ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (348)
  • Cell Line  (345)
  • Educación
  • J24
  • J31
  • O12
  • 2000-2004  (348)
Collection
  • Articles  (348)
Keywords
Years
Year
  • 101
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porteus, Matthew H -- Baltimore, David -- R01-GM39458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):763.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, California Institute of Technology, Pasadena CA 91125, USA. matthew.porteus@UTSouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730593" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA/metabolism ; Deoxyribonucleases, Type II Site-Specific/chemistry/genetics/*metabolism ; Dimerization ; Gene Targeting/*methods ; Green Fluorescent Proteins ; Humans ; Luminescent Proteins/genetics ; Mutation ; Nuclear Localization Signals ; Recombinant Fusion Proteins/chemistry/*metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae Proteins ; Transfection ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2003-08-16
    Description: During B lymphocyte development, antibodies are assembled by random gene segment reassortment to produce a vast number of specificities. A potential disadvantage of this process is that some of the antibodies produced are self-reactive. We determined the prevalence of self-reactive antibody formation and its regulation in human B cells. A majority (55 to 75%) of all antibodies expressed by early immature B cells displayed self-reactivity, including polyreactive and anti-nuclear specificities. Most of these autoantibodies were removed from the population at two discrete checkpoints during B cell development. Inefficient checkpoint regulation would lead to substantial increases in circulating autoantibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wardemann, Hedda -- Yurasov, Sergey -- Schaefer, Anne -- Young, James W -- Meffre, Eric -- Nussenzweig, Michel C -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1374-7. Epub 2003 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920303" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Antinuclear/biosynthesis/immunology ; Antibody Diversity ; Antibody Specificity ; Autoantibodies/*biosynthesis/immunology ; B-Lymphocytes/cytology/*immunology/physiology ; Cell Differentiation ; Cell Line ; Complementarity Determining Regions/chemistry/immunology ; Cytosol/immunology ; Genes, Immunoglobulin ; Humans ; Immunoglobulin Heavy Chains/chemistry/immunology ; Recombination, Genetic ; Selection, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2003-05-24
    Description: Alu repetitive elements can be inserted into mature messenger RNAs via a splicing-mediated process termed exonization. To understand the molecular basis and the regulation of the process of turning intronic Alus into new exons, we compiled and analyzed a data set of human exonized Alus. We revealed a mechanism that governs 3' splice-site selection in these exons during alternative splicing. On the basis of these findings, we identified mutations that activated the exonization of a silent intronic Alu.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lev-Maor, Galit -- Sorek, Rotem -- Shomron, Noam -- Ast, Gil -- New York, N.Y. -- Science. 2003 May 23;300(5623):1288-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764196" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/genetics ; *Alternative Splicing ; Alu Elements/*genetics ; Cell Line ; Cloning, Molecular ; DNA, Antisense ; Dinucleoside Phosphates/genetics ; *Exons ; Genome, Human ; Glucosyltransferases/genetics ; Humans ; Introns ; Mutagenesis, Site-Directed ; Point Mutation ; Polymerase Chain Reaction ; RNA-Binding Proteins ; Ribonucleoproteins, Small Nuclear/genetics/physiology ; Spliceosomes/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2003-08-09
    Description: During early development in vertebrates, Sonic hedgehog (Shh) is produced by the notochord and the floor plate. A ventrodorsal gradient of Shh directs ventrodorsal patterning of the neural tube. However, Shh is also required for the survival of neuroepithelial cells. We show that Patched (Ptc) induces apoptotic cell death unless its ligand Shh is present to block the signal. Moreover, the blockade of Ptc-induced cell death partly rescues the chick spinal cord defect provoked by Shh deprivation. Thus, the proapoptotic activity of unbound Ptc and the positive effect of Shh-bound Ptc on cell differentiation probably cooperate to achieve the appropriate spinal cord development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thibert, Chantal -- Teillet, Marie-Aimee -- Lapointe, Francoise -- Mazelin, Laetitia -- Le Douarin, Nicole M -- Mehlen, Patrick -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):843-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Apoptosis/Differentiation Laboratory, "La Ligue," Molecular and Cellular Genetic Center, CNRS Unite Mixte Recherche (UMR) 5534, University of Lyon, 69622 Villeurbanne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Cell Differentiation ; Cell Line ; Central Nervous System/cytology/*embryology/metabolism ; Chick Embryo ; Electroporation ; Epithelial Cells/cytology/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptors, Cell Surface ; Signal Transduction ; Spinal Cord/cytology/embryology ; Trans-Activators/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2003-08-02
    Description: Because nitric oxide (NO) may be a ubiquitous regulator of cellular signaling, we have modified the yeast two-hybrid system to explore the possibility of NO-dependent protein-protein interactions. We screened for binding partners of procaspase-3, a protein implicated in apoptotic signaling pathways, and identified multiple NO-dependent interactions.Two such interactions, with acid sphingomyelinase and NO synthase, were shown to occur in mammalian cells dependent on endogenous NO. Nitrosylation may thus provide a broad-based mechanism for regulating interactions between proteins. If so, systematic proteomic analyses in which redox state and NO bioavailability are carefully controlled will reveal a large array of novel interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumoto, Akio -- Comatas, Karrie E -- Liu, Limin -- Stamler, Jonathan S -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):657-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Caspase 3 ; Caspases/*metabolism ; Cell Line ; Enzyme Inhibitors/pharmacology ; Enzyme Precursors/*metabolism ; Escherichia coli/genetics/growth & development ; Gene Library ; Humans ; Hydrogen Peroxide/metabolism ; Lysosomes/enzymology ; Mitochondria/enzymology ; Nitric Oxide/*metabolism/pharmacology ; Nitric Oxide Donors/pharmacology ; Nitric Oxide Synthase/antagonists & inhibitors/*metabolism ; Nitric Oxide Synthase Type I ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Oxidation-Reduction ; Precipitin Tests ; *Protein Binding ; Signal Transduction ; Sphingomyelin Phosphodiesterase/*metabolism ; Transfection ; Transformation, Bacterial ; Triazenes/pharmacology ; Two-Hybrid System Techniques ; beta-Galactosidase/metabolism ; omega-N-Methylarginine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1872-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671253" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Embryo Research/economics/legislation & jurisprudence ; Embryo, Mammalian/*cytology ; *European Union ; *Guidelines as Topic ; Humans ; Research Support as Topic ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):577.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893913" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Embryo Research/*legislation & jurisprudence ; Embryo, Mammalian/*cytology ; *Faculty ; Germany ; Government ; Humans ; Jurisprudence ; Private Sector ; Public Sector ; Research Personnel/*legislation & jurisprudence ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2003-12-20
    Description: Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Jason M -- Castle, John -- Garrett-Engele, Philip -- Kan, Zhengyan -- Loerch, Patrick M -- Armour, Christopher D -- Santos, Ralph -- Schadt, Eric E -- Stoughton, Roland -- Shoemaker, Daniel D -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rosetta Inpharmatics LLC, Merck & Co., Inc., 12040 115th Avenue N.E., Kirkland, WA 98034, USA. jason_johnson@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684825" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amyloid beta-Protein Precursor/analysis/genetics ; Cell Line ; DNA, Complementary ; *Exons ; Expressed Sequence Tags ; *Genome, Human ; Humans ; Hydroxymethylglutaryl CoA Reductases/analysis/genetics ; Molecular Sequence Data ; *Oligonucleotide Array Sequence Analysis ; *Phosphoric Monoester Hydrolases ; Protein Isoforms/analysis ; Proteins/analysis/genetics ; RNA Precursors/*genetics ; ROC Curve ; Reverse Transcriptase Polymerase Chain Reaction ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2003-04-19
    Description: Rapid induction of type I interferon expression, a central event in establishing the innate antiviral response, requires cooperative activation of numerous transcription factors. Although signaling pathways that activate the transcription factors nuclear factor kappaB and ATF-2/c-Jun have been well characterized, activation of the interferon regulatory factors IRF-3 and IRF-7 has remained a critical missing link in understanding interferon signaling. We report here that the IkappaB kinase (IKK)-related kinases IKKepsilon and TANK-binding kinase 1 are components of the virus-activated kinase that phosphorylate IRF-3 and IRF-7. These studies illustrate an essential role for an IKK-related kinase pathway in triggering the host antiviral response to viral infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Sonia -- tenOever, Benjamin R -- Grandvaux, Nathalie -- Zhou, Guo-Ping -- Lin, Rongtuan -- Hiscott, John -- New York, N.Y. -- Science. 2003 May 16;300(5622):1148-51. Epub 2003 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lady Davis Institute for Medical Research-Jewish General Hospital, Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702806" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; DNA-Binding Proteins/metabolism ; Enzyme Activation ; Gene Expression Regulation, Viral ; Hepacivirus/immunology/*physiology ; Humans ; I-kappa B Kinase ; Interferon Regulatory Factor-3 ; Interferon Regulatory Factor-7 ; Interferon Type I/*biosynthesis/genetics ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*metabolism ; RNA, Small Interfering/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2003-12-06
    Description: The Rho family of small guanosine triphosphatases regulates actin cytoskeleton dynamics that underlie cellular functions such as cell shape changes, migration, and polarity. We found that Smurf1, a HECT domain E3 ubiquitin ligase, regulated cell polarity and protrusive activity and was required to maintain the transformed morphology and motility of a tumor cell. Atypical protein kinase C zeta (PKCzeta), an effector of the Cdc42/Rac1-PAR6 polarity complex, recruited Smurf1 to cellular protrusions, where it controlled the local level of RhoA. Smurf1 thus links the polarity complex to degradation of RhoA in lamellipodia and filopodia to prevent RhoA signaling during dynamic membrane movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong-Rui -- Zhang, Yue -- Ozdamar, Barish -- Ogunjimi, Abiodun A -- Alexandrova, Evguenia -- Thomsen, Gerald H -- Wrana, Jeffrey L -- HD32429/HD/NICHD NIH HHS/ -- R01 HD032429/HD/NICHD NIH HHS/ -- R01 HD032429-06/HD/NICHD NIH HHS/ -- R01 HD032429-07/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1775-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M56 1x5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657501" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Line, Tumor ; Cell Membrane/metabolism/physiology ; *Cell Movement ; *Cell Polarity ; Cell Size ; Cell Transformation, Neoplastic ; Cytoskeleton/ultrastructure ; Guanine Nucleotide Exchange Factors/metabolism ; Humans ; Intercellular Junctions/metabolism ; Mice ; NIH 3T3 Cells ; Protein Kinase C/metabolism ; Protein Structure, Tertiary ; Pseudopodia/*metabolism/ultrastructure ; RNA, Small Interfering ; Signal Transduction ; Transfection ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; cdc42 GTP-Binding Protein/metabolism ; rhoA GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2003-12-06
    Description: Myotonic dystrophy type 1 (DM1) is caused by a CUGn expansion (n approximately 50 to 5000) in the 3' untranslated region of the mRNA of the DM protein kinase gene. We show that mutant RNA binds and sequesters transcription factors (TFs), with up to 90% depletion of selected TFs from active chromatin. Diverse genes are consequently reduced in expression, including the ion transporter CIC-1, which has been implicated in myotonia. When TF specificity protein 1 (Sp1) was overexpressed in DM1-affected cells, low levels of messenger RNA for CIC-1 were restored to normal. Transcription factor leaching from chromatin by mutant RNA provides a potentially unifying pathomechanistic explanation for this disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebralidze, A -- Wang, Y -- Petkova, V -- Ebralidse, K -- Junghans, R P -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):383-7. Epub 2003 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotherapeutics Development Lab, Harvard Institute of Human Genetics, Harvard Medical School and Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, 4 Blackfan Circle, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Cell Nucleus/metabolism ; Chloride Channels/genetics ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Humans ; Muscle Cells/*metabolism ; Mutation ; Myotonic Dystrophy/*genetics ; Myotonin-Protein Kinase ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/*genetics ; RNA/genetics/*metabolism ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Receptors, IgG/genetics ; Receptors, Retinoic Acid/genetics/metabolism ; Ribonucleoproteins/metabolism ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Sp1 Transcription Factor/genetics/metabolism ; Sp3 Transcription Factor ; Trans-Activators/genetics/metabolism ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2003-03-01
    Description: Terminally misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytoplasm and degraded by proteasomes through a mechanism known as ER-associated degradation (ERAD). EDEM, a postulated Man8B-binding protein, accelerates the degradation of misfolded proteins in the ER. Here, EDEM was shown to interact with calnexin, but not with calreticulin, through its transmembrane region. Both binding of substrates to calnexin and their release from calnexin were required for ERAD to occur. Overexpression of EDEM accelerated ERAD by promoting the release of terminally misfolded proteins from calnexin. Thus, EDEM appeared to function in the ERAD pathway by accepting substrates from calnexin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Yukako -- Hosokawa, Nobuko -- Wada, Ikuo -- Nagata, Kazuhiro -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610305" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Calnexin/*metabolism ; Calreticulin/metabolism ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Humans ; Indolizines/pharmacology ; Membrane Proteins/*metabolism ; Precipitin Tests ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Transport ; Recombinant Fusion Proteins/metabolism ; Transfection ; alpha 1-Antitrypsin/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2003-02-08
    Description: We report the design and total chemical synthesis of "synthetic erythropoiesis protein" (SEP), a 51-kilodalton protein-polymer construct consisting of a 166-amino-acid polypeptide chain and two covalently attached, branched, and monodisperse polymer moieties that are negatively charged. The ability to control the chemistry allowed us to synthesize a macromolecule of precisely defined covalent structure. SEP was homogeneous as shown by high-resolution analytical techniques, with a mass of 50,825 +/-10 daltons by electrospray mass spectrometry, and with a pI of 5.0. In cell and animal assays for erythropoiesis, SEP displayed potent biological activity and had significantly prolonged duration of action in vivo. These chemical methods are a powerful tool in the rational design of protein constructs with potential therapeutic applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kochendoerfer, Gerd G -- Chen, Shiah-Yun -- Mao, Feng -- Cressman, Sonya -- Traviglia, Stacey -- Shao, Haiyan -- Hunter, Christie L -- Low, Donald W -- Cagle, E Neil -- Carnevali, Maia -- Gueriguian, Vincent -- Keogh, Peter J -- Porter, Heather -- Stratton, Stephen M -- Wiedeke, M Con -- Wilken, Jill -- Tang, Jie -- Levy, Jay J -- Miranda, Les P -- Crnogorac, Milan M -- Kalbag, Suresh -- Botti, Paolo -- Schindler-Horvat, Janice -- Savatski, Laura -- Adamson, John W -- Kung, Ada -- Kent, Stephen B H -- Bradburne, James A -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):884-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gryphon Therapeutics, 250 East Grand Avenue, Suite 90, South San Francisco, CA 94080, USA. Gkochendoerfer@gryphonRX.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574628" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Circular Dichroism ; *Drug Design ; Drug Stability ; Electrophoresis, Polyacrylamide Gel ; *Erythropoiesis ; Erythropoietin/chemistry/pharmacology ; Hematocrit ; Humans ; Isoelectric Point ; Mice ; Molecular Sequence Data ; Molecular Structure ; Molecular Weight ; *Polymers/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Protein Folding ; Proteins/*chemical synthesis/*chemistry/pharmacokinetics/pharmacology ; Rats ; Receptors, Erythropoietin/drug effects/metabolism ; Recombinant Proteins ; Spectrometry, Mass, Electrospray Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2003-08-23
    Description: The FACT (facilitates chromatin transcription) complex is required for transcript elongation through nucleosomes by RNA polymerase II (Pol II) in vitro. Here, we show that FACT facilitates Pol II-driven transcription by destabilizing nucleosomal structure so that one histone H2A-H2B dimer is removed during enzyme passage. We also demonstrate that FACT possesses intrinsic histone chaperone activity and can deposit core histones onto DNA. Importantly, FACT activity requires both of its constituent subunits and is dependent on the highly acidic C terminus of its larger subunit, Spt16. These findings define the mechanism by which Pol II can transcribe through chromatin without disrupting its epigenetic status.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belotserkovskaya, Rimma -- Oh, Sangtaek -- Bondarenko, Vladimir A -- Orphanides, George -- Studitsky, Vasily M -- Reinberg, Danny -- GM37120/GM/NIGMS NIH HHS/ -- GM58650/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12934006" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dimerization ; HeLa Cells ; High Mobility Group Proteins/chemistry/metabolism ; Histones/metabolism ; Humans ; Models, Genetic ; Molecular Chaperones/chemistry/metabolism ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Binding ; Protein Subunits ; RNA Polymerase II/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic ; Transcription Factors/chemistry/metabolism ; *Transcription, Genetic ; Transcriptional Elongation Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgiou, George -- Masip, Lluis -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):592-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Biomedical Engineering and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA. gg@che.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714731" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Antioxidants/*metabolism ; Bacteria/enzymology ; Catalysis ; Cell Line ; Cysteine/*analogs & derivatives/metabolism ; Erythrocytes/enzymology ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Biological ; Neurotransmitter Agents ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Structure, Secondary ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2003-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- Holden, Constance -- New York, N.Y. -- Science. 2003 Jan 24;299(5606):493-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12543947" target="_blank"〉PubMed〈/a〉
    Keywords: Access to Information ; Advisory Committees ; Animals ; Biological Specimen Banks ; Cell Culture Techniques ; Cell Line ; Chimera ; *Embryo Research/ethics ; Embryo, Mammalian/*cytology ; Guidelines as Topic ; Humans ; International Cooperation ; Internet ; Mice ; Pluripotent Stem Cells ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2003-09-13
    Description: RNA interference (RNAi) spreads systemically in plants and nematodes to silence gene expression distant from the site of initiation. We previously identified a gene, sid-1, essential for systemic but not cell-autonomous RNAi in Caenorhabditis elegans. Here, we demonstrate that SID-1 is a multispan transmembrane protein that sensitizes Drosophila cells to soaking RNAi with a potency that is dependent on double-stranded RNA (dsRNA) length. Further analyses revealed that SID-1 enables passive cellular uptake of dsRNA. These data indicate that systemic RNAi in C. elegans involves SID-1-mediated intercellular transport of dsRNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feinberg, Evan H -- Hunter, Craig P -- R01 GM069891/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1545-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970568" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Biological Transport ; Caenorhabditis elegans/*genetics ; Caenorhabditis elegans Proteins/chemistry/*metabolism ; Cell Line ; Diffusion ; Drosophila ; Membrane Proteins/chemistry/*metabolism ; *RNA Interference ; RNA, Double-Stranded/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2003-02-18
    Description: Cell contact is required for efficient transmission of human T cell leukemia virus- type 1 (HTLV-I) between cells and between individuals, because naturally infected lymphocytes produce virtually no cell-free infectious HTLV-I particles. However, the mechanism of cell-to-cell spread of HTLV-I is not understood. We show here that cell contact rapidly induces polarization of the cytoskeleton of the infected cell to the cell-cell junction. HTLV-I core (Gag protein) complexes and the HTLV-I genome accumulate at the cell-cell junction and are then transferred to the uninfected cell. Other lymphotropic viruses, such as HIV-1, may similarly subvert normal T cell physiology to allow efficient propagation between cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Igakura, Tadahiko -- Stinchcombe, Jane C -- Goon, Peter K C -- Taylor, Graham P -- Weber, Jonathan N -- Griffiths, Gillian M -- Tanaka, Yuetsu -- Osame, Mitsuhiro -- Bangham, Charles R M -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1713-6. Epub 2003 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12589003" target="_blank"〉PubMed〈/a〉
    Keywords: CD4-Positive T-Lymphocytes/immunology/ultrastructure/virology ; CD8-Positive T-Lymphocytes/immunology/ultrastructure/virology ; Cell Adhesion Molecules/metabolism ; Cell Communication ; Cell Line ; *Cell Polarity ; Extracellular Space/virology ; Gene Products, env/metabolism ; Gene Products, gag/metabolism ; Genome, Viral ; HTLV-I Infections/virology ; Human T-lymphotropic virus 1/genetics/*physiology ; Humans ; In Situ Hybridization, Fluorescence ; Intercellular Junctions/*physiology/ultrastructure/virology ; Microscopy, Confocal ; Microtubule-Organizing Center/*physiology/ultrastructure ; Microtubules/physiology ; Nucleocapsid Proteins/metabolism ; Peptide Nucleic Acids ; Receptors, Antigen, T-Cell/immunology ; T-Lymphocytes/immunology/*ultrastructure/*virology ; Talin/metabolism ; Virion/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2003-03-29
    Description: Although it has been known for some time that olfactory receptors (ORs) reside in spermatozoa, the function of these ORs is unknown. Here, we identified, cloned, and functionally expressed a previously undescribed human testicular OR, hOR17-4. With the use of ratiofluorometric imaging, Ca2+ signals were induced by a small subset of applied chemical stimuli, establishing the molecular receptive fields for the recombinantly expressed receptor in human embryonic kidney (HEK) 293 cells and the native receptor in human spermatozoa. Bourgeonal was a powerful agonist for both recombinant and native receptor types, as well as a strong chemoattractant in subsequent behavioral bioassays. In contrast, undecanal was a potent OR antagonist to bourgeonal and related compounds. Taken together, these results indicate that hOR17-4 functions in human sperm chemotaxis and may be a critical component of the fertilization process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spehr, Marc -- Gisselmann, Gunter -- Poplawski, Alexandra -- Riffell, Jeffrey A -- Wetzel, Christian H -- Zimmer, Richard K -- Hatt, Hanns -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2054-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology, Ruhr University Bochum, 150 University Street, D-44780 Bochum, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663925" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/metabolism ; Aldehydes/chemistry/metabolism/pharmacology ; Binding Sites ; Calcium/metabolism ; Calcium Signaling ; Cell Line ; Chemotactic Factors/chemistry/metabolism/*pharmacology ; *Chemotaxis ; Cloning, Molecular ; Dose-Response Relationship, Drug ; Fertilization ; Gene Expression Profiling ; Humans ; Ligands ; Male ; Molecular Structure ; Odors ; Receptors, Odorant/chemistry/genetics/*physiology ; Recombinant Fusion Proteins/metabolism ; Seminal Plasma Proteins/genetics/*physiology ; *Sperm Motility/drug effects ; Spermatozoa/drug effects/*physiology ; Testis/*metabolism ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spiegel, Allen -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1338-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA. spiegela@extra.niddk.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958351" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Arrestins/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; Down-Regulation ; Drosophila ; *Endocytosis ; Frizzled Receptors ; GTP-Binding Proteins/metabolism ; Humans ; Mice ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases ; Proteins/*metabolism ; Proteoglycans/metabolism ; Proto-Oncogene Proteins/metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Transforming Growth Factor beta/metabolism ; *Signal Transduction ; Transforming Growth Factor beta/metabolism ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Guy C -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):838-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Cambridge University, Cambridge CB2 1QW, UK. gcb@mole.bio.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574611" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism/ultrastructure ; Adipose Tissue, Brown/cytology/metabolism/ultrastructure ; Animals ; Cell Differentiation ; Cell Line ; Cyclic GMP/metabolism ; Energy Metabolism ; Gene Expression Regulation ; Mice ; Mice, Transgenic ; Mitochondria/*metabolism ; Muscles/metabolism/ultrastructure ; Nitric Oxide/*physiology ; Nitric Oxide Synthase/*metabolism ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Oxygen Consumption ; Rats ; Transcription Factors/metabolism ; Up-Regulation ; Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2003-12-13
    Description: Cells exposed to low oxygen concentrations respond by initiating defense mechanisms, including the stabilization of hypoxia-inducible factor (HIF) 1alpha, a transcription factor that upregulates genes such as those involved in glycolysis and angiogenesis. Nitric oxide and other inhibitors of mitochondrial respiration prevent the stabilization of HIF1alpha during hypoxia. In studies of cultured cells, we show that this effect is a result of an increase in prolyl hydroxylase-dependent degradation of HIF1alpha. With the use of Renilla luciferase to detect intracellular oxygen concentrations, we also demonstrate that, upon inhibition of mitochondrial respiration in hypoxia, oxygen is redistributed toward nonrespiratory oxygen-dependent targets such as prolyl hydroxylases so that they do not register hypoxia. Thus, the signaling consequences of hypoxia may be profoundly modified by nitric oxide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagen, Thilo -- Taylor, Cormac T -- Lam, Francis -- Moncada, Salvador -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1975-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671307" target="_blank"〉PubMed〈/a〉
    Keywords: Antioxidants/pharmacology ; *Cell Hypoxia ; Cell Line ; *Cell Respiration/drug effects ; Cycloheximide/pharmacology ; Cysteine Proteinase Inhibitors/pharmacology ; HeLa Cells ; Humans ; Hypoxia-Inducible Factor 1, alpha Subunit ; Leupeptins/*pharmacology ; Luciferases/metabolism ; Methacrylates ; Mitochondria/*metabolism ; Nitric Oxide/pharmacology/*physiology ; Nitric Oxide Donors/pharmacology ; Oxygen/*metabolism ; Procollagen-Proline Dioxygenase/metabolism ; Protein Synthesis Inhibitors/pharmacology ; Reactive Oxygen Species/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thiazoles/pharmacology ; Transcription Factors/*metabolism ; Transfection ; Triazenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2003-09-27
    Description: The RNA interference (RNAi) pathway is initiated by processing long double-stranded RNA into small interfering RNA (siRNA). The siRNA-generating enzyme was purified from Drosophila S2cells and consists of two stoichiometric subunits: Dicer-2(DCR-2) and a previously unknown protein that we named R2D2. R2D2 is homologous to the Caenorhabditis elegans RNAi protein RDE-4. Association with R2D2 does not affect the enzymatic activity of DCR-2. Rather, the DCR-2/R2D2 complex, but not DCR-2 alone, binds to siRNA and enhances sequence-specific messenger RNA degradation mediated by the RNA-initiated silencing complex (RISC). These results indicate that R2D2 bridges the initiation and effector steps of the Drosophila RNAi pathway by facilitating siRNA passage from Dicer to RISC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qinghua -- Rand, Tim A -- Kalidas, Savitha -- Du, Fenghe -- Kim, Hyun-Eui -- Smith, Dean P -- Wang, Xiaodong -- DC02539/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1921-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512631" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Biotinylation ; Caenorhabditis elegans/genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry ; Cell Line ; Chemical Precipitation ; Drosophila Proteins/chemistry/genetics/*isolation & purification/*metabolism ; Drosophila melanogaster/*genetics/metabolism ; Electrophoretic Mobility Shift Assay ; Endoribonucleases/genetics/isolation & purification/*metabolism ; Kinetics ; Molecular Sequence Data ; Mutation ; Protein Structure, Tertiary ; RNA Helicases/genetics/*isolation & purification/*metabolism ; *RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/*metabolism ; RNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; RNA-Induced Silencing Complex/isolation & purification/metabolism ; Recombinant Proteins/metabolism ; Ribonuclease III
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2003-09-27
    Description: Tumor necrosis factor (TNF) is a key regulator of inflammatory responses and has been implicated in many pathological conditions. We used structure-based design to engineer variant TNF proteins that rapidly form heterotrimers with native TNF to give complexes that neither bind to nor stimulate signaling through TNF receptors. Thus, TNF is inactivated by sequestration. Dominant-negative TNFs represent a possible approach to anti-inflammatory biotherapeutics, and experiments in animal models show that the strategy can attenuate TNF-mediated pathology. Similar rational design could be used to engineer inhibitors of additional TNF superfamily cytokines as well as other multimeric ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steed, Paul M -- Tansey, Malu G -- Zalevsky, Jonathan -- Zhukovsky, Eugene A -- Desjarlais, John R -- Szymkowski, David E -- Abbott, Christina -- Carmichael, David -- Chan, Cheryl -- Cherry, Lisa -- Cheung, Peter -- Chirino, Arthur J -- Chung, Hyo H -- Doberstein, Stephen K -- Eivazi, Araz -- Filikov, Anton V -- Gao, Sarah X -- Hubert, Rene S -- Hwang, Marian -- Hyun, Linus -- Kashi, Sandhya -- Kim, Alice -- Kim, Esther -- Kung, James -- Martinez, Sabrina P -- Muchhal, Umesh S -- Nguyen, Duc-Hanh T -- O'Brien, Christopher -- O'Keefe, Donald -- Singer, Karen -- Vafa, Omid -- Vielmetter, Jost -- Yoder, Sean C -- Dahiyat, Bassil I -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Xencor, 111 West Lemon Avenue, Monrovia, CA 91016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512626" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD/metabolism ; Apoptosis ; Arthritis, Experimental/drug therapy ; Biopolymers ; Caspases/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Computer Simulation ; Disease Progression ; Enzyme-Linked Immunosorbent Assay ; Female ; Galactosamine/pharmacology ; HeLa Cells ; Humans ; Liver/drug effects ; NF-kappa B/metabolism ; Point Mutation ; *Protein Engineering ; Rats ; Receptors, Tumor Necrosis Factor/metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; *Signal Transduction ; Transcription Factor RelA ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/*antagonists & ; inhibitors/genetics/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-01-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steghaus-Kovac, Sabine -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511625" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Embryo Research ; Embryo, Mammalian/*cytology ; Germany ; Humans ; Research Support as Topic ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2003-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woods, Gordon L -- White, Kenneth L -- Vanderwall, Dirk K -- Li, Guang-Peng -- Aston, Kenneth I -- Bunch, Thomas D -- Meerdo, Lora N -- Pate, Barry J -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1063. Epub 2003 May 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Northwest Equine Reproduction Laboratory, Department of Animal and Veterinary Science, University of Idaho, Moscow, ID 83844, USA. gwoods@uidaho.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12775846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Line ; *Cloning, Organism ; Embryo Transfer ; Embryo, Mammalian ; Embryonic and Fetal Development ; Equidae/*embryology/*genetics ; Female ; Fibroblasts ; Horses ; Male ; *Nuclear Transfer Techniques ; Oocytes/metabolism ; Pregnancy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2003-09-06
    Description: beta-Arrestins bind to activated seven transmembrane-spanning (7TMS) receptors (G protein-coupled receptors) after the receptors are phosphorylated by G protein-coupled receptor kinases (GRKs), thereby regulating their signaling and internalization. Here, we demonstrate an unexpected and analogous role of beta-arrestin 2 (betaarr2) for the single transmembrane-spanning type III transforming growth factor-beta (TGF-beta) receptor (TbetaRIII, also referred to as betaglycan). Binding of betaarr2 to TbetaRIII was also triggered by phosphorylation of the receptor on its cytoplasmic domain (likely at threonine 841). However, such phosphorylation was mediated by the type II TGF-beta receptor (TbetaRII), which is itself a kinase, rather than by a GRK. Association with betaarr2 led to internalization of both receptors and down-regulation of TGF-beta signaling. Thus, the regulatory actions of beta-arrestins are broader than previously appreciated, extending to the TGF-beta receptor family as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- Kirkbride, Kellye C -- How, Tam -- Nelson, Christopher D -- Mo, Jinyao -- Frederick, Joshua P -- Wang, Xiao-Fan -- Lefkowitz, Robert J -- Blobe, Gerard C -- CA 75368/CA/NCI NIH HHS/ -- CA 91816/CA/NCI NIH HHS/ -- HL 16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Duke University Medical Center, Departments of Medicine and Biochemistry, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958365" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Arrestins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Down-Regulation ; *Endocytosis ; Humans ; Keratinocytes/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutagenesis ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteoglycans/chemistry/genetics/*metabolism ; RNA, Small Interfering ; Receptors, Transforming Growth Factor beta/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Transforming Growth Factor beta ; Transforming Growth Factor beta1
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2002-04-16
    Description: Natural killer (NK) cells express inhibitory receptors for major histocompatibility complex (MHC) class I antigens, preventing attack against healthy cells. Mouse cytomegalovirus (MCMV) encodes an MHC-like protein (m157) that binds to an inhibitory NK cell receptor in certain MCMV-susceptible mice. In MCMV-resistant mice, this viral protein engages a related activating receptor (Ly49H) and confers host protection. These activating and inhibitory receptors are highly homologous, suggesting the possibility that one evolved from the other in response to selective pressure imposed by the pathogen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arase, Hisashi -- Mocarski, Edward S -- Campbell, Ann E -- Hill, Ann B -- Lanier, Lewis L -- AI30363/AI/NIAID NIH HHS/ -- CA89294/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1323-6. Epub 2002 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11950999" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antigens, Ly/chemistry/genetics/*immunology/metabolism ; Cell Line ; Coculture Techniques ; Disease Susceptibility ; Evolution, Molecular ; Herpesviridae Infections/*immunology ; Histocompatibility Antigens Class I/immunology ; Hybridomas ; Immunity, Innate ; Interferon-gamma/biosynthesis ; Killer Cells, Natural/*immunology ; Lectins, C-Type ; Ligands ; Lymphocyte Activation ; Membrane Glycoproteins/chemistry/genetics/*immunology/metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Muromegalovirus/genetics/*immunology/metabolism ; NK Cell Lectin-Like Receptor Subfamily A ; Protein Binding ; Receptors, Immunologic/chemistry/genetics/*immunology/metabolism ; Receptors, NK Cell Lectin-Like ; Recombinant Fusion Proteins/metabolism ; Transfection ; Viral Proteins/chemistry/genetics/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogelstein, Bert -- Alberts, Bruce -- Shine, Kenneth -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1237.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Kimmel Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA. vogelbe@welch.jhu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847324" target="_blank"〉PubMed〈/a〉
    Keywords: Bioethical Issues ; Cell Line ; *Cloning, Organism/legislation & jurisprudence ; Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; *Nuclear Transfer Techniques ; *Stem Cells ; *Terminology as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2002-12-10
    Description: The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iratni, Rabah -- Yan, Yu-Ting -- Chen, Canhe -- Ding, Jixiang -- Zhang, Yi -- Price, Sandy M -- Reinberg, Danny -- Shen, Michael M -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471260" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Line ; Crosses, Genetic ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; *Embryonic and Fetal Development ; Female ; Forkhead Transcription Factors ; Gastrula/*physiology ; Gene Expression Regulation, Developmental ; Gene Targeting ; Heterozygote ; In Situ Hybridization ; Left-Right Determination Factors ; Male ; Mesoderm/cytology/physiology ; Mice ; Morphogenesis ; Mutation ; Nodal Protein ; Phenotype ; Protein Binding ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transcription Factors/metabolism ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallo, Robert C -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1728-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Human Virology and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459576" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Serodiagnosis/history ; Acquired Immunodeficiency Syndrome/diagnosis/*history/immunology/virology ; CD4-Positive T-Lymphocytes/virology ; Cell Line ; Cells, Cultured ; France ; *HIV/classification/isolation & purification/physiology ; History, 20th Century ; Human T-lymphotropic virus 1/isolation & purification/physiology ; Human T-lymphotropic virus 2/isolation & purification/physiology ; Humans ; Interleukin-2/history/isolation & purification/physiology ; Patents as Topic/history ; RNA-Directed DNA Polymerase/history/isolation & purification/metabolism ; United States ; Virus Cultivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2002-07-06
    Description: The enzymatic conjugation of arginine to the N-termini of proteins is a part of the ubiquitin-dependent N-end rule pathway of protein degradation. In mammals, three N-terminal residues-aspartate, glutamate, and cysteine-are substrates for arginylation. The mouse ATE1 gene encodes a family of Arg-tRNA-protein transferases (R-transferases) that mediate N-terminal arginylation. We constructed ATE1-lacking mouse strains and found that ATE1-/- embryos die with defects in heart development and in angiogenic remodeling of the early vascular plexus. Through biochemical analyses, we show that N-terminal cysteine, in contrast to N-terminal aspartate and glutamate, is oxidized before its arginylation by R-transferase, suggesting that the arginylation branch of the N-end rule pathway functions as an oxygen sensor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Yong Tae -- Kashina, Anna S -- Davydov, Ilia V -- Hu, Rong-Gui -- An, Jee Young -- Seo, Jai Wha -- Du, Fangyong -- Varshavsky, Alexander -- GM31530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 5;297(5578):96-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, 147-75, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12098698" target="_blank"〉PubMed〈/a〉
    Keywords: Alkylation ; Aminoacyltransferases/*genetics/*metabolism ; Animals ; Aorta/embryology ; Arginine/*metabolism ; Aspartic Acid/metabolism ; Blood Vessels/*embryology ; Cell Line ; Cysteic Acid/metabolism ; Cysteine/metabolism ; Female ; Glutamic Acid/metabolism ; Heart/*embryology ; Heart Defects, Congenital/embryology ; Heart Septal Defects/embryology ; Hypoxia-Inducible Factor 1, alpha Subunit ; Male ; Mice ; Mice, Inbred C57BL ; Neovascularization, Physiologic ; Oxidation-Reduction ; Proteins/*metabolism ; Pulmonary Artery/embryology ; RGS Proteins/metabolism ; Recombinant Proteins/metabolism ; Sulfinic Acids/metabolism ; Transcription Factors/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2002-11-02
    Description: beta-Defensins are small antimicrobial peptides of the innate immune system produced in response to microbial infection of mucosal tissue and skin. We demonstrate that murine beta-defensin 2 (mDF2beta) acts directly on immature dendritic cells as an endogenous ligand for Toll-like receptor 4 (TLR-4), inducing up-regulation of costimulatory molecules and dendritic cell maturation. These events, in turn, trigger robust, type 1 polarized adaptive immune responses in vivo, suggesting that mDF2beta may play an important role in immunosurveillance against pathogens and, possibly, self antigens or tumor antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biragyn, Arya -- Ruffini, Pier Adelchi -- Leifer, Cynthia A -- Klyushnenkova, Elena -- Shakhov, Alexander -- Chertov, Oleg -- Shirakawa, Aiko K -- Farber, Joshua M -- Segal, David M -- Oppenheim, Joost J -- Kwak, Larry W -- N0L-CO-12400/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1025-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA. arya@mail.ncifcrf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12411706" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/immunology ; Cancer Vaccines/immunology ; Cell Line ; Cytokines/biosynthesis ; Dendritic Cells/*immunology ; *Drosophila Proteins ; Female ; Humans ; Interferon-alpha/physiology ; Ligands ; Lipopolysaccharides/immunology/pharmacology ; Lymphocyte Culture Test, Mixed ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Neoplasms/immunology/therapy ; Receptors, CCR6 ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Chemokine/metabolism ; Recombinant Fusion Proteins/pharmacology ; Signal Transduction ; Toll-Like Receptor 4 ; Toll-Like Receptors ; Transfection ; beta-Defensins/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2002-05-25
    Description: The sulfated peptide phytosulfokine (PSK) is an intercellular signal that plays a key role in cellular dedifferentiation and proliferation in plants. Using ligand-based affinity chromatography, we purified a 120-kilodalton membrane protein, specifically interacting with PSK, from carrot microsomal fractions. The corresponding complementary DNA encodes a 1021-amino acid receptor kinase that contains extracellular leucine-rich repeats, a single transmembrane domain, and a cytoplasmic kinase domain. Overexpression of this receptor kinase in carrot cells caused enhanced callus growth in response to PSK and a substantial increase in the number of tritium-labeled PSK binding sites, suggesting that PSK and this receptor kinase act as a ligand-receptor pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsubayashi, Yoshikatsu -- Ogawa, Mari -- Morita, Akiko -- Sakagami, Youji -- New York, N.Y. -- Science. 2002 May 24;296(5572):1470-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. matsu@agr.nagoya-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029134" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cell Line ; Chromatography, Affinity ; DNA, Complementary ; Daucus carota/cytology/*enzymology/genetics/growth & development ; Genes, Plant ; Glycosylation ; Leucine ; Ligands ; Microsomes/enzymology ; Molecular Sequence Data ; Molecular Weight ; Peptide Hormones ; *Plant Growth Regulators ; Plant Proteins/*chemistry/genetics/isolation & purification/*metabolism ; Plants, Genetically Modified ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/isolation & purification/*metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2002-02-02
    Description: The Golgi apparatus is partitioned during mitosis in animal cells by a process of fragmentation, dispersal, and reassembly in each daughter cell. We fractionated the Golgi apparatus in vivo using the drug brefeldin A or a dominant-negative mutant of the Sar1p protein. After these treatments, Golgi enzymes moved back to the endoplasmic reticulum, leaving behind a matrix of Golgi structural proteins. Under these conditions, cells still entered and exited mitosis normally, and their Golgi matrix partitioned in a manner very similar to that of the complete organelle. Thus, the matrix may be the partitioning unit of the Golgi apparatus and may carry the Golgi enzyme-containing membranes into the daughter cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seemann, Joachim -- Pypaert, Marc -- Taguchi, Tomohiko -- Malsam, Jorg -- Warren, Graham -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):848-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, Post Office Box 208002, New Haven, CT 06520-8002, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823640" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Animals ; Autoantigens ; Brefeldin A/pharmacology ; Cell Line ; Endoplasmic Reticulum/enzymology ; Golgi Apparatus/*metabolism/ultrastructure ; HeLa Cells ; Humans ; Interphase ; Intracellular Membranes/metabolism/ultrastructure ; Mannosidases/metabolism ; Membrane Proteins/metabolism ; Metaphase ; Microscopy, Electron ; Microscopy, Fluorescence ; *Mitosis ; Monomeric GTP-Binding Proteins/pharmacology ; N-Acetylglucosaminyltransferases/metabolism ; Protein Disulfide-Isomerases/metabolism ; Rats ; *Saccharomyces cerevisiae Proteins ; Telophase ; Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2002-04-20
    Description: For half a century, successful antifolate therapy against Plasmodium falciparum malaria has been attributed to host-parasite differences in drug binding to dihydrofolate reductase-thymidylate synthase (DHFR-TS). Selectivity may also arise through previously unappreciated differences in regulation of this drug target. The DHFR-TS of Plasmodium binds its cognate messenger RNA (mRNA) and inhibits its own translation. However, unlike translational regulation of DHFR or TS in humans, DHFR-TS mRNA binding is not coupled to enzyme active sites. Thus, antifolate treatment does not relieve translational inhibition and parasites cannot replenish dead enzyme.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830934/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830934/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Kai -- Rathod, Pradipsinh K -- AI26912/AI/NIAID NIH HHS/ -- AI40956/AI/NIAID NIH HHS/ -- R01 AI026912/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):545-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The Catholic University of America, Washington, DC 20064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/pharmacology ; Catalytic Domain ; Cell Line ; Folic Acid Antagonists/*pharmacology ; Host-Parasite Interactions ; Humans ; Multienzyme Complexes/chemistry/*genetics/*metabolism ; Plasmodium falciparum/*enzymology/genetics ; Protein Biosynthesis ; RNA, Messenger/genetics/metabolism ; RNA, Protozoan/genetics/metabolism ; Recombinant Proteins/genetics/metabolism ; Tetrahydrofolate Dehydrogenase/chemistry/*genetics/*metabolism ; Thymidylate Synthase/chemistry/*genetics/*metabolism ; Triazines/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2002-05-23
    Description: Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peier, Andrea M -- Reeve, Alison J -- Andersson, David A -- Moqrich, Aziz -- Earley, Taryn J -- Hergarden, Anne C -- Story, Gina M -- Colley, Sian -- Hogenesch, John B -- McIntyre, Peter -- Bevan, Stuart -- Patapoutian, Ardem -- New York, N.Y. -- Science. 2002 Jun 14;296(5575):2046-9. Epub 2002 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016205" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Newborn ; Blotting, Northern ; CHO Cells ; Capsaicin/*analogs & derivatives/pharmacology ; *Cation Transport Proteins ; Cell Line ; Cells, Cultured ; Cloning, Molecular ; Cricetinae ; Epidermis/cytology/innervation/metabolism ; Ganglia, Spinal/metabolism ; *Hot Temperature ; Humans ; In Situ Hybridization ; Ion Channels/chemistry/genetics/*metabolism ; Keratinocytes/*metabolism ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Nerve Endings/physiology ; Neurons/physiology ; Patch-Clamp Techniques ; RNA, Messenger/genetics/metabolism ; Ruthenium Red/pharmacology ; Signal Transduction ; Spinal Cord/metabolism ; TRPV Cation Channels ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2002-04-20
    Description: Simian virus 40 (SV40) utilizes endocytosis through caveolae for infectious entry into host cells. We found that after binding to caveolae, virus particles induced transient breakdown of actin stress fibers. Actin was then recruited to virus-loaded caveolae as actin patches that served as sites for actin "tail" formation. Dynamin II was also transiently recruited. These events depended on the presence of cholesterol and on the activation of tyrosine kinases that phosphorylated proteins in caveolae. They were necessary for formation of caveolae-derived endocytic vesicles and for infection of the cell. Thus, caveolar endocytosis is ligand-triggered and involves extensive rearrangement of the actin cytoskeleton.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelkmans, Lucas -- Puntener, Daniel -- Helenius, Ari -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):535-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Federal Institute of Technology Zurich (ETHZ), HPM1 Building, ETH Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964480" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology/ultrastructure ; Actins/*metabolism ; Animals ; Bicyclo Compounds, Heterocyclic/pharmacology ; Caveolae/*metabolism/ultrastructure/virology ; Caveolin 1 ; Caveolins/metabolism ; Cell Line ; Cholesterol/physiology ; *Depsipeptides ; Dynamins ; *Endocytosis ; GTP Phosphohydrolases/genetics/*metabolism ; Haplorhini ; Peptides, Cyclic/pharmacology ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein-Tyrosine Kinases/antagonists & inhibitors/metabolism ; Recombinant Fusion Proteins/metabolism ; Simian virus 40/*physiology ; Stress Fibers/metabolism ; Thiazoles/pharmacology ; Thiazolidines ; Transport Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dayton, Leigh -- New York, N.Y. -- Science. 2002 Apr 12;296(5566):238.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11951010" target="_blank"〉PubMed〈/a〉
    Keywords: Australia ; Cell Line ; Cloning, Organism/*legislation & jurisprudence ; Embryo Disposition ; *Embryo Research ; Embryo, Mammalian/*cytology ; Ethics Committees ; Fertilization in Vitro ; *Government Regulation ; Humans ; Research/*legislation & jurisprudence ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2002-03-30
    Description: Primary human cells in culture invariably stop dividing and enter a state of growth arrest called replicative senescence. This transition is induced by programmed telomere shortening, but the underlying mechanisms are unclear. Here, we report that overexpression of TRF2, a telomeric DNA binding protein, increased the rate of telomere shortening in primary cells without accelerating senescence. TRF2 reduced the senescence setpoint, defined as telomere length at senescence, from 7 to 4 kilobases. TRF2 protected critically short telomeres from fusion and repressed chromosome-end fusions in presenescent cultures, which explains the ability of TRF2 to delay senescence. Thus, replicative senescence is induced by a change in the protected status of shortened telomeres rather than by a complete loss of telomeric DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlseder, Jan -- Smogorzewska, Agata -- de Lange, Titia -- AG16643/AG/NIA NIH HHS/ -- CA76027/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2446-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11923537" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Polyomavirus Transforming/genetics/metabolism ; *Cell Aging ; *Cell Division ; Cell Line ; Cells, Cultured ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Humans ; Oncogene Proteins, Viral/genetics/metabolism ; Papillomavirus E7 Proteins ; *Repressor Proteins ; Retinoblastoma Protein/metabolism ; Retroviridae/genetics ; Telomere/metabolism/*physiology ; Telomeric Repeat Binding Protein 2 ; Transformation, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2002-05-04
    Description: The sequences of the human chromosomes 21 and 22 indicate that there are approximately 770 well-characterized and predicted genes. In this study, empirically derived maps identifying active areas of RNA transcription on these chromosomes have been constructed with the use of cytosolic polyadenylated RNA obtained from 11 human cell lines. Oligonucleotide arrays containing probes spaced on average every 35 base pairs along these chromosomes were used. When compared with the sequence annotations available for these chromosomes, it is noted that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized exons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapranov, Philipp -- Cawley, Simon E -- Drenkow, Jorg -- Bekiranov, Stefan -- Strausberg, Robert L -- Fodor, Stephen P A -- Gingeras, Thomas R -- New York, N.Y. -- Science. 2002 May 3;296(5569):916-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymetrix, Santa Clara, CA 95051, USA., National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988577" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 21/*genetics ; Chromosomes, Human, Pair 22/*genetics ; Computational Biology ; Contig Mapping ; Cytosol/metabolism ; DNA, Complementary ; DiGeorge Syndrome/genetics ; Exons ; Humans ; Oligonucleotide Array Sequence Analysis ; Oligonucleotide Probes ; *Physical Chromosome Mapping ; Polymerase Chain Reaction ; RNA, Messenger/*genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Transcription, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2002-01-19
    Description: Spider silks are protein-based "biopolymer" filaments or threads secreted by specialized epithelial cells as concentrated soluble precursors of highly repetitive primary sequences. Spider dragline silk is a flexible, lightweight fiber of extraordinary strength and toughness comparable to that of synthetic high-performance fibers. We sought to "biomimic" the process of spider silk production by expressing in mammalian cells the dragline silk genes (ADF-3/MaSpII and MaSpI) of two spider species. We produced soluble recombinant (rc)-dragline silk proteins with molecular masses of 60 to 140 kilodaltons. We demonstrated the wet spinning of silk monofilaments spun from a concentrated aqueous solution of soluble rc-spider silk protein (ADF-3; 60 kilodaltons) under modest shear and coagulation conditions. The spun fibers were water insoluble with a fine diameter (10 to 40 micrometers) and exhibited toughness and modulus values comparable to those of native dragline silks but with lower tenacity. Dope solutions with rc-silk protein concentrations 〉20% and postspinning draw were necessary to achieve improved mechanical properties of the spun fibers. Fiber properties correlated with finer fiber diameter and increased birefringence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazaris, Anthoula -- Arcidiacono, Steven -- Huang, Yue -- Zhou, Jiang-Feng -- Duguay, Francois -- Chretien, Nathalie -- Welsh, Elizabeth A -- Soares, Jason W -- Karatzas, Costas N -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):472-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nexia Biotechnologies, Vaudreuil-Dorion, Quebec J7V 8P5, Canada. alazaris@nexiabiotech.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Biopolymers ; Birefringence ; Cattle ; Cell Line ; Cloning, Molecular ; Cricetinae ; Culture Media, Conditioned ; DNA, Complementary ; Elasticity ; Epithelial Cells/metabolism ; *Fibroins ; Materials Testing ; Mechanics ; Molecular Sequence Data ; Molecular Weight ; *Protein Biosynthesis ; Protein Structure, Secondary ; Proteins/chemistry/*genetics/isolation & purification ; Recombinant Proteins/biosynthesis/chemistry/isolation & purification ; Solubility ; Spiders/*genetics/metabolism ; Stress, Mechanical ; Tensile Strength ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2002-09-07
    Description: The Golgi-localized, gamma-ear-containing, adenosine diphosphate ribosylation factor-binding proteins (GGAs) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) in the Golgi and have an essential role in lysosomal enzyme sorting. Here the GGAs and the coat protein adaptor protein-1 (AP-1) were shown to colocalize in clathrin-coated buds of the trans-Golgi networks of mouse L cells and human HeLa cells. Binding studies revealed a direct interaction between the hinge domains of the GGAs and the gamma-ear domain of AP-1. Further, AP-1 contained bound casein kinase-2 that phosphorylated GGA1 and GGA3, thereby causing autoinhibition. This could induce the directed transfer of the MPRs from GGAs to AP-1. MPRs that are defective in binding to GGAs are poorly incorporated into AP-1-containing clathrin-coated vesicles. Thus, the GGAs and AP-1 interact to package MPRs into AP-1-containing coated vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doray, Balraj -- Ghosh, Pradipta -- Griffith, Janice -- Geuze, Hans J -- Kornfeld, Stuart -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215646" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adaptor Proteins, Vesicular Transport ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cattle ; Cell Line ; Clathrin-Coated Vesicles/metabolism ; HeLa Cells ; Humans ; L Cells (Cell Line) ; Membrane Proteins/*metabolism ; Mice ; Mutation ; Phosphorylation ; Protein Binding ; Receptor, IGF Type 2/genetics/*metabolism ; Recombinant Proteins/metabolism ; trans-Golgi Network/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-01-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):419-21.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopolymers ; Cattle ; Cell Line ; Cricetinae ; Epithelial Cells/metabolism ; *Fibroins ; Genes ; Mechanics ; Molecular Weight ; *Protein Biosynthesis ; Proteins/chemistry/*genetics/isolation & purification ; Recombinant Proteins/biosynthesis/chemistry ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2002-02-16
    Description: Phosphorylation of mitogen-activated protein kinases (MAPKs) on specific tyrosine and threonine sites by MAP kinase kinases (MAPKKs) is thought to be the sole activation mechanism. Here, we report an unexpected activation mechanism for p38alpha MAPK that does not involve the prototypic kinase cascade. Rather it depends on interaction of p38alpha with TAB1 [transforming growth factor-beta-activated protein kinase 1 (TAK1)-binding protein 1] leading to autophosphorylation and activation of p38alpha. We detected formation of a TRAF6-TAB1-p38alpha complex and showed stimulus-specific TAB1-dependent and TAB1-independent p38alpha activation. These findings suggest that alternative activation pathways contribute to the biological responses of p38alpha to various stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Baoxue -- Gram, Hermann -- Di Padova, Franco -- Huang, Betty -- New, Liguo -- Ulevitch, Richard J -- Luo, Ying -- Han, Jiahuai -- AI41637/AI/NIAID NIH HHS/ -- HL07195/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847341" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Drosophila Proteins ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Imidazoles/pharmacology ; *Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase 6 ; *MAP Kinase Signaling System ; Membrane Glycoproteins/metabolism ; Mitogen-Activated Protein Kinase 14 ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Mutation ; Peptide Mapping ; Peroxynitrous Acid/pharmacology ; Phosphorylation ; Proteins/metabolism ; Pyridines/pharmacology ; Receptors, Cell Surface/metabolism ; Recombinant Fusion Proteins/metabolism ; TNF Receptor-Associated Factor 6 ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/pharmacology ; Two-Hybrid System Techniques ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2002-02-02
    Description: The hypoxia-inducible factors (HIFs) 1alpha and 2alpha are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel-Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate-dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1alpha and -2alpha, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lando, David -- Peet, Daniel J -- Whelan, Dean A -- Gorman, Jeffrey J -- Whitelaw, Murray L -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):858-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biosciences (Biochemistry), Adelaide University, SA 5005, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823643" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Asparagine/*metabolism ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia/*physiology ; Cell Line ; Humans ; Hydroxylation ; Hypoxia-Inducible Factor 1, alpha Subunit ; Mass Spectrometry ; Mice ; Mixed Function Oxygenases/metabolism ; Molecular Sequence Data ; Mutation ; Oxygen/*physiology ; Proline/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2002-01-12
    Description: T-bet is a member of the T-box family of transcription factors that appears to regulate lineage commitment in CD4 T helper (TH) lymphocytes in part by activating the hallmark TH1 cytokine, interferon-gamma (IFN-gamma). IFN-gamma is also produced by natural killer (NK) cells and most prominently by CD8 cytotoxic T cells, and is vital for the control of microbial pathogens. Although T-bet is expressed in all these cell types, it is required for control of IFN-gamma production in CD4 and NK cells, but not in CD8 cells. This difference is also apparent in the function of these cell subsets. Thus, the regulation of a single cytokine, IFN-gamma, is controlled by distinct transcriptional mechanisms within the T cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szabo, Susanne J -- Sullivan, Brandon M -- Stemmann, Claudia -- Satoskar, Abhay R -- Sleckman, Barry P -- Glimcher, Laurie H -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11786644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cytotoxicity, Immunologic ; Gene Targeting ; Immunization ; Immunoglobulin G/biosynthesis ; Interferon-gamma/*biosynthesis ; Interleukin-4/biosynthesis ; Interleukin-5/biosynthesis ; Killer Cells, Natural/immunology/metabolism ; Leishmania major ; Leishmaniasis, Cutaneous/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; T-Box Domain Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Th1 Cells/*immunology ; Transcription Factors/deficiency/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2002-02-23
    Description: The identification of pathways mediated by the kinase Cdk5 and the ligand reelin has provided a conceptual framework for exploring the molecular mechanisms underlying proper lamination of the developing mammalian cerebral cortex. In this report, we identify a component of the regulation of Cdk5-mediated cortical lamination by genetic analysis of the roles of the class III POU domain transcription factors, Brn-1 and Brn-2, expressed during the development of the forebrain and coexpressed in most layer II-V cortical neurons. Brn-1 and Brn-2 appear to critically control the initiation of radial migration, redundantly regulating the cell-autonomous expression of the p35 and p39 regulatory subunits of Cdk5 in migrating cortical neurons, with Brn-1(-/-)/Brn-2(-/-) mice exhibiting cortical inversion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McEvilly, Robert J -- de Diaz, Marcela Ortiz -- Schonemann, Marcus D -- Hooshmand, Farideh -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/embryology/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism ; Cell Line ; Cell Movement ; Cerebral Cortex/cytology/embryology/*metabolism ; Cyclin-Dependent Kinase 5 ; Cyclin-Dependent Kinases/metabolism ; Extracellular Matrix Proteins/genetics/metabolism ; Female ; Gene Targeting ; Hippocampus/cytology/embryology/metabolism ; Homeodomain Proteins ; In Situ Hybridization ; Male ; Mice ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/*physiology ; Neuropeptides/genetics/*physiology ; POU Domain Factors ; Serine Endopeptidases ; Trans-Activators/genetics/*physiology ; Transcription Factors/genetics/*physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-11-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ting, Alice Y -- Endy, Drew -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1189-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Chemokine CCL5/genetics ; Chemokine CXCL10 ; Chemokines, CXC/genetics ; Computer Simulation ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Feedback, Physiological ; *Gene Expression Regulation ; Humans ; I-kappa B Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; NF-kappa B/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; *Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-07-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Jul 12;297(5579):175-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12114602" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Differentiation ; Cell Line ; Embryo, Mammalian/*cytology ; Genetic Engineering ; Graft Rejection ; HeLa Cells ; Histocompatibility Antigens Class I/*analysis ; Humans ; Nuclear Transfer Techniques ; Stem Cell Transplantation ; Stem Cells/*immunology ; Teratoma/immunology ; Tissue Banks ; Transplantation Immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2002-01-05
    Description: The presence of galactose alpha-1,3-galactose residues on the surface of pig cells is a major obstacle to successful xenotransplantation. Here, we report the production of four live pigs in which one allele of the alpha-1,3-galactosyltransferase locus has been knocked out. These pigs were produced by nuclear transfer technology; clonal fetal fibroblast cell lines were used as nuclear donors for embryos reconstructed with enucleated pig oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lai, Liangxue -- Kolber-Simonds, Donna -- Park, Kwang-Wook -- Cheong, Hee-Tae -- Greenstein, Julia L -- Im, Gi-Sun -- Samuel, Melissa -- Bonk, Aaron -- Rieke, August -- Day, Billy N -- Murphy, Clifton N -- Carter, David B -- Hawley, Robert J -- Prather, Randall S -- R44 RR15198/RR/NCRR NIH HHS/ -- T32 RR07004/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1089-92. Epub 2002 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Science, University of Missouri, Columbia, MO 65211, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778012" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Animals, Genetically Modified ; Cell Line ; *Cloning, Organism ; Embryo Transfer ; Female ; Fetus ; Fibroblasts ; Galactosyltransferases/*genetics ; *Gene Targeting ; Genetic Vectors ; Male ; Mutagenesis, Insertional ; Nuclear Transfer Techniques ; Pregnancy ; Recombination, Genetic ; Swine ; Swine, Miniature/embryology/*genetics ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2002-08-31
    Description: Synapses, the junctions between nerve cells through which they communicate, are formed by the coordinated assembly and tight attachment of pre- and postsynaptic specializations. We now show that SynCAM is a brain-specific, immunoglobulin domain-containing protein that binds to intracellular PDZ-domain proteins and functions as a homophilic cell adhesion molecule at the synapse. Expression of the isolated cytoplasmic tail of SynCAM in neurons inhibited synapse assembly. Conversely, expression of full-length SynCAM in nonneuronal cells induced synapse formation by cocultured hippocampal neurons with normal release properties. Glutamatergic synaptic transmission was reconstituted in these nonneuronal cells by coexpressing glutamate receptors with SynCAM, which suggests that a single type of adhesion molecule and glutamate receptor are sufficient for a functional postsynaptic response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biederer, Thomas -- Sara, Yildirim -- Mozhayeva, Marina -- Atasoy, Deniz -- Liu, Xinran -- Kavalali, Ege T -- Sudhof, Thomas C -- New York, N.Y. -- Science. 2002 Aug 30;297(5586):1525-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Thomas.Biederer@UTSouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12202822" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/cytology/*physiology ; Brain Chemistry ; Cell Adhesion Molecules/chemistry/isolation & purification/*physiology ; Cell Adhesion Molecules, Neuronal/chemistry/isolation & purification/*physiology ; Cell Line ; Coculture Techniques ; Exocytosis ; Humans ; Immunoglobulins ; Molecular Sequence Data ; Neurons/physiology ; Prosencephalon/chemistry/physiology ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/physiology ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Amino Acid ; Synapses/chemistry/*physiology ; Synaptic Transmission/physiology ; Transfection ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2002-09-14
    Description: Mechanisms regulating self-renewal and cell fate decisions in mammalian stem cells are poorly understood. We determined global gene expression profiles for mouse and human hematopoietic stem cells and other stages of the hematopoietic hierarchy. Murine and human hematopoietic stem cells share a number of expressed gene products, which define key conserved regulatory pathways in this developmental system. Moreover, in the mouse, a portion of the genetic program of hematopoietic stem cells is shared with embryonic and neural stem cells. This overlapping set of gene products represents a molecular signature of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivanova, Natalia B -- Dimos, John T -- Schaniel, Christoph -- Hackney, Jason A -- Moore, Kateri A -- Lemischka, Ihor R -- DK42989/DK/NIDDK NIH HHS/ -- DK54493/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):601-4. Epub 2002 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228721" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Communication ; Cell Cycle ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cell Separation ; Cells, Cultured ; Computational Biology ; Embryo, Mammalian/cytology ; Expressed Sequence Tags ; *Gene Expression ; *Gene Expression Profiling ; Genes, Homeobox ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Humans ; Mice ; Neurons/cytology ; Oligonucleotide Array Sequence Analysis ; Signal Transduction ; Stem Cells/*physiology ; Totipotent Stem Cells/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Gary -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1249-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, USA. gary.johnson@uchsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847330" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Humans ; Imidazoles/pharmacology ; *Intracellular Signaling Peptides and Proteins ; MAP Kinase Kinase 6 ; MAP Kinase Kinase Kinases/metabolism ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 14 ; Mitogen-Activated Protein Kinases/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Proteins/metabolism ; Pyridines/pharmacology ; Recombinant Proteins/metabolism ; TNF Receptor-Associated Factor 6 ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2002-10-26
    Description: Obligate intracellular apicomplexan parasites rely on gliding motion powered by their actomyosin system to disperse throughout tissues and to penetrate host cells. Toxoplasma gondii myosin A has been implicated in this process, but direct proof has been lacking. We designed a genetic screen to generate a tetracycline-inducible transactivator system in T. gondii. The MyoA gene was disrupted in the presence of a second regulatable copy of MyoA. Conditional removal of this myosin caused severe impairment in host cell invasion and parasite spreading in cultured cells, and unambiguously established the pathogenic function of this motor in an animal model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meissner, Markus -- Schluter, Dirk -- Soldati, Dominique -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):837-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcimycin/pharmacology ; Calcium/metabolism ; Cell Line ; Cells, Cultured ; Exocytosis ; Genetic Vectors ; Humans ; Mice ; Movement ; Nonmuscle Myosin Type IIA/genetics/*physiology ; Organelles/metabolism ; Protozoan Proteins/genetics/physiology ; Tetracycline/pharmacology ; Toxoplasma/genetics/growth & development/*pathogenicity/*physiology ; Toxoplasmosis, Animal/*parasitology ; Trans-Activators/metabolism ; Transfection ; Transgenes ; Virulence ; Virulence Factors/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2002-08-17
    Description: Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of neurodegenerative diseases and stroke. However, the mechanism of MMP activation remains unclear. We report that MMP activation involves S-nitrosylation. During cerebral ischemia in vivo, MMP-9 colocalized with neuronal nitric oxide synthase. S-Nitrosylation activated MMP-9 in vitro and induced neuronal apoptosis. Mass spectrometry identified the active derivative of MMP-9, both in vitro and in vivo, as a stable sulfinic or sulfonic acid, whose formation was triggered by S-nitrosylation. These findings suggest a potential extracellular proteolysis pathway to neuronal cell death in which S-nitrosylation activates MMPs, and further oxidation results in a stable posttranslational modification with pathological activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Zezong -- Kaul, Marcus -- Yan, Boxu -- Kridel, Steven J -- Cui, Jiankun -- Strongin, Alex -- Smith, Jeffrey W -- Liddington, Robert C -- Lipton, Stuart A -- AR08505/AR/NIAMS NIH HHS/ -- P01 HD29587/HD/NICHD NIH HHS/ -- R01 AR42750/AR/NIAMS NIH HHS/ -- R01 CA 69306/CA/NCI NIH HHS/ -- R01 EY05477/EY/NEI NIH HHS/ -- R01 EY09024/EY/NEI NIH HHS/ -- R01 NS41207/NS/NINDS NIH HHS/ -- T32 AG00252/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1186-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neuroscience and Aging, Program in Cell Adhesion and Extracellular Matrix Biology, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Brain Ischemia/*enzymology/pathology ; Cell Line ; Cells, Cultured ; Cerebral Cortex/blood supply/*enzymology/pathology ; Cysteine/*analogs & derivatives/metabolism/pharmacology ; Enzyme Activation ; Enzyme Precursors/genetics/metabolism ; Humans ; Matrix Metalloproteinase 9/chemistry/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Models, Molecular ; Neurons/*physiology ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/antagonists & inhibitors/metabolism ; Nitric Oxide Synthase Type I ; Oxidation-Reduction ; Phenylmercuric Acetate/*analogs & derivatives/pharmacology ; Rats ; Recombinant Proteins/metabolism ; Reperfusion ; S-Nitrosothiols/*metabolism/pharmacology ; Signal Transduction ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2002-08-17
    Description: In striated muscle, the plasma membrane forms tubular invaginations (transverse tubules or T-tubules) that function in depolarization-contraction coupling. Caveolin-3 and amphiphysin were implicated in their biogenesis. Amphiphysin isoforms have a putative role in membrane deformation at endocytic sites. An isoform of amphiphysin 2 concentrated at T-tubules induced tubular plasma membrane invaginations when expressed in nonmuscle cells. This property required exon 10, a phosphoinositide-binding module. In developing myotubes, amphiphysin 2 and caveolin-3 segregated in tubular and vesicular portions of the T-tubule system, respectively. These findings support a role of the bilayer-deforming properties of amphiphysin at T-tubules and, more generally, a physiological role of amphiphysin in membrane deformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eunkyung -- Marcucci, Melissa -- Daniell, Laurie -- Pypaert, Marc -- Weisz, Ora A -- Ochoa, Gian-Carlo -- Farsad, Khashayar -- Wenk, Markus R -- De Camilli, Pietro -- CA46128/CA/NCI NIH HHS/ -- NS36251/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1193-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Caveolin 3 ; Caveolins/metabolism ; Cell Differentiation ; Cell Line ; Cell Membrane/metabolism ; Cell Membrane Structures/metabolism/*ultrastructure ; Cricetinae ; Dynamins ; Exons ; GTP Phosphohydrolases/metabolism ; Liposomes/metabolism ; Mice ; Microscopy, Electron ; Morphogenesis ; *Muscle Development ; Muscle, Skeletal/metabolism/*ultrastructure ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Protein Isoforms ; Protein Structure, Tertiary ; RNA, Small Interfering ; RNA, Untranslated/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2002-04-20
    Description: The signaling pathway from phosphoinositide 3-kinase to the protein kinase Akt controls organismal life-span in invertebrates and cell survival and proliferation in mammals by inhibiting the activity of members of the FOXO family of transcription factors. We show that mammalian FOXO3a also functions at the G2 to M checkpoint in the cell cycle and triggers the repair of damaged DNA. By gene array analysis, FOXO3a was found to modulate the expression of several genes that regulate the cellular response to stress at the G2-M checkpoint. The growth arrest and DNA damage response gene Gadd45a appeared to be a direct target of FOXO3a that mediates part of FOXO3a's effects on DNA repair. These findings indicate that in mammals FOXO3a regulates the resistance of cells to stress by inducing DNA repair and thereby may also affect organismal life-span.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tran, Hien -- Brunet, Anne -- Grenier, Jill M -- Datta, Sandeep R -- Fornace, Albert J Jr -- DiStefano, Peter S -- Chiang, Lillian W -- Greenberg, Michael E -- NIHP30-HD18655/HD/NICHD NIH HHS/ -- P01-HD24926/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):530-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964479" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chromones/pharmacology ; DNA Damage ; *DNA Repair ; DNA-Binding Proteins/genetics/*metabolism ; Forkhead Transcription Factors ; G2 Phase ; Gene Expression Profiling ; Gene Expression Regulation ; Genes, Reporter ; Humans ; Intracellular Signaling Peptides and Proteins ; Mitosis ; Morpholines/pharmacology ; Promoter Regions, Genetic ; Proteins/genetics/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Tamoxifen/*analogs & derivatives/pharmacology ; Transcription Factors/genetics/*metabolism ; Transfection ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2002-07-20
    Description: Mammalian organogenesis requires the expansion of pluripotent precursor cells before the subsequent determination of specific cell types, but the tissue-specific molecular mechanisms that regulate the initial expansion of primordial cells remain poorly defined. We have genetically established that Six6 homeodomain factor, acting as a strong tissue-specific repressor, regulates early progenitor cell proliferation during mammalian retinogenesis and pituitary development. Six6, in association with Dach corepressors, regulates proliferation by directly repressing cyclin-dependent kinase inhibitors, including the p27Kip1 promoter. These data reveal a molecular mechanism by which a tissue-specific transcriptional repressor-corepressor complex can provide an organ-specific strategy for physiological expansion of precursor populations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xue -- Perissi, Valentina -- Liu, Forrest -- Rose, David W -- Rosenfeld, Michael G -- 484/B/Telethon/Italy -- 5F32DK09814/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1180-3. Epub 2002 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Medicine, University of California, San Diego, School of Medicine, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Cycle ; Cell Cycle Proteins/genetics/metabolism ; *Cell Division ; Cell Line ; Cyclin-Dependent Kinase Inhibitor p27 ; Cyclin-Dependent Kinases/antagonists & inhibitors ; Embryo, Mammalian/cytology ; Eye Proteins/metabolism ; Homeodomain Proteins/*genetics/*metabolism ; Mice ; Nuclear Proteins/metabolism ; Organ Specificity ; Pituitary Gland/*cytology/embryology ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; Retina/*cytology/embryology ; Retinal Ganglion Cells/cytology/physiology ; Stem Cells/*physiology ; Trans-Activators/*genetics/*metabolism ; Transcription Factors ; Transcription, Genetic ; Transfection ; Tumor Suppressor Proteins/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-11-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1316-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434028" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism ; Embryo, Mammalian/cytology ; Humans ; *International Cooperation ; *Research Embryo Creation ; *Stem Cells ; *United Nations
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2002-05-04
    Description: Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine tract in the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis. Here, we report that huntingtin interacts with the transcriptional activator Sp1 and coactivator TAFII130. Coexpression of Sp1 and TAFII130 in cultured striatal cells from wild-type and HD transgenic mice reverses the transcriptional inhibition of the dopamine D2 receptor gene caused by mutant huntingtin, as well as protects neurons from huntingtin-induced cellular toxicity. Furthermore, soluble mutant huntingtin inhibits Sp1 binding to DNA in postmortem brain tissues of both presymptomatic and affected HD patients. Understanding these early molecular events in HD may provide an opportunity to interfere with the effects of mutant huntingtin before the development of disease symptoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dunah, Anthone W -- Jeong, Hyunkyung -- Griffin, April -- Kim, Yong-Man -- Standaert, David G -- Hersch, Steven M -- Mouradian, M Maral -- Young, Anne B -- Tanese, Naoko -- Krainc, Dimitri -- 5R37AG13617/AG/NIA NIH HHS/ -- AT00613/AT/NCCIH NIH HHS/ -- NS02174/NS/NINDS NIH HHS/ -- NS34361/NS/NINDS NIH HHS/ -- NS35255/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2238-43. Epub 2002 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Center for Aging, Genetics and Neurodegeneration, Charlestown, MA 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988536" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; Caudate Nucleus/metabolism ; Cell Death ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Corpus Striatum/cytology/embryology/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Down-Regulation ; Gene Expression Regulation ; Humans ; Huntington Disease/*genetics/metabolism ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neurons/physiology ; Nuclear Proteins/chemistry/genetics/*metabolism ; Peptides ; Promoter Regions, Genetic ; Rats ; Receptors, Dopamine D2/genetics ; Solubility ; Sp1 Transcription Factor/chemistry/*metabolism ; *TATA-Binding Protein Associated Factors ; *Transcription Factor TFIID ; Transcription Factors/chemistry/*metabolism ; *Transcription, Genetic ; Transfection ; Trinucleotide Repeat Expansion ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2002-09-28
    Description: Celiac Sprue, a widely prevalent autoimmune disease of the small intestine, is induced in genetically susceptible individuals by exposure to dietary gluten. A 33-mer peptide was identified that has several characteristics suggesting it is the primary initiator of the inflammatory response to gluten in Celiac Sprue patients. In vitro and in vivo studies in rats and humans demonstrated that it is stable toward breakdown by all gastric, pancreatic, and intestinal brush-border membrane proteases. The peptide reacted with tissue transglutaminase, the major autoantigen in Celiac Sprue, with substantially greater selectivity than known natural substrates of this extracellular enzyme. It was a potent inducer of gut-derived human T cell lines from 14 of 14 Celiac Sprue patients. Homologs of this peptide were found in all food grains that are toxic to Celiac Sprue patients but are absent from all nontoxic food grains. The peptide could be detoxified in in vitro and in vivo assays by exposure to a bacterial prolyl endopeptidase, suggesting a strategy for oral peptidase supplement therapy for Celiac Sprue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shan, Lu -- Molberg, Oyvind -- Parrot, Isabelle -- Hausch, Felix -- Filiz, Ferda -- Gray, Gary M -- Sollid, Ludvig M -- Khosla, Chaitan -- R01 DK100619/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2275-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Celiac Disease/*immunology/therapy ; Cell Line ; Edible Grain/chemistry ; Endopeptidases/metabolism ; Epitopes, T-Lymphocyte ; GTP-Binding Proteins/metabolism ; Gliadin/*chemistry/*immunology/metabolism ; HLA-DQ Antigens/immunology ; Humans ; Immunodominant Epitopes ; Intestinal Mucosa/enzymology/*immunology ; Intestine, Small/enzymology/*immunology ; Lymphocyte Activation ; Microvilli/enzymology ; Molecular Sequence Data ; Peptide Fragments/chemistry/immunology ; Rats ; Recombinant Proteins/chemistry/metabolism ; Sequence Homology, Amino Acid ; Serine Endopeptidases/administration & dosage/metabolism/therapeutic use ; T-Lymphocytes/*immunology ; Transglutaminases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-10-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):517.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386310" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomedical Research ; Cell Line ; *Embryo Research ; Embryo, Mammalian/cytology ; Foundations ; Humans ; Peer Review, Research ; *Research Support as Topic ; *Stem Cells ; Sweden
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2002-11-26
    Description: We have analyzed the kinetics of assembly and elongation of the mammalian RNA polymerase I complex on endogenous ribosomal genes in the nuclei of living cells with the use of in vivo microscopy. We show that components of the RNA polymerase I machinery are brought to ribosomal genes as distinct subunits and that assembly occurs via metastable intermediates. With the use of computational modeling of imaging data, we have determined the in vivo elongation time of the polymerase, and measurements of recruitment and incorporation frequencies show that incorporation of components into the assembling polymerase is inefficient. Our data provide a kinetic and mechanistic framework for the function of a mammalian RNA polymerase in living cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dundr, Miroslav -- Hoffmann-Rohrer, Urs -- Hu, Qiyue -- Grummt, Ingrid -- Rothblum, Lawrence I -- Phair, Robert D -- Misteli, Tom -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1623-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalytic Domain ; Cell Line ; Cell Nucleolus/metabolism ; Cell Nucleus/*metabolism ; Computer Simulation ; DNA, Ribosomal/genetics ; Fluorescence ; Fluorescence Recovery After Photobleaching ; Fluorescent Dyes ; Green Fluorescent Proteins ; Haplorhini ; Humans ; In Situ Hybridization, Fluorescence ; Kinetics ; Least-Squares Analysis ; Luminescent Proteins ; Microscopy ; Pol1 Transcription Initiation Complex Proteins/metabolism ; Probability ; Promoter Regions, Genetic ; Protein Subunits ; RNA Polymerase I/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2002-08-10
    Description: Origin recognition complex (ORC) proteins serve as a landing pad for the assembly of a multiprotein prereplicative complex, which is required to initiate DNA replication. During mitosis, the smallest subunit of human ORC, Orc6, localizes to kinetochores and to a reticular-like structure around the cell periphery. As chromosomes segregate during anaphase, the reticular structures align along the plane of cell division and some Orc6 localizes to the midbody before cells separate. Silencing of Orc6 expression by small interfering RNA (siRNA) resulted in cells with multipolar spindles, aberrant mitosis, formation of multinucleated cells, and decreased DNA replication. Prolonged periods of Orc6 depletion caused a decrease in cell proliferation and increased cell death. These results implicate Orc6 as an essential gene that coordinates chromosome replication and segregation with cytokinesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prasanth, Supriya G -- Prasanth, Kannanganattu V -- Stillman, Bruce -- CA13106/CA/NCI NIH HHS/ -- P01 CA013106/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 9;297(5583):1026-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12169736" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bromodeoxyuridine/metabolism ; Cell Death ; *Cell Division ; Cell Line ; Cell Nucleus/metabolism ; Cells, Cultured ; Centromere/metabolism ; *Chromosome Segregation ; Chromosomes, Human/*metabolism ; *DNA Replication ; DNA-Binding Proteins/genetics/metabolism/*physiology ; Fluorescent Antibody Technique ; Gene Silencing ; Humans ; Kinetochores/metabolism ; Mitosis ; Origin Recognition Complex ; Phenotype ; Polyploidy ; RNA, Small Interfering ; RNA, Untranslated/metabolism/pharmacology ; Recombinant Fusion Proteins/analysis ; Saccharomyces cerevisiae Proteins ; Spindle Apparatus/ultrastructure ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-10-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):37-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364759" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism/economics/legislation & jurisprudence ; Embryo, Mammalian/*cytology ; Ethics Committees, Research ; Great Britain ; History, 21st Century ; Humans ; Nuclear Transfer Techniques ; Patents as Topic ; Research ; Research Support as Topic ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2002-01-26
    Description: Methods for reproducible in vitro development of the mosquito stages of malaria parasites to produce infective sporozoites have been elusive for over 40 years. We have cultured gametocytes of Plasmodium berghei through to infectious sporozoites with efficiencies similar to those recorded in vivo and without the need for salivary gland invasion. Oocysts developed extracellularly in a system whose essential elements include co-cultured Drosophila S2 cells, basement membrane matrix, and insect tissue culture medium. Sporozoite production required the presence of para-aminobenzoic acid. The entire life cycle of P. berghei, a useful model malaria parasite, can now be achieved in vitro.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Al-Olayan, Ebtesam M -- Beetsma, Annette L -- Butcher, Geoff A -- Sinden, Robert E -- Hurd, Hilary -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):677-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809973" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Aminobenzoic Acid/pharmacology ; Aedes ; Aerobiosis ; Animals ; Anopheles/parasitology ; Cell Line ; Coculture Techniques ; Collagen ; Culture Media ; Drosophila ; Drug Combinations ; Hydrogen-Ion Concentration ; Laminin ; Life Cycle Stages ; Malaria/parasitology ; Male ; Mice ; Plasmodium berghei/cytology/drug effects/*growth & development ; Proteoglycans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2002-01-19
    Description: The separate components of nucleocytoplasmic transport have been well characterized, including the key regulatory role of Ran, a guanine nucleotide triphosphatase. However, the overall system behavior in intact cells is difficult to analyze because the dynamics of these components are interdependent. We used a combined experimental and computational approach to study Ran transport in vivo. The resulting model provides the first quantitative picture of Ran flux between the nuclear and cytoplasmic compartments in eukaryotic cells. The model predicts that the Ran exchange factor RCC1, and not the flux capacity of the nuclear pore complex (NPC), is the crucial regulator of steady-state flux across the NPC. Moreover, it provides the first estimate of the total in vivo flux (520 molecules per NPC per second and predicts that the transport system is robust.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Alicia E -- Slepchenko, Boris M -- Schaff, James C -- Loew, Leslie M -- Macara, Ian G -- GM-50526/GM/NIGMS NIH HHS/ -- NCRR-RR13186/RR/NCRR NIH HHS/ -- NIH-GM-20438/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):488-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cell Signaling, Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799242" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; *Cell Cycle Proteins ; Cell Line ; Cell Nucleus/metabolism ; *Computer Simulation ; Cricetinae ; Cytoplasm/metabolism ; Diffusion ; Fluorescence ; Guanine Nucleotide Exchange Factors/metabolism ; Guanosine Triphosphate/metabolism ; Kinetics ; Mathematics ; *Models, Biological ; Mutation ; Nuclear Pore/*metabolism ; *Nuclear Proteins ; Nucleocytoplasmic Transport Proteins/metabolism ; Recombinant Proteins/metabolism ; Temperature ; ran GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2002-05-23
    Description: The vitamin D receptor (VDR) mediates the effects of the calcemic hormone 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. We show that VDR also functions as a receptor for the secondary bile acid lithocholic acid (LCA), which is hepatotoxic and a potential enteric carcinogen. VDR is an order of magnitude more sensitive to LCA and its metabolites than are other nuclear receptors. Activation of VDR by LCA or vitamin D induced expression in vivo of CYP3A, a cytochrome P450 enzyme that detoxifies LCA in the liver and intestine. These studies offer a mechanism that may explain the proposed protective effects of vitamin D and its receptor against colon cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, Makoto -- Lu, Timothy T -- Xie, Wen -- Whitfield, G Kerr -- Domoto, Hideharu -- Evans, Ronald M -- Haussler, Mark R -- Mangelsdorf, David J -- New York, N.Y. -- Science. 2002 May 17;296(5571):1313-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016314" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aryl Hydrocarbon Hydroxylases ; Binding, Competitive ; COS Cells ; Cell Line ; Colonic Neoplasms/prevention & control ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme System/genetics/metabolism ; DNA-Binding Proteins/metabolism ; Dimerization ; Gene Expression Regulation, Enzymologic ; Histone Acetyltransferases ; Humans ; Intestine, Small/*metabolism ; Ligands ; Lithocholic Acid/analogs & derivatives/*metabolism/pharmacology ; Male ; Mice ; Nuclear Receptor Coactivator 1 ; Oxidoreductases, N-Demethylating/genetics/metabolism ; Promoter Regions, Genetic ; Rats ; Receptors, Calcitriol/agonists/genetics/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Steroid/metabolism ; Transcription Factors/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuppan, Detlef -- Hahn, Eckhart G -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2218-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉First Department of Medicine, University of Erlangen-Nuernberg, Ulmenweg 18, 91054 Erlangen, Germany. detlef.schuppan@med1.imed.uni-erlangen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Celiac Disease/epidemiology/*immunology/therapy ; Cell Line ; Dendritic Cells/immunology ; Diet ; GTP-Binding Proteins/metabolism ; Gliadin/*immunology/metabolism ; Glutens/*analogs & derivatives/*immunology/metabolism ; HLA-DQ Antigens/*immunology ; Humans ; Intestines/enzymology/*immunology ; Lymphocyte Activation ; Mice ; Peptide Fragments/immunology/isolation & purification/metabolism ; Serine Endopeptidases/administration & dosage/metabolism ; T-Lymphocytes/*immunology ; Transglutaminases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2002-01-19
    Description: Protein-protein interactions and calcium entry through the N-methyl-d-aspartate (NMDA)-type glutamate receptor regulate synaptic development and plasticity in the central nervous system. The EphB receptor tyrosine kinases are localized at excitatory synapses where they cluster and associate with NMDA receptors. We identified a mechanism whereby EphBs modulate NMDA receptor function. EphrinB2 activation of EphB in primary cortical neurons potentiates NMDA receptor-dependent influx of calcium. Treatment of cells with ephrinB2 led to NMDA receptor tyrosine phosphorylation through activation of the Src family of tyrosine kinases. These ephrinB2-dependent events result in enhanced NMDA receptor-dependent gene expression. Our findings indicate that ephrinB2 stimulation of EphB modulates the functional consequences of NMDA receptor activation and suggest a mechanism whereby activity-independent and activity-dependent signals converge to regulate the development and remodeling of synaptic connections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takasu, Mari A -- Dalva, Matthew B -- Zigmond, Richard E -- Greenberg, Michael E -- CA43855/CA/NCI NIH HHS/ -- HD18655/HD/NICHD NIH HHS/ -- NS12651/NS/NINDS NIH HHS/ -- NS17512/NS/NINDS NIH HHS/ -- R01 NS045500/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):491-5. Epub 2001 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and the Department of Neurobiology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799243" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor/pharmacology ; Calcium/*metabolism ; Cell Line ; Cells, Cultured ; Cerebral Cortex/cytology/embryology ; Cyclic AMP Response Element-Binding Protein/metabolism ; Ephrin-B2 ; *Gene Expression Regulation ; Genes, Reporter ; Glutamic Acid/metabolism ; Humans ; Immunoglobulin Fc Fragments ; Membrane Proteins/*metabolism/pharmacology ; Models, Neurological ; Mutation ; Neurons/*metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-fyn ; Rats ; Receptor Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Receptor, EphB4 ; Receptors, Eph Family ; Receptors, N-Methyl-D-Aspartate/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism/pharmacology ; Signal Transduction ; Synapses/metabolism ; Transcription, Genetic ; src-Family Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2002-05-04
    Description: Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zacharias, David A -- Violin, Jonathan D -- Newton, Alexandra C -- Tsien, Roger Y -- 2T32 GM07752/GM/NIGMS NIH HHS/ -- DK54441/DK/NIDDK NIH HHS/ -- NS27177/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2002 May 3;296(5569):913-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Biomedical Sciences Graduate Program, and, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0647, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11988576" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Bacterial Proteins/chemistry/*metabolism ; Caveolin 1 ; Caveolins/metabolism ; Cell Line ; Detergents ; Dimerization ; Dogs ; Energy Transfer ; Fluorescence ; Green Fluorescent Proteins ; Luminescent Proteins/chemistry/*metabolism ; Membrane Microdomains/*metabolism ; Myristic Acid/metabolism ; Oligopeptides/chemistry/*metabolism ; Palmitic Acid/metabolism ; Protein Prenylation ; Recombinant Fusion Proteins/metabolism ; Solubility ; Spectrometry, Fluorescence ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2002-08-31
    Description: The bacterium Bacillus anthracis causes the death of macrophages, which may allow it to avoid detection by the innate immune system. We found that B. anthracis lethal factor (LF) selectively induces apoptosis of activated macrophages by cleaving the amino-terminal extension of mitogen-activated protein kinase (MAPK) kinases (MKKs) that activate p38 MAPKs. Because macrophages that are deficient in transcription factor nuclear factor kappaB (NF-kappaB) are also sensitive to activation-induced death and p38 is required for expression of certain NF-kappaB target genes, p38 is probably essential for synergistic induction of those NF-kappaB target genes that prevent apoptosis of activated macrophages. This dismantling of the p38 MAPK module represents a strategy used by B. anthracis to paralyze host innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jin Mo -- Greten, Florian R -- Li, Zhi-Wei -- Karin, Michael -- AI43477/AI/NIAID NIH HHS/ -- ES04151/ES/NIEHS NIH HHS/ -- ES06376/ES/NIEHS NIH HHS/ -- ES10337/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 20;297(5589):2048-51. Epub 2002 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0636, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12202685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, Bacterial ; *Apoptosis ; Bacterial Toxins/*toxicity ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Carrier Proteins/*toxicity ; Cell Line ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Gene Expression ; I-kappa B Kinase ; Imidazoles/pharmacology ; Lipopolysaccharides/pharmacology ; MAP Kinase Kinase 3 ; MAP Kinase Kinase 6 ; MAP Kinase Signaling System ; Macrophage Activation ; Macrophages/enzymology/immunology/*physiology ; Mice ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase Kinases/genetics/metabolism ; Mitogen-Activated Protein Kinases/*antagonists & inhibitors/metabolism ; NF-kappa B/genetics/metabolism ; Necrosis ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Protein-Tyrosine Kinases/genetics/metabolism ; Pyridines/pharmacology ; Teichoic Acids/pharmacology ; Transcription Factor RelA ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2002-02-09
    Description: DNA methylation of tumor suppressor genes is a frequent mechanism of transcriptional silencing in cancer. The molecular mechanisms underlying the specificity of methylation are unknown. We report here that the leukemia-promoting PML-RAR fusion protein induces gene hypermethylation and silencing by recruiting DNA methyltransferases to target promoters and that hypermethylation contributes to its leukemogenic potential. Retinoic acid treatment induces promoter demethylation, gene reexpression, and reversion of the transformed phenotype. These results establish a mechanistic link between genetic and epigenetic changes during transformation and suggest that hypermethylation contributes to the early steps of carcinogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Croce, Luciano -- Raker, Veronica A -- Corsaro, Massimo -- Fazi, Francesco -- Fanelli, Mirco -- Faretta, Mario -- Fuks, Francois -- Lo Coco, Francesco -- Kouzarides, Tony -- Nervi, Clara -- Minucci, Saverio -- Pelicci, Pier Giuseppe -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1079-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, European Institute of Oncology, Milan, Italy. ldicroce@lar.ieo.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834837" target="_blank"〉PubMed〈/a〉
    Keywords: Azacitidine/*analogs & derivatives/pharmacology ; Binding Sites ; Cell Differentiation/drug effects ; Cell Line ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic ; Cloning, Molecular ; CpG Islands ; DNA (Cytosine-5-)-Methyltransferase/*metabolism ; *DNA Methylation ; Exons ; Gene Expression ; *Gene Silencing ; Histone Deacetylases/metabolism ; Humans ; Leukemia, Promyelocytic, Acute/genetics ; Mutation ; Neoplasm Proteins/*metabolism ; Oncogene Proteins, Fusion/*metabolism ; *Promoter Regions, Genetic ; Receptors, Retinoic Acid/*genetics ; Recombinant Fusion Proteins/metabolism ; Transcription Factors/metabolism ; Tretinoin/pharmacology ; Tumor Cells, Cultured ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2002-10-26
    Description: Catecholamines signal through the beta2-adrenergic receptor by promoting production of the second messenger adenosine 3',5'-monophosphate (cAMP). The magnitude of this signal is restricted by desensitization of the receptors through their binding to beta-arrestins and by cAMP degradation by phosphodiesterase (PDE) enzymes. We show that beta-arrestins coordinate both processes by recruiting PDEs to activated beta2-adrenergic receptors in the plasma membrane of mammalian cells. In doing so, the beta-arrestins limit activation of membrane-associated cAMP-activated protein kinase by simultaneously slowing the rate of cAMP production through receptor desensitization and increasing the rate of its degradation at the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perry, Stephen J -- Baillie, George S -- Kohout, Trudy A -- McPhee, Ian -- Magiera, Maria M -- Ang, Kok Long -- Miller, William E -- McLean, Alison J -- Conti, Marco -- Houslay, Miles D -- Lefkowitz, Robert J -- HD20788/HD/NICHD NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):834-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399592" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/genetics/metabolism ; Adrenergic beta-Agonists/pharmacology ; Animals ; Arrestins/genetics/*metabolism ; COS Cells ; Cell Line ; Cell Membrane/metabolism ; Cyclic AMP/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 4 ; Cytosol/metabolism ; Humans ; Isoenzymes/metabolism ; Isoproterenol/pharmacology ; Mice ; Mutation ; Precipitin Tests ; Rats ; Receptors, Adrenergic, beta-2/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-23
    Description: RNA silencing is a sequence-specific RNA degradation mechanism that is operational in plants and animals. Here, we show that flock house virus (FHV) is both an initiator and a target of RNA silencing in Drosophila host cells and that FHV infection requires suppression of RNA silencing by an FHV-encoded protein, B2. These findings establish RNA silencing as an adaptive antiviral defense in animal cells. B2 also inhibits RNA silencing in transgenic plants, providing evidence for a conserved RNA silencing pathway in the plant and animal kingdoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Hongwei -- Li, Wan Xiang -- Ding, Shou Wei -- New York, N.Y. -- Science. 2002 May 17;296(5571):1319-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016316" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics ; Animals ; Cell Line ; Drosophila/genetics/*virology ; *Gene Silencing ; Genes, Viral ; Green Fluorescent Proteins ; Luminescent Proteins/genetics ; Nodaviridae/*genetics/*physiology ; Plant Leaves/genetics/metabolism ; Plants, Genetically Modified ; RNA, Double-Stranded/genetics/metabolism ; RNA, Small Interfering ; RNA, Untranslated/*metabolism ; RNA, Viral/genetics/metabolism ; Tobacco/*genetics/metabolism/microbiology ; Transfection ; Viral Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2002-10-26
    Description: Transcription of messenger RNAs (mRNAs) for Notch signaling molecules oscillates with 2-hour cycles, and this oscillation is important for coordinated somite segmentation. However, the molecular mechanism of such oscillation remains to be determined. Here, we show that serum treatment of cultured cells induces cyclic expression of both mRNA and protein of the Notch effector Hes1, a basic helix-loop-helix (bHLH) factor, with 2-hour periodicity. Cycling is cell-autonomous and depends on negative autoregulation of hes1 transcription and ubiquitin-proteasome-mediated degradation of Hes1 protein. Because Hes1 oscillation can be seen in many cell types, this clock may regulate timing in many biological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirata, Hiromi -- Yoshiura, Shigeki -- Ohtsuka, Toshiyuki -- Bessho, Yasumasa -- Harada, Takahiro -- Yoshikawa, Kenichi -- Kageyama, Ryoichiro -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):840-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399594" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks ; Blood ; Cell Line ; Cycloheximide/pharmacology ; Cysteine Endopeptidases/metabolism ; Feedback, Physiological ; Gene Expression Regulation ; Glycosyltransferases/genetics/metabolism ; Half-Life ; Homeodomain Proteins/biosynthesis/*genetics/*metabolism ; Leupeptins/pharmacology ; Mesoderm/metabolism ; Mice ; Multienzyme Complexes/metabolism ; PC12 Cells ; *Periodicity ; Protease Inhibitors/pharmacology ; Proteasome Endopeptidase Complex ; Protein Biosynthesis ; Protein Synthesis Inhibitors/pharmacology ; RNA, Messenger/biosynthesis/genetics/metabolism ; Rats ; Transcription, Genetic ; Transfection ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2002-08-06
    Description: The passage of large-sized herpesviral capsids through the nuclear lamina and the inner nuclear membrane to leave the nucleus requires a dissolution of the nuclear lamina. Here, we report on the functions of M50/p35, a beta-herpesviral protein of murine cytomegalovirus. M50/p35 inserts into the inner nuclear membrane and is aggregated by a second viral protein, M53/p38, to form the capsid docking site. M50/p35 recruits the cellular protein kinase C for phosphorylation and dissolution of the nuclear lamina, suggesting that herpesviruses target a critical element of nuclear architecture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muranyi, Walter -- Haas, Jurgen -- Wagner, Markus -- Krohne, Georg -- Koszinowski, Ulrich H -- New York, N.Y. -- Science. 2002 Aug 2;297(5582):854-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genzentrum and Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universitat Munchen, 80336 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12161659" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/metabolism ; Cell Line ; Humans ; Lamins ; Movement ; Muromegalovirus/genetics/*physiology ; Nuclear Envelope/chemistry/enzymology/*metabolism/*virology ; Nuclear Proteins/metabolism ; Open Reading Frames/genetics ; Phosphorylation ; Protein Binding ; Protein Kinase C/*metabolism ; Viral Proteins/genetics/metabolism ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):943.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834786" target="_blank"〉PubMed〈/a〉
    Keywords: Bioethical Issues ; Cell Line ; *Embryo Research ; Embryo, Mammalian/*cytology ; Germany ; *Government Regulation ; Humans ; Research/*legislation & jurisprudence ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sagata, Noriyuki -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1905-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Kyushu University, Fukuoka 812-8581, Japan. nsagascb@mbox.nc.kyushu-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/metabolism ; CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Cell Line ; Cell Survival ; Checkpoint Kinase 2 ; Cyclin B/metabolism ; DNA Damage ; DNA Replication ; Enzyme Activation ; Humans ; Phosphorylation ; Protein Kinases/*metabolism ; *Protein-Serine-Threonine Kinases ; Radiation, Ionizing ; S Phase ; Xenopus ; cdc25 Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2002-03-23
    Description: Translation is an important mechanism to monitor the quality of messenger RNAs (mRNAs), as exemplified by the translation-dependent recognition and degradation of transcripts harboring premature termination codons (PTCs) by the nonsense-mediated mRNA decay (NMD) pathway. We demonstrate in yeast that mRNAs lacking all termination codons are as labile as nonsense transcripts. Decay of "nonstop" transcripts in yeast requires translation but is mechanistically distinguished from NMD and the major mRNA turnover pathway that requires deadenylation, decapping, and 5'-to-3' exonucleolytic decay. These data suggest that nonstop decay is initiated when the ribosome reaches the 3' terminus of the message. We demonstrate multiple physiologic sources of nonstop transcripts and conservation of their accelerated decay in mammalian cells. This process regulates the stability and expression of mRNAs that fail to signal translational termination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frischmeyer, Pamela A -- van Hoof, Ambro -- O'Donnell, Kathryn -- Guerrerio, Anthony L -- Parker, Roy -- Dietz, Harry C -- GM55239/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2258-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetic Medicine, Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910109" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/chemistry/genetics/metabolism ; Base Sequence ; Cell Line ; Codon, Terminator/*genetics ; Databases, Genetic ; Genes, Fungal/genetics ; Glucuronidase/genetics ; Half-Life ; Humans ; Polyadenylation ; *Protein Biosynthesis ; RNA 3' End Processing ; *RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Messenger/chemistry/*genetics/*metabolism ; Saccharomyces cerevisiae/*genetics ; Sequence Deletion/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2002-01-26
    Description: The intracellular pathogen Legionella pneumophila subverts vesicle traffic in eukaryotic host cells to create a vacuole that supports replication. The dot/icm genes encode a protein secretion apparatus that L. pneumophila require for biogenesis of this vacuole. Here we show that L. pneumophila produce a protein called RalF that functions as an exchange factor for the ADP ribosylation factor (ARF) family of guanosine triphosphatases (GTPases). The RalF protein is required for the localization of ARF on phagosomes containing L. pneumophila. Translocation of RalF protein through the phagosomal membrane is a dot/icm-dependent process. Thus, RalF is a substrate of the Dot/Icm secretion apparatus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nagai, Hiroki -- Kagan, Jonathan C -- Zhu, Xinjun -- Kahn, Richard A -- Roy, Craig R -- R01 AI44371/AI/NIAID NIH HHS/ -- R29 AI41699/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809974" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1/genetics/*metabolism ; ADP-Ribosylation Factors/metabolism ; Acanthamoeba/microbiology ; Amino Acid Sequence ; Animals ; Bacterial Proteins/genetics/metabolism ; Carrier Proteins/genetics/metabolism ; Cell Line ; Genes, Bacterial ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Humans ; Legionella/genetics ; Legionella pneumophila/genetics/growth & development/*metabolism ; Macrophages/microbiology ; Mice ; Mice, Inbred A ; Molecular Sequence Data ; Phagosomes/*metabolism/*microbiology ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Veronica -- Spector, Deborah H -- New York, N.Y. -- Science. 2002 Aug 2;297(5582):778-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12161637" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Nucleus/metabolism/virology ; Cytoplasm/metabolism/virology ; Lamins ; Movement ; Muromegalovirus/genetics/*physiology ; Nuclear Envelope/enzymology/*metabolism/*virology ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase C/*metabolism ; Viral Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2002-04-20
    Description: Recombinant proteins containing tetracysteine tags can be successively labeled in living cells with different colors of biarsenical fluorophores so that older and younger protein molecules can be sharply distinguished by both fluorescence and electron microscopy. Here we used this approach to show that newly synthesized connexin43 was transported predominantly in 100- to 150-nanometer vesicles to the plasma membrane and incorporated at the periphery of existing gap junctions, whereas older connexins were removed from the center of the plaques into pleiomorphic vesicles of widely varying sizes. Selective imaging by correlated optical and electron microscopy of protein molecules of known ages will clarify fundamental processes of protein trafficking in situ.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaietta, Guido -- Deerinck, Thomas J -- Adams, Stephen R -- Bouwer, James -- Tour, Oded -- Laird, Dale W -- Sosinsky, Gina E -- Tsien, Roger Y -- Ellisman, Mark H -- DC03192/DC/NIDCD NIH HHS/ -- NS14718/NS/NINDS NIH HHS/ -- NS27177/NS/NINDS NIH HHS/ -- P01 DK54441/DK/NIDDK NIH HHS/ -- R01 GM065937/GM/NIGMS NIH HHS/ -- RR04050/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):503-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964472" target="_blank"〉PubMed〈/a〉
    Keywords: 3,3'-Diaminobenzidine/chemistry ; Amino Acid Motifs ; Animals ; Arsenicals/metabolism ; Cell Line ; Cell Membrane/metabolism/ultrastructure ; Connexin 43/biosynthesis/*metabolism ; Cysteine/chemistry ; Endocytosis ; Exocytosis ; Fluoresceins/metabolism ; Fluorescence ; Fluorescent Dyes/metabolism ; Gap Junctions/*metabolism/ultrastructure ; HeLa Cells ; Humans ; Microscopy, Confocal ; Microscopy, Electron ; Microscopy, Immunoelectron ; Organometallic Compounds/metabolism ; Oxazines/metabolism ; Patch-Clamp Techniques ; Protein Transport ; Recombinant Proteins/metabolism ; Transport Vesicles/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2002-09-07
    Description: Cells have evolved multiple mechanisms to inhibit viral replication. To identify previously unknown antiviral activities, we screened mammalian complementary DNA (cDNA) libraries for genes that prevent infection by a genetically marked retrovirus. Virus-resistant cells were selected from pools of transduced clones, and an active antiviral cDNA was recovered. The gene encodes a CCCH-type zinc finger protein designated ZAP. Expression of the gene caused a profound and specific loss of viral messenger RNAs (mRNAs) from the cytoplasm without affecting the levels of nuclear mRNAs. The finding suggests the existence of a previously unknown machinery for the inhibition of virus replication, targeting a step in viral gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Guangxia -- Guo, Xuemin -- Goff, Stephen P -- CA 30488/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1703-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, 701 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215647" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/chemistry/*genetics/isolation & purification/physiology ; Carrier Proteins/chemistry/*genetics/isolation & purification/physiology ; Cell Line ; Cloning, Molecular ; Gene Library ; Genetic Vectors/genetics ; Open Reading Frames ; Polymerase Chain Reaction ; RNA, Viral/*biosynthesis ; Rats ; Retroviridae/*genetics/immunology ; Tissue Distribution ; Virus Replication ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2002-02-09
    Description: Lamellipodia are thin, veil-like extensions at the edge of cells that contain a dynamic array of actin filaments. We describe an approach for analyzing spatial regulation of actin polymerization and depolymerization in vivo in which we tracked single molecules of actin fused to the green fluorescent protein. Polymerization and the lifetime of actin filaments in lamellipodia were measured with high spatial precision. Basal polymerization and depolymerization occurred throughout lamellipodia with largely constant kinetics, and polymerization was promoted within one micron of the lamellipodium tip. Most of the actin filaments in the lamellipodium were generated by polymerization away from the tip.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Naoki -- Mitchison, Timothy J -- GM48027/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1083-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. naoki_watanabe@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834838" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line ; *Cytoskeletal Proteins ; *Depsipeptides ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; Half-Life ; Luminescent Proteins ; Models, Biological ; Peptides, Cyclic/pharmacology ; Pseudopodia/*metabolism/ultrastructure ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2002-08-24
    Description: Every year, approximately 450,000 individuals in the United States die suddenly of cardiac arrhythmia. We identified a variant of the cardiac sodium channel gene SCN5A that is associated with arrhythmia in African Americans (P = 0.000028) and linked with arrhythmia risk in an African-American family (P = 0.005). In transfected cells, the variant allele (Y1102) accelerated channel activation, increasing the likelihood of abnormal cardiac repolarization and arrhythmia. About 13.2% of African Americans carry the Y1102 allele. Because Y1102 has a subtle effect on risk, most carriers will never have an arrhythmia. However, Y1102 may be a useful molecular marker for the prediction of arrhythmia susceptibility in the context of additional acquired risk factors such as the use of certain medications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Splawski, Igor -- Timothy, Katherine W -- Tateyama, Michihiro -- Clancy, Colleen E -- Malhotra, Alka -- Beggs, Alan H -- Cappuccio, Francesco P -- Sagnella, Giuseppe A -- Kass, Robert S -- Keating, Mark T -- HL53773/HL/NHLBI NIH HHS/ -- P01 HL 67849/HL/NHLBI NIH HHS/ -- R01 HL 56810/HL/NHLBI NIH HHS/ -- R01 HL48074/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 23;297(5585):1333-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cardiology, Children's Hospital, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA 02115, USA. igor@enders.tch.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12193783" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; African Continental Ancestry Group/*genetics ; Aged ; Alleles ; Amino Acid Sequence ; Arrhythmias, Cardiac/etiology/*genetics ; Case-Control Studies ; Cell Line ; Child ; Electrocardiography ; Female ; *Genetic Predisposition to Disease ; *Genetic Variation ; Humans ; Ion Channel Gating ; Long QT Syndrome/genetics ; Male ; Middle Aged ; Molecular Sequence Data ; NAV1.5 Voltage-Gated Sodium Channel ; Patch-Clamp Techniques ; Pedigree ; *Point Mutation ; Polymorphism, Single-Stranded Conformational ; Probability ; Risk Factors ; Sodium Channels/chemistry/*genetics/metabolism ; Syncope ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2002-12-21
    Description: The enzyme alpha1,3-galactosyltransferase (alpha1,3GT or GGTA1) synthesizes alpha1,3-galactose (alpha1,3Gal) epitopes (Galalpha1,3Galbeta1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of alpha1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the alpha1,3GT gene in cloned pigs. A selection procedure based on a bacterial toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the alpha1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the alpha1,3GT protein. Four healthy alpha1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the alpha1,3GT gene hold significant value, as they would allow production of alpha1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154759/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154759/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phelps, Carol J -- Koike, Chihiro -- Vaught, Todd D -- Boone, Jeremy -- Wells, Kevin D -- Chen, Shu-Hung -- Ball, Suyapa -- Specht, Susan M -- Polejaeva, Irina A -- Monahan, Jeff A -- Jobst, Pete M -- Sharma, Sugandha B -- Lamborn, Ashley E -- Garst, Amy S -- Moore, Marilyn -- Demetris, Anthony J -- Rudert, William A -- Bottino, Rita -- Bertera, Suzanne -- Trucco, Massimo -- Starzl, Thomas E -- Dai, Yifan -- Ayares, David L -- DK29961/DK/NIDDK NIH HHS/ -- R01 AM007772/AM/NIADDK NIH HHS/ -- R01 DK029961-19/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 17;299(5605):411-4. Epub 2002 Dec 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PPL Therapeutics Inc., 1700 Kraft Drive, Blacksburg, VA 24060, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493821" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Bacterial Toxins/pharmacology ; Cell Line ; Cloning, Molecular ; Cloning, Organism ; DNA, Complementary ; Embryo Transfer ; Enterotoxins/pharmacology ; Female ; Fibroblasts ; Galactosyltransferases/*deficiency/*genetics ; *Gene Targeting ; Genetic Vectors ; HeLa Cells ; Humans ; Immunoglobulin M/blood ; Islets of Langerhans Transplantation ; Mice ; Mice, Knockout ; *Point Mutation ; Pregnancy ; Swine/*genetics ; Transfection ; Transplantation, Heterologous ; Trisaccharides/*analysis/biosynthesis/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2002-11-09
    Description: Nuclear localization of the transcriptional activator NF-kappaB (nuclear factor kappaB) is controlled in mammalian cells by three isoforms of NF-kappaB inhibitor protein: IkappaBalpha, -beta, and - epsilon. Based on simplifying reductions of the IkappaB-NF-kappaB signaling module in knockout cell lines, we present a computational model that describes the temporal control of NF-kappaB activation by the coordinated degradation and synthesis of IkappaB proteins. The model demonstrates that IkappaBalpha is responsible for strong negative feedback that allows for a fast turn-off of the NF-kappaB response, whereas IkappaBbeta and - epsilon function to reduce the system's oscillatory potential and stabilize NF-kappaB responses during longer stimulations. Bimodal signal-processing characteristics with respect to stimulus duration are revealed by the model and are shown to generate specificity in gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffmann, Alexander -- Levchenko, Andre -- Scott, Martin L -- Baltimore, David -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1241-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Chemokine CCL5/genetics ; Chemokine CXCL10 ; Chemokines, CXC/genetics ; Computer Simulation ; Cytoplasm ; DNA-Binding Proteins/genetics/*metabolism ; Electrophoretic Mobility Shift Assay ; Feedback, Physiological ; *Gene Expression Regulation ; Humans ; I-kappa B Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; NF-kappa B/*metabolism ; Proto-Oncogene Proteins/genetics/*metabolism ; *Signal Transduction ; Transcriptional Activation ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2307-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493884" target="_blank"〉PubMed〈/a〉
    Keywords: Academies and Institutes/*economics ; *Biomedical Research ; California ; Cell Line ; Cloning, Organism ; Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; *Neoplasms ; Research Support as Topic ; *Stem Cells ; *Universities/economics/organization & administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2002-06-08
    Description: The coagulant and inflammatory exacerbation in sepsis is counterbalanced by the protective protein C (PC) pathway. Activated PC (APC) was shown to use the endothelial cell PC receptor (EPCR) as a coreceptor for cleavage of protease activated receptor 1 (PAR1) on endothelial cells. Gene profiling demonstrated that PAR1 signaling could account for all APC-induced protective genes, including the immunomodulatory monocyte chemoattractant protein-1 (MCP-1), which was selectively induced by activation of PAR1, but not PAR2. Thus, the prototypical thrombin receptor is the target for EPCR-dependent APC signaling, suggesting a role for this receptor cascade in protection from sepsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riewald, Matthias -- Petrovan, Ramona J -- Donner, Aaron -- Mueller, Barbara M -- Ruf, Wolfram -- P01-HL16411/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1880-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, C204, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12052963" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blood Coagulation Factors ; Cell Line ; Cells, Cultured ; Chemokine CCL2/genetics ; DNA-Binding Proteins/genetics ; Endothelium, Vascular/cytology/*metabolism ; Enzyme Activation ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Mice ; Mitogen-Activated Protein Kinases/metabolism ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Oligonucleotide Array Sequence Analysis ; Phosphorylation ; Protein C/*metabolism ; Receptor, PAR-1 ; Receptor, PAR-2 ; Receptors, Cell Surface/metabolism ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Receptors, Thrombin/agonists/*metabolism ; Signal Transduction ; Thrombin/metabolism ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2185.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351757" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; California ; Cell Line ; Cloning, Organism/*legislation & jurisprudence ; Embryo, Mammalian/*cytology ; Financing, Government ; Government ; Humans ; Research/*legislation & jurisprudence ; Research Support as Topic ; State Government ; *Stem Cells
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2002-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cibelli, Jose B -- Grant, Kathleen A -- Chapman, Karen B -- Cunniff, Kerrianne -- Worst, Travis -- Green, Heather L -- Walker, Stephen J -- Gutin, Philip H -- Vilner, Lucy -- Tabar, Viviane -- Dominko, Tanja -- Kane, Jeff -- Wettstein, Peter J -- Lanza, Robert P -- Studer, Lorenz -- Vrana, Kent E -- West, Michael D -- P50-AA11997/AA/NIAAA NIH HHS/ -- T32-AA07565/AA/NIAAA NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced Cell Technology, One Innovation Drive, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology ; Blastocyst/*cytology/physiology ; Cell Culture Techniques ; Cell Differentiation ; Cell Division ; Cell Line ; Cell Separation ; Cloning, Organism ; Dopamine/metabolism ; Embryo, Mammalian/*cytology ; Karyotyping ; *Macaca fascicularis ; Mice ; Mice, SCID ; Neurons/cytology ; *Parthenogenesis ; Serotonin/metabolism ; Stem Cells/*cytology/physiology ; Teratoma/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2002-03-02
    Description: The phosphoinositide phosphatase PTEN is mutated in many human cancers. Although the role of PTEN has been studied extensively, the relative contributions of its numerous potential downstream effectors to deregulated growth and tumorigenesis remain uncertain. We provide genetic evidence in Drosophila melanogaster for the paramount importance of the protein kinase Akt [also called protein kinase B (PKB)] in mediating the effects of increased phosphatidylinositol 3,4,5-trisphosphate (PIP3) concentrations that are caused by the loss of PTEN function. A mutation in the pleckstrin homology (PH) domain of Akt that reduces its affinity for PIP3 sufficed to rescue the lethality of flies devoid of PTEN activity. Thus, Akt appears to be the only critical target activated by increased PIP3 concentrations in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stocker, Hugo -- Andjelkovic, Mirjana -- Oldham, Sean -- Laffargue, Muriel -- Wymann, Matthias P -- Hemmings, Brian A -- Hafen, Ernst -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2088-91. Epub 2002 Feb 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zoologisches Institut der Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872800" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Membrane/enzymology ; Drosophila Proteins/chemistry/genetics/metabolism ; Drosophila melanogaster/genetics/*physiology ; Eye/growth & development ; Female ; Genes, Insect ; Humans ; Insulin/pharmacology ; Male ; Mutation ; PTEN Phosphohydrolase ; Phenotype ; Phosphatidylinositol 4,5-Diphosphate/metabolism ; Phosphatidylinositol Phosphates/*metabolism ; Phosphoric Monoester Hydrolases/*genetics/*physiology ; Photoreceptor Cells, Invertebrate/growth & development ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-akt ; Transfection ; Tumor Suppressor Proteins/*genetics/*physiology ; Vanadates/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):779-80.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioethical Issues ; Blastocyst/*cytology ; Cell Culture Techniques ; Cell Line ; Cell Separation ; Embryo, Mammalian/*cytology ; *Macaca ; *Parthenogenesis ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2002-02-16
    Description: During asexual development within erythrocytes, malaria parasites synthesize considerable amounts of membrane. This activity provides an attractive target for chemotherapy because it is absent from mature erythrocytes. We found that compounds that inhibit phosphatidylcholine biosynthesis de novo from choline were potent antimalarial drugs. The lead compound, G25, potently inhibited in vitro growth of the human malaria parasites Plasmodium falciparum and P. vivax and was 1000-fold less toxic to mammalian cell lines. A radioactive derivative specifically accumulated in infected erythrocytes to levels several hundredfold higher than in the surrounding medium, and very low dose G25 therapy completely cured monkeys infected with P. falciparum and P. cynomolgi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wengelnik, Kai -- Vidal, Valerie -- Ancelin, Marie L -- Cathiard, Anne-Marie -- Morgat, Jean Louis -- Kocken, Clemens H -- Calas, Michele -- Herrera, Socrates -- Thomas, Alan W -- Vial, Henri J -- New York, N.Y. -- Science. 2002 Feb 15;295(5558):1311-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS UMR 5539, CP 107, CNRS UMR 5810, CP 22, Universite Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847346" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/administration & dosage/*pharmacokinetics/*pharmacology/therapeutic ; use ; Aotus trivirgatus ; Cell Line ; Cell Survival/drug effects ; Dose-Response Relationship, Drug ; Erythrocytes/metabolism/*parasitology ; Humans ; Macaca mulatta ; Malaria/*drug therapy/parasitology ; Malaria, Falciparum/drug therapy/parasitology ; Malaria, Vivax/drug therapy/parasitology ; Membrane Transport Modulators ; Membrane Transport Proteins/antagonists & inhibitors ; Parasitemia/drug therapy ; Phosphatidylcholines/biosynthesis ; Plasmodium/*drug effects ; Plasmodium cynomolgi/drug effects ; Plasmodium falciparum/drug effects ; Plasmodium vivax/drug effects ; Pyrrolidines/administration & dosage/*pharmacokinetics/*pharmacology/therapeutic ; use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2002-08-31
    Description: We exploited the high rate of homologous recombination shown by the chicken B cell line DT40 to inactivate the endogenous alleles for clathrin heavy chain and replace them with human clathrin complementary DNA under the control of a tetracycline-regulatable promoter. Clathrin repression perturbed the activities of Akt-mediated and mitogen-activated protein kinase-mediated signaling pathways and induced apoptosis; this finding suggests that in DT40 cells clathrin helps to maintain the integrity of antiapoptotic survival pathways. We also describe a variant cell line in which these signaling pathways were unaffected by clathrin down-regulation. This variant cell line did not undergo apoptosis in the absence of clathrin and was used to examine the effects of clathrin depletion on membrane-trafficking pathways. Receptor-mediated and fluid-phase endocytosis were both substantially inhibited, and transferrin-receptor recycling was modestly inhibited. Surprisingly, clathrin removal did not affect the morphology or biochemical composition of lysosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wettey, Frank R -- Hawkins, Steve F C -- Stewart, Abigail -- Luzio, J Paul -- Howard, Jonathan C -- Jackson, Antony P -- New York, N.Y. -- Science. 2002 Aug 30;297(5586):1521-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Building O, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12202821" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; B-Lymphocytes/*metabolism/ultrastructure ; Cell Line ; Chickens ; Clathrin/biosynthesis/*genetics/physiology ; Clathrin Heavy Chains ; Down-Regulation ; Doxycycline/pharmacology ; Endocytosis/physiology ; *Gene Expression Regulation/drug effects ; Lysosomes/physiology ; Membrane Proteins/physiology ; Molecular Sequence Data ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1869.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics/*physiology ; Cell Differentiation ; *Cell Division ; Cell Line ; GTP-Binding Proteins ; Gene Expression ; Genes ; Humans ; Mice ; Neoplasms/*genetics/pathology ; Nuclear Proteins/*genetics/*physiology ; Rats ; Stem Cells/cytology/*physiology ; Tumor Cells, Cultured ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2002-07-27
    Description: Recycling of the mu opioid receptor to the plasma membrane after endocytosis promotes rapid resensitization of signal transduction, whereas targeting of the delta opioid receptor (DOR) to lysosomes causes proteolytic down-regulation. We identified a protein that binds preferentially to the cytoplasmic tail of the DOR as a candidate heterotrimeric GTP-binding protein (G protein)-coupled receptor-associated sorting protein (GASP). Disruption of the DOR-GASP interaction through receptor mutation or overexpression of a dominant negative fragment of GASP inhibited receptor trafficking to lysosomes and promoted recycling. The GASP family of proteins may modulate lysosomal sorting and functional down-regulation of a variety of G protein-coupled receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whistler, Jennifer L -- Enquist, Johan -- Marley, Aaron -- Fong, Jamie -- Gladher, Fredrik -- Tsuruda, Pamela -- Murray, Stephen R -- Von Zastrow, Mark -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):615-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608, USA. shooz2@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142540" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Down-Regulation ; *Endocytosis ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Lysosomes/*metabolism ; Mice ; Microscopy, Fluorescence ; *Protein Transport ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Adrenergic, beta-2/metabolism ; Receptors, Cell Surface/metabolism ; Receptors, Opioid, delta/*metabolism ; Receptors, Opioid, mu/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Two-Hybrid System Techniques ; Ubiquitin/metabolism ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2002-01-26
    Description: The organization of myosin into motile cellular structures requires precise temporal and spatial regulation. Proteins containing a UCS (UNC-45/CRO1/She4p) domain are necessary for the incorporation of myosin into the contractile ring during cytokinesis and into thick filaments during muscle development. We report that the carboxyl-terminal regions of UNC-45 bound and exerted chaperone activity on the myosin head. The amino-terminal tetratricopeptide repeat domain of UNC-45 bound the molecular chaperone Hsp90. Thus, UNC-45 functions both as a molecular chaperone and as an Hsp90 co-chaperone for myosin, which can explain previous findings of altered assembly and decreased accumulation of myosin in UNC-45 mutants of Caenorhabditis elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barral, Jose M -- Hutagalung, Alex H -- Brinker, Achim -- Hartl, F Ulrich -- Epstein, Henry F -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):669-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Caenorhabditis elegans/genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cloning, Molecular ; HSP70 Heat-Shock Proteins/genetics/metabolism ; HSP90 Heat-Shock Proteins/genetics/metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Myosins/*metabolism ; Peptide Fragments/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...