ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (1,037,715)
  • Molecular Diversity Preservation International  (495,622)
  • American Institute of Physics (AIP)  (241,959)
  • Blackwell Publishing Ltd  (182,058)
  • American Physical Society (APS)
Collection
Publisher
Language
Years
  • 101
    Publication Date: 2024-02-07
    Description: Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan-Gough hotspot at the Mid-Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi-linear polarity zones crossing the plateau and following expected MAR paleo-locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n-C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading-type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano. Key Points - Valdivia Bank is characterized by quasi-linear magnetic anomalies that are parallel to the inferred paleo-Mid-Atlantic Ridge - Magnetic anomalies imply that the plateau becomes younger E-W consistent with formation via seafloor spreading during anomalies C34n-C33r - Rift valleys, division of C33r, and anomaly curvature imply complex ridge tectonics and a ridge jump
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-02-07
    Description: The Makassar Strait, the main passageway of the Indonesian Throughflow (ITF), is an important component of Indo-Pacific climate through its inter-basin redistribution of heat and freshwater. Observational studies suggest that wind-driven freshwater advection from the marginal seas into the Makassar Strait modulates the strait's surface transport. However, direct observations are too short (〈15 years) to resolve variability on decadal timescales. Here we use a series of global ocean simulations to assess the advected freshwater contributions to ITF transport across a range of timescales. The simulated seasonal and interannual freshwater dynamics are consistent with previous studies. On decadal timescales, we find that wind-driven advection of South China Sea (SCS) waters into the Makassar Strait modulates upper-ocean ITF transport. Atmospheric circulation changes associated with Pacific decadal variability appear to drive this mechanism via Pacific lower-latitude western boundary current interactions that affect the SCS circulation. Key Points: - A global ocean model is used to show how freshwater impacts the decadal variability of transport through the main Indonesian Throughflow pathway - Wind-driven advection of South China Sea freshwater induces an upstream pressure gradient that reduces transport - Freshwater input is modulated by atmospheric circulation changes associated with Pacific decadal variability
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-02-07
    Description: The Radiative Forcing Model Intercomparison Project (RFMIP) allows estimates of effective radiative forcing (ERF) in the Coupled Model Intercomparison Project phase six (CMIP6). We analyze the RFMIP output, including the new experiments from models that use the same parameterization for anthropogenic aerosols (RFMIP-SpAer), to characterize and better understand model differences in aerosol ERF. We find little changes in the aerosol ERF for 1970–2014 in the CMIP6 multi-model mean, which implies greenhouse gases primarily explain the positive trend in the total anthropogenic ERF. Cloud-mediated effects dominate the present-day aerosol ERF in most models. The results highlight a regional increase in marine cloudiness due to aerosols, despite suppressed cloud lifetime effects in that RFMIP-SpAer experiment. Negative cloud-mediated effects mask positive direct effects in many models, which arise from strong anthropogenic aerosol absorption. The findings suggest opportunities to better constrain simulated ERF by revisiting the optical properties and long-range transport of aerosols. Key Points: - Coupled Model Intercomparison Project phase six (CMIP6) averaged trend in aerosol effective radiative forcing (ERF) is small for 1970–2014 and weakly positive for 2000–2014 - Positive direct aerosol radiative effects in CMIP6 models are associated with strong aerosol absorption - Diverse and often strong cloud-mediated effects primarily determine the magnitude of aerosol ERF in CMIP6
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-02-07
    Description: In geoscience and other fields, researchers use models as a simplified representation of reality. The models include processes that often rely on uncertain parameters that reduce model performance in reflecting real-world processes. The problem is commonly addressed by adapting parameter values to reach a good match between model simulations and corresponding observations. Different optimization tools have been successfully applied to address this task of model calibration. However, seeking one best value for every single model parameter might not always be optimal. For example, if model equations integrate over multiple real-world processes which cannot be fully resolved, it might be preferable to consider associated model parameters as random parameters. In this paper, a random parameter is drawn from a wide probability distribution for every singe model simulation. We developed an optimization approach that allows us to declare certain parameters random while optimizing those that are assumed to take fixed values. We designed a corresponding variant of the well known Covariance Matrix Adaption Evolution Strategy (CMA-ES). The new algorithm was applied to a global biogeochemical circulation model to quantify the impact of zooplankton mortality on the underlying biogeochemistry. Compared to the deterministic CMA-ES, our new method converges to a solution that better suits the credible range of the corresponding random parameter with less computational effort.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-02-07
    Description: The oceanic uptake and resulting storage of the anthropogenic CO2 (Cant) that humans have emitted into the atmosphere moderates climate change. Yet our knowledge about how this uptake and storage has progressed in time remained limited. Here, we determine decadal trends in the storage of Cant by applying the eMLR(C*) regression method to ocean interior observations collected repeatedly since the 1990s. We find that the global ocean storage of Cant grew from 1994 to 2004 by 29 ± 3 Pg C dec−1 and from 2004 to 2014 by 27 ± 3 Pg C dec−1 (±1σ). The storage change in the second decade is about 15 ± 11% lower than one would expect from the first decade and assuming proportional increase with atmospheric CO2. We attribute this reduction in sensitivity to a decrease of the ocean buffer capacity and changes in ocean circulation. In the Atlantic Ocean, the maximum storage rate shifted from the Northern to the Southern Hemisphere, plausibly caused by a weaker formation rate of North Atlantic Deep Waters and an intensified ventilation of mode and intermediate waters in the Southern Hemisphere. Our estimates of the Cant accumulation differ from cumulative net air-sea flux estimates by several Pg C dec−1, suggesting a substantial and variable, but uncertain net loss of natural carbon from the ocean. Our findings indicate a considerable vulnerability of the ocean carbon sink to climate variability and change. Key Points: - The global ocean storage of anthropogenic carbon grew by 29 ± 3 and 27 ± 3 Pg C dec−1 from 1994 to 2004 and 2004 to 2014, respectively - The change in oceanic storage of anthropogenic carbon relative to the atmospheric CO2 growth decreased by 15 ± 11% from the first to the second decade - This reduction is attributed to a decrease of the ocean buffer capacity and changes in ocean circulation
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-02-07
    Description: An increasingly globalised world has facilitated the movement of non-native species (NNS) via the poorly regulated international pet trade. While focus is increasingly being placed on preventative action to combat invasive NNS—often cheaper and less difficult than the management of established populations—successful prevention requires controlling potential pathways and obtaining baseline knowledge of species' availability. Here we performed an in-depth analysis of the freshwater pet trade as one major vector of NNS, compiling its species inventory and deriving threats of NNS release and establishment in the wild. With Germany as our study region, we surveyed pet stores, websites and the country's largest online classified portal, eBay Kleinanzeigen, recording the taxa encountered. For each species, we determined the likelihood of release based on availability and price (cheaper and/or more readily available species have been shown to be of greater risk), and the likelihood of establishment based on ecological niche breadth and niche overlap with environmental conditions in Germany. The survey revealed 669 species, of which 651 were non-native to Germany. Looking at release likelihood, more readily available species in pet stores and on websites proved to be cheaper. For websites, there was a significant effect of occurrence status (i.e. released, not released, native) on price, with released and native species being significantly cheaper. Species previously released in Germany and elsewhere demonstrated greater niche breadths and greater niche overlaps between their source regions and Germany; and for species released in Germany, there was a significantly positive relationship between the magnitude of niche overlap and the number of documented occurrences. Finally, we combined our release and establishment likelihood findings under ‘Release Risk’ metrics to highlight the species most worthy of prioritisation. We propose these metrics as proactive methods for screening species in the trade, which can inform future policy direction and intervention. Read the free Plain Language Summary for this article on the Journal blog.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-02-07
    Description: Compound‐specific isotope analysis has opened up a new realm for resolving the sources and transformation processes of marine organic matter. However, the stable carbon isotope patterns of amino sugars remain unknown. We examined δ 13 C of amino sugars in marine phytoplankton and heterotrophic bacteria, and the variations in amino sugar δ 13 C during 66‐d planktonic organic matter degradation experiments, to investigate the metabolic sources and transformations of amino sugars by bacterial reworking. The δ 13 C values of glucosamine (GlcN) and galactosamine (GalN) were comparable in heterotrophic bacteria (difference Δδ 13 C GlcN–GalN = 0.4–4.0‰) but pronouncedly different in phytoplankton (Δδ 13 C GlcN–GalN = 4.3–16.6‰), suggesting similar synthesis pathways of GlcN and GalN in bacteria that differed from phytoplankton. Compared to GlcN and GalN, bacteria preferentially use isotopically light organic compounds for muramic acid (MurA) synthesis. During simulated microbial degradation of organic matter, the δ 13 C difference between GlcN and GalN decreased from 5.8‰ on the initial day to 1‰ at a late stage in the experiment, but the difference between GlcN and MurA remained at 5.3‰. This difference is consistent with the pattern in cultured phytoplankton (average Δδ 13 C GlcN–GalN = 5.9‰ ± 1.4‰) and heterotrophic bacteria (average Δδ 13 C GlcN–MurA = 4.6‰ ± 3.4‰), indicating enhanced bacterial resynthesis as degradation proceeded. Based on the difference in δ 13 C among GlcN, GalN, and MurA, we propose a novel index of variation in amino sugar δ 13 C, representing amino sugar resynthesis, to describe the diagenetic state of organic matter. Together, these findings suggest that amino sugar δ 13 C can be used as a new tool to track heterotrophic processes of marine organic matter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-02-07
    Description: Marine nitrogen (N2) fixation supports significant primary productivity in the global ocean. However, in one of the most productive regions of the world ocean, the northern Humboldt Upwelling System (HUS), the magnitude and spatial distribution of this process remains poorly characterized. This study presents a spatially resolved dataset of N2 fixation rates across six coastal transects of the northern HUS off Peru (8°S – 16°S) during austral summer. N2 fixation rates were detected throughout the waters column including within the OMZ between 12°S and 16°S. N2 fixation rates were highest where the subsurface Oxygen Minimum Zone (OMZ, O2 〈20 µmol L-1) was most intense and estimated nitrogen (N) loss was highest. There, rates were measured throughout the water column. Hence the vertical and spatial distribution of rates indicates colocation of N2 fixation with N loss in the coastal productive waters of the northern HUS. Despite high phosphate and total dissolvable iron (TdFe) concentrations throughout the study area, N2 fixation was still generally low (1.19 ± 3.81 nmol L-1 d-1) and its distribution could not be directly explained by these two factors. Our results suggest that the distribution was likely influenced by a complex interplay of environmental factors including phytoplankton biomass and organic matter availability, and potentially iron, or other trace metal (co)-limitation of both N2 fixation and primary production. In general, our results support previous conclusions that N2 fixation in the northern HUS plays a minor role as a source of new N and to replenish the regional N loss. Key Points: A north-to-south pattern in N2 fixation rates was observed implying increased N turnover between 12°S and 16°S where N loss was pronounced Highest N2 fixation rates were measured in coastal productive waters above and within the OMZ, showing no clear relationship with Fe or P The magnitude of N2 fixation was low compared to predictions, estimated to account for ∼0.3% of primary production and 〈2% of local N loss
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-02-07
    Description: Understanding individual growth in commercially exploited fish populations is key to successful stock assessment and informed ecosystem-based fisheries management. Traditionally, growth rates in marine fish are estimated using otolith age-readings in combination with age-length relationships from field samples, or tag-recapture field experiments. However, for some species, otolith-based approaches have been proven unreliable and tag-recapture experiments suffer from high working effort and costs as well as low recapture rates. An important alternative approach for estimating fish growth is represented by bioenergetic modelling which in addition to pure growth estimation can provide valuable insights into the processes leading to temporal growth changes resulting from environmental and related behavioural changes. We here developed an individual-based bioenergetic model for Western Baltic cod (Gadus morhua), traditionally a commercially important fish species that however collapsed recently and likely suffers from climate change effects. Western Baltic cod is an ideal case study for bioenergetic modelling because of recently gained in-situ process knowledge on spatial distribution and feeding behaviour based on highly resolved data on stomachs and fish distribution. Additionally, physiological processes such as gastric evacuation, consumption, net-conversion efficiency and metabolic rates have been well studied for cod in laboratory experiments. Our model reliably reproduced seasonal growth patterns observed in the field. Importantly, our bioenergetic modelling approach implementing depth-use patterns and food intake allowed us to explain the potentially detrimental effect summer heat periods have on the growth of Western Baltic cod that likely will increasingly occur in the future. Hence, our model simulations highlighted a potential mechanism on how warming due to climate change affects the growth of a key species that may apply for similar environments elsewhere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-02-07
    Description: We introduce a new hypothesis concerning the role of internal climate dynamics in the non-linear transitions from interglacial to glacial (IG-G) state since the Mid Pleistocene Transition (MPT). These transitions encompass large and abrupt changes in atmospheric CO2, ice volume, and temperature that we suggest involve critical interactions between insolation and high amplitude oscillations in ocean/atmosphere circulation patterns. Specifically, we highlight the large amplitude of millennial-scale climate oscillations across the transition from Marine Isotope Stage (MIS) 5 to 4, which we argue led to amplified cooling of the deep ocean and we demonstrate that analogous episodes of extreme cooling systematically preceded glacial periods of the last 800 kyr. We suggest that such cooling necessitates a reconfiguration of the deep ocean to avoid a density paradox between northern and southern-sourced deep waters (SSW), which could be accomplished by increasing the relative volume and or salinity of SSW, thus providing the necessary storage capacity for the subsequent (delayed) and relatively abrupt drawdown of CO2. We therefore explain the transient decoupling of Antarctic temperature from CO2 across MIS 5/4 as a direct consequence of millennial activity at that time. We further show that similar climatic decoupling typically occurred during times of low obliquity and was a ubiquitous feature of IG-G transitions over the past 800 kyr, producing the appearance of bimodality in records of CO2, benthic δ18O and others. Finally we argue that the apparent lack of bimodality in the pre-MPT record of benthic δ18O implies that the dynamics associated with IG-G transitions changed across the MPT
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-02-07
    Description: Pocillopora damicornis (Linnaeus, 1758), a species complex, consists of several genetic lineages, some of which likely represent reproductively isolated species, including the species Pocillopora acuta Lamarck, 1816. Pocillopora acuta can exhibit similar morphological characteristics as P. damicornis, thus making it difficult to identify species-level taxonomic units. To determine whether the P. damicornis-like colonies on the reefs in the Andaman Sea (previously often identified as P. damicornis) consist of different species, we sampled individual colonies at five sites along a 50 km coastal stretch at Phuket Island and four island sites towards Krabi Province, Thailand. We sequenced 210 coral samples for the mitochondrial open reading frame and identified six distinct haplotypes, all belonging to P. acuta according to the literature. Recently, P. acuta was observed to efficiently recolonize heat-damaged reefs in Thailand as well as globally, making it a potentially important coral species in future reefs. Specifically in the light of global change, this study underscores the importance of high-resolution molecular species recognition, since taxonomic units are important factors for population genetic studies, and the latter are crucial for management and conservation efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-02-07
    Description: The Atlantic Meridional Overturning Circulation (AMOC) is a key feature of the North Atlantic with global ocean impacts. The AMOC's response to past changes in forcings during the Holocene provides important context for the coming centuries. Here, we investigate AMOC trends using an emerging set of transient simulations using multiple global climate models for the past 6,000 years. Although some models show changes, no consistent trend in overall AMOC strength during the mid-to-late Holocene emerges from the ensemble. We interpret this result to suggest no overall change in AMOC, which fits with our assessment of available proxy reconstructions. The decadal variability of the AMOC does not change in ensemble during the mid- and late-Holocene. There are interesting AMOC changes seen in the early Holocene, but their nature depends a lot on which inputs are used to drive the experiment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-02-07
    Description: The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability-focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-02-07
    Description: Aim: Invasive alien species are a growing problem worldwide due to their ecological, economic and human health impacts. The “killer shrimp” Dikerogammarus villosus is a notorious invasive alien amphipod from the Ponto-Caspian region that has invaded many fresh and brackish waters across Europe. Understandings of large-scale population dynamics of highly impactful invaders such as D. villosus are lacking, inhibiting predictions of impact and efficient timing of management strategies. Hence, our aim was to assess trends and dynamics of D. villosus as well as its impacts in freshwater rivers and streams. Location: Europe. Methods: We analysed 96 European time series between 1994 and 2019 and identified trends in the relative abundance (i.e. dominance %) of D. villosus in invaded time series, as well as a set of site-specific characteristics to identify drivers and determinants of population changes and invasion dynamics using meta-regression modelling. We also looked at the spread over space and time to estimate the invasion speed (km/year) of D. villosus in Europe. We investigated the impact of D. villosus abundance on recipient community metrics (i.e. abundance, taxa richness, temporal turnover, Shannon diversity and Pielou evenness) using generalized linear models. Results: Population trends varied across the time series. Nevertheless, community dominance of D. villosus increased over time across all time series. The frequency of occurrences (used as a proxy for invader spread) was well described by a Pareto distribution, whereby we estimated a lag phase (i.e. the time between introduction and spatial expansion) of approximately 28 years, followed by a gradual increase before new occurrences declined rapidly in the long term. D. villosus population change was associated with decreased taxa richness, community turnover and Shannon diversity. Main Conclusion: Our results show that D. villosus is well-established in European waters and its abundance significantly alters ecological communities. However, the multidecadal lag phase prior to observed spatial expansion suggests that initial introductions by D. villosus are cryptic, thus signalling the need for more effective early detection methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-02-07
    Description: Background: Syngnathids are a highly derived and diverse fish clade comprising the pipefishes, pipe-horses, and seahorses. They are characterized by a plethora of iconic traits that increasingly capture the attention of biologists, including geneticists, ecologists, and developmental biologists. The current understanding of the origins of their derived body plan is, however, hampered by incomplete and limited descriptions of the early syngnathid ontogeny. Results: We provide a comprehensive description of the development of Nerophis ophidion, Syngnathus typhle, and Hippocampus erectus from early cleavage stages to release from the male brooding organ and beyond, including juvenile development. We comparatively describe skeletogenesis with a particular focus on dermal bony plates, the snout-like jaw morphology, and appendages. Conclusions: This most comprehensive and detailed account of syngnathid development to date suggests that convergent phenotypes (e.g., reduction and loss of the caudal fins), likely arose by distinct ontogenetic means in pipefishes and seahorses. Comparison of the ontogenetic trajectories of S. typhle and H. erectus provides indications that characteristic features of the seahorse body plan result from developmental truncation. Altogether, this work provides a valuable resource and framework for future research to understand the evolution of the outlandish syngnathid morphology from a developmental perspective.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-02-07
    Description: We calculate the depth to magnetic basement and the average crustal magnetic susceptibility, which is sensitive to the presence of iron-rich minerals, to interpret the present structure and the tecto-magmatic evolution in the Central Tethyan belt. Our results demonstrate exceptional variability of crustal magnetization with smooth, small-amplitude anomalies in the Gondwana realm and short-wavelength high-amplitude variations in the Laurentia realm. Poor correlation between known ophiolites and magnetization anomalies indicates that Tethyan ophiolites are relatively poorly magnetized, which we explain by demagnetization during recent magmatism. We analyze regional magnetic characteristics for mapping previously unknown oceanic fragments and mafic intrusions, hidden beneath sedimentary sequences or overprinted by tectono-magmatic events. By the style of crustal magnetization, we distinguish three types of basins and demonstrate that many small-size basins host large volumes of magmatic rocks within or below the sedimentary cover. We map the width of magmatic arcs to estimate paleo-subduction dip angle and find no systematic variation between the Neo-Tethys and Paleo-Tethys subduction systems, while the Pontides magmatic arc has shallow (∼15o) dip in the east and steep (∼50-55o) dip in the west. We recognize an unknown, buried 450 km-long magmatic arc along the western margin of the Kırşehir massif formed above steep (55o) subduction. We propose that lithosphere fragmentation associated with Neo-Tethys subduction systems may explain high-amplitude, high-gradient crustal magnetization in the Caucasus Large Igneous Province. Our results challenge conventional regional geological models, such as Neo-Tethyan subduction below the Greater Caucasus, and call for reevaluation of the regional paleotectonics. Key Points: Magnetic regionalization does not fully match regional geological models in the Central Tethyan Belt We identify previously unknown magmatic arcs and ocean relics Magnetization is weak in Gondwana and strong in Laurentia terranes: Kirsehir massif has Laurentia affinity
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-02-07
    Description: Offshore meteoric groundwater (OMG) has long been hypothesised to be a driver of seafloor geomorphic processes in continental margins worldwide. Testing this hypothesis has been challenging because of our limited understanding of the distribution and rate of OMG flow and seepage, and their efficacy as erosive/destabilising agents. Here we carry out numerical simulations of groundwater flow and slope stability using conceptual models and evolving stratigraphy - for passive siliciclastic and carbonate margin cases – to assess whether OMG and its evolution during a late Quaternary glacial cycle can generate the pore pressures required to trigger mechanical instabilities on the seafloor. Conceptual model results show that mechanical instabilities by OMG flow are most likely to occur in the outer shelf to upper slope, at or shortly before the Last Glacial Maximum sea level lowstand. Models with evolving stratigraphy show that OMG flow is a key driver of pore pressure development and instability in the carbonate margin case. In the siliciclastic margin case, OMG flow plays a secondary role in preconditioning the slope to failure. The higher degree of spatial/stratigraphic heterogeneity of carbonate margins, lower shear strengths of their sediments, and limited generation of overpressures by sediment loading may explain the higher susceptibility of carbonate margins, in comparison to siliciclastic margins, to mechanical instability by OMG flow. OMG likely played a more significant role in carbonate margin geomorphology (e.g. Bahamas, Maldives) than currently thought. Key Points Offshore meteoric groundwater (OMG) flow can drive mechanical instabilities in the outer shelf to upper slope Such instabilities occur at, or shortly after, the Last Glacial Maximum sea level lowstand Carbonate margins are more susceptible to mechanical instability by OMG than siliciclastic margins
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-02-07
    Description: The current narrative of artificial upwelling (AU) is to translocate nutrient rich deep water to the ocean surface, thereby stimulating the biological carbon pump (BCP). Our refined narrative takes the response of the solubility pump and the CO2 emission scenario into account. Using global ocean-atmosphere model experiments we show that the effectiveness of a hypothetical maximum AU deployment in all ocean areas where AU is predicted to lower surface pCO2, the draw down of CO2 from the atmosphere during years 2020–2100 depends strongly on the CO2 emission scenario and ranges from 1.01 Pg C/year (3.70 Pg CO2/year) under RCP 8.5 to 0.32 Pg C/year (1.17 Pg CO2/year) under RCP 2.6. The solubility pump becomes equally effective compared to the BCP under the highest emission scenario (RCP 8.5), but responds with CO2 outgassing under low CO2 emission scenarios. Key Points: - Artificial upwelling (AU) effectiveness to draw down CO2 from the atmosphere is strongly dependent on the future CO2 emission scenario - The solubility pump becomes as effective as the biological carbon pump under high emission scenarios - Organic matter transfer efficiency decreases under AU, likely due to higher water temperatures below the ocean's surface
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-02-07
    Description: An insufficient supply of the micronutrient iron (Fe) limits phytoplankton growth across large parts of the ocean. Ambient Fe speciation and solubility are largely dependent on seawater physico-chemical properties. We calculated the apparent Fe solubility (SFe(III)app) at equilibrium for ambient conditions, where SFe(III)app is defined as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to organic matter formed at a free Fe3+ concentration equal to the solubility of Fe hydroxide. We compared the SFe(III)app to measured dissolved Fe (dFe) in the Atlantic and Pacific Oceans. The SFe(III)app was overall ∼2 to 4-fold higher than observed dFe at depths less than 1000 m, ∼2-fold higher than the dFe between 1000-4000 m and ∼3-fold higher than dFe below 4000 m. Within the range of used parameters, our results showed that there was a similar trend in the vertical distributions of horizontally averaged SFe(III)app and dFe. Our results suggest that vertical dFe distributions are underpinned by changes in SFe(III)app which are driven by relative changes in ambient pH and temperature. Since both pH and temperature are essential parameters controlling ambient Fe speciation, these should be accounted for in investigations of changing Fe dynamics, particularly in the context of ocean acidification and warming. Key Points Apparent iron solubility is driven by ambient pH, temperature (T) and dissolved organic carbon (DOC), and showed a 6-fold variation between surface (pH= 8.05 on the total scale, DOC= 71.8 µmol L-1, T= 20.4 °C) and deep oceanic waters (pH= 7.82, DOC= 38.6 µmol L-1, T= 1.1°C). Higher values of apparent iron solubility were determined for deep Atlantic and Pacific waters, with lower values in subtropical gyres. Calculated apparent iron solubility showed a similar trend in vertical distribution to dissolved iron, highlighting the importance of considering the impact of changes in ambient physico-chemical conditions on seawater iron chemistry.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-02-07
    Description: The correlation between concentrations of dissolved barium (dBa) and silicon (dSi) in the modern ocean supports the use of Ba as a paleoceanographic proxy. However, the mechanisms behind their linkage and the exact processes controlling oceanic Ba cycling remain enigmatic. To discern the extent to which this association arises from biogeochemical processes versus physical mixing, we examine the behavior of Ba and Si at the Congo River-dominated Southeast Atlantic margin where active biological processes and large boundary inputs override the large-scale ocean circulation. Here we present the first combined measurements of dissolved stable Ba (δ138Ba) and Si (δ30Si) isotopes as well as Ba and Si fluxes estimated based on 228Ra from the Congo River mouth to the northern Angola Basin. In the surface waters, river-borne particle desorption or dissolution and shelf inputs lead to non-conservative additions of both dBa and dSi to the Congo-shelf-zone, with the Ba flux increasing more strongly than that of Si across the shelf. In the epipelagic and mesopelagic layers, Ba and Si are decoupled likely due to different depths of in situ barite precipitation and biogenic silica production. In the deep waters of the northern Angola Basin, we observe large enrichment of dBa, likely originating from high benthic inputs from the Congo deep-sea fan sediments. Our results reveal different mechanisms controlling the biogeochemical cycling of Ba and Si and highlight a strong margin influence on marine Ba cycling. Their close association across the global ocean must therefore mainly be a consequence of the large-scale ocean circulation. Key Points Stronger enrichment of dissolved barium (dBa) than silicon (dSi) observed in the shelf-zone of the Congo plume Diatom silica production has negligible effect on dissolved Ba isotopic compositions in large river plumes Strong dBa enrichment (up to 24 nM) in the deep water of the northern Angola Basin likely originates from high benthic inputs
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-02-07
    Description: Aquaculture has been one of the fastest-growing food production systems sectors for over three decades. With its growth, the demand for alternative, cheaper and high-quality feed ingredients is also increasing. Innovation investments on providing new functional feed alternatives have yielded several viable alternative raw materials. Considering all the current feed ingredients, their circular adaption in the aquafeed manufacturing industry is clearly of the utmost importance to achieve sustainable aquaculture in the near future. The use of terrestrial plant materials and animal by-products predominantly used in aquafeed ingredients puts a heavily reliance on terrestrial agroecosystems, which also has its own sustainability concerns. Therefore, the aquafeed industry needs to progress with functional and sustainable alternative raw materials for feed that must be more resilient and consistent, considering a circular perspective. In this review, we assess the current trends in using various marine organisms, ranging from microorganisms (including fungi, thraustochytrids, microalgae and bacteria) to macroalgae and macroinvertebrates as viable biological feed resources. This review focuses on the trend of circular use of resources and the development of new value chains. In this, we present a perspective of promoting novel circular economy value chains that promote the re-use of biological resources as valuable feed ingredients. Thus, we highlight some potentially important marine-derived resources that deserve further investigations for improving or addressing circular aquaculture.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-02-07
    Description: Invasive species can successfully and rapidly colonize new niches and expand ranges via founder effects and enhanced tolerance towards environmental stresses. However, the underpinning molecular mechanisms (i.e., gene expression changes) facilitating rapid adaptation to harsh environments are still poorly understood. The red seaweed Gracilaria vermiculophylla, which is native to the northwest Pacific but invaded North American and European coastal habitats over the last 100 years, provides an excellent model to examine whether enhanced tolerance at the level of gene expression contributed to its invasion success. We collected G. vermiculophylla from its native range in Japan and from two non-native regions along the Delmarva Peninsula (Eastern United States) and in Germany. Thalli were reared in a common garden for 4 months at which time we performed comparative transcriptome (mRNA) and microRNA (miRNA) sequencing. MRNA-expression profiling identified 59 genes that were differently expressed between native and non-native thalli. Of these genes, most were involved in metabolic pathways, including photosynthesis, abiotic stress, and biosynthesis of products and hormones in all four non-native sites. MiRNA-based target-gene correlation analysis in native/non-native pairs revealed that some target genes are positively or negatively regulated via epigenetic mechanisms. Importantly, these genes are mostly associated with metabolism and defence capability (e.g., metal transporter Nramp5, senescence-associated protein, cell wall-associated hydrolase, ycf68 protein and cytochrome P450-like TBP). Thus, our gene expression results indicate that resource reallocation to metabolic processes is most likely a predominant mechanism contributing to the range-wide persistence and adaptation of G. vermiculophylla in the invaded range. This study, therefore, provides molecular insight into the speed and nature of invasion-mediated rapid adaption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-02-07
    Description: Clonal reproduction, the formation of nearly identical individuals via mitosis in the absence of genetic recombination, is a very common reproductive mode across plants, fungi and animals. To detect clonal genetic structure, genetic similarity indices based on shared alleles are widely used, such as the Jaccard index, or identity by state. Here we propose a new pairwise genetic similarity index, the SH index, based on segregating genetic marker loci (typically single nucleotide polymorphisms) that are identically heterozygous for pairs of samples (NSH). To test our method, we analyse two old seagrass clones (Posidonia australis, estimated to be around 8500 years old; Zostera marina, 〉750 years old) along with two young Z. marina clones of known age (17 years old). We show that focusing on shared heterozygosity amplifies the power to distinguish sample pairs belonging to different clones compared to methods focusing on all shared alleles. Our proposed workflow can successfully detect clonemates at a location dominated by a single clone. When the collected samples involve two or more clones, the SH index shows a clear gap between clonemate pairs and interclone sample pairs. Ideally NSH should be on the order of approximately ≥3000, a number easily achievable via restriction-site associated DNA (RAD) sequencing or whole-genome resequencing. Another potential application of the SH index is to detect possible parent–descendant pairs under selfing. Our proposed workflow takes advantage of the availability of the larger number of genetic markers in the genomic era, and improves the ability to distinguish clonemates from nonclonemates in multicellular diploid clonal species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-02-07
    Description: Evolutionary novelties—derived traits without clear homology found in the ancestors of a lineage—may promote ecological specialization and facilitate adaptive radiations. Examples for such novelties include the wings of bats, pharyngeal jaws of cichlids and flowers of angiosperms. Belonoid fishes (flying fishes, halfbeaks and needlefishes) feature an astonishing diversity of extremely elongated jaw phenotypes with undetermined evolutionary origins. We investigate the development of elongated jaws in a halfbeak (Dermogenys pusilla) and a needlefish (Xenentodon cancila) using morphometrics, transcriptomics and in situ hybridization. We confirm that these fishes' elongated jaws are composed of distinct base and novel ‘extension’ portions. These extensions are morphologically unique to belonoids, and we describe the growth dynamics of both bases and extensions throughout early development in both studied species. From transcriptomic profiling, we deduce that jaw extension outgrowth is guided by populations of multipotent cells originating from the anterior tip of the dentary. These cells are shielded from differentiation, but proliferate and migrate anteriorly during the extension's allometric growth phase. Cells left behind at the tip leave the shielded zone and undergo differentiation into osteoblast-like cells, which deposit extracellular matrix with both bone and cartilage characteristics that mineralizes and thereby provides rigidity. Such bone has characteristics akin to histological observations on the elongated ‘kype’ process on lower jaws of male salmon, which may hint at common conserved regulatory underpinnings. Future studies will evaluate the molecular pathways that govern the anterior migration and proliferation of these multipotent cells underlying the belonoids' evolutionary novel jaw extensions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-02-07
    Description: Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13C and δ15N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13C and δ15N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-02-07
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985-2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is -1.6 +/- 0.2 PgC yr(-1) based on an ensemble of reconstructions of the history of sea surface pCO(2) (pCO(2) products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at -2.1 +/- 0.3 PgC yr(-1) by an ensemble of ocean biogeochemical models, and -2.4 +/- 0.1 PgC yr(-1) by two ocean circulation inverse models. The ocean also degasses about 0.65 +/- 0.3 PgC yr(-1) of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of -0.61 +/- 0.12 PgC yr(-1) decade(-1), while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of -0.34 +/- 0.06 and -0.41 +/- 0.03 PgC yr(-1) decade(-1), respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2-3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-02-07
    Description: Geochemical analyses of trace elements in the ocean water column have suggested that pelagic clay‐rich sediments are a major source of various elements to bottom‐waters. However, corresponding high‐quality measurements of trace element concentrations in porewaters of pelagic clay‐rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr −1 are Ba 3.9 ± 3.6 × 10 9 , Mn 3.4 ± 3.5 × 10 8 , Co 2.6 ± 1.3 × 10 7 , Ni 9.6 ± 8.6 × 10 8 , Cu 4.6 ± 2.4 × 10 9 , Cr 1.7 ± 1.1 × 10 8 , As 6.1 ± 7.0 × 10 8 , V 6.0 ± 2.5 × 10 9 . With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom‐water concentrations and ocean residence time of the studied elements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-02-07
    Description: In regions of the nitrogen limited low latitude ocean, phosphate can also be depleted to levels initiating stress responses in marine microbes. Here, we associate a broad region of phosphate depletion in the subtropical North Pacific with different levels of phosphorus stress. Nutrient and aerosol addition experiments demonstrated primary nitrogen limitation of the bulk phytoplankton community, with supply of aerosols relieving this limitation. At northern sites with depleted phosphate, alkaline phosphatase activities were enhanced, indicating elevated phosphorus stress. Analysis of satellite- and model-derived aerosol loading showed that aerosol deposition was elevated in these regions. Surface rate measurements suggested that the regional enhancement in phosphate depletion was predominantly driven by elevated nitrogen fixation, likely stimulated by the coincident supply of aerosol iron. Such observations are important for predicting future biogeochemical responses in the subtropical North Pacific to changing aerosol supply.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-02-07
    Description: Methane (CH4) is a climate-relevant trace gas that is emitted from the open and coastal oceans in considerable amounts. However, its distribution in remote oceanic areas is largely unknown. To fill this knowledge gap, dissolved CH4 was measured at nine stations at 75°S in the Ross Sea during austral summer in January 2020. CH4 undersaturation (mean: 82 ± 20%) was found throughout the water column. In subsurface waters, the distribution of CH4 mainly resulted from mixing of water masses and in situ consumption, whereas the CH4 concentrations in the surface mixed layer were mainly driven by air–sea exchange and diapycnal diffusion between the surface and subsurface layers, as well as consumption of CH4. With a mean air–sea CH4 flux density of −0.44 ± 0.34 μmol m−2 d−1, the Ross Sea was a substantial sink for atmospheric CH4 during austral summer, which is in contrast with most oceanic regions, which are known sources.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-02-07
    Description: Selection along environmental gradients can drive reproductive isolation and speciation. Among fishes, salinity is a major factor limiting species distributions, and despite its importance in generating species diversity, speciation events between marine and freshwater are rare. Here, we tested for mechanisms of reproductive isolation between locally adapted freshwater and brackish water-native populations of killifish, Fundulus heteroclitus, from either side of a hybrid zone along a salinity gradient. There was evidence for pre-zygotic endogenous reproductive isolation with reduced fertilization success between crosses of freshwater-native males and brackish water-native females. Exogenous pre-zygotic isolation was also present where females had highest fertilization in their native salinity. We used a replicated mass spawning design to test for mate choice in both brackish and fresh water. After genotyping 187 parents and 2523 offspring at 2347 SNPs across the genome, 85% of offspring were successfully assign to their parents. However, no reinforcing mate choice was observed. These results therefore demonstrate emerging, yet limited, reproductive isolation and incipient speciation across a marine to freshwater salinity gradient and suggest that both endogenous and exogenous mechanisms, but not assortative mating, contribute to divergence.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-02-07
    Description: The additional water from the Antarctic ice sheet and ice shelves due to climate‐induced melt can impact ocean circulation and global climate. However, the major processes driving melt are not adequately represented in Coupled Model Intercomparison Project phase 6 (CMIP6) models. Here, we analyze a novel multi‐model ensemble of CMIP6 models with consistent meltwater addition to examine the robustness of the modeled response to meltwater, which has not been possible in previous single‐model studies. Antarctic meltwater addition induces a substantial weakening of open‐ocean deep convection. Additionally, Antarctic Bottom Water warms, its volume contracts, and the sea surface cools. However, the magnitude of the reduction varies greatly across models, with differing anomalies correlated with their respective mean‐state climatology, indicating the state‐dependency of the climate response to meltwater. A better representation of the Southern Ocean mean state is necessary for narrowing the inter‐model spread of response to Antarctic meltwater. Plain Language Summary The melting of the Antarctic ice sheet and ice shelves can have significant impacts on ocean circulation and thermal structure, but current climate models do not fully capture these effects. In this study, we analyze seven climate models to understand how they respond to the addition of meltwater from Antarctica. We find that the presence of Antarctic meltwater leads to a significant weakening of deep convection in the open ocean. The meltwater also causes Antarctic Bottom Water to warm and its volume to decrease, while the sea surface cools and sea ice expands. However, the magnitude of the response to meltwater varies across models, suggesting that the mean‐state conditions of the Southern Ocean play a role. A better representation of the mean state and the inclusion of Antarctic meltwater in climate models will help reduce uncertainties and improve our understanding of the impact of Antarctic meltwater on climate. Key Points Antarctic meltwater substantially reduces the strength of simulated Southern Ocean deep convection in climate models The additional meltwater induces Antarctic Bottom Water warming and contraction, with dense water classes converting to lighter ones Differences in the magnitude of these responses between models can be partly attributed to their different base states
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-02-07
    Description: The Java ‐ Lesser Sunda margin, which features multi‐scale subducting oceanic basement relief, is classified as neutral (Lombok and Sumbawa) to erosional (Central Java to Bali) in comparison to its accretionary counterpart offshore Sumatra. However, a comprehensive analysis of how plate boundary and upper plate structure across the neutral to erosional transition are modulated by the subduction of oceanic basement relief is lacking to date. To shed light on the tectonic parameters that push the margin into the neutral or erosional domain, we combine multi‐channel reflection seismic images derived through a grid‐based P‐wave velocity inversion, and multibeam bathymetric maps. The data document how different scales of subducting topography modify seafloor morphology, upper plate structure, and décollement position. Large‐scale subducting features cause a landward shift of the deformation front, shortening of the accretionary wedge, and seafloor steepening at the relief's trailing edge. Small‐scale subducting ridges primarily impact the frontal prism resulting in over‐steepening at the trench and localized slope failure. Ahead of subducting relief, deformation of the accretionary wedge encompasses enhanced compression and a reduction in seafloor slope but appears independent of the size of the relief. Ridge and seamount subduction induce frontal erosion and basal erosion offshore Lombok and Bali, respectively. Our P‐wave velocity models indicate that the rigidity of the upper plate's base along the eastern Sunda margin is significantly lower than the worldwide trend. We conclude that this favors the genesis of tsunami earthquakes that have occurred on the Java margin. Plain Language Summary The convergence of the tectonic plates drives a wide variety of geological processes along the plate margins, including the formation of the forearc accretionary wedge, volcanic activities, and megathrust earthquakes. Over the past 40 years, marine research shows that different sizes of oceanic reliefs (seamounts and ridges) are widely distributed over the seafloor, approaching the trench, and eventually subducted underneath the overriding plate. An accurate observation of the subducted reliefs and their tectonic impact on the overriding plate depends on different observation approaches, data processing methods, and the evolutionary history of the forearc. In the Java margin, the oceanic seafloor features massive seamounts with different scales and shapes, and the bathymetry of the overriding plate is highly disturbed. This provides us with the best opportunity of studying the rugged seafloor's seismogenic and geological impacts. By using state‐of‐the‐art seismic imaging techniques, we image the subsurface structures, obtain the forearc velocity, identify the seamounts, and discuss the seamounts' effect on structural deformation and megathrust earthquake occurrence. Distinctively, the marine forearc gets shortened and thickened significantly by seamount subduction. Structural images sharply illustrate different deformation patterns and stress regimes at the seamount's different flanks and reveal the possible process of subduction erosion. Key Points Upper plate deformation scales with variable subducting relief, as observed along the Java Trench in seismic sections and bathymetry Subduction of seafloor topography induces progression from an accretion‐dominated domain toward a phase of subduction erosion The overall low rigidity of the upper plate's base may contribute to the Java margin earthquake's tsunami‐genesis
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-02-07
    Description: Accurately predicting future ocean acidification (OA) conditions is crucial for advancing OA research at regional and global scales, and guiding society's mitigation and adaptation efforts. This study presents a new model-data fusion product covering 10 global surface OA indicators based on 14 Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6), along with three recent observational ocean carbon data products. The indicators include fugacity of carbon dioxide, pH on total scale, total hydrogen ion content, free hydrogen ion content, carbonate ion content, aragonite saturation state, calcite saturation state, Revelle Factor, total dissolved inorganic carbon content, and total alkalinity content. The evolution of these OA indicators is presented on a global surface ocean 1° × 1° grid as decadal averages every 10 years from preindustrial conditions (1750), through historical conditions (1850–2010), and to five future Shared Socioeconomic Pathways (2020–2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. These OA trajectories represent an improvement over previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs. The generated data product offers a state-of-the-art research and management tool for the 21st century under the combined stressors of global climate change and ocean acidification. The gridded data product is available in NetCDF at the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html, and global maps of these indicators are available in jpeg at: https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/synthesis/surface-oa-indicators.html. Key Points: - This study presents the evolution of 10 ocean acidification (OA) indicators in the global surface ocean from 1750 to 2100 - By leveraging 14 Earth System Models (ESMs) and the latest observational data, it represents a significant advancement in OA projections - This inter-model comparison effort showcases the overall agreements among different ESMs in projecting surface ocean carbon variables
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-02-07
    Description: We evaluate the decadal evolution of ventilation and anthropogenic carbon (C-ant) in the Nordic Seas between 1982 and the 2010s. Ventilation changes on decadal timescale are identified by evaluating decadal changes in mean ages and apparent oxygen utilization in each of the four main basins of the Nordic Seas (the Greenland and Iceland Seas, and the Norwegian and Lofoten Basins). The ages are derived from the transient time distribution approach, based on the transient tracers chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6). The different decades show different phases in ventilation, with the 2000s being overall better ventilated than the 1990s in all basins. For the Greenland Sea, we also show that the 2010s are better ventilated than the 2000s, with a clear shift in hydrographic properties. The evolution of concentrations and inventory of C-ant is linked to the ventilation state. The deep waters get progressively older over the analyzed period, which is connected to the increased fraction of deep water from the Arctic Ocean.Plain Language Summary The ocean region between Greenland, Iceland, and Norway, called the Nordic Seas, is a main site of deep-water formation. This process produces dense waters and brings surface waters to larger depths, thereby ventilating the water below. This transports, among other things, man-made CO2 (anthropogenic carbon; C-ant) and oxygen from the atmosphere into the interior ocean, thereby reducing the amount of CO2 stored in the atmosphere. This study investigates how the ventilation has changed in the Nordic Seas from 1982 to the 2010s. We find that the ventilation has changed with time, from a rather well-ventilated state in 1982, to a reduced ventilation in the 1990s, and then a restrengthened ventilation from the 2000s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-02-07
    Description: We present the first observational evidence for convectively generated cold pools (CP) as driving mechanism for low-level jets (LLJ). Our findings are based on a unique campaign data set that allowed us to perform a systematic assessment of the process. During the three-month campaign in Germany, 6.8% of all identified LLJ profiles were connected to a CP (CPLLJ). Most measured CPLLJs appeared with the CP front and lasted for up to two hours. Moreover, we have observed a CP favoring the formation of a several-hours long LLJ. In that case, a strong LLJ and cooling of the atmosphere between the surface and at least 400 m a.g.l. were seen when the density current reached the measurement site. The development led to the formation of a near-surface temperature inversion during daytime as a prerequisite for the LLJ, not unlike the mechanism of nocturnal LLJs. Key Points: - Observed low-level jets connected to convective cold pools were about 7% of all jet profiles during summer campaign in Germany - Convective cold pools favored reduced frictional coupling of the wind field as a prerequisite for generating low-level jets during daytime - Low-level jets connected to convective cold pools were on average weaker but gustier than nocturnal jets
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-02-07
    Description: We deployed a dense geodetic and seismological network in the Atacama seismic gap in Chile. We derive a microseismicity catalog of 〉30,000 events, time series from 70 GNSS stations, and apply a transdimensional Bayesian inversion to estimate interplate locking degree. We identify two highly locked regions of different sizes whose geometries appear to control seismicity patterns. Interface seismicity concentrates beneath the coastline just downdip of the highest locking. A region of lower interplate locking around 27.5ºS coincides with higher seismicity levels, a high number of repeating earthquakes and events extending further towards the trench. Having shown numerous signs of aseismic deformation (slow-slip events and earthquake swarms), this area is situated where the Copiapó Ridge is subducted. While these findings suggest that the structure of the downgoing oceanic plate prescribes patterns of interplate locking and seismicity, we note that the Taltal Ridge further north lacks a similar signature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-02-07
    Description: Water column imaging multibeam echo sounder systems (MBESs) are a promising technology for quantitative estimates of the gas bubble volume flow within large gas seepage areas. Considerable progress has been made in recent years toward applicable calibration methods for MBESs as well as developing inversion models to convert acoustically measured backscattering cross sections to gas bubble volume flow. However, MBESs are still not commonly used for quantitative gas flow assessments. A reason for this is the absence of published processing methods that demonstrate how MBES data can be processed to quantitatively represent bubble streams. Here, we present a novel method (echo grid integration) that allows for assessing the aggregated backscattering cross section of targets within horizontal water layers. This derived value enables quantifying bubble stream gas flow rates using existing acoustic inversion methods. The presented method is based on averaging geo-referenced volume backscattering coefficients onto a high-resolution 3D voxel-grid. The results are multiplied with the voxel volume to represent measurements of the total backscattering cross-section within each voxel cell. Individual gridded values cannot be trusted because the beam pattern effects cause the values of individual targets to “smear” over multiple grid-cells. The true aggregated backscattering cross-section is thus estimated as the integral over the grid-cells affected by this smearing. Numerical simulation of MBES data acquisition over known targets assesses the method's validity and quantify it's uncertainty for different, realistic scenarios. The found low measurement bias (〈 1%), and dispersion (〈 5%) are promising for application in gas flow quantification methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2024-02-07
    Description: The development of stable barium (Ba) isotope measurements provides a novel tool to investigate the geochemical cycling of Ba in the ocean and its sediments. In sediment pore waters, gradients of dissolved Ba concentrations result from various diagenetic processes. The distribution and fractionation of Ba isotopes in the pore waters are expected to further improve our understanding of these early diagenetic control mechanisms. Here, we present pore water profiles of dissolved stable Ba isotopic signatures (δ138Bapw) from shallow water sediments covering the entire Pearl River Estuary (PRE) in Southern China. We find pronounced depth-dependent Ba isotope variations generally showing a shift from heavy to light δ138Bapw signatures from the sediment surface down to 15 cm depth. These gradients are well reproduced by a diffusion-reaction model, which generates an apparent fractionation factor (138ε) of −0.60 ± 0.10‰ pointing to preferential removal of low-mass Ba isotopes from the pore water during solution-solid phase interactions. Consequently, the combined diagenetic processes induce the highest δ138Bapw values of +0.5 to +0.7‰ in the pore waters of the topmost sediment layer. Although the detrital fraction dominates the Ba content in the PRE surface sediments, the determined gradients of pore water Ba isotopes, together with concentration variations of Ba and other redox-sensitive elements such as manganese (Mn), show that non-detrital excess Ba carriers including Mn oxides and authigenic barite clearly affect the post-depositional Ba dynamics. Stable Ba isotopes are thus a potentially powerful tracer of Ba geochemistry during early sediment diagenesis in estuarine depositional environments. Key Points We present a data set of dissolved stable Ba isotopic compositions in surface sediment pore waters of a large river estuary Pore water Ba isotope values generally decrease with increasing sediment depth, reflecting post-depositional Ba isotope fractionation A diffusion-reaction model predicts the distribution and fractionation of stable Ba isotopes in the sediment pore waters well
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-02-07
    Description: The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients—which have low temperature variation (27–29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml−1, predominantly HLII, whereas LLII and ‘rare’ ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml−1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml−1, surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto ‘rare’ picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-02-07
    Description: Subtropical gyres cover 26%-29% of the world's surface ocean and are conventionally regarded as ocean deserts due to their permanent stratification, depleted surface nutrients, and low biological productivity. Despite tremendous advances over the past three decades, particularly through the Hawaii Ocean Time-series and the Bermuda Atlantic Time-series Study, which have revolutionized our understanding of the biogeochemistry in oligotrophic marine ecosystems, the gyres remain understudied. We review current understanding of upper ocean biogeochemistry in the North Pacific Subtropical Gyre, considering other subtropical gyres for comparison. We focus our synthesis on spatial variability, which shows larger than expected dynamic ranges of properties such as nutrient concentrations, rates of N-2 fixation, and biological production. This review provides new insights into how nutrient sources drive community structure and export in upper subtropical gyres. We examine the euphotic zone (EZ) in subtropical gyres as a two-layered vertically structured system: a nutrient-depleted layer above the top of the nutricline in the well-lit upper ocean and a nutrient-replete layer below in the dimly lit waters. These layers vary in nutrient supply and stoichiometries and physical forcing, promoting differences in community structure and food webs, with direct impacts on the magnitude and composition of export production. We evaluate long-term variations in key biogeochemical parameters in both of these EZ layers. Finally, we identify major knowledge gaps and research challenges in these vast and unique systems that offer opportunities for future studies. Key Points Subtropical gyres display larger spatiotemporal dynamics in biogeochemical properties than previously considered An improved two-layer framework is proposed for the study of nutrient-driven and biologically mediated carbon export in the euphotic zone Future research will benefit from high-resolution samplings, improved sensitivity of nutrient analyses, and advanced modeling capabilities
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-02-07
    Description: Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re-examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5 degrees N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy-rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5 degrees N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5 degrees N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid-Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5 degrees N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid-Atlantic Ridge. Although the pathways between OSNAP West and 26.5 degrees N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer. Key Points: - The large majority of upper North Atlantic Deep Water (uNADW) sourced from the Irminger Sea transits through the Labrador Sea before reaching 26.5°N - Interior pathways along the eastern flank of the Mid-Atlantic Ridge connect the Iceland Basin and Rockall Trough to 26.5°N - Though uNADW is mainly sourced in the eastern subpolar gyre, its transit in the Labrador Sea is associated with further property changes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-02-07
    Description: Mesoscale eddies are frequently observed in the Eastern Tropical North Atlantic (ETNA), yet their effects on the transport and distribution of biogeochemical solutes, and specifically on the production and remineralization of dissolved organic matter (DOM) remain difficult to elucidate. Here, we investigated the submesoscale variability of chromophoric DOM (CDOM) and fluorescent DOM (FDOM) together with microbial production and remineralization processes in two cyclonic eddies (CEs) in the ETNA during summer and winter 2019. One CE, formed near the coast off Mauritania during the post-upwelling season, was sampled along a ∼900 km zonal corridor between Mauritania and the Cape Verde Islands. The other CE, formed nearby Brava Island, was out of coastal influence. Four fluorescent components were identified with parallel factor analysis, two humic-like, and two protein-like components. Humic-like FDOM components correlated to optode-based community respiration and were also good indicators of upwelling associated with the Brava Island CE as they correlated to physical parameters (e.g., temperature) and to dissolved inorganic nitrogen. The tryptophan-like FDOM components correlated with the carbon and nitrogen content of semi-labile DOM, phytoplankton biomass, community respiration, and bacterial production. Overall, our study revealed that DOM optical properties are suitable for tracing freshly produced organic matter and the transport of remineralized DOM within offshore eddies. Key Points: - Four fluorescent dissolved organic matter (FDOM) components were studied in two cyclonic eddies (CEs) in the Eastern Tropical North Atlantic - Tryptophan-like FDOM was an indicator of the CEs' productivity as it correlated with semi-labile dissolved organic matter and microbial metabolic activities - Humic-like FDOM was a by-product of microbial respiration; its distribution within an offshore CE covaried with nutrient upwelling
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2024-02-07
    Description: 1. Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations. 2. This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival. 3. We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the ‘black-box’ methods provided by some manufacturers for calculating positions. 4. This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2024-02-07
    Description: Narcomedusae play a key role as top-down regulators in the midwater, the largest and most understudied biome on Earth. Here, we used ecological niche modeling in three-dimensions (3D), ecomorphology, and phylogeny, to answer evolutionary and ecological questions about the widespread narcomedusan genus Solmissus. Our phylogenetic analyses confirmed that Solmissus incisa represents a complex of several cryptic species. Both the different genetic clades and tentacle morphotypes were widespread and often overlapped geographically- the main difference in their distribution and ecological niche being depth. This demonstrated the importance of including the third dimension when modeling the distribution of pelagic species. Contrary to our hypothesis, we found the modeled distribution of the Solmissus genus (n = 1444) and both tentacle morphotypes to be mostly driven by low dissolved oxygen values and a salinity of 34, and slightly by depth and temperature. Solmissus spp. were reproducing all year round, with specimens reproducing in slightly warmer waters (up to 1.25 & DEG;C warmer). Our results suggest that Solmissus spp. will likely come out as climate change winners by expanding their distribution when facing ocean deoxygenation and by increasing their reproduction due to global warming. However, because most available midwater data comes from the northern Pacific, this sampling bias was undoubtedly reflected in the output of our ecological niche models, which should be assessed carefully. Our study illustrated the value of online databases including imagery and videography records, for studying midwater organisms and treating midwater biogeographic regions as 3D spaces.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-02-07
    Description: Key Points: - Glacier-derived particles release 2–46% of labile particulate lead (Pb) upon mixing with seawater - Pb dynamics in glacier fjords are characterized by a rapid release of dissolved Pb followed by readsorption on a timescale of hours-to-days - Dissolved Pb release from the Greenland Ice Sheet is likely within the range 0.2–1 Mmol yr−1 Higher than expected concentrations of dissolved lead (dPb) have been consistently observed along glaciated coastlines and it is widely hypothesized that there is a net release of dPb from glacier-derived sediments. Here we further corroborate that dPb concentrations in diverse locations around west Greenland (3.2–252 pM) and the Western Antarctic Peninsula (7.7–107 pM) appear to be generally higher than can be explained by addition of dPb from glacier-derived freshwater. The distribution of dPb across the salinity gradient is unlike any other commonly studied trace element (e.g., Fe, Co, Ni, Cu, Mn, and Al) implying a dynamic, reversible exchange between dissolved and labile particulate Pb. Incubating a selection of glacier-derived particles from SW Greenland (Ameralik and Nuup Kangerlua) and Svalbard (Kongsfjorden), with a range of labile particulate Pb (LpPb) content (11–113 nmol g−1), the equivalent of 2–46% LpPb was released as dPb within 24 hr of addition to Atlantic seawater. Over longer time periods, the majority of this dPb was typically readsorbed. Sediment loading was the dominant factor influencing the net release of dPb into seawater, with a pronounced decline in net dPb release efficiency when sediment load increased from 20 to 500 mg L−1. Yet temperature also had some effect with 68 ± 22% higher dPb release at 11°C compared to 4°C. Future regional changes in dPb dynamics may therefore be more sensitive to short-term suspended sediment dynamics, and potentially temperature changes, than to changing interannual runoff volume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-02-07
    Description: Mechanisms related to sub-seabed fluid flow processes are complex and inadequately understood. Petrophysical properties, availability of gases, topography, stress directions, and various geological parameters determine the location and intensity of leakage which change over time. From tens of seafloor pockmarks mapped along Vestnesa Ridge on the west-Svalbard margin, only six show persistent present-day seepage activity in sonar data. To investigate the causes of such restricted gas seepage, we conducted a study of anisotropy within the conduit feeding one of these active pockmarks (i.e., Lunde Pockmark). Lunde is ∼400–500 m in diameter, and atop a ∼300–400 m wide seismic chimney structure. We study seismic anisotropy using converted S-wave data from 22 ocean-bottom seismometers (OBSs) located in and around the pockmark. We investigate differences in symmetry plane directions in anisotropic media using null energy symmetries in transverse components. Subsurface stress distribution affects fault/fracture orientations and seismic anisotropy, and we use S-wave and high-resolution 3D seismic data to infer stress regimes in and around the active seep site and study the effect of stresses on seepage. We observe the occurrence of changes in dominant fault/fracture and horizontal stress orientations in and around Lunde Pockmark and conclude minimum (NE-SW) and maximum (SE-NW) horizontal stress directions. Our analysis indicates a potential correlation between hydrofractures and horizontal stresses, with up to a ∼32% higher probability of alignment of hydrofractures and faults perpendicular to the inferred minimum horizontal stress direction beneath the Lunde Pockmark area. Key Points The S-wave analysis using ocean-bottom seismic (OBS) data indicates seismic anisotropy around a seeping pockmark on the W-Svalbard Margin The occurrence and orientation of symmetry planes in shallow anisotropic sediments vary across the pockmark Combined analyses using S-wave and 3-D seismic data suggest that preferred fault and fracture orientations follow local stress conditions
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-02-07
    Description: Key Points: - During 1993–2019, the East Greenland Coastal Current is freshest in 2010 and 2012 notably matching years of exceptional Greenland runoff - Freshwater anomalies from sea-ice melt and Arctic export advected along east Greenland are of similar magnitudes as those linked to runoff - Simulation of fresh coastal waters requires improved surface boundary conditions and/or models capable of representing mesoscale dynamics Accelerated melting of the Greenland Ice Sheet is considered a tipping element in the freshwater balance of the subpolar North Atlantic (SPNA). The East Greenland Current (EGC) and Coastal Current (EGCC) are the major conduits for transporting Arctic-sourced and Greenland glacial freshwater. Understanding freshwater changes in the EGC system and drivers thereof is crucial for connecting tipping elements in the SPNA. Using the eddy-rich model VIKING20X (1/20°) and Copernicus GLORYS12 (1/12°), we find that from 1993 to 2019 freshwater remains close to the shelf with interannual extremes in freshwater content (FWC) attributable to the imprint of Greenland melt only in years 2010 and 2012. Runoff increased significantly from 1995 to 2005 and Arctic freshwater export after 2005. Overall, regional wind patterns, sea ice melt and increasingly glacial ice and snow meltwater runoff along with the Arctic-sourced Polar Water set interannual FWC variations in the EGC system. We emphasize that these freshwater sources have different seasonal timing. South of 65°N sea ice melts year round and retreats to north of 65°N, where melt in summer prevails. Greenland runoff peaks in June–August with only some locations of year round discharge. Alongshore winds intensify in fall and winter where reduced onshore Ekman transport allows for freshwater to spread laterally in the EGC. We show that sea ice melt, runoff and wind can cause interannual variations of comparable magnitude. All of which makes attributing ocean freshening events to Greenland meltwater inflow at current magnitudes a major challenge.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-02-07
    Description: The Christiana‐Santorini‐Kolumbo (CSK) volcanic field has hosted more than 100 explosive eruptions in the past 250,000 years, including the 1650 CE eruption of Kolumbo Volcano. Previous studies have established a link between regional tectonics and volcanism in the CSK volcanic field. While 2D seismic reflection data have given valuable insight into regional faulting, detailed fault zone characterization has been precluded by the sparsely spaced profiles. Using 3D seismic reflection data around Kolumbo Volcano, we provide the first 3D characterization of fault zones in the CSK volcanic field. Beneath the volcano's northwestern flank, and farther to the northwest, normal faults are predominantly NE‐SW trending, with mean fault trends between 044° and 049°. Normal faults beneath the southeastern flank are slightly more north‐oriented, with mean fault trends between 028° and 038°. Our detailed fault zone analysis reveals clear NW‐SE directed extension around the volcano, consistent with published focal mechanisms from microseismicity. The Kolumbo Fault Zone, ∼6 km northwest of Kolumbo Volcano, is characterized by distinct relay ramps between major overstepping normal faults. Regional 2D seismic profiles reveal a previously undocumented volcanic cone directly above the fault zone. Magma ascent to this cone has likely exploited enhanced vertical permeability associated with distributed deformation within a relay ramp. We suggest that fault relay structures may play an important role, over a range of spatial scales, in focusing magma ascent within the CSK volcanic field. Plain Language Summary In the last 250,000 years, more than 100 explosive eruptions have occurred in the “Christiana‐Santorini‐Kolumbo” volcanic field in the Aegean Sea. Eruptions like these represent a serious natural hazard for the region. In this study, we explored how tectonic processes are related to volcanic activity. We did this by studying tectonic deformation around the submarine Kolumbo Volcano, which last erupted violently in 1650 CE. We used three‐dimensional (3D) seismic reflection data, which provide high‐resolution imagery of the seafloor and underlying sediments. The data set shows how the sediments beneath the seafloor have been disrupted by tectonic faults, which have formed as the crust is being slowly pulled apart (extended). The orientations of the faults show that extension in and around the volcano is happening along a northwest to southeast orientation. Based on our new data, we suggest that the movement of magma through the crust might occur preferentially through structural features called “relay ramps.” Relay ramps are regions of complex tectonic deformation that exist between overlapping extensional faults. Our 3D imagery of fault zones in this volcanic field gives a better understanding of how tectonic and volcanic processes interact with each other. Key Points 3D seismic data reveal unprecedented detail of normal faulting around the submarine Kolumbo Volcano, Aegean Sea Long-term extension (NW-SE oriented) around Kolumbo Volcano is consistent with previous studies of seismicity and field mapping on Santorini Relay ramps accommodate strain in step-overs between normal faults and may be exploited as permeable zones for vertical magma ascent
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-02-07
    Description: Marine isoprene plays a crucial role in the formation of secondary organic aerosol within the remote marine boundary layer. Due to scarce field measurements of oceanic isoprene and limited laboratory-based studies of isoprene production, assessing the importance of marine isoprene on atmospheric chemistry and climate is challenging. Calculating in-field isoprene production rates is a crucial step to predict marine isoprene concentrations and the subsequent emissions to the atmosphere. The distribution, sources, and dominant environmental factors of isoprene were determined in the Northwest Pacific Ocean in 2019. The nutrient enrichment in the Kuroshio Oyashio Extension (KOE) surface seawater, driven by the upwelling and atmospheric deposition, promoted the growth of phytoplankton and elevated the isoprene concentration. This was confirmed by observed responses of isoprene to nutrients and aerosol dust additions in a ship-based incubation experiment, where the isoprene concentrations increased by 70% (t = 4.417, p 〈 0.001) and 35% (t = 2.387, p 〈 0.05), respectively. Biogenic isoprene production rates in the deck incubation experiments were positively related to chlorophyll a, temperature, and solar radiation, with an average production of 7.33 +/- 4.27 pmol L (-1) day (-1). Photochemical degradation of dissolved organic matter was likely an abiotic source of isoprene, contributing to approximately 14% of the total production. Driven by high isoprene production and extreme physical disturbance, the KOE showed very high emissions of isoprene of 46.0 +/- 13.0 nmol m(-2) day (-1), which led to a significant influence on the oxidative capacity of the local atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-07
    Description: During the Cretaceous, there were two factors that had important influences on the East Asian climate, the East Asian coastal mountains and Earth's orbital cycling. An important question is how the coastal mountains modulated the variability of East Asian climate over orbital timescales. Here, we perform simulations with the coastal mountains of 0, 2, and 4 km high and three orbital configurations to answer the question. Our results show that a mountain range at the East Asian coast can amplify the impacts of orbital forcing on East Asian climate. Specifically, precipitation over the Songliao Basin in Northeastern China has significant changes as the coastal mountain range is about 4 km high. Combining our simulation results with orbitally‐controlled sedimentary deposits from the Songliao Basin, we conclude that the altitude of the coastal mountain range was very likely higher than 2 km in the Late Cretaceous. Plain Language Summary Tectonic events and solar insolation are the two important factors impacting variations of the climate system in the geological past. Regional climate responses to variations in the radiation from the sun over 10 4 –10 5 years were often magnified or dampened by tectonic events. Cretaceous sedimentary records in East Asia suggest that East Asian climate was influenced by the solar insolation. Geological evidence showed that a mountain range existed along the East Asian coast then. Would this mountain range modulate impacts of solar insolation on East Asian climate? Our modeling results show that the influence of solar insolation on East Asian climate can be amplified by the coastal mountain range, depending on the mountain elevation. When the coastal mountain range is ∼2 km high, the amplification effects become significant. When its altitude reaches ∼4 km, the response of East Asian climate to solar insolation is considerably strengthened, and such a condition is supported by the rhythm induced by the climate variation due to solar insolation archived in the Cretaceous strata in the Songliao Basin. Thus, we speculate that the East Asian coastal mountains might have reached an altitude more than 2 km in the Late Cretaceous. Key Points East Asian climate was sensitive to orbital forcing in the Late Cretaceous East Asian coastal mountains amplified orbital forcing on East Asian climate variability East Asian coastal mountains were likely higher than 2 km in the Late Cretaceous
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-07
    Description: Flow of dense shelf water provide an efficient mechanism for pumping CO 2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon ( C ant ) and its consequences remain unclear. Here, we show prominent transport of C ant (25.0 ± 4.7 Tg C yr −1 ) into the deep ocean (〉2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower C ant in the upper waters than that of other open oceans to sustain a stronger CO 2 uptake capacity (16.9 ± 3.8 Tg C yr −1 ). Nevertheless, the accumulation of C ant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 . Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt. Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of anthropogenic CO 2 ( C ant ), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration of C ant and a visible pattern of relatively high concentration of C ant along the AABW formation pathway, and the concentration of C ant along the shelf‐slope is higher than that of other marginal seas at low‐mid latitudes, implying a highly effective C ant transport in AABW formation areas. We also found strong upper‐layer CO 2 uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW‐driven CO 2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic CO 2 , which also drives acidification in the other ocean basins. Key Points We show evidence for the accumulation of C ant along the Antarctic shelf‐slope into the deep ocean The process of AABW formation drives C ant downward transport at 25.0 ± 4.7 Tg C yr −1 , sustaining the CO 2 uptake in the surface ocean This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 , which is faster than in other deep oceans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-02-07
    Description: Arc‐backarc systems are inherently shaped by subduction, representing an essential window into processes acting in the Earth's interior such as the recycling of subducted slabs. Furthermore, they are setting where new crust is formed and are believed to be sites where juvenile continental crust emerges. We present a seismic refraction and wide‐angle velocity model across the Izu arc‐backarc system, and use its characteristic features to constrain geochemically and petrologically different compartments, revealing processes governing crustal formation overlying subduction zones. Our result delineates the Izu arc with a maximum thickness of ∼20 km and the Shikoku Basin with thicknesses of ∼7 to 11 km. In the volcanic arc, the middle crust of the felsic to intermediate tonalitic layer (6.0–6.5 km/s) is remarkably thicker beneath the basalt‐dominated area than in the rhyolite‐dominated area, indicating that basaltic volcanism is indispensable in the transformation process from arc to continental crust. However, rhyolitic volcanism may relate to the juvenile stage of arc evolution or the remelting of middle crust due to the insufficient supply of basaltic magma from the mantle. The mafic restite and cumulates, which used to be part of the arc crustal material, are delaminated and foundered into the mantle, forming extremely low mantle velocities (〈7.5 km/s). In the Shikoku Basin, our result supports a fertile mantle source with passive upwelling and normal temperature during the opening process, but the lack of high velocity in the lower crust rules out hydrous melts entrained from the subducting slab or anomalous mantle trapped during subduction zone reconfiguration. Plain Language Summary As a vital factor in supporting the conditions for the evolution of life and ecosystems, the origin and evolution of the continents are still enigmatic. Volcanic arcs are generally seen as a place for creating continental crust while recycling the incoming subducting slab. In this study, we present a seismic velocity structure model across the Izu arc and Shikoku Basin, offshore south of Japan, to demonstrate the rules contained behind the transformation from arc to continental crust. Our results support that basaltic volcanism in the volcanic arc nurtures the generation of felsic to intermediate rocks, which provides the bulk of the continental crust. During this process, other anti‐continent materials, like mafic rocks, tend to be foundered into the mantle. Therefore, we propose that constant basaltic volcanism is critical in transferring arc crust to continental crust. Key Points A long seismic refraction and wide‐angle profile presents the seismic structure across the Izu arc and Shikoku Basin The transformation from arc to continental crust is closely associated with basaltic volcanism from the rear arc to volcanic front Passive melting of a fertile mantle source under normal temperature governs the opening of the Shikoku Basin
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-07
    Description: The green seaweed Ulva is a model system to study seaweed–bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic–Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5–8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic–Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-02-07
    Description: At the Blanco transform fault system (BTFS) off Oregon, 138 local earthquakes and 84 double-couple focal mechanisms from ocean-bottom-seismometer recordings jointly discussed with bathymetric features reveal a highly segmented transform system without prominent fracture zone traces longer than 100 km. In the west, seismicity is focused at deep troughs (i.e., the West and East Blanco, and Surveyor Depressions). In the east, the BTFS lacks a characteristic transform valley and instead developed the Blanco Ridge, which is the most seismically active feature, showing strike-slip and dip-slip faulting. Sandwiched between the two main segments of the BTFS is the Cascadia depression, representing a short intra-transform spreading segment. Seismic slip vectors reveal that stresses at the eastern BTFS are roughly in line with plate motion. In contrast, stresses to the west are clockwise skewed, indicating ongoing reorganization of the OTF system. As we observed no prominent fracture zones at the BTFS, plate tectonic reconstructions suggest that the BTFS developed from non-transform offsets rather than pre-existing transform faults during a series of ridge propagation events. Our observations suggest that the BTFS can be divided into two oceanic transform systems. The eastern BTFS is suggested to be a mature transform plate boundary since ∼0.6 Ma. In contrast, the western BTFS is an immature transform system, which is still evolving to accommodate far-field stress change. The BTFS acts as a natural laboratory to yield processes governing the development of oceanic transform faults. Key Points Local seismicity of the Blanco transform fault system (BTFS) reveals along-strike variations dominated by strike-slip and oblique dip-slip The BTFS developed from non-transform offsets rather than discrete transform faults in response to plate rotation and ridge propagation The BTFS consists of a mature plate boundary in the east and an immature system in the west, separated by a central spreading center
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-07
    Description: Quantifying changes in oceanic aerobic respiration is essential for understanding marine deoxygenation. Here we use an Earth system model to investigate if and to what extent oxygen utilization rate (OUR) can be used to track the temporal change of true respiration (Rtrue). Rtrue results from the degradation of particulate and dissolved organic matter in the model ocean, acting as ground truth to evaluate the accuracy of OUR. Results show that in thermocline and intermediate waters of the North Atlantic Subtropical Gyre (200–1,000 m), vertically integrated OUR and Rtrue both decrease by 0.2 molO2/m2/yr from 1850 to 2100 under global warming. However, in the mesopelagic Tropical South Atlantic, integrated OUR increases by 0.2 molO2/m2/yr, while the Rtrue integral decreases by 0.3 molO2/m2/yr. A possible reason for the diverging OUR and Rtrue is ocean mixing, which affects water mass composition and maps remote respiration changes to the study region. Key Points: - Our model study confirms earlier findings that oxygen utilization rate (OUR) underestimates true respiration (Rtrue) in mesopelagic ocean - Despite OUR underestimate Rtrue, OUR can adequately estimate long-term changes in Rtrue in the mesopelagic North Atlantic subtropical gyre - OUR cannot adequately estimate climate-driven changes in Rtrue in the mesopelagic tropical South Atlantic where different water masses mix
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-07
    Description: We present a model of thermal lithospheric thickness (the depth where the geotherm reaches a temperature of 1300°C) and surface heat flow in Tibet and adjacent regions based on a new thermal-isostasy method. The method accounts for crustal density heterogeneity, is free from any assumption of a steady-state lithosphere thermal regime, and assumes that deviations from crustal Airy-type isostasy are caused by lithosphere thermal heterogeneity. We observe a highly variable lithospheric thermal structure which we interpret as representing longitudinal variations in the northern extent of the subducting Indian plate, southward subduction of the Asian plate beneath central Tibet, and possible preservation of fragmented Tethyan paleo-slabs. Cratonic-type cold and thick lithosphere (200-240 km) with a predicted surface heat flow of 40-50 mW/m2 typifies the Tarim Craton, the northwest Yangtze Craton, and most of the Lhasa Block that is likely refrigerated by underthrusting Indian lithosphere. We identify a ‘North Tibet anomaly’ with thin (〈80 km) lithosphere and high surface heat flow (〉80-100 mW/m2). We interpret this anomaly as the result of removal of lithospheric mantle and asthenospheric upwelling at the junction of the Indian and Asian slabs with opposite subduction polarities. Other parts of Tibet typically have intermediate lithosphere thickness of 120-160 km and a surface heat flow of 45-60 mW/m2, with patchy anomalies in eastern Tibet. While different uplift mechanisms for Tibet predict different lithospheric thermal regimes, our results in terms of a highly variable thermal structure beneath Tibet suggest that topographic uplift is caused by an interplay of several mechanisms. Key Points Thick Tibetan lithosphere defines the longitudinally variable northern extent of the Indian plate The ‘North Tibet Anomaly’ with a hot mantle marks the junction of the Indian and Asian slabs Tethyan paleo-slabs explain variable lithosphere thickness in eastern Tibet
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2024-02-07
    Description: Global geophysical observations show the presence of the enigmatic mid‐lithospheric discontinuity (MLD) at depths of ca. 80–150 km which may question the stability and internal structure of the continental lithosphere. While various mechanisms may explain the MLD, the dynamic processes leading to the seismic observations are unclear. Here we present a physical mechanism for the origin of MLD by channel flow in the cratonic mantle lithosphere, triggered by convective instabilities at cratonic margins in the Archean when the mantle was hot. Our numerical modeling shows that the top of the frozen‐in channel flow creates a shear zone at a depth comparable to the globally observed seismic MLD. Grain size reduction in the shear zone and accumulation of percolated melts or fluids along the channel top may reduce seismic wave speeds as observed below the MLD, while the channel flow itself may explain radial anisotropy of seismic wave speeds and change in direction of the seismic anisotropic fast axis. The proposed mechanism is valid for a broad range of physically realistic parameters and that MLD may have been preserved since its formation in the Archean. The intensity of the channel flow ceased with time due to secular cooling of the Earth's interior. The new mechanism may reshape our understanding of the evolution and stability of cratonic lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-02-07
    Description: Predators can affect parasite–host interactions when directly preying on hosts or their parasites. However, predators may also have non-consumptive indirect effects on parasite–host interactions when hosts adjust their behaviour or physiology in response to predator presence. In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host. Laboratory experiments revealed that chemical cues from crabs lead to a threefold increase in the release of trematode cercariae from periwinkles as a result of increased periwinkle activity. This positive effect on transmission was contrasted by a 10-fold reduction in cercarial infection rates in the second intermediate host when we experimentally exposed mussels to cercariae and predator cues. The low infection rates were caused by a substantial reduction in mussel filtration activity in the presence of predator cues, preventing cercariae from entering the mussels. To assess the combined net effect of both processes, we conducted a transmission experiment between infected periwinkles and uninfected mussels. Infection levels of mussels in the treatments with crab cues were sevenfold lower than in mussels without crab chemical cues. This suggests that predation risk effects on mussel susceptibility can counteract the elevated parasite release from first intermediate hosts, with negative net effects on parasite transmission. These experiments highlight that predation risk effects on parasite transmission can have opposing directions at different stages of the parasite's life cycle. Such complex non-consumptive predation risk effects on parasite transmission may constitute an important indirect mechanism affecting prevalence and distribution patterns of parasites in different hosts across their life cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-02-07
    Description: Export of sinking particles from the surface ocean is critical for carbon sequestration and to provide energy to the deep biosphere. The magnitude and spatial patterns of this export have been estimated in the past by in situ particle flux observations, satellite-based algorithms, and ocean biogeochemical models; however, these estimates remain uncertain. Here, we use a recent machine learning reconstruction of global ocean particle size distributions (PSDs) from Underwater Vision Profiler 5 measurements to estimate carbon fluxes by sinking particles (35 μm–5 mm equivalent spherical diameter) from the surface ocean. We combine global maps of PSD properties with empirical relationships constrained against in situ flux observations to calculate particulate carbon export from the euphotic zone (5.8 ± 0.1 Pg C y−1) and annual maximum mixed layer depths (6.1 ± 0.1 Pg C y−1). The new flux reconstructions suggest a less variable seasonal cycle in the tropical ocean and a more persistent export in the Southern Ocean than previously recognized. Smaller particles (less than 418 μm) contribute most of the flux globally, while larger particles become more important at high latitudes and in tropical upwelling regions. Export from the annual maximum mixed layer exceeds that from the euphotic zone over most of the low-latitude ocean, suggesting shallow particle recycling and net heterotrophy in the deep euphotic zone. These estimates open the way to fully three-dimensional global reconstructions of particle fluxes in the ocean, supported by the growing database of in situ optical observations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-02-07
    Description: Until now, few offshore seismic studies have acquired simultaneously P- and S- wave data to derive in detail the seismic structure of the oceanic crust. We present 2-D Vp and Vs models using wide-angle seismic data at the Indian basin adjacent to the NinetyEast Ridge. Here, an outcrop basement located at the middle of the seismic line presents uppermost crustal Poisson's ratios (ν) of 0.28–0.29 (Vp ∼ 4.2 km/s and Vs ∼ 2.3 km/s). At the flanks of the outcrop basement, the sediment cover is 200–300 m thick and ν values are similar (0.28–0.3), but Vp and Vs values are higher (4.5–4.8 and 2.4–2.6 km/s, respectively). We interpret the relatively lower Vp and Vs around the basement outcrop in terms of hydrothermal alteration, while at the flanks of the basement outcrop, hydrothermal alteration has most likely ceased by sedimentation and compaction processes. Across the seismic layer 2, the Vp–Vs trend is linear and follows a ν value of 0.28–0.29, however, at the seismic layer 2/3 transition, the Vp–Vs trend abruptly changes following a ν value of 0.25–0.26. These reduced observed ν values at the layer 2/3 transition are lower than those reported by laboratory measurements for gabbro (ν ∼ 0.293) and are interpreted in terms of epidotization at the dike-gabbro contact and/or crack-change properties around the lower part of the intrusive sheeted dike section. Key Points We obtain 2-D Vp and Vs models from active seismic data for the Indian oceanic crust The seismic models suggest hydrothermal alteration near a basement outcrop Poisson's ratios change at the layer 2/3 transition from 0.28–0.29 to 0.25–0.26
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-02-07
    Description: Bacterial metabolism largely drives the sequestration of refractory organic matter in the ocean. However, a lack of understanding exists regarding the abundance and reactivity of bacterial particulate organic matter (POM). Here we report the bacterial contributions to suspended POM collected in the oligotrophic Western Pacific Warm Pool (WPWP). Around 27% of particulate organic carbon (POC) and ∼39% of particulate nitrogen (PN) in the surface ocean were derived from bacteria. Most of the bacterial POM (∼87%) was labile or semi-labile, and ∼85% of bacterial POM was removed between depths of ∼100–300 m. Bacterial POM constituted only ∼8% and ∼13% of refractory POC and PN, respectively. The rapid cycling of bacterial POM in upper waters was likely related to oligotrophic conditions and facilitated by higher temperatures in the WPWP. Taken together, these observations indicate that bacterial POM plays a crucial role in supplying energy for bacterial respiration. Key Points We assess bacterial contributions to suspended particulate organic matter (POM) in the Western Pacific Warm Pool on the basis of D-amino acid biomarkers Bacterial organics constitute 27% of surface ocean particulate organic carbon (POC) and 39% of particulate nitrogen (PN), but majority (∼87%) is labile or semi-labile Rapid cycling of bacterial POM in the upper ocean results in a contribution of only ∼8% to refractory POC and ∼13% to PN
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-02-07
    Description: Understanding the future fate of the Greenland Ice Sheet (GIS) in the context of anthropogenic CO2 emissions is crucial to predict sea level rise. With the fully coupled Earth system model of intermediate complexity CLIMBER-X, we study the stability of the GIS and its transient response to CO2 emissions over the next 10 Kyr. Bifurcation points exist at global temperature anomalies of 0.6 and 1.6 K relative to pre-industrial. For system states in the vicinity of the equilibrium ice volumes corresponding to these temperature anomalies, mass loss rate and sensitivity of mass loss to cumulative CO2 emission peak. These critical ice volumes are crossed for cumulative emissions of 1,000 and 2,500 GtC, which would cause long-term sea level rise by 1.8 and 6.9 m respectively. In summary, we find tipping of the GIS within the range of the temperature limits of the Paris agreement. Key Points Bifurcation points exist at global mean temperature anomalies of 0.6 and 1.6 K relative to pre-industrial Mass loss rate and sensitivity to cumulative CO2 emission peak near the equilibrium ice volumes belonging to these temperature anomalies Substantial long-term mass loss of the Greenland ice sheet for cumulative emissions larger than 1,000 Gt carbon
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-02-07
    Description: This study addresses the evolution of global tidal dynamics since the Last Glacial Maximum focusing on the extraction of tidal levels that are vital for the interpretation of geologic sea-level markers. For this purpose, we employ a truly-global barotropic ocean tide model which considers the non-local effect of Self-Attraction and Loading. A comparison to a global tide gauge data set for modern conditions yields agreement levels of 65%–70%. As the chosen model is data-unconstrained, and the considered dissipation mechanisms are well understood, it does not have to be re-tuned for altered paleoceanographic conditions. In agreement with prior studies, we find that changes in bathymetry during glaciation and deglaciation do exert critical control over the modeling results with minor impact by ocean stratification and sea ice friction. Simulations of 4 major partial tides are repeated in time steps of 0.5–1 ka and augmented by 4 additional partial tides estimated via linear admittance. These are then used to derive time series from which the tidal levels are determined and provided as a global data set conforming to the HOLSEA format. The modeling results indicate a strengthened tidal resonance by M2, but also by O1, under glacial conditions, in accordance with prior studies. Especially, a number of prominent changes in local resonance conditions are identified, that impact the tidal levels up to several meters difference. Among other regions, resonant features are predicted for the North Atlantic, the South China Sea, and the Arctic Ocean. Key Points Evolution of four major partial tides from Last Glacial Maximum until present times Validation of the employed ocean tide model with present-day tide gauge data and dissipation rates Diligent derivation of global tidal levels for the interpretation of sea level indexpoints
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-02-07
    Description: The deep-sea is vast, remote, and largely underexplored. However, methodological advances in environmental DNA (eDNA) surveys could aid in the exploration efforts, such as using sponges as natural eDNA filters for studying fish biodiversity. In this study, we analyzed the eDNA from 116 sponge tissue samples and compared these to 18 water eDNA samples and visual surveys obtained on an Arctic seamount. Across survey methods, we revealed approximately 30% of the species presumed to inhabit this area and 11 fish species were detected via sponge derived eDNA alone. These included commercially important fish such as the Greenland halibut and Atlantic mackerel. Fish eDNA detection was highly variable across sponge samples. Highest detection rates were found in sponges with low microbial activity such as those from the class Hexactinellida. The different survey methods also detected alternate fish communities, highlighted by only one species overlap between the visual surveys and the sponge eDNA samples. Therefore, we conclude that sponge eDNA can be a useful tool for surveying deep-sea demersal fish communities and it synergises with visual surveys improving overall biodiversity assessments. Datasets such as this can form comprehensive baselines on fish biodiversity across seamounts, which in turn can inform marine management and conservation practices in the regions where such surveys are undertaken.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-02-07
    Description: Ecological interactions among phytoplankton occur in a moving fluid environment. Oceanic flows can modulate the competition and coexistence between phytoplankton populations, which in turn can affect ecosystem function and biogeochemical cycling. We explore the impact of submesoscale velocity gradients on phytoplankton ecology using observations, simulations, and theory. Observations reveal that the relative abundance of Synechoccocus oligotypes varies on 1–10 km scales at an ocean front with submesoscale velocity gradients at the same scale. Simulations in realistic flow fields demonstrate that regions of divergence in the horizontal flow field can substantially modify ecological competition and dispersal on timescales of hours to days. Regions of positive (negative) divergence provide an advantage (disadvantage) to local populations, resulting in up to ∼20% variation in community composition in our model. We propose that submesoscale divergence is a plausible contributor to observed taxonomic variability at oceanic fronts, and can lead to regional variability in community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-02-07
    Description: Aim: The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities. Location: Global ocean, 0–500 m depth. Time Period: 2008–2019. Major Taxa Studied: Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria. Methods: From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (〉600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA). Results: Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions. Main Conclusions: In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-02-07
    Description: Key Points: The high-resolution eddy's 3D structures are estimated from the satellite observations based on the interior + surface quasigeostrophic (isQG) method Introducing the higher-resolution sea surface temperature observation to isQG method enhances the effective resolution of reconstruction A correction scheme in density reconstruction within the mixed layer is suggested to offset the absence of mixed layer dynamics By incorporating the high-resolution satellite remote sensing sea surface temperature (SST) with low-resolution sea level anomaly and sea surface salinity (SSS), this study explores the reconstructability of the three-dimensional (3D) eddy structures via the “interior + surface quasigeostrophic” (isQG) method in the South Indian Ocean. We apply the incorporation of high-resolution SST to improve the spatial resolution of the reconstruction. We also propose a correction scheme for density reconstruction within the mixed layer to offset the absence of mixed layer dynamics in the SQG framework. Comparison against the in situ observations demonstrates a satisfactory reconstructability for subsurface velocity and density anomalies. Statistically, the zonal velocity reconstructability outperforms its meridional counterpart and the corresponding velocity phase. The reconstructed shallow-layer velocity exhibits a superior skill in eddy-active regions, when compared with drogued drifter observations. Reconstructed subsurface velocities reproduce the spatial structures of eddy-induced velocity anomaly along the GO-SHIP observation transect, although present smaller magnitudes. Results demonstrate the potential applicability of the isQG method for reconstructing mesoscale eddies, particularly in the ocean at mid-to-high latitudes, where subsurface dynamics are strongly influenced by barotropic and the first baroclinic modes. With the upcoming high-advanced satellite observations, the isQG framework is expected to achieve better subsurface estimations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-02-07
    Description: Limited constraints on the variability of the deep-water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe-Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (-12.6 and -14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ -18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ -31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene. Key Points - Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea - Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures - During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-02-07
    Description: Marine protected areas (MPAs) are a well‐established conservation practice worldwide, but their effectiveness in protecting or replenishing fish biodiversity remains uneven. Understanding the patterns of this heterogeneity is central to general guidelines for MPA design and can ultimately provide guidance on how to maximize MPA potential. Here, we examine associations between the degree of protection, duration of protection, and protected area size, with fish biodiversity inside of protected areas relative to that of sites nearby, but outside of protected areas. We quantitatively synthesize 116 published estimates of species richness from 72 MPAs and 38 estimates of Shannon entropy from 21 MPAs. We show that species richness is on average 18% (95% CIs: 10%–29%) higher in protected areas than in areas open to fishing; on average, Shannon entropy is 13% (95% CIs: −2% to 31%) higher within protected areas relative to outside. We find no relationship between the degree and duration of protection with the ratio of species richness inside versus outside of protected areas; both fully and partially protected areas contribute to the accumulation of species inside of protected areas, and protected areas of all ages contribute similarly on average to biodiversity conservation. In contrast to our expectations, increasing protected area size was associated with a decreased ratio of species richness sampled at sites inside versus outside of the protected area, possibly due, for example, to insufficient enforcement and/or low compliance. Finally, we discuss why meta‐analyses such as ours that summarize effect sizes of local scale biodiversity responses, that is, those at a single site, can only give a partial answer to the question of whether larger protected areas harbor more species than comparable unprotected areas.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-02-07
    Description: The unique male pregnancy in pipefishes and seahorses ranges from basic attachment (pouch-less species: Nerophinae) of maternal eggs to specialized internal gestation in pouched species (e.g. Syngnathus and Hippocampus) with many transitions in between. Due to this diversity, male pregnancy offers a unique platform for assessing physiological and molecular adaptations in pregnancy evolution. These insights will contribute to answering long-standing questions of why and how pregnancy evolved convergently in so many vertebrate systems. To understand the molecular congruencies and disparities in male pregnancy evolution, we compared transcriptome-wide differentially expressed genes in four syngnathid species, at four pregnancy stages (nonpregnant, early, late and parturition). Across all species and pregnancy forms, metabolic processes and immune dynamics defined pregnancy stages, especially pouched species shared expression features akin to female pregnancy. The observed downregulation of adaptive immune genes in early-stage pregnancy and its reversed upregulation during late/parturition in pouched species, most notably in Hippocampus, combined with directionless expression in the pouch-less species, suggests immune modulation to be restricted to pouched species that evolved placenta-like systems. We propose that increased foeto-paternal intimacy in pouched syngnathids commands immune suppression processes in early gestation, and that the elevated immune response during parturition coincides with pouch opening and reduced progeny reliance. Immune response regulation in pouched species supports the recently described functional MHC II pathway loss as critical in male pregnancy evolution. The independent co-option of similar genes and pathways both in male and female pregnancy highlights immune modulation as crucial for the evolutionary establishment of pregnancy.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-02-07
    Description: Seaweeds are colonized by a microbial community, which can be directly linked to their performance. This community is shaped by an interplay of stochastic and deterministic processes, including mechanisms which the holobiont host deploys to manipulate its associated microbiota. The Anna Karenina principle predicts that when a holobiont is exposed to suboptimal or stressful conditions, these host mechanisms may be compromised. This leads to a relative increase of stochastic processes that may potentially result in the succession of a microbial community harmful to the host. Based on this principle, we used the variability in microbial communities (i.e., beta diversity) as a proxy for stability within the invasive holobiont Gracilaria vermiculophylla during a simulated invasion in a common garden experiment. Independent of host range, host performance declined at elevated temperature (22°C) and disease incidence and beta diversity increased. Under thermally stressful conditions, beta diversity increased more in epibiota from native populations, suggesting that epibiota from non-native holobionts are thermally more stable. This pattern reflects an increase in deterministic processes acting on epibiota associated with non-native hosts, which in the setting of a common garden can be assumed to originate from the host itself. Therefore, these experimental data suggest that the invasion process may have selected for hosts better able to maintain stable microbiota during stress. Future studies are needed to identify the underlying host mechanisms.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-02-07
    Description: The EU-funded project BASTA (Boost Applied munition detection through Smart data inTegration and AI workflows, http://www.basta-munition.eu) aimed at improving underwater unexploded ordnance (UXO) detection approaches and advancing data acquisition techniques. One aspect of the project was performing autonomous underwater vehicle (AUV)-based magnetic measurements. In this paper, we present the first results of integrating three submersible fluxgate magnetometers to a Girona 500 AUV in the context of underwater UXO detection. The hovering capabilities of these AUVs allow them to maintain a fixed position or to precisely navigate at very low velocities and altitudes. The magnetic sensors are rigidly attached to the nose of the AUV at a lateral distance of 2 m and are arranged in the shape of a vertical triangle, thereby allowing for the calculation of three spatial magnetic gradients. A series of surveys was performed when visiting several munitions dumpsites in the German Baltic Sea. Furthermore, we successfully conducted a test survey with surrogate objects of known magnetic moments in a naval port basin in Kiel, Germany. With a noise floor of approximately 2 nT, the system is capable of reliably detecting munitions similar in size to 81 mm shells from altitudes of 1 m above the seafloor. For ground-truthing purposes and for a concluding confirmation or rejection of a UXO suspicion, the AUV is equipped with a high-resolution camera system. This newly developed system aims at improving the industry standard's technical potentials of autonomously discriminating between hazardous UXO and anthropogenic debris or rocks and therefore reducing the number of target points before underwater UXO clearance campaigns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-02-07
    Description: The Arctic Ocean is home to a unique fauna that is disproportionately affected by global warming but that remains under-studied. Due to their high mobility and responsiveness to global warming, cephalopods and fishes are good indicators of the reshuffling of Arctic communities. Here, we established a nekton biodiversity baseline for the Fram Strait, the only deep connection between the North Atlantic and Arctic Ocean. Using universal primers for fishes (12S) and cephalopods (18S), we amplified environmental DNA (eDNA) from seawater (50–2700 m) and deep-sea sediment samples collected at the LTER HAUSGARTEN observatory. We detected 12 cephalopod and 31 fish taxa in the seawater and seven cephalopod and 28 fish taxa in the sediment, including the elusive Greenland shark (Somniosus microcephalus). Our data suggest three fish (Mallotus villosus, Thunnus sp., and Micromesistius poutassou) and one squid (Histioteuthis sp.) range expansions. The detection of eDNA of pelagic origin in the sediment also suggests that M. villosus, Arctozenus risso, and M. poutassou as well as gonatid squids are potential contributors to the carbon flux. Continuous nekton monitoring is needed to understand the ecosystem impacts of rapid warming in the Arctic and eDNA proves to be a suitable tool for this endeavor.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-02-07
    Description: Mapping and sampling four sections of the slow-spreading Reykjanes Ridge provide insight into how tectonic and volcanic activity varies with distance from the Iceland plume. The studied areas are characterized by significant variations in water depth, lava chemistry, crustal thickness, thermal structure, and ridge morphology. For each study area, fault pattern and dimension, tectonic strain, seamount morphology, and density are inferred from 15 m-resolution bathymetry. These observations are combined with geochemical analysis from glass samples and sediment thickness estimations along Remotely Operated Vehicle-dive videos. They reveal that (a) tectonic and volcanic activity along the Reykjanes Ridge, do not systematically vary with distance from the plume center. (b) The tectonic geometry appears directly related to the deepening of the brittle/ductile transition and the maximum change in tectonic strain related to the rapid change in crustal thickness and the transition between axial-high and axial valley (∼59.5°N). (c) Across-axis variations in the fault density and sediment thickness provide similar widths for the neo-volcanic zone except in regions of increased seamount emplacement. (d) The variations in seamount density (especially strong for flat-topped seamounts) are not related to the distance from the plume but appear to be correlated with the interaction between the V-shape ridges (VSR) flanking the ridge and the ridge axis. These observations are more compatible with the buoyant upwelling melting instability hypothesis for VSR formation and suggest that buoyant melting instabilities create many small magma batches which by-pass the normal subaxial magmatic plumbing system, erupting over a wider-than-normal area. Key Points The distance from the plume center is not the only factor controlling tectonic and volcanic activity along the Reykjanes Ridge Fault dimensions are primarily controlled by the variation of crustal thermal structure with distance from the hotspot Flat-topped seamount abundances peak where a V-shaped ridge intersects the axis, consistent with a buoyant upwelling melting instability
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-02-07
    Description: Aim: We aimed to apply ontological techniques to address semantic ambiguities in protected area and conservation informatics. By doing so, we aimed to create a coherent, machine-actionable semantic representation of the biogeographic areas (which often overlap protected areas) to support more efficient and standardized informatics, supporting research and decision-making. We present BIOREALM, the first informatic ontology for comparative biogeography. Location: Global. Taxon: Any taxon can be integrated in BIOREALM. Methods: We convert a cladogram of biogeographic areas—generated by a process known as bioregionalization—into a series of ontological classes. Areas of endemism are treated as formal objects related by hierarchical relationships and constrained by a condition of monophyly. We use semantic web approaches to extend the Environment Ontology (ENVO) with classes for (often semantically confounded) biogeographic entities, including biogeographic areas, areas of endemism and endemic areas. We applied this approach to a bioregionalization of Australia as a case study. In all, 20 subregions which are part of the Austral Bioregionalisation Atlas have been selected for the study and integrated in BIOREALM. Results: We have created an ontology—formatted in the Web Ontology Language and adhering to the practices of the Open Biomedical and Biological Ontology Foundry—which provides a rigorous, extensible and machine-actionable framework that can improve biogeographic analyses and interoperability between systems. One main class and 20 individuals per class were implemented. Main Conclusions: BIOREALM encodes a model-theoretic view of endemism using semantic web approaches, offering new avenues to express and analyse biogeographic units. This approach offers a means to identify monophyletic biogeographic areas for conservation, based on specific combinations of monophyletic endemic taxa. Such an ontology provides knowledge representation solutions which supports interoperability along the FAIR (Findable, Accessible, Interoperable, Reusable) principles, thus fostering more consistent ecological informatics.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-02-07
    Description: Atmospheric aerosol deposition into the low latitude oligotrophic ocean is an important source of new nutrients for primary production. However, the resultant phytoplankton responses to aerosol deposition events, both in magnitude and changes in community composition, are poorly constrained. Here, we investigated this with 19 d of field and satellite observations for a site in the subtropical North Atlantic. During the observation period, surface dissolved aluminum concentrations alongside satellite-derived aerosol and precipitation data demonstrated the occurrence of both a dry deposition event associated with a dust storm and a wet deposition event associated with strong rainfall. The dry deposition event did not lead to any observable phytoplankton response, whereas the wet deposition event led to an approximate doubling of chlorophyll a, with Prochlorococcus becoming more dominant at the expense of Synechococcus. Bioassay experiments showed that phytoplankton were nitrogen limited, suggesting that the wet deposition event likely provided substantial aerosol-derived nitrogen, thereby alleviating the prevalent nutrient limitation and leading to the rapid observed phytoplankton response. These findings highlight the important role of wet deposition in driving rapid responses in both ocean productivity and phytoplankton community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-02-07
    Description: Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi-approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie-lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ. Key Points New Zealand's Neogene explosive volcanism based on the marine tephra record Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events Insights into geochemical variations with time, repose times and spatiotemporal distribution
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-02-07
    Description: The Canadian Arctic Southern Beaufort Sea is characterized by prominent relict submarine permafrost and gas hydrate occurrences formed by subaerial exposure during extensive glaciations in Pliocene and Pleistocene. Submarine permafrost is still responding to the thermal change as a consequence of the marine transgression that followed the last glaciation. Submarine permafrost is still underexplored and is currently the focus of several research projects as its degradation releases greenhouse gases that contribute to climate change. In this study, seismic reflection indicators are used to investigate the presence of submarine permafrost and gas hydrates on the outer continental shelf where the base of permafrost is expected to cross-cut geological layers. To address the challenges of marine seismic data collected in shallow water environments, we utilize a representative synthetic model to assess the data processing and the detection of submarine permafrost and gas hydrate by seismic data. The synthetic model allows us to minimize the misinterpretation of acquisition and processing artifacts. In the field data, we identify features along with characteristics arising from the top and base of submarine permafrost and the base of the gas hydrate stability zone. This work shows the distribution of the present submarine permafrost along the southern Canadian Beaufort Sea region and confirms its extension to the outer continental shelf. It supports the general shape suggested by previous works and previously published numerical models. Key Points Seismic reflection data reveal occurrences and extent of submarine permafrost and associated gas hydrates at the Canadian Beaufort Shelf Synthetic modeling of permafrost and gas hydrate is required to assess seismic processing minimizing the potential for misinterpretation Indicators of top and base of permafrost and the base of gas hydrate stability support previously published numerical models
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-02-07
    Description: Estuaries regulate carbon cycling along the land-ocean continuum and thus influence carbon export to the ocean, and global carbon budgets. The Elbe Estuary in Germany has been altered by large anthropogenic perturbations, such as widespread heavy metal pollution, minimally treated wastewater before the 1980s, establishment of wastewater treatment plants after the 1990s, and an overall nutrient and pollutant load reduction in the last three decades. Based on an extensive evaluation of key ecosystem variables, and an analysis of the available inorganic and organic carbon records, this study has identified three ecosystem states in recent history: the polluted (1985–1990), transitional (1991–1996), and recovery (1997–2018) states. The polluted state was characterized by very high dissolved inorganic carbon (DIC) and ammonium concentrations, toxic heavy metal levels, dissolved oxygen undersaturation, and low pH. During the transitional state, heavy metal pollution decreased by 〉 50%, and primary production re-established in spring to summer, with weak seasonality in DIC. Since 1997, during the recovery state, DIC seasonality was driven by primary production, and DIC significantly increased by 〉 23 μmol L−1 yr−1 in the mid to lower estuary, indicating that, along with the improvement in water quality the ecosystem state is still changing. Large anthropogenic perturbations can therefore alter estuarine ecosystems (on the order of decades), as well as induce large and complex biogeochemical shifts and significant changes to carbon cycling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-02-07
    Description: Key Points: - Novel micro-analytical techniques allow seasonally resolved climate proxy data from varved marine sediments - Potential to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning 〉1,000 years - Thorough assessment of processes that influence the climate signal recovered from proxies, validated with careful replication, is required Three recently published papers including Napier et al. (2022, https://doi.org/10.1029/2021PA004355) utilize novel microanalytical approaches with varved marine sediments to demonstrate the potential to reconstruct seasonal and inter-annual climate variability. Obtaining paleoclimate data at a resolution akin to the observational record is vitally important for improving our understanding of climate phenomena such as monsoons and modes of variability such as the El Niño Southern Oscillation, for which appraisals of past inter-annual variability is critical. The ability to generate seasonal and inter annual resolution sea surface temperature proxy time series spanning a thousand years or more is revolutionary and has the potential to fill gaps in our knowledge of climate variability. Although generally limited to sediments from regions with oxygen depleted bottom waters, there is great potential to integrate shorter seasonal resolution climate “snap shots” from other archives such as annually banded corals into composite time series. But as paleoceanographic data are used more by the observational and modeling fields, we make the case for conducting a thorough case-by-case assessment of the processes that influence the climate signal recovered from proxies, using careful replication to validate new approaches. Understanding or exploring the potential influence of processes which effectively filter the climate signal will lead to more quantitative paleoceanographic data that will better serve the broader climate science community.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-02-07
    Description: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle. Key Points: - Ocean models and machine learning estimates agree on the mean Southern Ocean CO2 sink, but the trend since 2000 differs by a factor of two - REgional Carbon Cycle Assessment and Processes Project Phase 2 estimates a 50% smaller Southern Ocean CO2 sink for the same region and timeframe as RECCAP1 - Large model spread in summer and winter indicates that sustained efforts are required to understand driving processes in all seasons
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-02-07
    Description: The coupling at the interface between tectonic plates is a key geophysical parameter to capture the frictional locking across plate boundaries and provides a means to estimate where tectonic strain is accumulating through time. Here, we use both interferometric radar (InSAR) and Global Navigation Satellite System (GNSS) data to investigate the plate coupling of the Hikurangi subduction zone beneath the North Island of New Zealand, where multiple slow slip cycles are superimposed on the long‐term loading. We estimate the plate coupling across the subduction zone over three multi‐year observational periods targeting different stages of the slow slip cycle. Our results highlight the importance of the observational time period when interpreting coupling maps, emphasizing the temporal variability of plate coupling. Leveraging multiple geodetic data sets, we demonstrate how InSAR provides powerful constraints on the spatial resolution of both plate coupling and slow fault slip, even in a region where a dense GNSS network exists. Plain Language Summary Plate coupling as a concept describes to what degree the boundaries between tectonic plates are locked and building up stress. Such accumulated stress (over hundreds to thousands of years) will eventually be released in earthquakes, and therefore provides important information about the potential for future earthquakes. Our study uses satellite data to investigate how coupling between tectonic plates along the Hikurangi subduction zone (New Zealand's largest and most dangerous plate boundary fault) changes with time. We analyzed Interferometric Synthetic Aperture Radar and Global Navigation Satellite System data to map the areas where the plates are stuck together (coupled) and where they move past each other (uncoupled). We show that plate coupling varies significantly in space over 2, 4, and 10‐year time scales, highlighting the importance of carefully considering the observational time period when interpreting coupling maps. Key Points Integration of high‐resolution displacement maps from radar imagery captures plate coupling at fine scales Estimates of plate coupling depend strongly on the time period over which surface velocities are measured Temporal variations in plate coupling highlight when and where slow slip dominates the slip budget
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-12
    Description: The abyssal Clarion‐Clipperton Zone (CCZ), Pacific Ocean, is an area of commercial importance owing to the growing interest in mining high‐grade polymetallic nodules at the seafloor for battery metals. Research into the spatial patterns of faunal diversity, composition, and population connectivity is needed to better understand the ecological impacts of potential resource extraction. Here, a DNA taxonomy approach is used to investigate regional‐scale patterns of taxonomic and phylogenetic alpha and beta diversity, and genetic connectivity, of the dominant macrofaunal group (annelids) across a 6 million km 2 region of the abyssal seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-14
    Description: Sub-seabed fluid flow, gas hydrate accumulation and seafloor methane seepage are tightly interwoven processes with implications for marine biodiversity, ocean chemistry and seafloor stability. We combine long-offset seismic reflection data with high-resolution seismic data to investigate shallow structural deformation and its relationship to focused gas migration and hydrate accumulation in the southern Hikurangi subduction wedge. Anticlines, effective traps for focusing free gas, are characterized by both normal faults and vertical zones of hydraulic fracturing within the hydrate stability zone. The normal faults form as a result of sediment layer folding and gravitational collapse of ridges during uplift. We document both longitudinal (ridge-parallel) and transverse (ridge-perpendicular) extensional structures (normal faults and elongated hydraulic fracture zones) in the sub-seafloor of anticlinal ridges. Intriguingly, gas flow through ridges close to the deformation front of the wedge exploits longitudinal structures, while ridges further inboard are characterized by gas flow along transverse structures. This highlights pronounced changes in the shallow deformation of ridges in different parts of the wedge, associated with a switching of the least and intermediate principal stress directions. It is critical to understand these shallow stress fields because they control fluid flow patterns and methane seepage out of the seafloor. Key Points Gas migration through ridges occurs along both longitudinal (ridge-parallel) and transverse (ridge-perpendicular) zones of fracturing Shallow stress fields differ significantly between ridges, reflecting differences in ridge evolution and deformation Seismic reflection images of the base of gas hydrate stability and gas-water contacts are strongly affected by seismic frequency content
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-14
    Description: The transmission of microbes from mother to offspring is an ancient, advantageous, and widespread feature of metazoan life history. Despite this, little is known about the quantitative strategies taken to maintain symbioses across generations. The quantity of maternal microbes that is provided to each offspring through vertical transmission could theoretically be stochastic (no trend), consistent (an optimal range is allocated), or provisioned (a trade-off with fecundity). Examples currently come from animals that release free-living eggs (oviparous) and suggest that offspring are provided a consistent quantity of symbionts. The quantity of maternal microbes that is vertically transmitted in other major reproductive strategies has yet to be assessed. We used the brooding (viviparous) sponge Halichondria panicea to test whether offspring receive quantitatively similar numbers of maternal microbes. We observed that H. panicea has a maternal pool of the obligate symbiont Candidatus Halichondribacter symbioticus and that this maternal pool is provisioned proportionally to reproductive output and allometrically by offspring size. This pattern was not observed for the total bacterial community. Experimental perturbation by antibiotics could not reduce the abundance of Ca. H. symbioticus in larvae, while the total bacterial community could be reduced without affecting the ability of larvae to undergo metamorphosis. A trade-off between offspring size and number is, by definition, maternal provisioning and parallel differences in Ca. H. symbioticus abundance would suggest that this obligate symbiont is also provisioned.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-02-14
    Description: Sources of uncertainty (i.e., internal variability, model and scenario) in Atlantic Niño variability projections were quantified in 49 models participating in the Coupled Model Intercomparison Phases 5 (CMIP5) and 6 (CMIP6). By the end of the twenty‐first century, the ensemble mean change in Atlantic Niño variability is −0.07 ± 0.10˚C, with 80% of CMIP models projecting a decrease, and representing a 16% reduction relative to the 1981–2005 ensemble mean. Models' projections depict a large spread, with variability changes ranging from 0.23˚C to −0.50˚C. Internal variability is the main source of uncertainty until 2045 but model uncertainty dominates thereafter, eventually explaining up to 80% of the total uncertainty. The scenario uncertainty remains low (〈1%) throughout the twenty‐first century. The total uncertainty on Atlantic Niño variability projections is not improved when considering only CMIP models with a realistic zonal equatorial Atlantic sea surface temperature gradient. Plain Language Summary Sources of uncertainty (i.e., internal variability, model and scenario) in future projections of the Atlantic Niño variability were evaluated in global coupled models participating in the Coupled Model Intercomparison Phases 5 (CMIP5) and 6 (CMIP6). Relative to 1981–2005, models' projections depict a large spread, ranging from increasing Atlantic Niño variability by up to 0.23˚C to decreasing by up to −0.50˚C. By the end of the twenty‐first century, the ensemble mean Atlantic Niño variability change is −0.07 ± 0.10˚C with 80% of the global coupled models simulating a decrease. This change in the ensemble mean Atlantic Niño variability, relative to the period 1981–2005, represents a 16% reduction. During the first four decades of projection, the internal variability is the main contributor to the total uncertainty; thereafter model uncertainty dominates and explains up to 80% of the total uncertainty at the end of the twenty‐first century. The scenario uncertainty remains low (〈1%) throughout the twenty‐first century. The total uncertainty on Atlantic Niño variability projections is not improved when considering only CMIP models with a realistic zonal equatorial Atlantic sea surface temperature gradient. Key Points 80% of the CMIP models simulate a decrease of the Atlantic Niño variability at the end of the 21st century The model uncertainty explains about 80% of the total uncertainty on Atlantic Niño variability projections at the end of the 21st century Global warming signal is not detectable throughout scenarios due to large internal variability and model uncertainties
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-02-21
    Description: Accessible seafloor minerals located near mid‐ocean ridges are noticed to mitigate the projected metal demands of the net‐zero energy transition, promoting growing interest in quantifying the global distributions of seafloor massive sulfides (SMS). Mineral potentials are commonly estimated using geophysical and geological data that lastly rely on additional confirmation studies using sparsely available, locally limited, seafloor imagery, grab samples, and coring data. This raises the challenge of linking in situ confirmation data to geophysical data acquired at disparate spatial scales to obtain quantitative mineral predictions. Although multivariate data sets for marine mineral research are incessantly acquired, robust, integrative data analysis requires cumbersome workflows and experienced interpreters. We introduce an automated two‐step machine learning approach that integrates the mound detection through image segmentation with geophysical data. SMS predictors are subsequently clustered into distinct classes to infer marine mineral potentials that help guide future exploration. The automated workflow employs a U‐Net convolutional neural network to identify mound structures in bathymetry data and distinguishes different mound classes through the classification of mound architectures and magnetic signatures. Finally, controlled source electromagnetic data are utilized together with in situ sampling data to reassess predictions of potential SMS volumes. Our study focuses on the Trans‐Atlantic Geotraverse area, which is among the most explored SMS areas worldwide and includes 15 known SMS sites. The automated workflow classifies 14 of the 15 known mounds as exploration targets of either high or medium priority. This reduces the exploration area to less than 7% of the original survey area from 49 to 3.1 km 2 . Key Points A two‐step machine learning workflow identifies mound structures in bathymetry data and classifies their origins based on auxiliary data Significant increase in potential seafloor massive sulfides (SMS) edifices detected within the trans‐Atlantic geo‐traverse hydrothermal field distributed within latitudinal bands SMS mineral potential is likely lower than previously assumed due to heterogeneously distributed mineralization within mounds
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-02-23
    Description: The Congo River supplies vast quantities of trace metals (TMs) to the South Atlantic Ocean, but TM budgets for the Congo plume derived using radium isotopes for GEOTRACES cruise GA08 suggest additional input other than the river outflow. Considering the tight correlations between most dissolved TMs and salinity in the plume and the high rainfall during the wet season over the Congo shelf, we hypothesized that wet atmospheric deposition is a TM source to the Congo plume. Observed TM concentrations in rainwaters across the Congo shelf were mostly comparable to values from previous work in the North Atlantic and Mediterranean Sea. Wet deposition contributed the equivalent of 43% dCd, 21% dCu, 20% dPb and 68% dZn of the Congo River fluxes. Our findings show an important role of wet deposition in supplying TMs to the South Atlantic overlapping with the region that receives substantial TM fluxes from the Congo River. Key Points The Congo River is an important source of trace metals (TMs) to the South Atlantic Ocean revealed by data from GEOTRACES cruise GA08 Wet deposition (rainfall) is identified as an additional TM source to the Congo plume by concurrently considering river and rain data Rainfall supplies anthropogenic dTMs (Cd, Cu, Pb and Zn) with fluxes equivalent to 20%–68% of those from the Congo River on the Congo shelf Plain Language Summary The Congo River has the second largest freshwater discharge volume globally and creates an extensive near-equatorial plume into the Atlantic Ocean. The Congo plume constitutes an important source of trace metals (TMs) to the ocean, which impacts biogeochemical cycles in the tropical and subtropical ocean. However, existing work suggests a discrepancy within the TM budgets in the Congo plume and points to unknown source other than the Congo River or shelf sediments. Most TM concentrations across the Congo plume remain tightly correlated with salinity, suggesting that any additional sources are likely also freshwater-derived or enter the ocean at the river mouth coincidently with direct riverine TM inputs. Here, TM concentrations in ocean, river and rainwater collected during the GEOTRACES GA08 cruise are combined to suggest that wet deposition augmented some Congo TM fluxes to the ocean. Fluxes of anthropogenic Cd, Cu, Pb and Zn to the Congo shelf from wet deposition are of the same order of magnitude as the Congo River. Concentrations of these elements in rainwater are similar to prior observations reported for the North Atlantic and Mediterranean Sea, suggesting that a large fraction of the global range of rainwater concentrations over the ocean has been captured in our observations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-26
    Description: Submarine landslides pose a hazard to coastal communities and critical seafloor infrastructure, occurring on all of the world's continental margins, from coastal zones to hadal trenches. Offshore monitoring has been limited by the largely unpredictable occurrence of submarine landslides and the need to cover large regions. Recent subsea monitoring has provided new insights into the preconditioning and run-out of submarine landslides using active geophysical techniques. However, these tools measure a small spatial footprint and are power- and memory-intensive, thus limiting long-duration monitoring. Most landslide events remain unrecorded. In this chapter, we first show how passive acoustic and seismologic techniques can record acoustic emissions and ground motions created by terrestrial landslides. This terrestrial-focused research has catalyzed advances in characterizing submarine landslides using onshore and offshore networks of broadband seismometers, hydrophones, and geophones. We discuss new insights into submarine landslide preconditioning, timing, location, velocity, and down-slope evolution arising from these advances. Finally, we outline challenges, emphasizing the need to calibrate seismic and acoustic signals generated by submarine landslides. Passive seismic and acoustic sensing has a strong potential to enable more complete hazard catalogs to be built and open the door to emerging techniques (such as fiber-optic sensing) to fill key knowledge gaps.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-03-01
    Description: The recent severe European summer heat waves of 2015 and 2018 co-occurred with cold subpolar North Atlantic (NA) sea surface temperatures (SSTs). However, a significant connection between this oceanic state and European heat waves was not yet established. We performed two AMIP-like model experiments: (a) employing daily 2018 SSTs as observed and (b) applying a novel approach to remove the negative NA SST anomaly, while keeping SST daily and small-scale variability. Comparing these experiments, we find that cold subpolar NA SSTs significantly increase heat wave duration and magnitude downstream over the European continent. Surface temperature and circulation anomalies are connected by the upper-tropospheric summer wave pattern of meridional winds over the North Atlantic European sector, which is enhanced with cold NA SSTs. Our results highlight the relevance of the subpolar NA region for European summer conditions, a region that is marked by large biases in current coupled climate model simulations. Key Points: - Model study designed to investigate the ocean impact on European heat waves by prescribing observed and realistic ocean surface conditions - Cold subpolar North Atlantic sea surface temperatures significantly enhance heat wave intensity and duration over the European continent - North Atlantic ocean and European surface temperature and circulation anomalies are bridged by the upper-tropospheric summer mean wave
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-04-19
    Description: Due to the complexity of 2D magnetic anomaly maps north of 18°S and the sparsity of seismic data, the tectonic evolution of the northern Lau Basin has not yet been unraveled. We use a multi-method approach to reconstruct the formation of the basin at ∼16°S by compiling seismic, magnetic, gravimetric and geochemical data along a 185 km-long crustal transect. We identified a crustal zonation which preserves the level of subduction input at the time of the crust's formation. Paired with the seafloor magnetization, the crustal zonation enabled us to qualitatively approximate the dynamic spreading history of the region. Further assessment of the recent tectonic activity and the degree of tectonic overprinting visible in the crust both suggest a complex tectonic history including a dynamically moving spreading center and the reorganizing of the local magma supply. Comparing the compiled data sets has revealed substantial differences in the opening mechanisms of the two arms of the Overlapping Spreading Center (OSC) that is made up by the northernmost tip of the Fonualei Rift and Spreading Center in the east and the southernmost segment of the Mangatolu Triple Junction in the west. The observed transition from a predominantly tectonic opening mechanism at the eastern OSC arm to a magmatic opening mechanism at the western OSC arm coincides with an equally sharp transition from and strongly subduction influenced crust to a crust with virtually no subduction input. The degree of subduction input alters the geochemical composition, as well as the lithospheric stress response. Key Points Oceanic crust in the north-eastern Lau Basin formed at the now reorganized FRSC-MTJ system The position and the opening mechanisms of back-arc basin spreading center's change more dynamically at mid-ocean ridges Different opening mechanisms at the southern Mangatolu Triple Junction and northern Fonualei Rift Spreading Center despite their proximity
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-04-26
    Description: We present a continuous ∼6.2 Ma long record of explosive activity from the Northwest Pacific volcanic arcs based on a composite tephra sequence derived from Ocean Drilling Program Sites 882A and 884B, and core MD01‐2416 on the Detroit Seamount. Geochemical fingerprinting of tephra glass using major and trace element analyses and correlations of tephra layers between the three cores allowed the identification of 119 unique tephras, suggesting eruptions of magnitude (M) of 5.8–7.8. Age estimates for all the identified eruptions were obtained with the help of published and further refined age models for the studied cores, direct 40 Ar/ 39 Ar dating of four ash layers, and Bayesian age modeling. The glass compositions vary from low‐ to high‐K 2 O basaltic andesite to rhyolite and exhibit typical subduction‐related affinity. The majority of the tephras originated from Kamchatka, only a few tephras—from the neighboring Kuril and Aleutian arcs. The glass compositions revealed no temporal trends but made it possible to identify their source volcanic zones in Kamchatka and, in some cases, to determine their source eruptive centers. Our data indicates episodes of explosive activity recorded in the Detroit tephra sequence at ∼6,200, 5,600–5,000, 4,300–3,700 ka, and almost continuous activity since ∼3,000 ka. Within the latter episode, the most active intervals can be identified at 1,700–1,600, 1,150–1,050, and 600–50 ka. Geochemically fingerprinted and dated Detroit tephra sequence form a framework for dating and correlating diverse paleoenvironmental archives across the Northwest Pacific and for studies of geochemical evolution of the adjacent volcanic arcs. Plain Language Summary Explosive volcanic eruptions produce defragmented material named tephra, which can be spread over large distances and form layers in sediments on ocean floor and continents. Long continuous tephra sequences preserved in marine sediments provide one of the best chronicles of the explosive eruptions, and allow detailed evaluation of their timing relative to climatic changes. We studied one of such natural records of explosive volcanism preserved in the sediments covering the Detroit Seamount in the Northwest Pacific. We identified 119 tephra layers, which have been buried in the sediments during the last 6.2 Ma and represent volcanic eruptions with ≥7 km 3 tephra volume. We analyzed geochemical composition and determined age of each tephra. Most tephras were found to originate from volcanoes in Kamchatka, a few from the Kuril and Aleutian volcanoes. We found that the explosive activity recorded in the Detroit tephra sequence was not uniform over time. It peaked at ∼6,200, 5,600–5,000, 4,300–3,700, has continued since ∼3,000 thousand years ago until present. All tephra layers from our study can be used as unique isochrons for dating and correlating paleoenvironmental archives across the Northwest Pacific and for the reconstruction of the detailed volcanic record in the Earth history. Key Points We report age and composition for 119 tephras from sediment cores representing ∼6.2 Ma record of explosive volcanism in the NW Pacific The tephras have subduction‐related origin and mostly originate from volcanic eruptions with magnitude (M) of 5.8–7.8 in Kamchatka The data indicates episodes of explosive activity at ∼6,200, 5,600–5,000, 4,300–3,700 ka, and almost continuous activity since ∼3,000 ka
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-05-15
    Description: Oceanic detachment faulting, a major mode of seafloor accretion at slow and ultraslow spreading ridges, is thought to occur during magma‐poor phases and be abandoned when magmatism increases. In this framework, detachment faulting is the result of temporal variations in magma flux, which is inconsistent with recent geophysical observations at the Longqi segment on the Southwest Indian Ridge (49°42′E). In this paper, we focus on this sequentially active detachment faulting system that includes an old, inactive detachment fault and a younger, active detachment fault. We investigate the mechanisms controlling the temporal evolution of this tectonomagmatic system by using 2D mid‐ocean ridge spreading models that simulate faulting and magma intrusion into a visco‐elasto‐plastic continuum. Our models show that temporal variations in magma flux alone are insufficient to match the inferred temporal evolution of the sequentially active detachment system. Rather we find that sequentially active detachment faulting spontaneously occurs at the Longqi segment as a function of lithospheric thickness. This finding is in agreement with an analytical model, which shows that a thicker axial lithosphere results in a smaller fault heave and that a flatter angle in lithosphere thickening away from the accretion axis stabilizes the active fault. A thicker axial lithosphere and its flatter off‐axis angle combined have the potential to modulate sequentially active detachment faulting at the Longqi segment. Our results thus suggest that temporal changes of magmatism are not necessary for the development and abandonment of detachment faults at ultraslow spreading ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-05-14
    Description: Mesoscale eddies are common in the subtropical Northwest Pacific, however, relatively little is known about their spatial variability and temporal evolution, and how these impact upper ocean biogeochemistry. Here we investigate these using observations of a cyclonic eddy carried out along four sequential transects. Consistent with previous observations of cyclonic eddies, the eddy core had doming isopycnals, bringing elevated nutrient waters nearer to the surface. However, we also found that the upper layer of the eddy above the nutricline had significantly lower phosphate concentrations within its core relative to its edge. We attributed this to elevated N 2 fixation within the eddy core, which was likely driven by enhanced subsurface iron supply, ultimately resulting in increased phosphate consumption. Eddy‐enhanced N 2 fixation was additionally supported by the elevation of nitrate + nitrite to phosphate ratios below the euphotic zone. Moreover, we observed that while the upward displacement of isopycnals within the eddy core led to an increase in phytoplankton biomass in the lower euphotic zone, there was no significant increase in total phytoplankton biomass across the entire euphotic zone. Cyclonic eddies in the subtropical North Pacific are projected to be becoming more frequent, implying that such dynamics could become increasingly important for regulating nutrient biogeochemistry and ultimately productivity of the region. Key Points Lower phosphate concentrations were observed above the nutricline within the eddy core in comparison to the edge Enhanced N2 fixation within the eddy core is proposed to have driven increased phosphate consumption No substantial total phytoplankton biomass increase was found within the eddy core
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-05-17
    Description: In order not to significantly overshoot maximum levels of warming like the 1.5 and 2°C target we must stay within a fixed emissions budget. How to fairly distribute the entitlements to emit within such a budget is perhaps the most intensely discussed question in all of climate justice. In our review we discuss the most prominent proposals in moral and political philosophy on how to solve this question and put a special emphasis on scholarly contributions from the last decade. We canvass the arguments for and against emissions egalitarianism, emissions sufficientarianism, and emissions grandfathering as well as the debates surrounding them. These are how to deal with non‐compliance, how to split emissions between producers and consumers, how to best account for terrestrial carbon sinks, and whether emissions from having children should be subtracted from parents' emissions budgets. From the viewpoint of justice, it matters not only that we act against climate change but also how we do so. This review aims to elucidate one of the major ways in which our reaction to climate change could be just or unjust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2023-10-02
    Description: Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2023-10-12
    Description: Due to the strong interconnectedness between the ocean and our societies worldwide, improved ocean governance is essential for sustainable development in the context of the UN Ocean Decade. However, a multitude of different perspectives—ecological, societal, political, economic—and relations between these have to be understood and taken into consideration to foster transformative pathways towards marine sustainability. A core challenge that we are facing is that the ‘right’ response to complex societal issues cannot be known beforehand as abilities to predict complex systems are limited. Consequently, societal transformation is necessarily a journey towards the unknown and therefore requires experimental approaches that must enable the involvement of everyone with stakes in the future of our marine environment and its resources. A promising transdisciplinary research method that fulfils both criteria—being participatory and experimental—are real-world laboratories. Here, we discuss how real-world labs can serve as an operational framework in the context of the Ocean Decade by facilitating and guiding successful knowledge exchange at the interface of science and society. The core element of real-world labs is transdisciplinary experimentation to jointly develop potential strategies leading to targeted real-world interventions, essential for achieving the proposed ‘Decade Outcomes’. The authors specifically illustrate how deploying the concept of real-world labs can be advantageous when having to deal with multiple, overlapping challenges in the context of ocean governance and the blue economy. Altogether, we offer a first major contribution to synthesizing knowledge on the potentials of marine real-world labs, considering how they act as a way of exploring options for sustainable ocean futures. Indeed, in the marine context, real-world labs are still under-explored but are a tangible way for addressing the societal challenges of working towards sustainability transformations over the coming UN Ocean Decade and beyond. Read the free Plain Language Summary for this article on the Journal blog.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2023-09-18
    Description: Coastal ecosystem functioning often hinges on habitat-forming foundation species that engage in positive interactions (e.g. facilitation and mutualism) to reduce environmental stress. Seagrasses are important foundation species in coastal zones but are rapidly declining with losses typically linked to intensifying global change-related environmental stress. There is growing evidence that loss or disruption of positive interactions can amplify coastal ecosystem degradation as it compromises its stress mitigating capacity. Multiple recent studies highlight that seagrass can engage in a facultative mutualistic relationship with lucinid bivalves that alleviate sulphide toxicity. So far, however, the generality of this mutualism, and how its strength and relative importance depend on environmental conditions, remains to be investigated. Here we study the importance of the seagrass-lucinid mutualistic interaction on a continental-scale using a field survey across Europe. We found that the lucinid bivalve Loripes orbiculatus is associated with the seagrasses Zostera noltii and Zostera marina across a large latitudinal range. At locations where the average minimum temperature was above 1 °C, L. orbiculatus was present in 79% of the Zostera meadows; whereas, it was absent below this temperature. At locations above this minimum temperature threshold, mud content was the second most important determinant explaining the presence or absence of L. orbiculatus. Further analyses suggest that the presence of the lucinids have a positive effect on seagrass biomass by mitigating sulphide stress. Finally, results of a structural equation model (SEM) support the existence of a mutualistic feedback between L. orbiculatus and Z. noltii. We argue that this seagrass-lucinid mutualism should be more solidly integrated into management practices to improve seagrass ecosystem resilience to global change as well as the success of restoration efforts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2023-09-19
    Description: During the productive polar day, zooplankton and sea-ice amphipods fulfill a critical role in energy transfer from primary producers to higher trophic-level species in Arctic marine ecosystems. Recent polar night studies on zooplankton and sea-ice amphipods suggest higher levels of biological activity than previously assumed. However, it is unknown if these invertebrates maintain polar night activity on stored lipids, opportunistic feeding, or a combination of both. To assess how zooplankton (copepods, amphipods, and krill) and sea-ice amphipods support themselves on seasonally varying resources, we studied their lipid classes, fatty acid compositions, and compound-specific stable isotopes of trophic biomarker fatty acids during polar day (June/July) and polar night (January). Lipid storage and fatty acid results confirm previously described dietary sources in all species during polar day. We found evidence of polar night feeding in all species, including shifts from herbivory to omnivory. Sympagic-, pelagic-, and Calanus spp.-derived carbon sources supported zooplankton and sea-ice amphipods in both seasons. We provide a first indication of polar night feeding of sea-ice amphipods in the pelagic realm.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2023-09-22
    Description: The availability of underwater light, as primary energy source for all aquatic photoautotrophs, is (and will further be) altered by changing precipitation, water turbidity, mixing depth, and terrestrial input of chromophoric dissolved organic matter (CDOM). While experimental manipulations of CDOM input and turbidity are frequent, they often involve multiple interdependent changes (light, nutrients, C-supply). To create a baseline for the expected effects of light reduction alone, we performed a weighted meta-analysis on 240 published experiments (from 108 studies yielding 2500 effect sizes) that directly reduced light availability and measured marine autotroph responses. Across all organisms, habitats, and response variables, reduced light led to an average 23% reduction in biomass-related performance, whereas the effect sizes on physiological performance did not significantly differ from zero. Especially, pigment content increased with reduced light, which indicated a strong physiological plasticity in response to diminished light. This acclimation potential was also indicated by light reduction effects minimized if the experiments lasted longer. Nevertheless, the performance (especially biomass accrual) was reduced the more the less light intensity remained available. Light reduction effects were also more negative at higher temperatures if ambient light conditions were poor. Macrophytes or benthic systems were more negatively affected by light reduction than microalgae or plankton systems, especially in physiological responses were microalgae and plankton showed slightly positive responses. Otherwise, the effect magnitudes remained surprisingly consistent across habitats and aspects of experimental design. Therefore, the strong observed log–linear relationship between remaining light and autotrophic performance can be used as a baseline to predict marine primary production in future light climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...