or between populations while races had a negligible impact on population structure. Finger millet diversity is structured based on a geographical region of origin, while the racial structure made negligible contribution to population structure. The information generated from this study can provide greater insights into the population structure and genetic diversity within and among regions and races, and an understanding of genomic-assisted finger millet improvement.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-08-20
    Description: Background C. sinensis is an important economic crop with fluoride over-accumulation in its leaves, which poses a serious threat to human health due to its leaf consumption as tea. Recently, our study has indicated that cell wall proteins (CWPs) probably play a vital role in fluoride accumulation/detoxification in C. sinensis. However, there has been a lack in CWP identification and characterization up to now. This study is aimed to characterize cell wall proteome of C. sinensis leaves and to develop more CWPs related to stress response. A strategy of combined cell wall proteomics and N-glycoproteomics was employed to investigate CWPs. CWPs were extracted by sequential salt buffers, while N-glycoproteins were enriched by hydrophilic interaction chromatography method using C. sinensis leaves as a material. Afterwards all the proteins were subjected to UPLC-MS/MS analysis. Results A total of 501 CWPs and 195 CWPs were identified respectively by cell wall proteomics and N-glycoproteomics profiling with 118 CWPs in common. Notably, N-glycoproteomics is a feasible method for CWP identification, and it can enhance CWP coverage. Among identified CWPs, proteins acting on cell wall polysaccharides constitute the largest functional class, most of which might be involved in cell wall structure remodeling. The second largest functional class mainly encompass various proteases related to CWP turnover and maturation. Oxidoreductases represent the third largest functional class, most of which (especially Class III peroxidases) participate in defense response. As expected, identified CWPs are mainly related to plant cell wall formation and defense response. Conclusion This was the first large-scale investigation of CWPs in C. sinensis through cell wall proteomics and N-glycoproteomics. Our results not only provide a database for further research on CWPs, but also an insight into cell wall formation and defense response in C. sinensis.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-08-20
    Description: Brucella melitensis causes small ruminant brucellosis and a zoonotic pathogen prevalent worldwide. Whole genome phylogeny of all available B. melitensis genomes (n = 355) revealed that all Indian isolates (n = 16) clustered in the East Mediterranean lineage except the ADMAS-GI strain. Pangenome analysis indicated the presence of limited accessory genomes with few clades showing specific gene presence/absence pattern. A total of 43 virulence genes were predicted in all the Indian strains of B. melitensis except 2007BM-1 (ricA and wbkA are absent). Multilocus sequence typing (MLST) analysis indicated all except one Indian strain (ADMAS-GI) falling into sequence type (ST 8). In comparison with MLST, core genome phylogeny indicated two major clusters (〉70% bootstrap support values) among Indian strains. Clusters with
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-08-20
    Description: Coastal observing systems are typically nationally funded and built around national priorities. As a result, there are presently significant differences between countries in terms of sustainability, observing capacity and technologies, as well as methods and research priorities. Ocean observing systems in coastal areas must now move toward an integrated, multidisciplinary and multiscale system of systems, where heterogeneity should be exploited to deliver fit-for-purpose products that answer the diversity and complexity of the requirements from stakeholders and end-users. Essential elements of such distributed observation systems are the use of machine-to-machine communication, data fusion and processing applying recent technological developments for the Internet of Things (IoT) toward a common cyberinfrastructure. This perspective paper illustrates some of the challenges for sustained coastal observations and provides details on how to address present gaps. We discuss the role of collaborative robotics between unmanned platforms in coastal areas and the methods to benefit from IoT technologies. Given present trends in cost-effective solutions in ocean sensors and electronics, and methods for marine automation and communication, we consider that a distributed observation system can effectively provide timely information in coastal regions around the world, including those areas that are today poorly observed (e.g., developing countries). Adaptation in space and time of the sensing nodes, and the flexibility in handling different sensing platforms can provide to the system the ability to quickly respond to the rapid changes in oceanic and climatic processes, as well as to promptly respond to evolving stakeholder and end-user requirements.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-08-20
    Description: Background Finding meaningful gene-gene interaction and the main Transcription Factors (TFs) in co-expression networks is one of the most important challenges in gene expression data mining. Results Here, we developed the R package “CeTF” that integrates the Partial Correlation with Information Theory (PCIT) and Regulatory Impact Factors (RIF) algorithms applied to gene expression data from microarray, RNA-seq, or single-cell RNA-seq platforms. This approach allows identifying the transcription factors most likely to regulate a given network in different biological systems — for example, regulation of gene pathways in tumor stromal cells and tumor cells of the same tumor. This pipeline can be easily integrated into the high-throughput analysis. To demonstrate the CeTF package application, we analyzed gastric cancer RNA-seq data obtained from TCGA (The Cancer Genome Atlas) and found the HOXB3 gene as the second most relevant TFs with a high regulatory impact (TFs-HRi) regulating gene pathways in the cell cycle. Conclusion This preliminary finding shows the potential of CeTF to list master regulators of gene networks. CeTF was designed as a user-friendly tool that provides many highly automated functions without requiring the user to perform many complicated processes. It is available on Bioconductor (http://bioconductor.org/packages/CeTF) and GitHub (http://github.com/cbiagii/CeTF).
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-08-20
    Description: Blueberry (Vaccinium ssp.) is a perennial shrub belonging to the family Ericaceae, which is highly tolerant of acid soils and heavy metal pollution. In the present study, blueberry was subjected to cadmium (Cd) stress in simulated pot culture. The transcriptomics and rhizosphere fungal diversity of blueberry were analyzed, and the iron (Fe), manganese (Mn), copper (Cu), zinc (Zn) and cadmium (Cd) content of blueberry tissues, soil and DGT was determined. A correlation analysis was also performed. A total of 84 374 annotated genes were identified in the root, stem, leaf and fruit tissue of blueberry, of which 3370 were DEGs, and in stem tissue, of which 2521 were DEGs. The annotation data showed that these DEGs were mainly concentrated in a series of metabolic pathways related to signal transduction, defense and the plant–pathogen response. Blueberry transferred excess Cd from the root to the stem for storage, and the highest levels of Cd were found in stem tissue, consistent with the results of transcriptome analysis, while the lowest Cd concentration occurred in the fruit, Cd also inhibited the absorption of other metal elements by blueberry. A series of genes related to Cd regulation were screened by analyzing the correlation between heavy metal content and transcriptome results. The roots of blueberry rely on mycorrhiza to absorb nutrients from the soil. The presence of Cd has a significant effect on the microbial community composition of the blueberry rhizosphere. The fungal family Coniochaetaceae, which is extremely extremelytolerant, has gradually become the dominant population. The results of this study increase our understanding of the plant regulation mechanism for heavy metals, and suggest potential methods of soil remediation using blueberry.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-08-20
    Description: Several bioinformatic tools have been developed for genome-wide identification of orthologous and paralogous genes. However, no corresponding tool allows the detection of exon homology relationships. Here, we present ExOrthist, a fully reproducible Nextflow-based software enabling inference of exon homologs and orthogroups, visualization of evolution of exon-intron structures, and assessment of conservation of alternative splicing patterns. ExOrthist evaluates exon sequence conservation and considers the surrounding exon-intron context to derive genome-wide multi-species exon homologies at any evolutionary distance. We demonstrate its use in different evolutionary scenarios: whole genome duplication in frogs and convergence of Nova-regulated splicing networks (https://github.com/biocorecrg/ExOrthist).
    Print ISSN: 1465-6906
    Electronic ISSN: 1474-760X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-08-20
    Description: Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-08-20
    Description: Root rot of Populus davidiana × P. alba var. pyramidalis Louche (Pdpap) is caused by Fusarium oxysporum. We used RNA sequencing to study the molecular mechanisms and response pattern of Pdpap infected by F. oxysporum CFCC86068. We cloned the PdpapWRKY28 transcription factor gene and transformed the recombinant vector pBI121-PdpapWRKY28 into Pdpap. The resistance function of PdpapWRKY28 was verified using physiological and biochemical methods. By means of RNA sequencing, we detected 1,403 differentially expressed genes (DEGs) that are common in the different treatments by F. oxysporum. Furthermore, we found that overexpression of the PdpapWRKY28 gene may significantly improve the resistance of Pdpap plants to F. oxysporum. Our research reveals a key role for PdpapWRKY28 in the resistance response of Pdpap to F. oxysporum. Additionally, our results provide a theoretical basis for in-depth research on resistance breeding to combat root rot.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-08-20
    Description: BackgroundCentral serous chorioretinopathy (CSC) is a severe and heterogeneous chorioretinal disorder. Shared clinical manifestations between CSC and age-related macular degeneration (AMD) and the confirmation of CFH as genetic risk locus for both CSC and AMD suggest possible common pathophysiologic mechanisms between two diseases.MethodsTo advance the understanding of genetic susceptibility of CSC and further investigate genetic pleiotropy between CSC and AMD, we performed genetic association analysis of 38 AMD-associated single nucleotide polymorphisms (SNPs) in a Chinese CSC cohort, consisting of 464 patients and 548 matched healthy controls.ResultsTwelve SNPs were found to be associated with CSC at nominal significance (p 〈 0.05), and four SNPs on chromosomes 1, 4, and 15 showed strong associations whose evidences surpassed Bonferroni (BF)-corrected significance [rs1410996, odds ratios (OR) = 1.47, p = 2.37 × 10–5; rs1329428, OR = 1.40, p = 3.32 × 10–4; rs4698775, OR = 1.45, p = 2.20 × 10–4; and rs2043085, OR = 1.44, p = 1.91 × 10–4]. While the genetic risk effects of rs1410996 and rs1329428 (within the well-established locus CFH) are correlated (due to high LD), rs4698775 on chromosome 4 and rs2043085 on chromosome 15 are novel risk loci for CSC. Polygenetic risk score (PRS) constructed by using three independent SNPs (rs1410996, rs4698775, and rs2043085) showed highly significant association with CSC (p = 2.10 × 10–7), with the top 10% of subjects with high PRS showing 6.39 times higher risk than the bottom 10% of subjects with lowest PRS. Three SNPs were also found to be associated with clinic manifestations of CSC patients. In addition, by comparing the genetic effects (ORs) of these 38 SNPs between CSC and AMD, our study revealed significant, but complex genetic pleiotropic effect between the two diseases.ConclusionBy discovering two novel genetic risk loci and revealing significant genetic pleiotropic effect between CSC and AMD, the current study has provided novel insights into the role of genetic composition in the pathogenesis of CSC.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-08-20
    Description: Despite genuine attempts, the history of marine and coastal ecosystem management is littered with examples of poor environmental, social and financial outcomes. Marine ecosystems are largely populated by species with open populations, and feature ecological processes that are driven by multiple, interwoven, dynamic causes and effects. This complexity limits the acquisition of relevant knowledge of habitat characteristics, species utilisation and ecosystem dynamics. The consequence of this lack of knowledge is uncertainty about the link between action taken and outcome achieved. Such uncertainty risks misdirected human and financial investment, and sometimes may even lead to perverse outcomes. Technological advances offer new data acquisition opportunities, but the diversity and complexity of the biological and ecological information needed to reduce uncertainty means the increase in knowledge will be slow unless it is undertaken in a structured and focussed way. We introduce “Ecological Constraint Mapping” – an approach that takes a “supply chain” point of view and focusses on identifying the principal factors that constrain life-history outcomes (success/productivity/resilience/fitness) for marine and coastal species, and ultimately the quality and resilience of the ecosystems they are components of, and the life-history supporting processes and values ecosystems provide. By providing a framework for the efficient development of actionable knowledge, Ecological Constraint Mapping can facilitate a move from paradigm-based to knowledge-informed decision-making on ecological issues. It is suitable for developing optimal solutions to a wide range of conservation and management problems, providing an organised framework that aligns with current perspectives on the complex nature of marine and coastal systems.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-08-20
    Description: Understanding the etiology of cerebrospinal fluid (CSF) shunt infections and reinfections requires detailed characterization of associated microorganisms. Traditionally, identification of bacteria present in the CSF has relied on culture methods, but recent studies have used high throughput sequencing of 16S rRNA genes. Here we evaluated the method of shotgun DNA sequencing for its potential to provide additional genomic information. CSF samples were collected from 3 patients near the beginning and end of each of 2 infection episodes. Extracted total DNA was sequenced by: (1) whole genome amplification followed by shotgun sequencing (WGA) and (2) high-throughput sequencing of the 16S rRNA V4 region (16S). Taxonomic assignments of sequences from WGA and 16S were compared with one another and with conventional microbiological cultures. While classification of bacteria was consistent among the 3 approaches, WGA provided additional insights into sample microbiological composition, such as showing relative abundances of microbial versus human DNA, identifying samples of questionable quality, and detecting significant viral load in some samples. One sample yielded sufficient non-human reads to allow assembly of a high-quality Staphylococcus epidermidis genome, denoted CLIMB1, which we characterized in terms of its MLST profile, gene complement (including putative antimicrobial resistance genes), and similarity to other annotated S. epidermidis genomes. Our results demonstrate that WGA directly applied to CSF is a valuable tool for the identification and genomic characterization of dominant microorganisms in CSF shunt infections, which can facilitate molecular approaches for the development of better diagnostic and treatment methods.
    Electronic ISSN: 2235-2988
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-08-21
    Description: Objective To compare an objective with a subjective numeracy assessment for association with self-reported health status, where numeracy refers to “the degree to which individuals have the capacity to access, process, interpret, communicate, and act on numerical, quantitative, graphical, biostatistical, and probabilistic health information needed to make effective health decisions” Results We completed a secondary analysis of two population-based surveys, the Empire State Poll (n = 763) and the Program for the International Assessment of Adult Competencies (PIAAC; n = 2609). The first survey assessed numeracy with a 3-item subjective instrument. The second assessed numeracy with more than 20 math problems. Both used the same measure for self-reported health status. Lower numeracy, whether subjectively or objectively assessed, was associated with worse self-reported health, even after controlling for education and other sociodemographic confounders. The odds ratios for the association were very similar (0.91 and 0.90 respectively). A lengthy objective numeracy assessment and a brief self-report assessment had similar associations with health status. A brief self-report measure of numeracy has similar properties to a lengthy objective assessment and is likely to be more feasible to use to screen patients in practice.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-08-21
    Description: Background Sorghum yields in sub-Saharan Africa (SSA) are greatly reduced by parasitic plants of the genus Striga (witchweed). Vast global sorghum genetic diversity collections, as well as the availability of modern sequencing technologies, can be potentially harnessed to effectively manage the parasite. Results We used laboratory assays – rhizotrons to screen a global sorghum diversity panel to identify new sources of resistance to Striga; determine mechanisms of resistance, and elucidate genetic loci underlying the resistance using genome-wide association studies (GWAS). New Striga resistant sorghum determined by the number, size and biomass of parasite attachments were identified. Resistance was by; i) mechanical barriers that blocked parasite entry, ii) elicitation of a hypersensitive reaction that interfered with parasite development, and iii) the inability of the parasite to develop vascular connections with hosts. Resistance genes underpinning the resistance corresponded with the resistance mechanisms and included pleiotropic drug resistance proteins that transport resistance molecules; xylanase inhibitors involved in cell wall fortification and hormonal regulators of resistance response, Ethylene Response Factors. Conclusions Our findings are of fundamental importance to developing durable and broad-spectrum resistance against Striga and have far-reaching applications in many SSA countries where Striga threatens the livelihoods of millions of smallholder farmers that rely on sorghum as a food staple.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-08-21
    Description: Objective The use of mice as animal models in biomedical research allows the standardization of genetic background and environmental conditions, which both affect phenotypic variability. As the use of both sexes in experiments is strongly recommended, sex-specific phenotypic variability is discussed with regard to putative consequences on the group size which is necessary for achieving valid and reproducible results. In this study, the sex-specific variability of 25 clinical chemical and hematological parameters which represent a comprehensive blood screen of laboratory mice, was analyzed in data sets which have been submitted to the Mouse Phenome Database. Results The overall analysis comprising all 25 clinical chemical and hematological parameters showed no evidence for substantial and robust general sex-specific variability. A large range of the ratio of the female and male coefficient of variation (CV) was found for every parameter among the respective strain data sets. This clearly demonstrated the appearance of unpredictable major interactions between genotype and environment regarding the sex-specific variability of the blood parameters analyzed.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-08-21
    Description: Objective Reported rainfall data from multiple rain gauges and its corresponding estimate from Dual-Polarization (Dual-Pol) radar is presented here. The ordered set of data pairs were collected from multiple peer reviewed publications spanning across the last decade. Data description Taken from multiple sources, the data set represents several radar sites and rain gauge sites combined for 12,734 data points. The data is relevant in various applications of hydrometeorology and engineering as well as weather forecasting. Further, the importance of accuracy in radar precipitation estimates continues to increase, necessitating the incorporation of as much data as possible.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-08-20
    Description: A novel Pseudomonas, designated strain BBB001T, an aerobic, rod-shaped bacterium, was isolated from the rhizosphere of Nicotiana glauca in Las Palmas Gran Canaria, Spain. Genomic analysis revealed that it could not be assigned to any known species of Pseudomonas, so the name Pseudomonas palmensis sp. nov. was proposed. A 16S rRNA gene phylogenetic analysis suggested affiliation to the Pseudomonas brassicae group, being P. brassicae MAFF212427 T the closest related type strain. Upon genomic comparisons of both strains, all values were below thresholds established for differentiation: average nucleotide identity (ANI, 88.29%), average amino acid identity (AAI, 84.53%), digital DNA-DNA hybridization (dDDH, 35.4%), and TETRA values (0.98). When comparing complete genomes, a total of 96 genes present exclusively in BBB001T were identified, 80 of which appear associated with specific subsystems. Phenotypic analysis has shown its ability to assimilate glucose, potassium gluconate, capric acid malate, trisodium citrate, and phenylacetic acid; it was oxidase positive. It is able to produce auxins and siderophores in vitro; its metabolic profile based on BIOLOG Eco has shown a high catabolic capacity. The major fatty acids accounting for 81.17% of the total fatty acids were as follows: C16:0 (33.29%), summed feature 3 (22.80%) comprising C16:1 ω7c and C16:1 ω6c, summed feature 8 (13.66%) comprising C18:1 ω7c, and C18:1ω6c and C17:0 cyclo (11.42%). The ability of this strain to improve plant fitness was tested on tomato and olive trees, demonstrating a great potential for agriculture as it is able to trigger herbaceous and woody species. First, it was able to improve iron nutrition and growth on iron-starved tomatoes, demonstrating its nutrient mobilization capacity; this effect is related to its unique genes related to iron metabolism. Second, it increased olive and oil yield up to 30% on intensive olive orchards under water-limiting conditions, demonstrating its capacity to improve adaptation to adverse conditions. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain BBB001T (=LMG 31775T = NCTC 14418T) as the type strain of a novel species for which the name P. palmensis sp. nov is proposed.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-08-20
    Description: Phosphorus (P) is a major driver of eutrophication, especially in anthropogenically impacted coastal waters, and determining its bioavailability is important for providing a good estimation of the eutrophication potential in aquatic systems. Therefore, we observed the bioavailability of P in four laboratory experiments on water samples collected in March, June, September, and December 2018. In the experiments, all P fractions of the sampled water were investigated in three treatments (“unfiltered” and “10 μm”- and “1.2 μm”-filtered). The bioavailability (utilization by organisms within several days) ranged from 9 to 100% for dissolved P, and 34 to 100% for particulate P. However, one of the particulate P fractions was bound in biomass and therefore was not directly bioavailable. The conditions in the March experiment represented a natural spring bloom with a residual potential for planktonic growth. In June and September, the nutrients needed for growth were depleted in the different treatments. In December, a spring bloom was simulated by the laboratory conditions. Preferential P uptake by a specific group of organisms could not be observed directly, although a trend of higher utilization of dissolved P by heterotrophic bacteria was observed. In conclusion, the bioavailable P (sum of dissolved P fractions and one particulate P fraction) accounted for between 20 and 94% of the total P. Consequently, our experiments demonstrated that the commonly monitored P fractions lead to an underestimation of the bioavailable P and thus of potential for eutrophication in aquatic systems, too.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-08-20
    Description: Although the main stem node number of soybean [Glycine max (L.) Merr. ] is an important yield-related trait, there have been limited studies on the effect of plant density on the identification of quantitative trait loci (QTL) for main stem node number (MSNN). To address this issue, here, 144 four-way recombinant inbred lines (FW-RILs) derived from Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19 were used to identify QTL for MSNN with densities of 2.2 × 105 (D1) and 3 × 105 (D2) plants/ha in five environments by linkage and association studies. As a result, the linkage and association studies identified 40 and 28 QTL in D1 and D2, respectively, indicating the difference in QTL in various densities. Among these QTL, five were common in the two densities; 36 were singly identified for response to density; 12 were repeatedly identified by both response to density and phenotype of two densities. Thirty-one were repeatedly detected across various methods, densities, and environments in the linkage and association studies. Among the 24 common QTL in the linkage and association studies, 15 explained a phenotypic variation of more than 10%. Finally, Glyma.06G094400, Glyma.06G147600, Glyma.19G160800.1, and Glyma.19G161100 were predicted to be associated with MSNN. These findings will help to elucidate the genetic basis of MSNN and improve molecular assistant selection in high-yield soybean breeding.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-08-20
    Description: Cholera toxin (CT)-producing Vibrio cholerae O1 and O139 cause acute diarrheal disease and are proven etiological agents of cholera epidemics and pandemics. On the other hand, V. cholerae non-O1/non-O139 are designated as non-agglutinable (NAG) vibrios and are not associated with epidemic cholera. The majority of NAG vibrios do not possess the gene for CT (ctx). In this study, we isolated three NAG strains (strains No. 1, 2, and 3) with ctx from pond water in Kolkata, India, and examined their pathogenic properties. The enterotoxicity of the three NAG strains in vivo was examined using the rabbit ileal intestinal loop test. Strain No. 1 induced the accumulation of fluid in the loop, and the volume of fluid was reduced by simultaneous administration of anti-CT antiserum into the loop. The volume of fluid in the loop caused by strains No. 2 and 3 was small and undetectable, respectively. Then, we cultured these three strains in liquid medium in vitro at two temperatures, 25°C and 37°C, and examined the amount of CT accumulated in the culture supernatant. CT was accumulated in the culture supernatant of strain No.1 when the strain was cultured at 25°C, but that was low when cultured at 37°C. The CT amount accumulated in the culture supernatants of the No. 2 and No. 3 strains was extremely low at both temperature under culture conditions examined. In order to clarify the virulence properties of these strains, genome sequences of the three strains were analyzed. The analysis showed that there was no noticeable difference among three isolates both in the genes for virulence factors and regulatory genes of ctx. However, vibrio seventh pandemic island-II (VSP-II) was retained in strain No. 1, but not in strains No. 2 or 3. Furthermore, it was revealed that the genotype of the B subunit of CT in strain No. 1 was type 1 and those of strains No. 2 and 3 were type 8. Histopathological examination showed the disappearance of villi in intestinal tissue exposed to strain No. 1. In addition, fluid accumulated in the loop due to the action of strain No. 1 had hemolytic activity. This indicated that strain No. 1 may possesses virulence factors to induce severe syndrome when the strain infects humans, and that some strains of NAG vibrio inhabiting pond water in Kolkata have already acquired virulence, which can cause illness in humans. There is a possibility that these virulent NAG vibrios, which have acquired genes encoding factors involved in virulence of V. cholerae O1, may emerge in various parts of the world and cause epidemics in the future.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-08-20
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-08-20
    Description: Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-08-20
    Description: Highly specialised biota occurring at hydrothermally active vents on the northern Mid-Atlantic Ridge (nMAR: from south of Iceland to the Equator) have been the subject of numerous research projects over the 36-year period since these habitats were first discovered in the region. When hydrothermal activity ceases, biota endemic to hydrothermally active habitats are lost, and a new biota colonise these sites. Little is known about the biota colonising hydrothermally inactive sulphide habitats on the nMAR, although these sites may be the target of deep-sea mining within the next decade. In this review, we seek to clarify the current knowledge of biological communities colonising hydrothermally active habitats and inactive sulphide habitats on the nMAR. To achieve this, we (1) used a systematic review process to update the species list of benthic invertebrates associated with hydrothermally active habitats, (2) conducted a regional biogeographic analysis of hydrothermally active vent fields on the nMAR, (3) undertook a comprehensive literature review to provide a descriptive account of biological communities, and (4) identified key knowledge gaps in the current understanding of nMAR hydrothermally active and inactive ecosystems. Our updated species list increases the number of benthic invertebrates recorded from hydrothermally active habitats on the nMAR to 158 taxa. Our regional biogeographic analysis separates nMAR hydrothermal vent fields into distinct clusters based on depth/latitude and chimney composition. Vent fields close to the Azores (Menez Gwen, Lucky Strike, Rainbow) formed a separate cluster from those at greater depths south of the Azores (Broken Spur, TAG, Snake Pit, Logatchev, and Ashadze-1). Moytirra, located north of the Azores, clustered separately, as did Lost City with its unique carbonate chimneys. We present detailed information on the biological communities at hydrothermally active and inactive habitats in this region, and discuss the information available on the diversity, ecosystem function, trophic relationships, connectivity, temporal variability, and resilience and recovery of these communities. Many knowledge gaps still exist, with detailed information needed on all aspects of the biological communities at hydrothermally active habitats and inactive sulphide habitats on the nMAR to understand and predict impacts from natural and human-induced disturbances in the region.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-08-20
    Description: How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms–protozoans–appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals–metazoans–appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-08-20
    Description: Background The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. Results A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. Conclusions Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-08-20
    Description: Background Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. Results In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20–1 and qSPC_20–2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20–1 and qSPC_20–2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. Conclusions These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-08-20
    Description: Postpartum depression (PPD) is a mental disorder that affects pregnant women around the world, with serious consequences for mothers, families, and children. Its pathogenesis remains unclear, and medications for treating PPD that can be used during lactation remain to be identified. 919 syrup (919 TJ) is a Chinese herbal medicine that has been shown to be beneficial in the treatment of postpartum depression in both clinical and experimental studies. The mechanism of action of 919 TJ is unclear. 919 syrup is ingested orally, making the potential interaction between the drug and the gut microbiome impossible to ignore. We therefore hypothesized that 919 syrup could improve the symptoms of postpartum depression by affecting the structure and function of the intestinal flora, thereby altering hippocampal metabolism. We compared changes in hippocampal metabolism, fecal metabolism, and intestinal microflora of control BALB/c mice, mice with induced untreated PPD, and mice with induced PPD treated with 919 TJ, and found that 4-aminobutyric acid (GABA) in the hippocampus corresponded with PPD behaviors. Based on changes in GABA levels, multiple key gut bacterial species (Mucispirillum schaedleri, Bifidobacterium pseudolongum, Desulfovibrio piger, Alloprevotella tannerae, Bacteroides sp.2.1.33B and Prevotella sp. CAG:755) were associated with PPD. Metabolic markers that may represent the function of the intestinal microbiota in mice with PPD were identified (Met-Arg, urocanic acid, thioetheramide-PC, L-pipecolic acid, and linoleoyl ethanolamide). The relationship between these factors is not a simple one-to-one correspondence, but more likely a network of staggered functions. We therefore believe that the composition and function of the entire intestinal flora should be emphasized in research studying the gut and PPD, rather than changes in the abundance of individual bacterial species. The introduction of this concept of “GutBalance” may help clarify the relationship between gut bacteria and systemic disease.
    Electronic ISSN: 2235-2988
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-08-20
    Electronic ISSN: 2296-701X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-08-20
    Description: Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA–miRNA–mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-08-20
    Description: Fuzi (the lateral root of Aconitum carmichaelii Debx.) is a traditional Chinese medicine that is cultivated in more than eight provinces in China. However, it can be easily devastated by post-harvest rot, causing huge losses. Therefore, it is extremely important that the primary causal pathogens of post-harvest Fuzi rot are identified and appropriate detection methods for them are developed to prevent and control losses. In this study, two bacterial strains (X1 and X2) were isolated from rotten post-harvest Fuzi. Based on their morphological, physiological, and biochemical characteristics, housekeeping gene homologies, and matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF MS) results, these isolates were identified as Pseudomonas aeruginosa and Serratia marcescens. The pathogenicities of these isolates were confirmed by fulfilling Koch’s postulates demonstrating that they were post-harvest Fuzi rot pathogens. Two loop-mediated isothermal amplification (LAMP) methods targeting the gyrase B subunit (gyrB) gene of P. aeruginosa and the phosphatidylinositol glycan C (pigC) gene of S. marcescens were successfully developed, and it was found that the target genes were highly specific to the two pathogens. These LAMP methods were used to detect P. aeruginosa and S. marcescens in 46 naturally occurring Fuzi and their associated rhizosphere soil samples of unknown etiology. The two bacterial assays were positive in some healthy and rotten samples and could be accomplished within 1 h at 65°C without the need for complicated, expensive instruments. To our knowledge, this is the first report of P. aeruginosa and S. marcescens causing post-harvest Fuzi rot. The newly developed methods are expected to have applications in point-of-care testing for the two pathogens under different Fuzi planting procedures and will significantly contribute to the control and prevention of Fuzi rot.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-08-20
    Description: Silicon (Si) deficiency, caused by acidic soil and rainy climate, is a major constraint for sugarcane production in southern China. Si application generally improves sugarcane growth; however, there are few studies on the relationships between enhanced plant growth, changes in rhizosphere soil, and bacterial communities. A field experiment was conducted to measure sugarcane agronomic traits, plant nutrient contents, rhizosphere soil enzyme activities and chemical properties, and the rhizosphere bacterial community diversity and structure of three predominant sugarcane varieties under two Si treatments, i.e., 0 and 200 kg of silicon dioxide (SiO2) ha−1 regarded as Si0 and Si200, respectively. Results showed that Si application substantially improved the sugarcane stalk fresh weight and Si, phosphorus (P), and potassium (K) contents comparing to Si0, and had an obvious impact on rhizosphere soil pH, available Si (ASi), available P (AP), available K (AK), total phosphorus (TP), and the activity of acid phosphatase. Furthermore, the relative abundances of Proteobacteria showed a remarkable increase in Si200, which may be the dominant group in sugarcane growth under Si application. Interestingly, the AP was noticed as a major factor that caused bacterial community structure differences between the two Si treatments according to canonical correspondence analysis (CCA). In addition, the association network analysis indicated that Si application enriched the rhizosphere bacterial network, which could be beneficial to sugarcane growth. Overall, appropriate Si application, i.e., 200 kg SiO2 ha−1 promoted sugarcane growth, changed rhizosphere soil enzyme activities and chemical properties, and bacterial community structures.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-08-20
    Description: Accurate survival prediction of breast cancer holds significant meaning for improving patient care. Approaches using multiple heterogeneous modalities such as gene expression, copy number alteration, and clinical data have showed significant advantages over those with only one modality for patient survival prediction. However, existing survival prediction methods tend to ignore the structured information between patients and multimodal data. We propose a multimodal data fusion model based on a novel multimodal affinity fusion network (MAFN) for survival prediction of breast cancer by integrating gene expression, copy number alteration, and clinical data. First, a stack-based shallow self-attention network is utilized to guide the amplification of tiny lesion regions on the original data, which locates and enhances the survival-related features. Then, an affinity fusion module is proposed to map the structured information between patients and multimodal data. The module endows the network with a stronger fusion feature representation and discrimination capability. Finally, the fusion feature embedding and a specific feature embedding from a triple modal network are fused to make the classification of long-term survival or short-term survival for each patient. As expected, the evaluation results on comprehensive performance indicate that MAFN achieves better predictive performance than existing methods. Additionally, our method can be extended to the survival prediction of other cancer diseases, providing a new strategy for other diseases prognosis.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-08-20
    Description: The emergence of antimicrobial-resistant (AMR) bacteria has become one of the most serious threats to global health, necessitating the development of novel antimicrobial strategies. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system, known as a bacterial adaptive immune system, can be repurposed to selectively target and destruct bacterial genomes other than invasive genetic elements. Thus, the CRISPR-Cas system offers an attractive option for the development of the next-generation antimicrobials to combat infectious diseases especially those caused by AMR pathogens. However, the application of CRISPR-Cas antimicrobials remains at a very preliminary stage and numerous obstacles await to be solved. In this mini-review, we summarize the development of using type I, type II, and type VI CRISPR-Cas antimicrobials to eradicate AMR pathogens and plasmids in the past a few years. We also discuss the most common challenges in applying CRISPR-Cas antimicrobials and potential solutions to overcome them.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-08-20
    Description: BackgroundOur previous study found that acupuncture with low frequency electrical stimulation (Acu/LFES) prevents muscle atrophy by attenuation of protein degradation in mice. The current study examines the impact of Acu/LFES on protein synthesis.MethodC57/BL6 mice received Acu/LFES treatment on hindlimb for 30 min once. Acu/LFES points were selected by WHO Standard Acupuncture Nomenclature and electric stimulation applied using an SDZ-II Electronic acupuncture instrument. Muscle protein synthesis was measured by the surface-sensing of translation (SUnSET) assay. Exosomes were isolated using serial centrifugation and concentration and size of the collected exosomes were measured using a NanoSight instrument. The mature microRNA library in serum exosomes was validated using a High Sensitivity DNA chip.ResultsProtein synthesis was enhanced in the both hindlimb and forelimb muscles. Blocking exosome secretion with GW4869 decreased the Acu/LFES-induced increases in protein synthesis. MicroRNA-deep sequencing demonstrated that four members of the Let-7 miRNA family were significantly decreased in serum exosomes. Real time qPCR further verified Acu/LFES-mediated decreases of let-7c-5p in serum exosomes and skeletal muscles. In cultured C2C12 myotubes, inhibition of let-7c not only increased protein synthesis, but also enhanced protein abundance of Igf1 and Igf1 receptors. Using a luciferase reporter assay, we demonstrated that let-7 directly inhibits Igf1.ConclusionAcu/LFES on hindlimb decreases let-7-5p leading to upregulation of the Igf1 signaling and increasing protein synthesis in both hindlimb and forelimb skeletal muscles. This provides a new understanding of how the electrical acupuncture treatment can positively influence muscle health.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-08-20
    Description: Nanotechnological developments, including fabrication and use of magnetic nanomaterials, are growing at a fast pace. Magnetic nanoparticles are exciting tools for use in healthcare, biological sensors, and environmental remediation. Due to better control over final-product characteristics and cleaner production, biogenic nanomagnets are preferable over synthetic ones for technological use. In this sense, the technical requirements and economic factors for setting up industrial production of magnetotactic bacteria (MTB)-derived nanomagnets were studied in the present work. Magnetite fabrication costs in a single-stage fed-batch and a semicontinuous process were US$ 10,372 and US$ 11,169 per kilogram, respectively. Depending on the variations of the production process, the minimum selling price for biogenic nanomagnets ranged between US$ 21 and US$ 120 per gram. Because these prices are consistently below commercial values for synthetic nanoparticles, we suggest that microbial production is competitive and constitutes an attractive alternative for a greener manufacturing of magnetic nanoparticles nanotools with versatile applicability.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-08-20
    Description: Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-08-20
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-08-20
    Description: Functional genomics experiments, like ChIP-Seq or ATAC-Seq, produce results that are summarized as a region set. There is no way to objectively evaluate the effectiveness of region set similarity metrics. We present Bedshift, a tool for perturbing BED files by randomly shifting, adding, and dropping regions from a reference file. The perturbed files can be used to benchmark similarity metrics, as well as for other applications. We highlight differences in behavior between metrics, such as that the Jaccard score is most sensitive to added or dropped regions, while coverage score is most sensitive to shifted regions.
    Print ISSN: 1465-6906
    Electronic ISSN: 1474-760X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-08-20
    Description: Melocactus glaucescens is an endangered cactus highly valued for its ornamental properties. In vitro shoot production of this species provides a sustainable alternative to overharvesting from the wild; however, its propagation could be improved if the genetic regulation underlying its developmental processes were known. The present study generated de novo transcriptome data, describing in vitro shoot organogenesis induction in M. glaucescens. Total RNA was extracted from explants before (control) and after shoot organogenesis induction (treated). A total of 14,478 unigenes (average length, 520 bases) were obtained using Illumina HiSeq 3000 (Illumina Inc., San Diego, CA, USA) sequencing and transcriptome assembly. Filtering for differential expression yielded 2,058 unigenes. Pairwise comparison of treated vs. control genes revealed that 1,241 (60.3%) unigenes exhibited no significant change, 226 (11%) were downregulated, and 591 (28.7%) were upregulated. Based on database analysis, more transcription factor families and unigenes appeared to be upregulated in the treated samples than in controls. Expression of WOUND INDUCED DEDIFFERENTIATION 1 (WIND1) and CALMODULIN (CaM) genes, both of which were upregulated in treated samples, was further validated by real-time quantitative PCR (RT-qPCR). Differences in gene expression patterns between control and treated samples indicate substantial changes in the primary and secondary metabolism of M. glaucescens after the induction of shoot organogenesis. These results help to clarify the molecular genetics and functional genomic aspects underlying propagation in the Cactaceae family.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-08-20
    Description: Using 2,733 longitudinal vaginal microbiome samples (representing local microbial communities) from 79 individuals (representing meta-communities) in the states of healthy, BV (bacterial vaginosis) and pregnancy, we assess and interpret the relative importance of stochastic forces (e.g., stochastic drifts in bacteria demography, and stochastic dispersal) vs. deterministic selection (e.g., host genome, and host physiology) in shaping the dynamics of human vaginal microbiome (HVM) diversity by an integrated analysis with multi-site neutral (MSN) and niche-neutral hybrid (NNH) modeling. It was found that, when the traditional “default” P-value = 0.05 was specified, the neutral drifts were predominant (≥50% metacommunities indistinguishable from the MSN prediction), while the niche differentiations were moderate (
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-08-20
    Description: An alternative decision axiom to guide in determining the optimal intervention strategy to maximize cowpea production is proposed. According to the decrement from the maximum concept of Mitscherlich, the decrement from the maximum for each stressor must be minimized to produce the absolute maximum production. In crop production, this means all deficient nutrients must be supplemented to ensure maximum yield and laid the foundation in fertilizer formulation. However, its implementation is not economically feasible in many situations, particularly where multiple environmental factors impact crop productivity as in the case of low resource conditions. We propose and test the hypothesis that yield allocation will increase when the most limiting stressor among prevailing stressors is eliminated at least until the next limiting stressor impacts productivity. We selected drought limiting savanna conditions and cowpea (Vigna unguiculata), adapted to nitrogen dependence. To determine the limiting condition, we measured the response of cowpea to D-sorbitol, nitrogen, and non-hormonal biostimulant (nhB) treatments. The nhB treatment increased total biomass by 45% compared to nitrogen, 13%, and D-sorbitol, 17%, suggesting osmotic stress is more limiting in the observed savanna conditions. The effect of the biostimulant is due to antioxidants and key amino acids that stimulate metabolism and stress resistance. Where nitrogen becomes the next constraining factor, biostimulants can contribute organic nitrogen. The study supports the use of biostimulants as candidate intervention under conditions where crop productivity is limited by multiple or alternating constraints during crop growth.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-08-20
    Description: Low protein diets are commonly used in the growing-finishing pig stage of swine production; however, the effects of low dietary protein on the intestinal microbiota and their metabolites, and their association with pig sex, remain unclear. The present study aimed to assess the impact of a low crude protein (CP) diet on the gut microbiome and metabolome, and to reveal any relationship with sex. Barrows and gilts (both n = 24; initial body = 68.33 ± 0.881 kg) were allocated into two treatments according to sex. The four groups comprised two pairs of gilts and barrows fed with a high protein diet (CP 17% at stage I; CP 13% at stage II) and a low protein diet (CP 15% at stage I; CP 11% at stage II), respectively, for 51 d. Eight pigs in each group were slaughtered and their colon contents were collected. Intestinal microbiota and their metabolites were assessed using 16S rRNA sequencing and tandem mass spectrometry, respectively. The low protein diet increased intestinal microbiota species and richness indices (P 〈 0.05) in both sexes compared with the high protein diet. The sample Shannon index was different (P 〈 0.01) between barrows and gilts. At the genus level, unidentified Clostridiales (P 〈 0.05), Neisseria (P 〈 0.05), unidentified Prevotellaceae (P 〈 0.01) and Gracilibacteria (P 〈 0.05) were affected by dietary protein levels. The relative abundance of unidentified Prevotellaceae was different (P 〈 0.01) between barrows and gilts. The influence of dietary protein levels on Neisseria (P 〈 0.05), unidentified Prevotellaceae (P 〈 0.01) and Gracilibacteria (P 〈 0.05) were associated with sex. Metabolomic profiling indicated that dietary protein levels mainly affected intestinal metabolites in gilts rather than barrows. A total of 434 differentially abundant metabolites were identified in gilts fed the two protein diets. Correlation analysis identified that six differentially abundant microbiota communities were closely associated with twelve metabolites that were enriched for amino acids, inflammation, immune, and disease-related metabolic pathways. These results suggested that decreasing dietary protein contents changed the intestinal microbiota in growing-finishing pigs, which selectively affected the intestinal metabolite profiles in gilts.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-08-20
    Description: Background: Liver cirrhosis is a relevant comorbidity with increasing prevalence. Postoperative decompensation and development of complications in patients with cirrhosis remains a frequent clinical problem. Surgery has been discussed as a precipitating event for decompensation and complications of cirrhosis, but the underlying pathomechanisms are still obscure. The aim of this study was to analyze the role of abdominal extrahepatic surgery in cirrhosis on portal pressure and fibrosis in a preclinical model.Methods: Compensated liver cirrhosis was induced using tetrachlormethane (CCL4) inhalation and bile duct ligation (BDL) models in rats, non-cirrhotic portal hypertension by partial portal vein ligation (PPVL). Intestinal manipulation (IM) as a model of extrahepatic abdominal surgery was performed. 2 and 7 days after IM, portal pressure was measured in-vivo. Hydroxyproline measurements, Sirius Red staining and qPCR measurements of the liver were performed for evaluation of fibrosis development and hepatic inflammation. Laboratory parameters of liver function in serum were analyzed.Results: Portal pressure was significantly elevated 2 and 7 days after IM in both models of cirrhosis. In the non-cirrhotic model the trend was the same, while not statistically significant. In both cirrhotic models, IM shows strong effects of decompensation, with significant weight loss, elevation of liver enzymes and hypoalbuminemia. 7 days after IM in the BDL group, Sirius red staining and hydroxyproline levels showed significant progression of fibrosis and significantly elevated mRNA levels of hepatic inflammation compared to the respective control group. A progression of fibrosis was not observed in the CCL4 model.Conclusion: In animal models of cirrhosis with continuous liver injury (BDL), IM increases portal pressure, and development of fibrosis. Perioperative portal pressure and hence inflammation processes may be therapeutic targets to prevent post-operative decompensation in cirrhosis.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-08-20
    Description: Transcutaneous auricular vagus nerve stimulation (taVNS) is a novel non-invasive brain stimulation technique considered as a potential supplementary treatment option for a wide range of diseases. Although first promising findings were obtained so far, the exact mode of action of taVNS is not fully understood yet. We recently developed an examination schedule to probe for immediate taVNS-induced modifications of large-scale epileptic brain networks. With this schedule, we observed short-term taVNS to have a topology-modifying, robustness- and stability-enhancing immediate effect on large-scale functional brain networks from subjects with focal epilepsies. We here expand on this study and investigate the impact of short-term taVNS on various local and global characteristics of large-scale evolving functional brain networks from a group of 30 subjects with and without central nervous system diseases. Our findings point to differential, at first glance counterintuitive, taVNS-mediated alterations of local and global topological network characteristics that result in a reconfiguration of networks and a modification of their stability and robustness properties. We propose a model of a stimulation-related stretching and compression of evolving functional brain networks that may help to better understand the mode of action of taVNS.
    Electronic ISSN: 1664-042X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-08-21
    Description: Background Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. Methods Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. Results Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. Conclusions The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-08-21
    Description: Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-08-19
    Description: Cyclonic and anticyclonic eddies are usually characterized by upwelling and downwelling, respectively, which are induced by eddy pumping near their core. Using a repeated expendable bathythermograph transect (XBT) and Argo floats, and by cruise experiments, we determined that not all eddies in the northern South China Sea (NSCS) were accompanied by eddy pumping. The weakening of background thermocline was attributed to the strengthening of eddy pumping, affected by (1) wind-induced meridional Sverdrup transports and (2) Kuroshio intrusion into the NSCS. Higher particulate organic carbon (POC) fluxes (〉 100 mg-C m−2 day−1) were found near the eddy cores with significant eddy pumping (defined by a depth change of 22°C isotherm near the thermocline for over 10 m), although the satellite-estimated POC fluxes were inconsistent with the in-situ POC fluxes. nitrogen limitation transition and high POC flux were even found near the core of a smaller mesoscale (diameter 〈 100 km) cyclonic eddy in May 2014, during the weakening of the background thermocline in the NSCS. This finding provides evidence that small mesoscale eddies can efficiently provide nutrients to the subsurface, and that they can remove carbon from the euphotic zone. This is important for global warming, which generally strengthens upper ocean stratification.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-08-19
    Description: Capsule endoscopy is a leading diagnostic tool for small bowel lesions which faces certain challenges such as time-consuming interpretation and harsh optical environment inside the small intestine. Specialists unavoidably waste lots of time on searching for a high clearness degree image for accurate diagnostics. However, current clearness degree classification methods are based on either traditional attributes or an unexplainable deep neural network. In this paper, we propose a multi-task framework, called the multi-task classification and segmentation network (MTCSN), to achieve joint learning of clearness degree (CD) and tissue semantic segmentation (TSS) for the first time. In the MTCSN, the CD helps to generate better refined TSS, while TSS provides an explicable semantic map to better classify the CD. In addition, we present a new benchmark, named the Capsule-Endoscopy Crohn’s Disease dataset, which introduces the challenges faced in the real world including motion blur, excreta occlusion, reflection, and various complex alimentary scenes that are widely acknowledged in endoscopy examination. Extensive experiments and ablation studies report the significant performance gains of the MTCSN over state-of-the-art methods.
    Electronic ISSN: 2296-889X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-08-19
    Description: Against the potential risk in oxygenic photosynthesis, that is, the generation of reactive oxygen species, photosynthetic electron transport needs to be regulated in response to environmental fluctuations. One of the most important regulations is keeping the reaction center chlorophyll (P700) of photosystem I in its oxidized form in excess light conditions. The oxidation of P700 is supported by dissipating excess electrons safely to O2, and we previously found that the molecular mechanism of the alternative electron sink is changed from flavodiiron proteins (FLV) to photorespiration in the evolutionary history from cyanobacteria to plants. However, the overall picture of the regulation of photosynthetic electron transport is still not clear in bryophytes, the evolutionary intermediates. Here, we investigated the physiological roles of FLV and photorespiration for P700 oxidation in the liverwort Marchantia polymorpha by using the mutants deficient in FLV (flv1) at different O2 partial pressures. The effective quantum yield of photosystem II significantly decreased at 2kPa O2 in flv1, indicating that photorespiration functions as the electron sink. Nevertheless, it was clear from the phenotype of flv1 that FLV was dominant for P700 oxidation in M. polymorpha. These data suggested that photorespiration has yet not replaced FLV in functioning for P700 oxidation in the basal land plant probably because of the lower contribution to lumen acidification, compared with FLV, as reflected in the results of electrochromic shift analysis.
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-08-20
    Description: One of the hallmarks of placental dysfunction is the increase of oxidative stress. This process, along with the overexpression of the inflammasome, creates a downward spiral that can lead to a series of severe pregnancy complications. Ferroptosis is a form of iron-mediated cell death involving the accumulation of reactive oxygen species, lipid peroxides. In this study, the rats’ model of oxidative stress abortion was established, and hydrogen peroxide (H2O2) was used to establish a cellular model of placental oxidative stress. RNAi, western blot, and immunofluorescence were used to evaluate the expression of specific markers of ferroptosis and the expression of the inflammasome in placental trophoblast cells. We observed excessive levels of ferroptosis and inflammasome activation in both rats’ model and placental trophoblast cell model of oxidative stress. When the NLRP1 inflammasome was silenced, the expression levels of GSH and Glutathione peroxidase 4 (GPX4) were increased, while the expression levels of transferrin receptor 1 (TFR1), acyl-CoA synthetase long-chain family member 4 (ACSL4), Superoxide dismutase (SOD), and Malondialdehyde (MDA) were decreased. However, when an NLRP1 activator was applied, we observed the opposite phenomenon. We further explored the mechanisms underlying the actions of ferroptosis to inflammasomes. The expression levels of NLRP1, NLRP3, IL-1β, and caspase-1 were positively correlated with the ferroptosis following the application of ferroptosis inhibitor (ferrostatin-1) and ferroptosis activator (erastin). The existence of ferroptosis was demonstrated in the oxidative stress model of placental trophoblast cells; the results also indicate ferroptosis is linked with the expression of NLRP1 inflammasome. These findings may provide a valuable therapeutic target for the pathogenesis of pregnancy-related diseases.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-08-20
    Description: Acute myeloid leukemia (AML) is a serious, life-threatening, and hardly curable hematological malignancy that affects the myeloid cell progenies and challenges patients of all ages but mostly occurs in adults. Although several therapies are available including chemotherapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and receptor-antagonist drugs, the 5-year survival of patients is quietly disappointing, less than 30%. alloHSCT is the major curative approach for AML with promising results but the treatment has severe adverse effects such as graft-versus-host disease (GVHD). Therefore, as an alternative, more efficient and less harmful immunotherapy-based approaches such as the adoptive transferring T cell therapy are in development for the treatment of AML. As such, chimeric antigen receptor (CAR) T cells are engineered T cells which have been developed in recent years as a breakthrough in cancer therapy. Interestingly, CAR T cells are effective against both solid tumors and hematological cancers such as AML. Gradually, CAR T cell therapy found its way into cancer therapy and was widely used for the treatment of hematologic malignancies with successful results particularly with somewhat better results in hematological cancer in comparison to solid tumors. The AML is generally fatal, therapy-resistant, and sometimes refractory disease with a disappointing low survival rate and weak prognosis. The 5-year survival rate for AML is only about 30%. However, the survival rate seems to be age-dependent. Novel CAR T cell therapy is a light at the end of the tunnel. The CD19 is an important target antigen in AML and lymphoma and the CAR T cells are engineered to target the CD19. In addition, a lot of research goes on the discovery of novel target antigens with therapeutic efficacy and utilizable for generating CAR T cells against various types of cancers. In recent years, many pieces of research on screening and identification of novel AML antigen targets with the goal of generation of effective anti-cancer CAR T cells have led to new therapies with strong cytotoxicity against cancerous cells and impressive clinical outcomes. Also, more recently, an improved version of CAR T cells which were called modified or smartly reprogrammed CAR T cells has been designed with less unwelcome effects, less toxicity against normal cells, more safety, more specificity, longer persistence, and proliferation capability. The purpose of this review is to discuss and explain the most recent advances in CAR T cell-based therapies targeting AML antigens and review the results of preclinical and clinical trials. Moreover, we will criticize the clinical challenges, side effects, and the different strategies for CAR T cell therapy.
    Electronic ISSN: 1757-6512
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-08-20
    Description: Aspergillus aculeatus ZC-1005 (ZC-1005 was used as the abbreviation of this strain) is a hemicellulase-producing strain isolated from rotten citrus rind buried in the soil. Our previous study has shown its biochemical properties including high xylanase activity, mannanase activity, and degradation reaction with citrus mesocarp. In this study, we focused more on the enzyme safety evaluation and the genome sequencing via PacBio and Illumina platforms. High biological safety of the crude enzymes of ZC-1005 has been proven by the acute oral toxicity test, sub-chronic toxicity test, micronucleus test, and sperm malformation test. The genome of ZC-1005 had a GC content of 52.53%, with a size of 35,458,484 bp, and encoded 10,147 genes. Strain ZC-1005 harbored 269 glycosyl hydrolase (GH) genes of 64 families. The fungus produces cellulose-acting (GH3, GH5, GH12, and GH1) and hemicellulose-acting enzymes (GH16, GH31, GH2, and GH92). In genome annotation, we paid more attention to the genes encoding xylanase, such as gene 01512, gene 05833, gene 05469, gene 07781, gene 08432, gene 09042, gene 08008, and gene 09694. The collaboration between complete genome information and the degradation test confirmed that ZC-1005 could degrade cellulose and xylan. Our results showed that the citrus enzymatic decapsulation technology was efficacious and safe for canned citrus product processing, which may also solve the industrial waste problem. Therefore, ZC-1005 and the crude enzyme secreted from the strain were very promising to be used in the citrus processing industry.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-08-20
    Description: Cholesterol as an allosteric modulator of G protein-coupled receptor (GPCR) function is well documented. This quintessential mammalian lipid facilitates receptor–ligand interactions and multimerization states. Functionally, this introduces a complicated mechanism for the homeostatic modulation of GPCR signaling. Chemokine receptors are Class A GPCRs responsible for immune cell trafficking through the binding of endogenous peptide ligands. CCR3 is a CC motif chemokine receptor expressed by eosinophils and basophils. It traffics these cells by transducing the signal stimulated by the CC motif chemokine primary messengers 11, 24, and 26. These behaviors are close to the human immunoresponse. Thus, CCR3 is implicated in cancer metastasis and inflammatory conditions. However, there is a paucity of experimental evidence linking the functional states of CCR3 to the molecular mechanisms of cholesterol–receptor cooperativity. In this vein, we present a means to combine codon harmonization and a maltose-binding protein fusion tag to produce CCR3 from E. coli. This technique yields ∼2.6 mg of functional GPCR per liter of minimal media. We leveraged this protein production capability to investigate the effects of cholesterol on CCR3 function in vitro. We found that affinity for the endogenous ligand CCL11 increases in a dose-dependent manner with cholesterol concentration in both styrene:maleic acid lipid particles (SMALPs) and proteoliposomes. This heightened receptor activation directly translates to increased signal transduction as measured by the GTPase activity of the bound G-protein α inhibitory subunit 3 (Gαi3). This work represents a critical step forward in understanding the role of cholesterol-GPCR allostery in regulation of signal transduction.
    Electronic ISSN: 2296-889X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-08-20
    Description: Background One of the major trends in angiosperm evolution was the shift from woody to herbaceous habit. However, reversals known as derived woodiness have also been reported in numerous, distantly related clades. Among theories evoked to explain the factors promoting the evolution of derived woodiness are moderate climate theory and cavitation theory. The first assumes that woody habit evolves in response to mild climate allowing for prolonged life span, which in turn leads to bigger and woodier bodies. The second sees woodiness as a result of natural selection for higher cavitation resistance in seasonally dry environments. Here, we compare climatic niches of woody and herbaceous, mostly southern African, umbellifers from the Lefebvrea clade to assess whether woody taxa in fact occur in markedly drier habitats. We also calibrate their phylogeny to estimate when derived woodiness evolved. Finally, we describe the wood anatomy of selected woody and herbaceous taxa to see if life forms are linked to any particular wood traits. Results The evolution of derived woodiness in chamaephytes and phanerophytes as well as the shifts to short-lived annual therophytes in the Lefebvrea clade took place at roughly the same time: in the Late Miocene during a trend of global climate aridification. Climatic niches of woody and herbaceous genera from the Cape Floristic Region overlap. There are only two genera with distinctly different climatic preferences: they are herbaceous and occur outside of the Cape Floristic Region. Therefore, studied herbs have an overall climatic niche wider than their woody cousins. Woody and herbaceous species do not differ in qualitative wood anatomy, which is more affected by stem architecture and, probably, reproductive strategy than by habit. Conclusions Palaeodrought was likely a stimulus for the evolution of derived woodiness in the Lefebvrea clade, supporting the cavitation theory. The concurrent evolution of short-lived annuals withering before summer exemplifies an alternative solution to the same problem of drought-induced cavitation. Changes of the life form were most likely neither spurred nor precluded by any qualitative wood traits, which in turn are more affected by internode length and probably also reproductive strategy.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-08-20
    Description: Research in the past decade has demonstrated that a single reference genome is not representative of a species’ diversity. MaizeGDB introduces a pan-genomic approach to hosting genomic data, leveraging the large number of diverse maize genomes and their associated datasets to quickly and efficiently connect genomes, gene models, expression, epigenome, sequence variation, structural variation, transposable elements, and diversity data across genomes so that researchers can easily track the structural and functional differences of a locus and its orthologs across maize. We believe our framework is unique and provides a template for any genomic database poised to host large-scale pan-genomic data.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-08-20
    Description: Assessing the sustainability of socio-ecological systems requires understanding the interactions between numerous ecological, economic and social components. Models are often used to investigate how interactions shape system feedbacks and drive the complex dynamics at play in such systems. However, building these models is a non-trivial exercise, which often neglects stakeholder knowledge and perceptions. We adopted a participatory approach that relies on conducting workshops to engage stakeholders into the development of qualitative models of system feedback. This type of participatory qualitative modeling is well suited to address the complexity of socio-ecological systems in a holistic manner, identify key stakes and feedbacks, and predict responses to perturbations. We use this approach to investigate the factors that condition sustainability of the socio-ecological system associated with shellfish aquaculture in the Normand-Breton Gulf in France. Six region-specific workshops were organized with shellfish producers, managers and other stakeholders to identify and describe key components, interactions and pressures that contribute to overall socio-ecological dynamics. Differences and commonalities in system perceptions were identified across the different regions and focus groups. We reconciled stakeholder-specific discrepancies in model structure into a synthetic representation that conciliates alternative views of the system. Next, we predicted how the system might respond to alternative scenarios of change. Overall, our participatory qualitative modeling exercise identified key drivers of the system under study that constitute effective management levers to maintain system sustainability. For instance, low social acceptability of the aquaculture industry generally appears to be a major constraint on the sustainability of shellfish aquaculture in the Normand-Breton Gulf, while reducing rearing density appears to be a key driver of sustainability.
    Electronic ISSN: 2296-701X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-08-20
    Description: A series of neurological manifestations such as intellectual disability and epilepsy are closely related to hypomagnesemia. Cyclin M2 (CNNM2) proteins, as a member of magnesium (Mg2+) transporters, were found along the basolateral membrane of distal renal tubules and involved in the reabsorption of Mg2+. Homozygous and heterozygous variants in CNNM2 reported so far were responsible for a variable degree of hypomagnesemia, several of which also showed varying degrees of neurological phenotypes such as intellectual disability and epilepsy. Here, we report a de novo heterozygous CNNM2 variant (c.2228C 〉 T, p.Ser743Phe) in a Chinese patient, which is the variant located in the cyclic nucleotide monophosphate-binding homology (CNBH) domain of CNNM2 proteins. The patient presented with mild intellectual disability and refractory epilepsy but without hypomagnesemia. Thus, we reviewed the literature and analyzed the phenotypes related to CNNM2 variants, and then concluded that the number of variant alleles and the changed protein domains correlates with the severity of the disease, and speculated that the CNBH domain of CNNM2 possibly plays a limited role in Mg2+ transport but a significant role in brain development. Furthermore, it can be speculated that neurological phenotypes such as intellectual disability and seizures can be purely caused by CNNM2 variants.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-08-05
    Description: In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-08-20
    Description: Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-08-20
    Description: Pseudomonas aeruginosa is one of the most critical opportunistic pathogens in humans, able to cause both lethal acute and chronic lung infections. In previous work, we indicated that the small RNA ErsA plays a role in the regulatory network of P. aeruginosa pathogenicity in airways infection. To give further insight into the lifestyle functions that could be either directly or indirectly regulated by ErsA during infection, we reanalyzed the categories of genes whose transcription appeared dysregulated in an ersA knock-out mutant of the P. aeruginosa PAO1 reference strain. This preliminary analysis indicated ErsA as a candidate co-modulator of denitrification and in general, the anaerobiosis response, a characteristic physiologic state of P. aeruginosa during chronic infection of the lung of cystic fibrosis (CF) patients. To explain the pattern of dysregulation of the anaerobic-lifestyle genes in the lack of ErsA, we postulated that ErsA regulation could target the expression of Anr, a well-known transcription factor that modulates a broad regulon of anoxia-responsive genes, and also Dnr, required for the transcription activation of the denitrification machinery. Our results show that ErsA positively regulates Anr expression at the post-transcriptional level while no direct ErsA-mediated regulatory effect on Dnr was observed. However, Dnr is transcriptionally downregulated in the absence of ErsA and this is consistent with the well-characterized regulatory link between Anr and Dnr. Anr regulatory function is critical for P. aeruginosa anaerobic growth, both through denitrification and fermentation of arginine. Interestingly, we found that, differently from the laboratory strain PAO1, ErsA deletion strongly impairs the anaerobic growth by both denitrification and arginine fermentation of the RP73 clinical isolate, a multi-drug resistant P. aeruginosa CF-adapted strain. This suggests that P. aeruginosa adaptation to CF lung might result in a higher dependence on ErsA for the transduction of the multiple signals to the regulatory network of key functions for survivance in such a complex environment. Together, our results suggest that ErsA takes an upper place in the regulatory network of airways infection, transducing host inputs to biofilm-related factors, as underlined in our previous reports, and to functions that allow P. aeruginosa to thrive in low-oxygen conditions.
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-08-20
    Electronic ISSN: 2296-634X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-08-20
    Description: The COVID-19 pandemic has now strengthened its hold on human health and coronavirus’ lethal existence does not seem to be going away soon. In this regard, the optimization of reported information for understanding the mechanistic insights that facilitate the discovery towards new therapeutics is an unmet need. Remdesivir (RDV) is established to inhibit RNA-dependent RNA polymerase (RdRp) in distinct viral families including Ebola and SARS-CoV-2. Therefore, its derivatives have the potential to become a broad-spectrum antiviral agent effective against many other RNA viruses. In this study, we performed comparative analysis of RDV, RMP (RDV monophosphate), and RTP (RDV triphosphate) to undermine the inhibition mechanism caused by RTP as it is a metabolically active form of RDV. The MD results indicated that RTP rearranges itself from its initial RMP-pose at the catalytic site towards NTP entry site, however, RMP stays at the catalytic site. The thermodynamic profiling and free-energy analysis revealed that a stable pose of RTP at NTP entrance site seems critical to modulate the inhibition as its binding strength improved more than its initial RMP-pose obtained from docking at the catalytic site. We found that RTP not only occupies the residues K545, R553, and R555, essential to escorting NTP towards the catalytic site, but also interacts with other residues D618, P620, K621, R624, K798, and R836 that contribute significantly to its stability. From the interaction fingerprinting it is revealed that the RTP interact with basic and conserved residues that are detrimental for the RdRp activity, therefore it possibly perturbed the catalytic site and blocked the NTP entrance site considerably. Overall, we are highlighting the RTP binding pose and key residues that render the SARS-CoV-2 RdRp inactive, paving crucial insights towards the discovery of potent inhibitors.
    Electronic ISSN: 2296-889X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-08-20
    Description: The synonymous codons usage shows a characteristic pattern of preference in each organism. This codon usage bias is thought to have evolved for efficient protein synthesis. Synonymous codon usage was studied in genes of the hexaploid wheat Triticum aestivum (AABBDD) and its progenitor species, Triticum urartu (AA), Aegilops tauschii (DD), and Triticum turgidum (AABB). Triticum aestivum exhibited stronger usage bias for G/C-ending codons than did the three progenitor species, and this bias was especially higher compared to T. turgidum and Ae. tauschii. High GC content is a primary factor influencing codon usage in T. aestivum. Neutrality analysis showed a significant positive correlation (p
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-08-21
    Description: Background In most flowering plants, the plastid genome exhibits a quadripartite genome structure, comprising a large and a small single copy as well as two inverted repeat regions. Thousands of plastid genomes have been sequenced and submitted to public sequence repositories in recent years. The quality of sequence annotations in many of these submissions is known to be problematic, especially regarding annotations that specify the length and location of the inverted repeats: such annotations are either missing or portray the length or location of the repeats incorrectly. However, many biological investigations employ publicly available plastid genomes at face value and implicitly assume the correctness of their sequence annotations. Results We introduce , a Python package that automatically assesses the frequency of incomplete or incorrect annotations of the inverted repeats among publicly available plastid genomes. Specifically, the tool automatically retrieves plastid genomes from NCBI Nucleotide under variable search parameters, surveys them for length and location specifications of inverted repeats, and confirms any inverted repeat annotations through self-comparisons of the genome sequences. The package also includes functionality for automatic identification and removal of duplicate genome records and accounts for taxa that genuinely lack inverted repeats. A survey of the presence of inverted repeat annotations among all plastid genomes of flowering plants submitted to NCBI Nucleotide until the end of 2020 using , followed by a statistical analysis of potential associations with record metadata, highlights that release year and publication status of the genome records have a significant effect on the frequency of complete and equal-length inverted repeat annotations. Conclusion The number of plastid genomes on NCBI Nucleotide has increased dramatically in recent years, and many more genomes will likely be submitted over the next decade. enables researchers to automatically access and evaluate the inverted repeats of these plastid genomes as well as their sequence annotations and, thus, contributes to increasing the reliability of publicly available plastid genomes. The software is freely available via the Python package index at http://pypi.python.org/pypi/airpg.
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-08-21
    Description: Objectives Peer support is rapidly being introduced into mental health services internationally, yet peer support interventions are often poorly described, limiting the usefulness of research in informing policy and practice. This paper reports the development of a peer support intervention that aims to improve outcomes of discharge from inpatient to community mental health care. People with experiential knowledge of using mental health services—peer workers and service user researchers—were involved in all stages of developing the intervention: generating intervention components; producing the intervention handbook; piloting the intervention. Results Systematic review and expert panels, including our Lived Experience Advisory Panel, identified 66 candidate intervention components in five domains: Recruitment and Role Description of Peer Workers; Training for Peer Workers; Delivery of Peer Support; Supervision and Support for Peer Workers; Organisation and Team. A series of Local Advisory Groups were used to prioritise components and explore implementation issues using consensus methods, refining an intervention blueprint. A peer support handbook and peer worker training programme were produced by the study team and piloted in two study sites. Feedback workshops were held with peer workers and their supervisors to produce a final handbook and training programme. The ENRICH trial is registered with the ISRCTN clinical trial register, number ISRCTN 10043328, and was overseen by an independent steering committee and a data monitoring committee.
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-08-21
    Description: Background As effects of global climate change intensify, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The secondary cell wall is a vanguard of resistance to these stresses. Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot) cause internal damage to the stalks of the drought tolerant C4 grass, sorghum (Sorghum bicolor (L.) Moench), resulting in reduced transpiration, reduced photosynthesis, and increased lodging, severely reducing yields. Drought can magnify these losses. Two null alleles in monolignol biosynthesis of sorghum (brown midrib 6-ref, bmr6-ref; cinnamyl alcohol dehydrogenase, CAD; and bmr12-ref; caffeic acid O-methyltransferase, COMT) were used to investigate the interaction of water limitation with F. thapsinum or M. phaseolina infection. Results The bmr12 plants inoculated with either of these pathogens had increased levels of salicylic acid (SA) and jasmonic acid (JA) across both watering conditions and significantly reduced lesion sizes under water limitation compared to adequate watering, which suggested that drought may prime induction of pathogen resistance. RNA-Seq analysis revealed coexpressed genes associated with pathogen infection. The defense response included phytohormone signal transduction pathways, primary and secondary cell wall biosynthetic genes, and genes encoding components of the spliceosome and proteasome. Conclusion Alterations in the composition of the secondary cell wall affect immunity by influencing phenolic composition and phytohormone signaling, leading to the action of defense pathways. Some of these pathways appear to be activated or enhanced by drought. Secondary metabolite biosynthesis and modification in SA and JA signal transduction may be involved in priming a stronger defense response in water-limited bmr12 plants.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-08-21
    Description: Background Retinol binding protein 4 (RBP4) has been proposed to play a role in the pathophysiology of coronary artery disease (CAD), but previous findings on the association of RBP4 levels with CAD are inconsistent. Methods A meta-analysis based on observational studies was conducted to evaluate the association between circulating RBP4 levels and CAD. Databases including PubMed, Web of Science, Embase, Google Scholar and ClinicalTrials.gov database were searched for eligible studies published up to 12 July 2021. Standard mean differences (SMDs) with 95% confidence intervals (CIs) were calculated using the inverse variance heterogeneity (IVhet) and random-effects model for data with moderate and high heterogeneity (I2 〉 30%) and data with low heterogeneity were analysed using a fixed-effects model (I2 ≤ 30%). Moreover, a bias-adjusted quality-effects model was generated, and the prediction interval was also calculated under the random-effects model. Results Two nested case-control studies, one cohort study and twelve case–control studies with a total of 7111 participants were included. Circulating RBP4 levels in patients with CAD were comparable to those in the controls under the IVhet model (SMD: 0.25, 95% CI: − 0.29-0.79, I2: 96.00%). The quality-effects model produced consistent results. However, the association turned to be significant under the random-effect model (SMD: 0.46, 95% CI: 0.17–0.75, I2: 96.00%), whereas the 95% predictive interval (PI) included null values (95% PI: − 0.82-1.74). Subgroup analyses illustrated a positive relationship between CAD and RBP4 levels in patients with complications (SMD: 1.34, 95% CI: 0.38–2.29, I2: 96.00%). The meta-regression analysis revealed that the mean BMI of patients (P = 0.03) and complication status (P = 0.01) influenced the variation in SMD. Conclusions There was low-quality evidence that patients with CAD exhibited similar circulating RBP4 levels compared with controls, and high inter-study heterogeneity was also observed. Thus, RBP4 might not be a potential risk factor for CAD. Comparisons among different subtypes of RBP4 with larger sample size are needed in the future.
    Electronic ISSN: 1476-511X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-08-21
    Description: Background To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. Results The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. Conclusions Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...