ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (70,753)
  • American Meteorological Society
  • Nature Publishing Group
  • 2015-2019  (81,855)
  • 1945-1949  (15,902)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Earth System Science Data Discussions https://doi.org/10.5194/essd-2019-66, Copernicus, pp. 1-39
    Publication Date: 2019-05-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-12
    Description: Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007–2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-21
    Description: A new 21.3m firn core was drilled in 2015 at a coastal Antarctic high-accumulation site in Adélie Land (66.78◦ S; 139.56◦ E, 602 m a.s.l.), named Terre Adélie 192A (TA192A). The mean isotopic values (−19.3 ‰ ± 3.1 ‰ for δ18O and 5.4 ‰±2.2 ‰ for deuterium excess) are consistent with other coastal Antarctic values. No significant isotope–temperature relationship can be evidenced at any timescale. This rules out a simple interpretation in terms of local temperature. An observed asymmetry in the δ18O seasonal cycle may be explained by the precipitation of air masses coming from the eastern and western sectors in autumn and winter, recorded in the d-excess signal showing outstanding values in austral spring versus autumn. Significant positive trends are observed in the annual d-excess record and local sea ice extent (135–145◦ E) over the period 1998–2014. However, process studies focusing on resulting isotopic compositions and particularly the deuterium excess–δ18O relationship, evidenced as a potential fingerprint of moisture origins, as well as the collection of more isotopic measurements in Adélie Land are needed for an accurate interpretation of our signals.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Scientific Reports, Nature Publishing Group, 9(7962), ISSN: 2045-2322
    Publication Date: 2019-06-11
    Description: Arctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves. In the upper atmosphere, these waves deposit the momentum transported, disturbing the stratospheric polar vortex, which can lead to a breakdown of this circulation with the potential to also significantly impact the troposphere in mid- to late-winter and early spring. Therefore, an accurate representation of stratospheric processes in climate models is necessary to improve the understanding of the impact of retreating sea ice on the atmospheric circulation. By modeling the atmospheric response to a prescribed decline in Arctic sea ice, we show that including interactive stratospheric ozone chemistry in atmospheric model calculations leads to an improvement in tropo-stratospheric interactions compared to simulations without interactive chemistry. This suggests that stratospheric ozone chemistry is important for the understanding of sea ice related impacts on atmospheric dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-15
    Description: The oxygen isotope composition of speleothems is a widely used proxy for past climate change. Robust use of this proxy depends on understanding the relationship between precipitation and cave drip water δ18O. Here, we present the first global analysis, based on data from 163 drip sites, from 39 caves on five continents, showing that drip water δ18O is most similar to the amount-weighted precipitation δ18O where mean annual temperature (MAT) is 〈 10 °C. By contrast, for seasonal climates with MAT 〉 10 °C and 〈 16 °C, drip water δ18O records the recharge-weighted δ18O. This implies that the δ18O of speleothems (formed in near isotopic equilibrium) are most likely to directly reflect meteoric precipitation in cool climates only. In warmer and drier environments, speleothems will have a seasonal bias toward the precipitation δ18O of recharge periods and, in some cases, the extent of evaporative fractionation of stored karst water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-03-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-10
    Description: The timing and intensity of snowmelt processes on sea ice are key drivers determining the seasonal sea-ice energy and mass budgets. In the Arctic, satellite passive microwave and radar observations have revealed a trend towards an earlier snowmelt onset during the last decades, which is an important aspect of Arctic amplification and sea ice decline. Around Antarctica, snowmelt on perennial ice is weak and very different than in the Arctic, with most snow surviving the summer. Here we compile time series of snowmelt-onset dates on seasonal and perennial Antarctic sea ice from 1992 to 2014/15 using active microwave observations from European Remote Sensing Satellite (ERS-1/2), Quick Scatterometer (QSCAT) and Advanced Scatterometer (ASCAT) radar scatterometers. We define two snowmelt transition stages: A weak backscatter rise indicating the initial warming and destructive metamorphism of the snowpack (pre-melt), followed by a rapid backscatter rise indicating the onset of thaw-freeze cycles (snowmelt). Results show large interannual variability with an average pre-melt onset date of 29 November and melt onset of 10 December, respectively, on perennial ice, without any significant trends over the study period, consistent with the small trends of Antarctic sea ice extent. There was a latitudinal gradient from early snowmelt onsets in mid-November in the northern Weddell Sea to late (end-December) or even absent snowmelt conditions in the southern Weddell Sea. We show that QSCAT Ku-band (13.4 GHz signal frequency) derived pre-melt and snowmelt onset dates are earlier by 20 and 18 days, respectively, than ERS and ASCAT C-band (5.6 GHz) derived dates. This offset has been considered when constructing the time series. Snowmelt onset dates from passive microwave observations (37 GHz) are later by 14 and 6 days than those from the scatterometers, respectively. Based on these characteristic differences between melt onset dates observed by different microwave wavelengths, we developed a conceptual model which illustrates how the seasonal evolution of snow temperature profiles may affect different microwave bands with different penetration depths. These suggest that future multi-frequency active/passive microwave satellite missions could be used to resolve melt processes throughout the vertical snow column of thick snow on perennial Antarctic sea ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-27
    Description: Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model’s ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Climate of the Past, Copernicus, 15(6), pp. 1913-1937, ISSN: 1814-9332
    Publication Date: 2020-01-27
    Description: We present here the first results, for the preindustrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H16O, H18O and HDO have been implemented into all components of the coupled model setup. The mid-Holocene provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow us to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. For the preindustrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of the isotopic content in precipitation linked to the spatial variations in temperature and precipitation rate. We also find a good model–data agreement with the observed distribution of isotopic composition in surface seawater but a bias with the presence of surface seawater that is too 18O-depleted in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the preindustrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a decrease in the isotopic composition of precipitation from North Africa to the Tibetan Plateau via India due to the enhanced monsoons during the mid-Holocene. Over Greenland, our simulation indicates a higher isotopic composition of precipitation linked to higher summer temperature and a reduction in sea ice, shown by positive isotope–temperature gradient. For the Antarctic continent, the model simulates lower isotopic values over the East Antarctic plateau, linked to the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and preindustrial periods are partly controlled by changes in temperature, the transport of relatively 18O-rich water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. So, more caution has to be taken about the reconstruction of past temperature variations during warm periods over this area. The coupling of such a model with an ice sheet model or the use of a zoomed grid centered on this region could help to better describe the role of the water vapor transport and sea ice around West Antarctica. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between the isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity of interpreting water isotopes as past climate signals of warm periods like the mid-Holocene. A systematic isotope model intercomparison study for further insights on the model dependency of these results would be beneficial.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-03-27
    Description: The first in situ measurements of seawater density that referred to a geographical position at sea and time of the year were carried out by Count Luigi Ferdinando Marsili between 1679 and 1680 in the Adriatic Sea, Aegean Sea, Marmara Sea, and the Bosporus. Not only was this the first investigation with documented oceanographic measurements carried out at stations, but themeasurements were described in such an accurateway that the authorswere able to reconstruct the observations in modern units. These first measurements concern the ‘‘specific gravity’’ of seawaters (i.e., the ratio between fluid densities). The data reported in the historical oceanographic treatise Osservazioni intorno al Bosforo Tracio (Marsili) allowed the reconstruction of the seawater density at different geographic locations between 1679 and 1680. Marsili’s experimental methodology included the collection of surface and deep water samples, the analysis of the samples with a hydrostatic ampoule, and the use of a reference water to standardize the measurements.Acomparison of reconstructed densities with present-day values shows an agreement within 10%–20% uncertainty, owing to various aspects of the measurement methodology that are difficult to reconstruct from the documentary evidence. Marsili also measured the current speed and the depth of the current inversion in the Bosporus, which are consistent with the present-day knowledge. The experimental data collected in the Bosporus enabledMarsili to enunciate a theory on the cause of the two-layer flow at the strait, demonstrated by his laboratory experiment and later confirmed by many analytical and numerical studies.
    Description: American Meteorological Society.
    Description: Published
    Description: 845 - 860
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: Ocean ; Density currents ; Measurements ; Ship observations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-01-21
    Description: Stable water isotopes are employed as hydrological tracers to quantify the diverse implications of atmospheric moisture for climate. They are widely used as proxies for studying past climate changes, e.g., in isotope records from ice cores and speleothems. Here, we present a new isotopic dataset of both near-surface vapour and ocean surface water from the North Pole to Antarctica, continuously measured from a research vessel throughout the Atlantic and Arctic Oceans during a period of two years. Our observations contribute to a better understanding and modelling of water isotopic composition. The observations reveal that the vapour deuterium excess within the atmospheric boundary layer is not modulated by wind speed, contrary to the commonly used theory, but controlled by relative humidity and sea surface temperature only. In sea ice covered regions, the sublimation of deposited snow on sea ice is a key process controlling the local water vapour isotopic composition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3EGU General Assembly 2019, 2019-04-08-2019-04-12Copernicus
    Publication Date: 2021-02-16
    Description: In this study, we present results obtained from modelling the mid-Pliocene warm period using the Community Earth System Models (COSMOS, version: COSMOS-landveg r2413, 2009) with the two different sets of boundary conditions prescribed for the two phases of the Pliocene Model Intercomparison Project (PlioMIP). Boundary conditions, model forcing, and modelling methodology of the two phases of PlioMIP, tagged PlioMIP1 and PlioMIP2,differ considerably in palaeogeography, in particular with regards to the state of ocean gateways, ice-masks, vegetation and topography. Further differences between model setups as suggested for PlioMIP1 and PlioMIP2 consider updates to the concentration of atmospheric carbon dioxide (CO2), that is specified as 405 and 400 parts per million by volume (ppmv) for PlioMIP1 and PlioMIP2, respectively, as well as minor differences in the concentrations of methane (CH4) and nitrous oxide (N2O) due to changes in the protocol of the Paleoclimate Model Intercomparison Project (PMIP) from phase 3 to phase 4. With this manuscript, we bridge the gap between our contributions to PlioMIP1 (Stepanek and Lohmann, 2012) and PlioMIP2 (Stepanek et al., 2019). We highlight some of the effects that differences in the chosen Mid-Pliocene model setup (PlioMIP2 vs. PlioMIP1) have on the climate state as derived with the COSMOS, as this information will be valuable in the framework of the model-model and model-data-comparison within PlioMIP2. We evaluate the model sensitivity to improved mid-Pliocene boundary conditions using PlioMIP’s core mid-Pliocene experiments for PlioMIP1 and PlioMIP2, and present further simulations where we test model sensitivity to variations in palaeogeography, orbit and concentration of CO2. Firstly,we highlight major changes in boundary conditions from PlioMIP1 to PlioMIP2 and also the limitations recorded from the initial effort. The results derived from of our simulations show that COSMOS simulates a mid-Pliocene climate state that is 0.08 K colder in PlioMIP2, if compared to PlioMIP1. On one hand, high-latitude warming,which is supported by proxy evidence of the mid-Pliocene, is underestimated in simulations of both PlioMIP1 andPlioMIP2. On the other hand, spatial variations in surface air temperature (SAT), sea surface temperature (SST) as well as the distribution of sea ice suggest improvement of simulated SAT and SST in PlioMIP2 if employing the updated palaeogeography. The PlioMIP2 Mid-Pliocene simulation produces warmer SSTs in the Arctic and North Atlantic Ocean than derived from the respective PlioMIP1 climate state. The difference in prescribed CO2accountsfor 1.1 K of warming in the Arctic, leading to an ice-free summer in the PlioMIP1 simulation, and a quasi-ice-free summer in PlioMIP2. Furthermore, employing different orbital forcings in simulating the Mid-Pliocene lead to pronounced annual and seasonal variations, which is not accounted for by marine and terrestrial reconstruction of the time-slice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-01-21
    Description: The Antarctic temperature changes over the past millennia remain more uncertain than in many other continental regions. This has several origins: (1) the number of high-resolution ice cores is small, in particular on the East Antarctic plateau and in some coastal areas in East Antarctica; (2) the short and spatially sparse instrumental records limit the calibration period for reconstructions and the assessment of the methodologies; (3) the link between isotope records from ice cores and local climate is usually complex and dependent on the spatial scales and timescales investigated. Here, we use climate model results, pseudo-proxy experiments and data assimilation experiments to assess the potential for reconstructing the Antarctic temperature over the last 2 millennia based on a new database of stable oxygen isotopes in ice cores compiled in the frame- work of Antarctica2k (Stenni et al., 2017). The well-known covariance between δ18O and temperature is reproduced in the two isotope-enabled models used (ECHAM5/MPI-OM and ECHAM5-wiso), but is generally weak over the different Antarctic regions, limiting the skill of the reconstructions. Furthermore, the strength of the link displays large variations over the past millennium, further affecting the potential skill of temperature reconstructions based on statistical methods which rely on the assumption that the last decades are a good estimate for longer temperature reconstructions. Using a data assimilation technique allows, in theory, for changes in the δ18O–temperature link through time and space to be taken into account. Pseudoproxy experiments confirm the benefits of using data assimilation methods instead of statistical methods that provide reconstructions with unrealistic variances in some Antarctic subregions. They also confirm that the relatively weak link between both variables leads to a limited potential for reconstructing temperature based on δ18O. However, the reconstruction skill is higher and more uniform among reconstruction methods when the reconstruction target is the Antarctic as a whole rather than smaller Antarctic subregions. This consistency between the methods at the large scale is also observed when reconstructing temperature based on the real δ18O regional composites of Stenni et al. (2017). In this case, temperature reconstructions based on data assimilation confirm the long-term cooling over Antarctica during the last millennium, and the later onset of anthropogenic warming compared with the simulations without data assimilation, which is especially visible in West Antarctica. Data assimilation also allows for models and direct observations to be reconciled by reproducing the east–west contrast in the recent temperature trends. This recent warming pattern is likely mostly driven by internal variability given the large spread of individual Paleoclimate Modelling Intercomparison Project (PMIP)/Coupled Model Intercomparison Project (CMIP) model realizations in simulating it. As in the pseudoproxy framework, the reconstruction methods perform differently at the subregional scale, especially in terms of the variance of the time series produced. While the potential benefits of using a data assimilation method instead of a statistical method have been highlighted in a pseudoproxy framework, the instrumental series are too short to confirm this in a realistic setup.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-16
    Description: Ice-wedge polygons are common features of lowland tundra in the continuous permafrost zone and prone to rapid degradation through melting of ground ice. There are many interrelated processes involved in ice-wedge thermokarst and it is a major challenge to quantify their influence on the stability of the permafrost underlying the landscape. In this study we used a numerical modelling approach to investigate the degradation of ice wedges with a focus on the influence of hydrological conditions. Our study area was Samoylov Island in the Lena River delta of northern Siberia, for which we had in situ measurements to evaluate the model. The tailored version of the CryoGrid 3 land surface model was capable of simulating the changing microtopography of polygonal tundra and also regarded lateral fluxes of heat, water, and snow. We demonstrated that the approach is capable of simulating ice-wedge degradation and the associated transition from a low-centred to a high-centred polygonal microtopography. The model simulations showed ice-wedge degradation under recent climatic conditions of the study area, irrespective of hydrological conditions. However, we found that wetter conditions lead to an earlier onset of degradation and cause more rapid ground subsidence. We set our findings in correspondence to observed types of ice-wedge polygons in the study area and hypothesized on remaining discrepancies between modelled and observed ice-wedge thermokarst activity. Our quantitative approach provides a valuable complement to previous, more qualitative and conceptual, descriptions of the possible pathways of ice-wedge polygon evolution. We concluded that our study is a blueprint for investigating thermokarst landforms and marks a step forward in understanding the complex interrelationships between various processes shaping ice-rich permafrost landscapes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-03-28
    Description: Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 �C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore–offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 �C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes �18O and �D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 �C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in he balance of salinity variance in a partially stratified estuary: Implications for exchange flow, mixing, and stratification. Journal of Physical Oceanography, 48(12), (2018) 2887-2899., doi: 10.1175/JPO-D-18-0032.1.
    Description: Salinity variance dissipation is related to exchange flow through the salinity variance balance equation, and meanwhile its magnitude is also proportional to the turbulence production and stratification inside the estuary. As river flow increases, estuarine volume-integrated salinity variance dissipation increases owing to more variance input from the open boundaries driven by exchange flow and river flow. This corresponds to the increased efficient conversion of turbulence production to salinity variance dissipation due to the intensified stratification with higher river flow. Through the spring–neap cycle, the temporal variation of salinity variance dissipation is more dependent on stratification than turbulence production, so it reaches its maximum during the transition from neap to spring tides. During most of the transition time from spring to neap tides, the advective input of salinity variance from the open boundaries is larger than dissipation, resulting in the net increase of variance, which is mainly expressed as vertical variance, that is, stratification. The intensified stratification in turn increases salinity variance dissipation. During neap tides, a large amount of enhanced salinity variance dissipation is induced by the internal shear stress near the halocline. During most of the transition time from neap to spring tides, dissipation becomes larger than the advective input, so salinity variance decreases and the stratification is destroyed.
    Description: TW was supported by the National Key R&D Program of China (Grant 2017YFA0604104), National Natural Science Foundation of China (Grant 41706002), Natural Science Foundation of Jiangsu Province (Grant BK20170864), and MEL Visiting Fellowship (MELRS1617). WRG was supported by NSF Grant OCE 1736539. Part of this work is finished during TW’s visit in MEL and WHOI. We would like to acknowledge John Warner for providing the codes of the Hudson estuary model, and Parker MacCready, the editor, and two reviewers for their insightful suggestions on improving the manuscript.
    Description: 2019-06-06
    Keywords: Estuaries ; Dynamics ; Mixing ; Density Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 147(1), (2019): 389-406. doi: 10.1175/MWR-D-18-0158.1.
    Description: The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.
    Description: The authors are grateful for the funding provided by the Office of Naval Research Propagation of Intra-Seasonal Tropical Oscillations (ONR PISTON) Award N0001416WX01752 and the USNA Trident Scholar program. The authors also appreciate the helpful comments of the two external reviewers.
    Description: 2019-07-07
    Keywords: Maritime Continent ; Madden-Julian oscillation ; Quasibiennial oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-30
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. This update of GLODAPv2, v2.2019, adds data from 116 cruises to the previous version, extending its coverage in time from 2013 to 2017, while also adding some data from prior years. GLODAPv2.2019 includes measurements from more than 1.1 million water samples from the global oceans collected on 840 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and CCl4) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by comparing the data from the 116 new cruises with the data from the 724 quality-controlled cruises of the GLODAPv2 data product. They correct for errors related to measurement, calibration, and data handling practices, taking into account any known or likely time trends or variations. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1 in total alkalinity, 0.01–0.02 in pH, and 5 % in the halogenated transient tracers. The compilation also includes data for several other variables, such as isotopic tracers. These were not subjected to bias comparison or adjustments. The original data, their documentation and DOI codes are available in the Ocean Carbon Data System of NOAA NCEI (https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2019/, last access: 17 September 2019). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, Indian, and Pacific oceans – under https://doi.org/10.25921/xnme-wr20 (Olsen et al., 2019). The product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This paper documents the GLODAPv2.2019 methods and provides a broad overview of the secondary quality control procedures and results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-10-29
    Description: The ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical concentration cell (ECC) ozonesonde has been deployed at ∼100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time series from individual site records. For 22 years the Jülich (Germany) Ozonesonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. During October–November 2017 a JOSIE campaign evaluated the sondes and procedures used in Southern Hemisphere Additional Ozonesondes (SHADOZ), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-10-24
    Description: We present a Lagrangian convective transport scheme developed for global chemistry and transport models, which considers the variable residence time that an air parcel spends in convection. This is particularly important for accurately simulating the tropospheric chemistry of short-lived species, e.g., for determining the time available for heterogeneous chemical processes on the surface of cloud droplets. In current Lagrangian convective transport schemes air parcels are stochastically redistributed within a fixed time step according to estimated probabilities for convective entrainment as well as the altitude of detrainment. We introduce a new scheme that extends this approach by modeling the variable time that an air parcel spends in convection by estimating vertical updraft velocities. Vertical updraft velocities are obtained by combining convective mass fluxes from meteorological analysis data with a parameterization of convective area fraction profiles. We implement two different parameterizations: a parameterization using an observed constant convective area fraction profile and a parameterization that uses randomly drawn profiles to allow for variability. Our scheme is driven by convective mass fluxes and detrainment rates that originate from an external convective parameterization, which can be obtained from meteorological analysis data or from general circulation models. We study the effect of allowing for a variable time that an air parcel spends in convection by performing simulations in which our scheme is implemented into the trajectory module of the ATLAS chemistry and transport model and is driven by the ECMWF ERA-Interim reanalysis data. In particular, we show that the redistribution of air parcels in our scheme conserves the vertical mass distribution and that the scheme is able to reproduce the convective mass fluxes and detrainment rates of ERA-Interim. We further show that the estimated vertical updraft velocities of our scheme are able to reproduce wind profiler measurements performed in Darwin, Australia, for velocities larger than 0.6 m s−1. SO2 is used as an example to show that there is a significant effect on species mixing ratios when modeling the time spent in convective updrafts compared to a redistribution of air parcels in a fixed time step. Furthermore, we perform long-time global trajectory simulations of radon-222 and compare with aircraft measurements of radon activity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-06-20
    Description: Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations, as well as understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends, and improvements in service applications such as the United States Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi-decadal record of mass variability in the Earth system is within reach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-27
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Marine Science and Engineering 6(4), (2018): 144. doi:10.3390/jmse6040144.
    Description: Geochronologies derived from sediment cores in coastal locations are often used to infer event bed characteristics such as deposit thicknesses and accumulation rates. Such studies commonly use naturally occurring, short-lived radioisotopes, such as Beryllium-7 (7Be) and Thorium-234 (234Th), to study depositional and post-depositional processes. These radioisotope activities, however, are not generally represented in sediment transport models that characterize coastal flood and storm deposition with grain size patterns and deposit thicknesses. We modified the Community Sediment Transport Modeling System (CSTMS) to account for reactive tracers and used this capability to represent the behavior of these short-lived radioisotopes on the sediment bed. This paper describes the model and presents results from a set of idealized, one-dimensional (vertical) test cases. The model configuration represented fluvial deposition followed by periods of episodic storm resuspension. Sensitivity tests explored the influence on seabed radioisotope profiles by the intensities of bioturbation and wave resuspension and the thickness of fluvial deposits. The intensity of biodiffusion affected the persistence of fluvial event beds as evidenced by 7Be. Both resuspension and biodiffusion increased the modeled seabed inventory of 234Th. A thick fluvial deposit increased the seabed inventory of 7Be and 234Th but mixing over time greatly reduced the difference in inventory of 234Th in fluvial deposits of different thicknesses.
    Description: The Bureau of Ocean Energy Management (BOEM) provided funding for Birchler, Harris, and Kniskern. During his M.S. program Birchler received additional funds from VIMS’ Office of Academic Studies. This work was partially supported by the U.S. Geological Survey, Coastal and Marine Geology Program.
    Keywords: Numerical model ; Sediment transport ; Marine ; Short-lived radioisotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(2), (2019): 549-573. doi: 10.1175/JCLI-D-18-0413.1.
    Description: Time series of surface meteorology and air–sea fluxes from the northern Bay of Bengal are analyzed, quantifying annual and seasonal means, variability, and the potential for surface fluxes to contribute significantly to variability in surface temperature and salinity. Strong signals were associated with solar insolation and its modulation by cloud cover, and, in the 5- to 50-day range, with intraseasonal oscillations (ISOs). The northeast (NE) monsoon (DJF) was typically cloud free, with strong latent heat loss and several moderate wind events, and had the only seasonal mean ocean heat loss. The spring intermonsoon (MAM) was cloud free and had light winds and the strongest ocean heating. Strong ISOs and Tropical Cyclone Komen were seen in the southwest (SW) monsoon (JJA), when 65% of the 2.2-m total rain fell, and oceanic mean heating was small. The fall intermonsoon (SON) initially had moderate convective systems and mean ocean heating, with a transition to drier winds and mean ocean heat loss in the last month. Observed surface freshwater flux applied to a layer of the observed thickness produced drops in salinity with timing and magnitude similar to the initial drops in salinity in the summer monsoon, but did not reproduce the salinity variability of the fall intermonsoon. Observed surface heat flux has the potential to cause the temperature trends of the different seasons, but uncertainty in how shortwave radiation is absorbed in the upper ocean limits quantifying the role of surface forcing in the evolution of mixed layer temperature.
    Description: The deployment of the Woods Hole Oceanographic Institution (WHOI) mooring and RW and JTF were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453. DS acknowledges support from the Ministry of Earth Sciences under India’s National Monsoon Mission. HS acknowledges support from the Office of Naval Research Grants N00014-13-1-0453 and N00014-17-12398. The deployment of the WHOI mooring was done by RV Sagar Nidhi and the recovery by RV Sagar Kanya; the help of the crew and science parties is gratefully acknowledged as is the ongoing support at NIOT in Chennai and by other colleagues in India of this mooring work. The work of the staff of the WHOI Upper Ocean Process Group in the design, building, deployment, and recovery of the mooring and in processing the data is gratefully acknowledged. The software for the wavelet analysis was provided by Torrence and Compo (1998). Feedback on the paper by Dr. Amit Tandon and two anonymous reviewers is gratefully acknowledged. This paper is dedicated to Dr. Frank Bradley.
    Description: 2019-06-28
    Keywords: Atmosphere-ocean interaction ; Monsoons ; Air-sea interaction ; Surface fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography, 49 (2), (2019): 607-630, doi:10.1175/JPO-D-18-0166.1.
    Description: The Lagrangian motion in the eddy field produced from an unstable retrograde jet along the shelf break is studied from idealized numerical experiments with a primitive equation model. The jet is initially in thermal wind balance with a cross-isobath density gradient and is not subjected to any atmospheric forcing. Over the course of the model integration, the jet becomes unstable and produces a quasi-stationary eddy field over a 2-month period. During this period, the cross-slope flow at the shelf break is characterized by along-slope correlation scales of O(10) km and temporal correlation scales of a few days. The relative dispersion of parcels across isobaths is found to increase with time as tb, where 1 〈 b 〈 2. This mixed diffusive–ballistic regime appears to reflect the combined effects of (i) the short length scales of velocity correlation at the shelf break and (ii) the seaward excursion of monopolar and dipolar vortices. Cross-slope dispersion is greater offshore of the front than inshore of the front, as offshore parcels are both subducted onshore below density surfaces and translated offshore with eddies. Nonetheless, the exchange of parcels across the jet remains very limited on the monthly time scale. Particles originating from the bottom experience upward displacements of a few tens of meters and seaward displacements of O(100) km, suggesting that the eddy activity engendered by an unstable along-slope jet provides another mechanism for bottom boundary layer detachment near the shelf edge.
    Description: The author expresses his gratitude to the researchers who contributed to the development and public dissemination of POM [for a list of contributors, see Mellor (2002) and comments in the source code]. Discussions with Kenneth Brink, Hyodae Seo, and Weifeng Zhang have been helpful. Comments provided by Kenneth Brink on a draft are gratefully acknowledged. The criticism from two anonymous reviewers allowed us to better focus the manuscript and to significantly improve its clarity. This work has been supported by Grant OCE-1556400 from the U.S. National Science Foundation.
    Description: 2020-02-18
    Keywords: Dispersion ; Eddies ; Frontogenesis/frontolysis ; Instability ; Lagrangian circulation/transport ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1577-1592, doi:10.1175/JPO-D-18-0124.1.
    Description: The main source feeding the abyssal circulation of the North Pacific is the deep, northward flow of 5–6 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) through the Samoan Passage. A recent field campaign has shown that this flow is hydraulically controlled and that it experiences hydraulic jumps accompanied by strong mixing and dissipation concentrated near several deep sills. By our estimates, the diapycnal density flux associated with this mixing is considerably larger than the diapycnal flux across a typical isopycnal surface extending over the abyssal North Pacific. According to historical hydrographic observations, a second source of abyssal water for the North Pacific is 2.3–2.8 Sv of the dense flow that is diverted around the Manihiki Plateau to the east, bypassing the Samoan Passage. This bypass flow is not confined to a channel and is therefore less likely to experience the strong mixing that is associated with hydraulic transitions. The partitioning of flux between the two branches of the deep flow could therefore be relevant to the distribution of Pacific abyssal mixing. To gain insight into the factors that control the partitioning between these two branches, we develop an abyssal and equator-proximal extension of the “island rule.” Novel features include provisions for the presence of hydraulic jumps as well as identification of an appropriate integration circuit for an abyssal layer to the east of the island. Evaluation of the corresponding circulation integral leads to a prediction of 0.4–2.4 Sv of bypass flow. The circulation integral clearly identifies dissipation and frictional drag effects within the Samoan Passage as crucial elements in partitioning the flow.
    Description: This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795. We thank the captain, crew, and engineers at APL/UW for their hard work and skill.
    Description: 2020-06-11
    Keywords: Abyssal circulation ; Bottom currents ; Boundary currents ; Channel flows ; Mixing ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2337-2343, doi:10.1175/JPO-D-19-0097.1.
    Description: The weakly unstable, two-layer model of baroclinic instability is studied in a configuration in which the flow is perturbed at the inflow section of a channel by a slow and periodic perturbation. In a parameter regime where the governing equation would be the Lorenz equations for chaos if the development occurs only in time, the solution behavior becomes considerably more complex as a function of time and downstream coordinate. In the absence of the beta effect it has earlier been shown that the chaotic behavior along characteristics renders the solution nearly discontinuous in the slow downstream coordinate of the asymptotic model. The additional presence of the beta effect, although expunging the chaos for large enough values of the beta parameter, also provides an additional mechanism for abrupt spatial change.
    Description: 2020-02-28
    Keywords: Cyclogenesis/cyclolysis ; Eddies ; Microscale processes/variability ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 76(10), (2019): 3013-3027, doi:10.1175/JAS-D-19-0095.1.
    Description: Recently Nakamura and Huang proposed a semiempirical, one-dimensional model of atmospheric blocking based on the observed budget of local wave activity in the boreal winter. The model dynamics is akin to that of traffic flow, wherein blocking manifests as traffic jams when the streamwise flux of local wave activity reaches capacity. Stationary waves modulate the jet stream’s capacity to transmit transient waves and thereby localize block formation. Since the model is inexpensive to run numerically, it is suited for computing blocking statistics as a function of climate variables from large-ensemble, parameter sweep experiments. We explore sensitivity of blocking statistics to (i) stationary wave amplitude, (ii) background jet speed, and (iii) transient eddy forcing, using frequency, persistence, and prevalence as metrics. For each combination of parameters we perform 240 runs of 180-day simulations with aperiodic transient eddy forcing, each time randomizing the phase relations in forcing. The model climate shifts rapidly from a block-free state to a block-dominant state as the stationary wave amplitude is increased and/or the jet speed is decreased. When eddy forcing is increased, prevalence increases similarly but frequency decreases as blocks merge and become more persistent. It is argued that the present-day climate lies close to the boundary of the two states and hence its blocking statistics are sensitive to climate perturbations. The result underscores the low confidence in GCM-based assessment of the future trend of blocking under a changing climate, while it also provides a theoretical basis for evaluating model biases and understanding trends in reanalysis data.
    Description: The main results of this paper emerged from a group project during Rossbypalooza, a student-led summer school at the University of Chicago in June 2018, with the theme of “Understanding climate through simple models.” The authors thank the participants of the summer school for their valuable feedback. Constructive criticisms of the two anonymous reviewers greatly improved the quality of the manuscript. The work is supported by NSF Grants AGS1563307 and AGS1810964
    Keywords: Blocking ; Nonlinear dynamics ; Planetary waves ; Potential vorticity ; Wave breaking ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1973-1994, doi: 10.1175/JPO-D-18-0194.1.
    Description: Using 18 days of field observations, we investigate the diurnal (D1) frequency wave dynamics on the Tasmanian eastern continental shelf. At this latitude, the D1 frequency is subinertial and separable from the highly energetic near-inertial motion. We use a linear coastal-trapped wave (CTW) solution with the observed background current, stratification, and shelf bathymetry to determine the modal structure of the first three resonant CTWs. We associate the observed D1 velocity with a superimposed mode-zero and mode-one CTW, with mode one dominating mode zero. Both the observed and mode-one D1 velocity was intensified near the thermocline, with stronger velocities occurring when the thermocline stratification was stronger and/or the thermocline was deeper (up to the shelfbreak depth). The CTW modal structure and amplitude varied with the background stratification and alongshore current, with no spring–neap relationship evident for the observed 18 days. Within the surface and bottom Ekman layers on the shelf, the observed velocity phase changed in the cross-shelf and/or vertical directions, inconsistent with an alongshore propagating CTW. In the near-surface and near-bottom regions, the linear CTW solution also did not match the observed velocity, particularly within the bottom Ekman layer. Boundary layer processes were likely causing this observed inconsistency with linear CTW theory. As linear CTW solutions have an idealized representation of boundary dynamics, they should be cautiously applied on the shelf.
    Description: An Australian Research Council Discovery Project (DP 140101322), and a UWA Research Collaboration Award funded this work. T. L. Schlosser acknowledges the support of an Australian Government Research Training Program (RTP) Scholarship. We thank the crew, volunteers and scientists who aided in the field data collection aboard the R/V Revelle, which was funded by the National Science Foundation (OCE-1129763). The continental slope moorings, T4 (M32) and T3 (M44), were also funded by the National Science Foundation (OCE-1129763) and were conceived, planned, and executed by Matthew Alford, Jennifer Mackinnon, Jonathan Nash, Harper Simmons, and Gunnar Voet. We also thank Harper Simmons for the combined R/V Revelle multibeam and Geoscience Australia bathymetry used in this study. We thank the two anonymous reviewers whose comments improved this work.
    Description: 2020-01-16
    Keywords: Australia ; Continental shelf/slope ; Boundary currents ; Dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Vage, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., & Jonsson, S. The emergence of the North Icelandic Jet and its evolution from northeast Iceland to Denmark Strait. Journal of Physical Oceanography, 49(10), (2019): 2499-2521, doi:10.1175/JPO-D-19-0088.1.
    Description: The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv ≡ 106 m3 s−1) per 100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of the NIJ transport is confined to a small area in Θ–S space centered near −0.29° ± 0.16°C in Conservative Temperature and 35.075 ± 0.006 g kg−1 in Absolute Salinity. While the hydrographic properties of this transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary considerably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric forcing was found, but barotropic and/or baroclinic instability is likely active in the current. The NIJ displays a double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m isobaths, respectively. The transport of overflow water 300 km upstream of Denmark Strait exceeds 1.8 ± 0.3 Sv, which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.
    Description: Six different research vessels were involved in the collection of the data used in this study: RRS James Clark Ross, R/V Knorr, R/V Bjarni Sæmundsson, R/V Håkon Mosby, NRV Alliance, and R/V Kristine Bonnevie. We thank the captain and crew of each of these vessels for their hard work as well as the many watch standers who have sailed on the cruises and helped collect the measurements. We also thank Frank Bahr for processing the VMADCP data collected on NRV Alliance and Magnús Danielsen for the processing of the hydrographic data collected on R/V Bjarni Sæmundsson. We acknowledge Leah Trafford McRaven for assistance with Fig. 1 and two anonymous reviewers for their helpful comments, which improved the manuscript. Funding for the project was provided by the Bergen Research Foundation Grant BFS2016REK01 (K. Våge and S. Semper), the Norwegian Research Council under Grant Agreement 231647 (K. Våge), and the U.S. National Science Foundation Grants OCE-1259618 and OCE-1756361 (R. S. Pickart and D. J. Torres), as well as OCE-1558742 (R. S. Pickart). The dataset is available on PANGAEA under https://doi.pangaea.de/10.1594/PANGAEA.903535.
    Keywords: Ocean ; Continental shelf/slope ; Ocean circulation ; Transport ; Intermediate waters ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(13), (2019): 3883-3898, doi:10.1175/JCLI-D-18-0735.1.
    Description: While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
    Description: FL and MSL are thankful for the financial support from the National Science Foundation (NSF) Physical Oceanography Program (NSF-OCE-12-59102, NSF-OCE-12-59103). The NCAR contribution was supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) under Climate Variability and Predictability Program (CVP) Grant NA13OAR4310138 and by the NSF Collaborative Research EaSM2 Grant OCE-1243015. NCAR is sponsored by the NSF. NPH is supported by NERC programs U.K. OSNAP (NE/K010875) and ACSIS (National Capability, NE/N018044/1). Y-OK is supported by NOAA CPO CVP (NA17OAR4310111) and NSF EaSM2 grant (OCE-1242989). AR is supported by NASA-ROSES Modeling, Analysis and Prediction 2016 NNX16AC93G-MAP. RZ is supported by NOAA/OAR. Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). Data from the RAPID-MOCHA-WBTS array funded by NERC, NSF and NOAA are freely available from www.rapid.ac.uk/rapidmoc. We thank Stephen Griffies for providing access to the GFDL-MOM025 COREII simulation output and Matthew Harrison and Xiaoqin Yan for their comments on the manuscript. We also thank the anonymous reviewers for their valuable comments.
    Description: 2020-06-11
    Keywords: North Atlantic Ocean ; Deep convection ; Meridional overturning circulation ; Model comparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(9), (2019): 2237-2254, doi: 10.1175/JPO-D-18-0181.1.
    Description: A cluster of 45 drifters deployed in the Bay of Bengal is tracked for a period of four months. Pair dispersion statistics, from observed drifter trajectories and simulated trajectories based on surface geostrophic velocity, are analyzed as a function of drifter separation and time. Pair dispersion suggests nonlocal dynamics at submesoscales of 1–20 km, likely controlled by the energetic mesoscale eddies present during the observations. Second-order velocity structure functions and their Helmholtz decomposition, however, suggest local dispersion and divergent horizontal flow at scales below 20 km. This inconsistency cannot be explained by inertial oscillations alone, as has been reported in recent studies, and is likely related to other nondispersive processes that impact structure functions but do not enter pair dispersion statistics. At scales comparable to the deformation radius LD, which is approximately 60 km, we find dynamics in agreement with Richardson’s law and observe local dispersion in both pair dispersion statistics and second-order velocity structure functions.
    Description: This research was supported by the Air Sea Interaction Regional Initiative (ASIRI) under ONR Grant N00014-13-1-0451 (SE and AM) and ONR Grant N00014-13-1-0477 (VH and LC). Additionally, AM and SE thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support; VH and LC were further supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156. We thank Joe LaCasce, Dhruv Balwada, and one anonymous reviewer for helpful comments and discussions that significantly improved this manuscript. The authors thank the captain and crew of the R/V Roger Revelle. The SVP-type drifters are part of the Global Drifter Program and supported by ONR Grant N00014-15-1-2286 and NOAA GDP Grant NA10OAR4320156 and are available under http://www.aoml.noaa.gov/phod/dac/. The Ssalto/Duacs altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu).
    Keywords: Dispersion ; Fronts ; Mesoscale processes ; Subgrid-scale processes ; Trajectories ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 36(10), (2019): 1997-2014, doi: 10.1175/JTECH-D-19-0029.1.
    Description: While land-based high-frequency (HF) radars are the only instruments capable of resolving both the temporal and spatial variability of surface currents in the coastal ocean, recent high-resolution views suggest that the coastal ocean is more complex than presently deployed radar systems are able to reveal. This work uses a hybrid system, having elements of both phased arrays and direction finding radars, to improve the azimuthal resolution of HF radars. Data from two radars deployed along the U.S. East Coast and configured as 8-antenna grid arrays were used to evaluate potential direction finding and signal, or emitter, detection methods. Direction finding methods such as maximum likelihood estimation generally performed better than the well-known multiple signal classification (MUSIC) method given identical emitter detection methods. However, accurately estimating the number of emitters present in HF radar observations is a challenge. As MUSIC’s direction-of-arrival (DOA) function permits simple empirical tests that dramatically aid the detection process, MUSIC was found to be the superior method in this study. The 8-antenna arrays were able to provide more accurate estimates of MUSIC’s noise subspace than typical 3-antenna systems, eliminating the need for a series of empirical parameters to control MUSIC’s performance. Code developed for this research has been made available in an online repository.
    Description: This analysis was supported by NSF Grants OCE-1657896 and OCE-1736930 to Kirincich, OCE-1658475 to Emery and Washburn and OCE-1736709 to Flament. Flament is also supported by NOAA’s Integrated Ocean Observing System through Award NA11NOS0120039. The authors thank Lindsey Benjamin, Alma Castillo, Ken Constantine, Benedicte Dousset, Ian Fernandez, Mael Flament, Dave Harris, Garrett Hebert, Ben Hodges, Victoria Futch, Matt Guanci, and Philip Moravcik for assistance in building, deploying, and operating the radars.
    Description: 2020-04-11
    Keywords: Ocean ; Coastal flows ; Algorithms ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(8), (2019): 2185-2205. doi:10.1175/JCLI-D-18-0538.1.
    Description: Much attention has been paid to the climatic impacts of changes in the Kuroshio Extension, instead of the Kuroshio in the East China Sea (ECS). This study, however, reveals the prominent influences of the lateral shift of the Kuroshio at interannual time scale in late spring [April–June (AMJ)] on the sea surface temperature (SST) and precipitation in summer around the ECS, based on high-resolution satellite observations and ERA-Interim. A persistent offshore displacement of the Kuroshio during AMJ can result in cold SST anomalies in the northern ECS and the Japan/East Sea until late summer, which correspondingly causes anomalous cooling of the lower troposphere. Consequently, the anomalous cold SST in the northern ECS acts as a key driver to robustly enhance the precipitation from the Yangtze River delta to Kyushu in early summer (May–August) and over the central ECS in late summer (July–September). In view of the moisture budget analysis, two different physical processes modulated by the lateral shift of the Kuroshio are identified to account for the distinct responses of precipitation in early and late summer, respectively. First, the anomalous cold SST in the northern ECS induced by the Kuroshio offshore shift is likely conducive to the earlier arrival of the mei-yu–baiu front at 30°–32°N and its subsequent slower northward movement, which may prolong the local rainy season, leading to the increased rain belt in early summer. Second, the persistent cold SST anomalies in late summer strengthen the near-surface baroclinicity and the associated strong atmospheric fronts embedded in the extratropical cyclones over the central ECS, which in turn enhances the local rainfall.
    Description: We appreciate three anonymous reviewers for their thoughtful and constructive comments. This work is supported by the National Key Research and Development Program of China (2016YFA0601804), the National Natural Science Foundation of China (NSFC) Projects (91858102, 41490643, 41490640, 41506009, U1606402) and the OUC–WHOI joint research program (21366).
    Description: 2019-10-01
    Keywords: Continental shelf/slope ; Atmosphere-ocean interaction ; Boundary currents ; Precipitation ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(4), (2019): 1035-1053, doi:10.1175/JPO-D-18-0136.1.
    Description: Ocean stratification and the vertical extent of the mixed layer influence the rate at which the ocean and atmosphere exchange properties. This process has direct impacts for anthropogenic heat and carbon uptake in the Southern Ocean. Submesoscale instabilities that evolve over space (1–10 km) and time (from hours to days) scales directly influence mixed layer variability and are ubiquitous in the Southern Ocean. Mixed layer eddies contribute to mixed layer restratification, while down-front winds, enhanced by strong synoptic storms, can erode stratification by a cross-frontal Ekman buoyancy flux. This study investigates the role of these submesoscale processes on the subseasonal and interannual variability of the mixed layer stratification using four years of high-resolution glider data in the Southern Ocean. An increase of stratification from winter to summer occurs due to a seasonal warming of the mixed layer. However, we observe transient decreases in stratification lasting from days to weeks, which can arrest the seasonal restratification by up to two months after surface heat flux becomes positive. This leads to interannual differences in the timing of seasonal restratification by up to 36 days. Parameterizing the Ekman buoyancy flux in a one-dimensional mixed layer model reduces the magnitude of stratification compared to when the model is run using heat and freshwater fluxes alone. Importantly, the reduced stratification occurs during the spring restratification period, thereby holding important implications for mixed layer dynamics in climate models as well as physical–biological coupling in the Southern Ocean.
    Description: MdP acknowledges numerous research visits to the Department of Marine Science, University of Gothenburg, and a visit to Woods Hole Oceanographic Institution, which greatly enhanced this work. We thank SANAP and the captain and crew of the S.A. Agulhas II for their assistance in the deployment and retrieval of the gliders. We acknowledge the work of SAMERC-STS for housing, managing, and piloting the gliders. SS was supported by NRF-SANAP Grant SNA14071475720 and a Wallenberg Academy Fellowship (WAF 2015.0186). Lastly, SS thanks the numerous technical assistance, advice, and IOP hosting provided by Geoff Shilling and Craig Lee of the Applied Physics Laboratory, University of Washington.
    Description: 2020-04-11
    Keywords: Atmosphere-ocean interaction ; Fronts ; Oceanic mixed layer ; In situ oceanic observations ; Interannual variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1639-1649, doi: 10.1175/JPO-D-18-0154.1.
    Description: Using a recently developed asymptotic theory of internal solitary wave propagation over a sloping bottom in a rotating ocean, some new qualitative and quantitative features of this process are analyzed for internal waves in a two-layer ocean. The interplay between different singularities—terminal damping due to radiation and disappearing quadratic nonlinearity, and reaching an “internal beach” (e.g., zero lower-layer depth)—is discussed. Examples of the adiabatic evolution of a single solitary wave over a uniformly sloping bottom under realistic conditions are considered in more detail and compared with numerical solutions of the variable-coefficient, rotation-modified Korteweg–de Vries (rKdV) equation.
    Description: LAO is thankful to Yu. Stepanyants for broad discussions of mutual benefit. KRH was supported by Grant N00014-18-1-2542 from the Office of Naval Research.
    Description: 2020-06-13
    Keywords: Internal waves ; Differential equations ; Nonlinear models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society, 100(5), (2019): 897-908, doi:10.1175/BAMS-D-19-0130.1.
    Description: As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.
    Description: This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1463-1483, doi: 10.1175/JPO-D-18-0213.1.
    Description: A set of float trajectories, deployed at 1500- and 2500-m depths throughout the deep Gulf of Mexico from 2011 to 2015, are analyzed for mesoscale processes under the Loop Current (LC). In the eastern basin, December 2012–June 2014 had 〉40 floats per month, which was of sufficient density to allow capturing detailed flow patterns of deep eddies and topographic Rossby waves (TRWs), while two LC eddies formed and separated. A northward advance of the LC front compresses the lower water column and generates an anticyclone. For an extended LC, baroclinic instability eddies (of both signs) develop under the southward-propagating large-scale meanders of the upper-layer jet, resulting in a transfer of eddy kinetic energy (EKE) to the lower layer. The increase in lower-layer EKE occurs only over a few months during meander activity and LC eddy detachment events, a relatively short interval compared with the LC intrusion cycle. Deep EKE of these eddies is dispersed to the west and northwest through radiating TRWs, of which examples were found to the west of the LC. Because of this radiation of EKE, the lower layer of the eastern basin becomes relatively quiescent, particularly in the northeastern basin, when the LC is retracted and a LC eddy has departed. A mean west-to-east, anticyclone–cyclone dipole flow under a mean LC was directly comparable to similar results from a previous moored LC array and also showed connections to an anticlockwise boundary current in the southeastern basin.
    Description: The authors were supported by the Department of the Interior, Bureau of Ocean Energy Management (BOEM), Contract M08PC20043 to Leidos, Inc., Raleigh, NC. The authors also wish to acknowledge the enthusiastic support of Dr. Alexis Lugo-Fernández, the BOEM Contracting Officer’s Technical Representative, during the study into the Deep Circulation of the Gulf of Mexico, using Lagrangian Methods. Thanks go to the captains and crews of the R/V Pelican and B/O Justo Sierra, J. Malbrough (LUMCON), J. Singer (Leidos), J. Valdes (WHOI), B. Guest (WHOI), and the CANEK group (CICESE).
    Description: 2020-05-29
    Keywords: Bottom currents ; Eddies ; Instability ; Lagrangian circulation/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 36(4), (2019): 733-744, doi:10.1175/JTECH-D-18-0050.1.
    Description: Sea-Bird Scientific SBE 41CP CTDs are used on autonomous floats in the global Argo ocean observing program to measure the temperature and salinity of the upper ocean. While profiling, the sensors are subject to dynamic errors as they profile through vertical gradients. Applying dynamic corrections to the temperature and conductivity data reduces these errors and improves sensor accuracy. A series of laboratory experiments conducted in a stratified tank are used to characterize dynamic errors and determine corrections. The corrections are adapted for Argo floats, and recommendations for future implementation are presented.
    Description: 2020-04-23
    Keywords: Data processing ; In situ oceanic observations ; Instrumentation/sensors ; oceanic ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Weather Climate and Society 11(3), (2019):465-487, doi: 10.1175/WCAS-D-18-0134.1.
    Description: As states, cities, tribes, and private interests cope with climate damages and seek to increase preparedness and resilience, they will need to navigate myriad choices and options available to them. Making these choices in ways that identify pathways for climate action that support their development objectives will require constructive public dialogue, community participation, and flexible and ongoing access to science- and experience-based knowledge. In 2016, a Federal Advisory Committee (FAC) was convened to recommend how to conduct a sustained National Climate Assessment (NCA) to increase the relevance and usability of assessments for informing action. The FAC was disbanded in 2017, but members and additional experts reconvened to complete the report that is presented here. A key recommendation is establishing a new nonfederal “climate assessment consortium” to increase the role of state/local/tribal government and civil society in assessments. The expanded process would 1) focus on applied problems faced by practitioners, 2) organize sustained partnerships for collaborative learning across similar projects and case studies to identify effective tested practices, and 3) assess and improve knowledge-based methods for project implementation. Specific recommendations include evaluating climate models and data using user-defined metrics; improving benefit–cost assessment and supporting decision-making under uncertainty; and accelerating application of tools and methods such as citizen science, artificial intelligence, indicators, and geospatial analysis. The recommendations are the result of broad consultation and present an ambitious agenda for federal agencies, state/local/tribal jurisdictions, universities and the research sector, professional associations, nongovernmental and community-based organizations, and private-sector firms.
    Description: This report would not have been possible without the support and participation of numerous organizations and individuals. We thank New York State Governor Andrew M. Cuomo for announcing in his 2018 State of the State agenda that the IAC would be reconvened. The New York State Energy Research and Development Authority (Contract ID 123416), Columbia University’s Earth Institute, and the American Meteorological Society provided essential financial support and much more, including sage advice and moral support from John O’Leary, Shara Mohtadi, Steve Cohen, Alex Halliday, Peter deMenocal, Keith Seitter, Paul Higgins, and Bill Hooke. We thank the attendees of a workshop, generously funded by the Kresge Foundation in November of 2017, that laid a foundation for the idea to establish a civil-society-based assessment consortium. During the course of preparing the report, IAC members consulted with individuals too numerous to list here—state, local, and tribal officials; researchers; experts in nongovernmental and community-based organizations; and professionals in engineering, architecture, public health, adaptation, and other areas. We are so grateful for their time and expertise. We thank the members and staff of the National Academy of Sciences, Engineering, and Medicine’s Committee to Advise the U.S. Global Change Research Program for providing individual comments on preliminary recommendations during several discussions in open sessions of their meetings. The following individuals provided detailed comments on an earlier version of this report, which greatly sharpened our thinking and recommendations: John Balbus, Tom Dietz, Phil Duffy, Baruch Fischhoff, Brenda Hoppe, Melissa Kenney, Linda Mearns, Claudia Nierenberg, Kathleen Segerson, Soroosh Sorooshian, Chris Weaver, and Brian Zuckerman. Mary Black provided insightful copy editing of several versions of the report. We also thank four anonymous reviewers for their effort and care in critiquing and improving the report. It is the dedication, thoughtful feedback, expertise, care, and commitment of all these people and more that not only made this report possible, but allow us all to continue to support smart and insightful actions in a changing climate. We are grateful as authors and as global citizens. Author contributions: RM, SA, KB, MB, AC, JD, PF, KJ, AJ, KK, JK, ML, JM, RP, TR, LS, JS, JW, and DZ were members of the IAC and shared in researching, discussing, drafting, and approving the report. BA, JF, AG, LJ, SJ, PK, RK, AM, RM, JN, WS, JS, PT, GY, and RZ contributed to specific sections of the report.
    Description: 2020-05-21
    Keywords: North America ; Climate prediction ; Planning ; Policy ; Risk assessment ; Societal impacts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019):1619-1637, doi:10.1175/JPO-D-18-0175.1.
    Description: Although the hydrodynamics of river meanders are well studied, the influence of curvature on flow in estuaries, with alternating tidal flow and varying water levels and salinity gradients, is less well understood. This paper describes a field study on curvature effects in a narrow salt-marsh creek with sharp bends. The key observations, obtained during times of negligible stratification, are 1) distinct differences between secondary flow during ebb and flood, with helical circulation as in rivers during ebb and a reversed circulation during flood, and 2) maximum (ebb and flood) streamwise velocities near the inside of the bend, unlike typical river bend flow. The streamwise velocity structure is explained by the lack of a distinct point bar and the relatively deep cross section in the estuary, which means that curvature-induced inward momentum redistribution is not overcome by outward redistribution by frictional and topographic effects. Through differential advection of the along-estuary salinity gradient, the laterally sheared streamwise velocity generates lateral salinity differences, with the saltiest water near the inside during flood. The resulting lateral baroclinic pressure gradient force enhances the standard helical circulation during ebb but counteracts it during flood. This first leads to a reversed secondary circulation during flood in the outer part of the cross section, which triggers a positive feedback mechanism by bringing slower-moving water from the outside inward along the surface. This leads to a reversal of the vertical shear in the streamwise flow, and therefore in the centrifugal force, which further enhances the reversed secondary circulation.
    Description: This project was funded by NSF Grant OCE-1634490. During this work W.M. Kranenburg was supported as USGS Postdoctoral Scholar at Woods Hole Oceanographic Institution. A.M.P. Garcia was supported by the Michael J. Kowalski Fellowship in Ocean Science and Engineering (AMPG), and the Diversity Fellowship of the MIT Office of the Dean of Graduate Education (AMPG). The authors thank Jay Sisson for the technical support and Peter Traykovski for providing the bathymetric data. Also, the suggestions for improvement by Dr. K. Blanckaert and an anonymous reviewer are thankfully acknowledged.
    Keywords: Estuaries ; Advection ; Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 100(5), (2019): 909-912, doi: 10.1175/BAMS-D-18-0319.1.
    Description: The open availability and wide accessibility of digital scientific resources, such as articles and datasets, is becoming the norm for twenty-first-century science. Geoscience researchers are now being asked by funding agencies and scientific publishers to archive and cite data to support open access but often struggle to understand, interpret, and fulfill these requirements. To fulfill the promise of new open data initiatives, 1) scientific resources (e.g., data and software) must be collected and documented properly; 2) repository services, including preservation and storage capabilities, must be maintained, supported, and improved over time; and 3) governance institutions must be established. These issues were discussed in the Geoscience Digital Data Resource and Repository Service (GeoDaRRS) workshop,1 held in August 2018, at NCAR. The workshop brought together more than 60 geoscience researchers, technology experts, scientific publishers, funders, and data repository personnel to discuss data management challenges and opportunities within the geosciences. This included exploring whether new services are needed to complement existing data facilities, particularly in the areas of 1) data management planning support resources and 2) repository services for geoscience researchers who have data that do not fit in any existing repository. More details on the workshop agenda and recommendations are available in the final workshop report (Mayernik et al. 2018).
    Description: The National Science Foundation (NSF) provided the funding support for this workshop. We also thank Cecilia Banner and Elizabeth Faircloth of NCAR for administrative and logistical support.
    Description: 2020-06-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(6), (2019): 1561-1575, doi:10.1175/JPO-D-19-0002.1.
    Description: Within the pycnocline, where diapycnal mixing is suppressed, both the vertical movement (uplift) of isopycnal surfaces and upward motion along sloping isopycnals supply nutrients to the euphotic layer, but the relative importance of each of these mechanisms is unknown. We present a method for decomposing vertical velocity w into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces . We show that , where is the isopycnal slope and is the geometric aspect ratio of the flow, and that accounts for 10%–25% of the total vertical velocity w for isopycnal slopes representative of the midlatitude pycnocline. We perform the decomposition of w in a process study model of a midlatitude eddying flow field generated with a range of isopycnal slopes. A spectral decomposition of the velocity components shows that while is the largest contributor to vertical velocity, is of comparable magnitude at horizontal scales less than about 10 km, that is, at submesoscales. Increasing the horizontal grid resolution of models is known to increase vertical velocity; this increase is disproportionately due to better resolution of , as is shown here by comparing 1- and 4-km resolution model runs. Along-isopycnal vertical transport can be an important contributor to the vertical flux of tracers, including oxygen, nutrients, and chlorophyll, although we find weak covariance between vertical velocity and nutrient anomaly in our model.
    Description: MAF was supported by a National Defense Science and Engineering Graduate Fellowship and AM by NSF OCE-I434788. The authors thank Glenn Flierl and Ruth Curry for helpful conversations, and three anonymous reviewers for comments that improved the manuscript.
    Description: 2020-06-11
    Keywords: Baroclinic flows ; Mesoscale processes ; Small scale processes ; Subgrid-scale processes ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 36(9), (2019): 1789-1812, doi:10.1175/JTECH-D-18-0223.1.
    Description: Temporal vertical eddy viscosity coefficient (VEVC) in an Ekman layer model is estimated using an adjoint method. Twin experiments are carried out to investigate the influences of several factors on inversion results, and the conclusions of twin experiments are 1) the adjoint method is a capable method to estimate different kinds of temporal distributions of VEVCs; 2) the gradient descent algorithm is better than CONMIN and L-BFGS for the present problem, although the posterior two algorithms perform better on convergence efficiency; 3) inversion results are sensitive to initial guesses; 4) the model is applicable to different wind conditions; 5) the inversion result with thick boundary layer depth (BLD) is slightly better than thin BLD; 6) inversion results are more sensitive to observations in upper layers than those in lower layers; 7) inversion results are still acceptable when data noise exists, indicating the method can sustain noise to a certain degree; 8) a regularization method is proved to be useful to improve the results for present problem; and 9) the present method can tolerate the existence of balance errors due to the imperfection of governing equations. The methodology is further validated in practical experiments where Ekman currents are derived from Bermuda Testbed Mooring data and assimilated. Modeled Ekman currents coincide well with observed ones, especially for upper layers. The results demonstrate that the assumptions of depth dependence and time dependence are equally important for VEVCs. The feasibility of the typical Ekman model, the imperfection of Ekman balance equations, and the deficiencies of the present method are discussed. This method provides a potential way to realize the time variations of VEVCs in ocean models.
    Description: The authors thank the seven reviewers for the constructive suggestions which have greatly improved the manuscript. Financial support is provided by the National Key Research and Development Plan of China (Grants 2017YFA0604100 and 2017YFC1404000), the National Natural Science Foundation of China (Grants 41876086 and 41806012), Scientific Research Fund of the Second Institute of Oceanography, MNR (Grant JG1819), and the Fundamental Research Funds for the Central Universities of China. Jicai thanks the support of China Scholarship Council for the visiting research in WHOI, and he also thanks the host of WHOI. BTM data are provided by Ocean Physics Laboratory, University of California, Santa Barbara (http://opl.ucsb.edu).
    Description: 2020-03-10
    Keywords: Data assimilation ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-02-23
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(5) (2019): 1551-1571. doi:10.1175/JCLI-D-18-0444.1.
    Description: Previous studies have documented a poleward shift in the subsiding branches of Earth’s Hadley circulation since 1979 but have disagreed on the causes of these observed changes and the ability of global climate models to capture them. This synthesis paper reexamines a number of contradictory claims in the past literature and finds that the tropical expansion indicated by modern reanalyses is within the bounds of models’ historical simulations for the period 1979–2005. Earlier conclusions that models were underestimating the observed trends relied on defining the Hadley circulation using the mass streamfunction from older reanalyses. The recent observed tropical expansion has similar magnitudes in the annual mean in the Northern Hemisphere (NH) and Southern Hemisphere (SH), but models suggest that the factors driving the expansion differ between the hemispheres. In the SH, increasing greenhouse gases (GHGs) and stratospheric ozone depletion contributed to tropical expansion over the late twentieth century, and if GHGs continue increasing, the SH tropical edge is projected to shift further poleward over the twenty-first century, even as stratospheric ozone concentrations recover. In the NH, the contribution of GHGs to tropical expansion is much smaller and will remain difficult to detect in a background of large natural variability, even by the end of the twenty-first century. To explain similar recent tropical expansion rates in the two hemispheres, natural variability must be taken into account. Recent coupled atmosphere–ocean variability, including the Pacific decadal oscillation, has contributed to tropical expansion. However, in models forced with observed sea surface temperatures, tropical expansion rates still vary widely because of internal atmospheric variability.
    Description: We thank Ori Adam, Nick Davis, Isaac Held, Tim Merlis, Lorenzo Polvani, and one anonymous reviewer for helpful comments and suggestions. We thank U.S. CLIVAR and the International Space Science Institute (ISSI) for funding working groups that stimulated this project. We thank all members of the working groups for helpful discussions, and the U.S. CLIVAR and ISSI offices and their sponsoring agencies (NASA,NOAA,NSF,DOE, ESA, Swiss Confederation, Swiss Academy of Sciences, and University of Bern) for supporting these groups and activities.We acknowledge WCRP’sWorking Group on CoupledModelling, which is responsible for CMIP, and we thank the climate modeling groups (Table 2) for producing and making available their model output. For CMIP, the U.S. DOE PCMDI provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.
    Description: 2019-08-06
    Keywords: Hadley circulation ; Climate models ; Reanalysis data ; Multidecadal variability ; Pacific decadal oscillation ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-07-05
    Description: Holocene permafrost from ice wedge polygons in the vicinity of large seabird breeding colonies in the Thule District, NW Greenland, was drilled to explore the relation between permafrost aggradation and seabird presence. The latter is reliant on the presence of the North Water Polynya (NOW) in the northern Baffin Bay. The onset of peat accumulation associated with the arrival of little auks (Alle alle) in a breeding colony at Annikitisoq, north of Cape York, is radiocarbon-dated to 4400 cal BP. A thick-billed murre (Uria lomvia) colony on Appat (Saunders Island) in the mouth of the Wolstenholme Fjord started 5650 cal BP. Both species provide marine-derived nutrients (MDNs) that fertilize vegetation and promote peat growth. The geochemical signature of organic matter left by the birds is traceable in the frozen Holocene peat. The peat accumulation rates at both sites are highest after the onset, decrease over time, and were about 2-times faster at the little auk site than at the thick-billed murre site. High accumulation rates induce shorter periods of organic matter (OM) decomposition before it enters the perennially frozen state. This is seen in comparably high C=N ratios and less depleted 13C, pointing to a lower degree of OM decomposition at the little auk site, while the opposite pattern can be discerned at the thick-billed murre site. Peat accumulation rates correspond to 15N trends, where decreasing accumulation led to increasing depletion in 15N as seen in the little-auk-related data. In contrast, the more decomposed OM of the thick-billed murre site shows almost stable 15N. Late Holocene wedge ice fed by cold season precipitation was studied at the little auk site and provides the first stable-water isotopic record from Greenland with mean 18O of 8:00:8, mean D of 36:25:7, mean d excess of 7:70:7, and a 18O-D slope of 7.27, which is close to those of the modern Thule meteoric water line. The syngenetic ice wedge polygon development is mirrored in testacean records of the little auk site and delineates polygon low-center, dry-out, and polygon-high-center stages. The syngenetic permafrost formation directly depending on peat growth (controlled by bird activity) falls within the period of neoglacial cooling and the establishment of the NOW, thus indirectly following the Holocene climate trends.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-01-01
    Description: We describe the historical evolution of the conceptualization, formulation, quantification, application, and utilization of “radiative forcing” (RF) of Earth’s climate. Basic theories of shortwave and longwave radiation were developed through the nineteenth and twentieth centuries and established the analytical framework for defining and quantifying the perturbations to Earth’s radiative energy balance by natural and anthropogenic influences. The insight that Earth’s climate could be radiatively forced by changes in carbon dioxide, first introduced in the nineteenth century, gained empirical support with sustained observations of the atmospheric concentrations of the gas beginning in 1957. Advances in laboratory and field measurements, theory, instrumentation, computational technology, data, and analysis of well-mixed greenhouse gases and the global climate system through the twentieth century enabled the development and formalism of RF; this allowed RF to be related to changes in global-mean surface temperature with the aid of increasingly sophisticated models. This in turn led to RF becoming firmly established as a principal concept in climate science by 1990. The linkage with surface temperature has proven to be the most important application of the RF concept, enabling a simple metric to evaluate the relative climate impacts of different agents. The late 1970s and 1980s saw accelerated developments in quantification, including the first assessment of the effect of the forcing due to the doubling of carbon dioxide on climate (the “Charney” report). The concept was subsequently extended to a wide variety of agents beyond well-mixed greenhouse gases (WMGHGs; carbon dioxide, methane, nitrous oxide, and halocarbons) to short-lived species such as ozone. The WMO and IPCC international assessments began the important sequence of periodic evaluations and quantifications of the forcings by natural (solar irradiance changes and stratospheric aerosols resulting from volcanic eruptions) and a growing set of anthropogenic agents (WMGHGs, ozone, aerosols, land surface changes, contrails). From the 1990s to the present, knowledge and scientific confidence in the radiative agents acting on the climate system have proliferated. The conceptual basis of RF has also evolved as both our understanding of the way radiative forcing drives climate change and the diversity of the forcing mechanisms have grown. This has led to the current situation where “effective radiative forcing” (ERF) is regarded as the preferred practical definition of radiative forcing in order to better capture the link between forcing and global-mean surface temperature change. The use of ERF, however, comes with its own attendant issues, including challenges in its diagnosis from climate models, its applications to small forcings, and blurring of the distinction between rapid climate adjustments (fast responses) and climate feedbacks; this will necessitate further elaboration of its utility in the future. Global climate model simulations of radiative perturbations by various agents have established how the forcings affect other climate variables besides temperature (e.g., precipitation). The forcing–response linkage as simulated by models, including the diversity in the spatial distribution of forcings by the different agents, has provided a practical demonstration of the effectiveness of agents in perturbing the radiative energy balance and causing climate changes. The significant advances over the past half century have established, with very high confidence, that the global-mean ERF due to human activity since preindustrial times is positive (the 2013 IPCC assessment gives a best estimate of 2.3 W m−2, with a range from 1.1 to 3.3 W m−2; 90% confidence interval). Further, except in the immediate aftermath of climatically significant volcanic eruptions, the net anthropogenic forcing dominates over natural radiative forcing mechanisms. Nevertheless, the substantial remaining uncertainty in the net anthropogenic ERF leads to large uncertainties in estimates of climate sensitivity from observations and in predicting future climate impacts. The uncertainty in the ERF arises principally from the incorporation of the rapid climate adjustments in the formulation, the well-recognized difficulties in characterizing the preindustrial state of the atmosphere, and the incomplete knowledge of the interactions of aerosols with clouds. This uncertainty impairs the quantitative evaluation of climate adaptation and mitigation pathways in the future. A grand challenge in Earth system science lies in continuing to sustain the relatively simple essence of the radiative forcing concept in a form similar to that originally devised, and at the same time improving the quantification of the forcing. This, in turn, demands an accurate, yet increasingly complex and comprehensive, accounting of the relevant processes in the climate system.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-01-01
    Description: Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-01-01
    Description: This chapter reviews the history of the discovery of cloud nuclei and their impacts on cloud microphysics and the climate system. Pioneers including John Aitken, Sir John Mason, Hilding Köhler, Christian Junge, Sean Twomey, and Kenneth Whitby laid the foundations of the field. Through their contributions and those of many others, rapid progress has been made in the last 100 years in understanding the sources, evolution, and composition of the atmospheric aerosol, the interactions of particles with atmospheric water vapor, and cloud microphysical processes. Major breakthroughs in measurement capabilities and in theoretical understanding have elucidated the characteristics of cloud condensation nuclei and ice nucleating particles and the role these play in shaping cloud microphysical properties and the formation of precipitation. Despite these advances, not all their impacts on cloud formation and evolution have been resolved. The resulting radiative forcing on the climate system due to aerosol–cloud interactions remains an unacceptably large uncertainty in future climate projections. Process-level understanding of aerosol–cloud interactions remains insufficient to support technological mitigation strategies such as intentional weather modification or geoengineering to accelerating Earth-system-wide changes in temperature and weather patterns.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-01-01
    Description: Over the past 100 years, the collaborative effort of the international science community, including government weather services and the media, along with the associated proliferation of environmental observations, improved scientific understanding, and growth of technology, has radically transformed weather forecasting into an effective global and regional environmental prediction capability. This chapter traces the evolution of forecasting, starting in 1919 [when the American Meteorological Society (AMS) was founded], over four eras separated by breakpoints at 1939, 1956, and 1985. The current state of forecasting could not have been achieved without essential collaboration within and among countries in pursuing the common weather and Earth-system prediction challenge. AMS itself has had a strong role in enabling this international collaboration.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-01-01
    Description: The year 1919 was important in meteorology, not only because it was the year that the American Meteorological Society was founded, but also for two other reasons. One of the foundational papers in extratropical cyclone structure by Jakob Bjerknes was published in 1919, leading to what is now known as the Norwegian cyclone model. Also that year, a series of meetings was held that led to the formation of organizations that promoted the international collaboration and scientific exchange required for extratropical cyclone research, which by necessity involves spatial scales spanning national borders. This chapter describes the history of scientific inquiry into the structure, evolution, and dynamics of extratropical cyclones, their constituent fronts, and their attendant jet streams and storm tracks. We refer to these phenomena collectively as the centerpiece of meteorology because of their central role in fostering meteorological research during this century. This extremely productive period in extratropical cyclone research has been possible because of 1) the need to address practical challenges of poor forecasts that had large socioeconomic consequences, 2) the intermingling of theory, observations, and diagnosis (including dynamical modeling) to provide improved physical understanding and conceptual models, and 3) strong international cooperation. Conceptual frameworks for cyclones arise from a desire to classify and understand cyclones; they include the Norwegian cyclone model and its sister the Shapiro–Keyser cyclone model. The challenge of understanding the dynamics of cyclones led to such theoretical frameworks as quasigeostrophy, baroclinic instability, semigeostrophy, and frontogenesis. The challenge of predicting explosive extratropical cyclones in particular led to new theoretical developments such as potential-vorticity thinking and downstream development. Deeper appreciation of the limits of predictability has resulted from an evolution from determinism to chaos. Last, observational insights led to detailed cyclone and frontal structure, storm tracks, and rainbands.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-01-01
    Description: Mountains significantly influence weather and climate on Earth, including disturbed surface winds; altered distribution of precipitation; gravity waves reaching the upper atmosphere; and modified global patterns of storms, fronts, jet streams, and climate. All of these impacts arise because Earth’s mountains penetrate deeply into the atmosphere. This penetration can be quantified by comparing mountain heights to several atmospheric reference heights such as density scale height, water vapor scale height, airflow blocking height, and the height of natural atmospheric layers. The geometry of Earth’s terrain can be analyzed quantitatively using statistical, matrix, and spectral methods. In this review, we summarize how our understanding of orographic effects has progressed over 100 years using the equations for atmospheric dynamics and thermodynamics, numerical modeling, and many clever in situ and remote sensing methods. We explore how mountains disturb the surface winds on our planet, including mountaintop winds, severe downslope winds, barrier jets, gap jets, wakes, thermally generated winds, and cold pools. We consider the variety of physical mechanisms by which mountains modify precipitation patterns in different climate zones. We discuss the vertical propagation of mountain waves through the troposphere into the stratosphere, mesosphere, and thermosphere. Finally, we look at how mountains distort the global-scale westerly winds that circle the poles and how varying ice sheets and mountain uplift and erosion over geologic time may have contributed to climate change.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-01-01
    Description: The stratosphere contains ~17% of Earth’s atmospheric mass, but its existence was unknown until 1902. In the following decades our knowledge grew gradually as more observations of the stratosphere were made. In 1913 the ozone layer, which protects life from harmful ultraviolet radiation, was discovered. From ozone and water vapor observations, a first basic idea of a stratospheric general circulation was put forward. Since the 1950s our knowledge of the stratosphere and mesosphere has expanded rapidly, and the importance of this region in the climate system has become clear. With more observations, several new stratospheric phenomena have been discovered: the quasi-biennial oscillation, sudden stratospheric warmings, the Southern Hemisphere ozone hole, and surface weather impacts of stratospheric variability. None of these phenomena were anticipated by theory. Advances in theory have more often than not been prompted by unexplained phenomena seen in new stratospheric observations. From the 1960s onward, the importance of dynamical processes and the coupled stratosphere–troposphere circulation was realized. Since approximately 2000, better representations of the stratosphere—and even the mesosphere—have been included in climate and weather forecasting models. We now know that in order to produce accurate seasonal weather forecasts, and to predict long-term changes in climate and the future evolution of the ozone layer, models with a well-resolved stratosphere with realistic dynamics and chemistry are necessary.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-01-01
    Description: Satellite meteorology is a relatively new branch of the atmospheric sciences. The field emerged in the late 1950s during the Cold War and built on the advances in rocketry after World War II. In less than 70 years, satellite observations have transformed the way scientists observe and study Earth. This paper discusses some of the key advances in our understanding of the energy and water cycles, weather forecasting, and atmospheric composition enabled by satellite observations. While progress truly has been an international achievement, in accord with a monograph observing the centennial of the American Meteorological Society, as well as limited space, the emphasis of this chapter is on the U.S. satellite effort.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-01-01
    Description: This chapter outlines the development of our understanding of several examples of mesoscale atmospheric circulations that are tied directly to surface forcings, starting from thermally driven variations over the ocean and progressing inland to man-made variations in temperature and roughness, and ending with forced boundary layer circulations. Examples include atmospheric responses to 1) overocean temperature variations, 2) coastlines (sea breezes), 3) mesoscale regions of inland water (lake-effect storms), and 4) variations in land-based surface usage (urban land cover). This chapter provides brief summaries of the historical evolution of, and tools for, understanding such mesoscale atmospheric circulations and their importance to the field, as well as physical processes responsible for initiating and determining their evolution. Some avenues of future research we see as critical are provided. The American Meteorological Society (AMS) has played a direct and important role in fostering the development of understanding mesoscale surface-forced circulations. The significance of AMS journal publications and conferences on this and interrelated atmospheric, oceanic, and hydrological fields, as well as those by sister scientific organizations, are demonstrated through extensive relevant citations.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-01-01
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-01-01
    Description: The history of over 100 years of observing the ocean is reviewed. The evolution of particular classes of ocean measurements (e.g., shipboard hydrography, moorings, and drifting floats) are summarized along with some of the discoveries and dynamical understanding they made possible. By the 1970s, isolated and “expedition” observational approaches were evolving into experimental campaigns that covered large ocean areas and addressed multiscale phenomena using diverse instrumental suites and associated modeling and analysis teams. The Mid-Ocean Dynamics Experiment (MODE) addressed mesoscale “eddies” and their interaction with larger-scale currents using new ocean modeling and experiment design techniques and a suite of developing observational methods. Following MODE, new instrument networks were established to study processes that dominated ocean behavior in different regions. The Tropical Ocean Global Atmosphere program gathered multiyear time series in the tropical Pacific to understand, and eventually predict, evolution of coupled ocean–atmosphere phenomena like El Niño–Southern Oscillation (ENSO). The World Ocean Circulation Experiment (WOCE) sought to quantify ocean transport throughout the global ocean using temperature, salinity, and other tracer measurements along with fewer direct velocity measurements with floats and moorings. Western and eastern boundary currents attracted comprehensive measurements, and various coastal regions, each with its unique scientific and societally important phenomena, became home to regional observing systems. Today, the trend toward networked observing arrays of many instrument types continues to be a productive way to understand and predict large-scale ocean phenomena.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-01-01
    Description: In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-01-01
    Description: s The history of severe thunderstorm research and forecasting over the past century has been a remarkable story involving interactions between technological development of observational and modeling capabilities, research into physical processes, and the forecasting of phenomena with the goal of reducing loss of life and property. Perhaps more so than any other field of meteorology, the relationship between researchers and forecasters has been particularly close in the severe thunderstorm domain, with both groups depending on improved observational capabilities. The advances that have been made have depended on observing systems that did not exist 100 years ago, particularly radar and upper-air systems. They have allowed scientists to observe storm behavior and structure and the environmental setting in which storms occur. This has led to improved understanding of processes, which in turn has allowed forecasters to use those same observational systems to improve forecasts. Because of the relatively rare and small-scale nature of many severe thunderstorm events, severe thunderstorm researchers have developed mobile instrumentation capabilities that have allowed them to collect high-quality observations in the vicinity of storms. Since much of the world is subject to severe thunderstorm hazards, research has taken place around the world, with the local emphasis dependent on what threats are perceived in that area, subject to the availability of resources to study the threat. Frequently, the topics of interest depend upon a single event, or a small number of events, of a particular kind that aroused public or economic interests in that area. International cooperation has been an important contributor to collecting and disseminating knowledge. As the AMS turns 100, the range of research relating to severe thunderstorms is expanding. The time scale of forecasting or projecting is increasing, with work going on to study forecasts on the seasonal to subseasonal time scales, as well as addressing how climate change may influence severe thunderstorms. With its roots in studying weather that impacts the public, severe thunderstorm research now includes significant work from the social science community, some as standalone research and some in active collaborative efforts with physical scientists. In addition, the traditional emphases of the field continue to grow. Improved radar and numerical modeling capabilities allow meteorologists to see and model details that were unobservable and not understood a half century ago. The long tradition of collecting observations in the field has led to improved quality and quantity of observations, as well as the capability to collect them in locations that were previously inaccessible. Much of that work has been driven by the gaps in understanding identified by theoretical and operational practice.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-01-01
    Description: Remarkable progress has occurred over the last 100 years in our understanding of atmospheric chemical composition, stratospheric and tropospheric chemistry, urban air pollution, acid rain, and the formation of airborne particles from gas-phase chemistry. Much of this progress was associated with the developing understanding of the formation and role of ozone and of the oxides of nitrogen, NO and NO2, in the stratosphere and troposphere. The chemistry of the stratosphere, emerging from the pioneering work of Chapman in 1931, was followed by the discovery of catalytic ozone cycles, ozone destruction by chlorofluorocarbons, and the polar ozone holes, work honored by the 1995 Nobel Prize in Chemistry awarded to Crutzen, Rowland, and Molina. Foundations for the modern understanding of tropospheric chemistry were laid in the 1950s and 1960s, stimulated by the eye-stinging smog in Los Angeles. The importance of the hydroxyl (OH) radical and its relationship to the oxides of nitrogen (NO and NO2) emerged. The chemical processes leading to acid rain were elucidated. The atmosphere contains an immense number of gas-phase organic compounds, a result of emissions from plants and animals, natural and anthropogenic combustion processes, emissions from oceans, and from the atmospheric oxidation of organics emitted into the atmosphere. Organic atmospheric particulate matter arises largely as gas-phase organic compounds undergo oxidation to yield low-volatility products that condense into the particle phase. A hundred years ago, quantitative theories of chemical reaction rates were nonexistent. Today, comprehensive computer codes are available for performing detailed calculations of chemical reaction rates and mechanisms for atmospheric reactions. Understanding the future role of atmospheric chemistry in climate change and, in turn, the impact of climate change on atmospheric chemistry, will be critical to developing effective policies to protect the planet.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-01-01
    Description: The human population on Earth has increased by a factor of 4.6 in the last 100 years and has become more centered in urban environments. This expansion and migration pattern has resulted in stresses on the environment. Meteorological applications have helped to understand and mitigate those stresses. This chapter describes several applications that enable the population to interact with the environment in more sustainable ways. The first topic treated is urbanization itself and the types of stresses exerted by population growth and its attendant growth in urban landscapes—buildings and pavement—and how they modify airflow and create a local climate. We describe environmental impacts of these changes and implications for the future. The growing population uses increasing amounts of energy. Traditional sources of energy have taxed the environment, but the increase in renewable energy has used the atmosphere and hydrosphere as its fuel. Utilizing these variable renewable resources requires meteorological information to operate electric systems efficiently and economically while providing reliable power and minimizing environmental impacts. The growing human population also pollutes the environment. Thus, understanding and modeling the transport and dispersion of atmospheric contaminants are important steps toward regulating the pollution and mitigating impacts. This chapter describes how weather information can help to make surface transportation more safe and efficient. It is explained how these applications naturally require transdisciplinary collaboration to address these challenges caused by the expanding population.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-01-01
    Description: Applied meteorology is an important and rapidly growing field. This chapter concludes the three-chapter series of this monograph describing how meteorological information can be used to serve society’s needs while at the same time advancing our understanding of the basics of the science. This chapter continues along the lines of Part II of this series by discussing ways that meteorological and climate information can help to improve the output of the agriculture and food-security sector. It also discusses how agriculture alters climate and its long-term implications. It finally pulls together several of the applications discussed by treating the food–energy–water nexus. The remaining topics of this chapter are those that are advancing rapidly with more opportunities for observation and needs for prediction. The study of space weather is advancing our understanding of how the barrage of particles from other planetary bodies in the solar system impacts Earth’s atmosphere. Our ability to predict wildland fires by coupling atmospheric and fire-behavior models is beginning to impact decision-support systems for firefighters. Last, we examine how artificial intelligence is changing the way we predict, emulate, and optimize our meteorological variables and its potential to amplify our capabilities. Many of these advances are directly due to the rapid increase in observational data and computer power. The applications reviewed in this series of chapters are not comprehensive, but they will whet the reader’s appetite for learning more about how meteorology can make a concrete impact on the world’s population by enhancing access to resources, preserving the environment, and feeding back into a better understanding how the pieces of the environmental system interact.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-01-01
    Description: Some of the advances of the past century in our understanding of the general circulation of the atmosphere are described, starting with a brief summary of some of the key developments from the first half of the twentieth century, but with a primary focus on the period beginning with the midcentury breakthrough in baroclinic instability and quasigeostrophic dynamics. In addition to baroclinic instability, topics touched upon include the following: stationary wave theory, the role played by the two-layer model, scaling arguments for the eddy heat flux, the subtlety of large-scale eddy momentum fluxes, the Eliassen–Palm flux and the transformed Eulerian mean formulation, the structure of storm tracks, and the controls on the Hadley cell.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-01-01
    Description: Over the last 100 years, boundary layer meteorology grew from the subject of mostly near-surface observations to a field encompassing diverse atmospheric boundary layers (ABLs) around the world. From the start, researchers drew from an ever-expanding set of disciplines—thermodynamics, soil and plant studies, fluid dynamics and turbulence, cloud microphysics, and aerosol studies. Research expanded upward to include the entire ABL in response to the need to know how particles and trace gases dispersed, and later how to represent the ABL in numerical models of weather and climate (starting in the 1970s–80s); taking advantage of the opportunities afforded by the development of large-eddy simulations (1970s), direct numerical simulations (1990s), and a host of instruments to sample the boundary layer in situ and remotely from the surface, the air, and space. Near-surface flux-profile relationships were developed rapidly between the 1940s and 1970s, when rapid progress shifted to the fair-weather convective boundary layer (CBL), though tropical CBL studies date back to the 1940s. In the 1980s, ABL research began to include the interaction of the ABL with the surface and clouds, the first ABL parameterization schemes emerged; and land surface and ocean surface model development blossomed. Research in subsequent decades has focused on more complex ABLs, often identified by shortcomings or uncertainties in weather and climate models, including the stable boundary layer, the Arctic boundary layer, cloudy boundary layers, and ABLs over heterogeneous surfaces (including cities). The paper closes with a brief summary, some lessons learned, and a look to the future.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-01-01
    Description: The development of the technologies of remote sensing of the ocean was initiated in the 1970s, while the ideas of observing the ocean from space were conceived in the late 1960s. The first global view from space revealed the expanse and complexity of the state of the ocean that had perplexed and inspired oceanographers ever since. This paper presents a glimpse of the vast progress made from ocean remote sensing in the past 50 years that has a profound impact on the ways we study the ocean in relation to weather and climate. The new view from space in conjunction with the deployment of an unprecedented amount of in situ observations of the ocean has led to a revolution in physical oceanography. The highlights of the achievement include the description and understanding of the global ocean circulation, the air–sea fluxes driving the coupled ocean–atmosphere system that is most prominently illustrated in the tropical oceans. The polar oceans are most sensitive to climate change with significant consequences, but owing to remoteness they were not accessible until the space age. Fundamental discoveries have been made on the evolution of the state of sea ice as well as the circulation of the ice-covered ocean. Many surprises emerged from the extraordinary accuracy and expanse of the space observations. Notable examples include the determination of the global mean sea level rise as well as the role of the deep ocean in tidal mixing and dissipation.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: 〈b〉Ensemble forecasts of air quality in eastern China – Part 1: Model description and implementation of the MarcoPolo–Panda prediction system, version 1〈/b〉〈br〉 Guy P. Brasseur, Ying Xie, Anna Katinka Petersen, Idir Bouarar, Johannes Flemming, Michael Gauss, Fei Jiang, Rostislav Kouznetsov, Richard Kranenburg, Bas Mijling, Vincent-Henri Peuch, Matthieu Pommier, Arjo Segers, Mikhail Sofiev, Renske Timmermans, Ronald van der A, Stacy Walters, Jianming Xu, and Guangqiang Zhou〈br〉 Geosci. Model Dev., 12, 33-67, https://doi.org/10.5194/gmd-12-33-2019, 2019〈br〉 An operational multi-model forecasting system for air quality provides daily forecasts of ozone, nitrogen oxides, and particulate matter for 37 urban areas in China. The paper presents an intercomparison of the different forecasts performed during a specific period of time and highlights recurrent differences between the model output. Pathways to improve the forecasts by the multi-model system are suggested.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: 〈b〉RandomFront 2.3: a physical parameterisation of fire spotting for operational fire spread models – implementation in WRF-SFIRE and response analysis with LSFire+〈/b〉〈br〉 Andrea Trucchia, Vera Egorova, Anton Butenko, Inderpreet Kaur, and Gianni Pagnini〈br〉 Geosci. Model Dev., 12, 69-87, https://doi.org/10.5194/gmd-12-69-2019, 2019〈br〉 Wildfires are a concrete problem and impact on human life, property and the environment. An extremely dangerous phenomenon is so-called 〈q〉fire spotting〈/q〉, i.e., the generation of secondary ignitions responsible for dangerous flare-ups during wildfires. The aim of this research was to improve the tools used for risk management through the inclusion of fire spotting in operational wildfire simulators used by forest service agencies.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019
    Description: 〈b〉Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing, China〈/b〉〈br〉 Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun〈br〉 Atmos. Chem. Phys., 19, 165-179, https://doi.org/10.5194/acp-19-165-2019, 2019〈br〉 We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: 〈b〉Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging〈/b〉〈br〉 Chunlin Li, Quanfu He, Julian Schade, Johannes Passig, Ralf Zimmermann, Daphne Meidan, Alexander Laskin, and Yinon Rudich〈br〉 Atmos. Chem. Phys., 19, 139-163, https://doi.org/10.5194/acp-19-139-2019, 2019〈br〉 〈p〉Following wood pyrolysis, tar ball aerosols were laboratory generated from wood tar separated into polar and nonpolar phases. Chemical information of fresh tar balls was obtained from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and single-particle laser desorption/resonance enhanced multiphoton ionization mass spectrometry (SP-LD-REMPI-MS). Their continuous refractive index (RI) between 365 and 425 nm was retrieved using a broadband cavity enhanced spectroscopy (BBCES). Dynamic changes in the optical and chemical properties for the nonpolar tar ball aerosols in 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉-dependent photochemical process were investigated in an oxidation flow reactor (OFR). Distinct differences in the chemical composition of the fresh polar and nonpolar tar aerosols were identified. Nonpolar tar aerosols contain predominantly high-molecular weight unsubstituted and alkyl-substituted polycylic aromatic hydrocarbons (PAHs), while polar tar aerosols consist of a high number of oxidized aromatic substances (e.g., methoxy-phenols, benzenediol) with higher O : C ratios and carbon oxidation states. Fresh tar balls have light absorption characteristics similar to atmospheric brown carbon (BrC) aerosol with higher absorption efficiency towards the UV wavelengths. The average retrieved RI is 〈span〉1.661+0.020〈i〉i〈/i〉〈/span〉 and 〈span〉1.635+0.003〈i〉i〈/i〉〈/span〉 for the nonpolar and polar tar aerosols, respectively, with an absorption Ångström exponent (AAE) between 5.7 and 7.8 in the detected wavelength range. The RI fits a volume mixing rule for internally mixed nonpolar/polar tar balls. The RI of the tar ball aerosols decreased with increasing wavelength under photochemical oxidation. Photolysis by UV light (254 nm), without strong oxidants in the system, slightly decreased the RI and increased the oxidation state of the tar balls. Oxidation under varying OH exposure levels and in the absence of 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉 diminished the absorption (bleaching) and increased the O : C ratio of the tar balls. The photobleaching via OH radical initiated oxidation is mainly attributed to decomposition of chromophoric aromatics, nitrogen-containing organics, and high-molecular weight components in the aged particles. Photolysis of nitrous oxide (〈span〉N〈sub〉2〈/sub〉O〈/span〉) was used to simulate 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉-dependent photochemical aging of tar balls in the OFR. Under high-〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉 conditions with similar OH exposure, photochemical aging led to the formation of organic nitrates, and increased both oxidation degree and light absorption for the aged tar ball aerosols. These observations suggest that secondary organic nitrate formation counteracts the bleaching by OH radical photooxidation to eventually regain some absorption of the aged tar ball aerosols. The atmospheric implication and climate effects from tar balls upon various oxidation processes are briefly discussed.〈/p〉
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2019
    Description: 〈b〉Atmospheric new particle formation in China〈/b〉〈br〉 Biwu Chu, Veli-Matti Kerminen, Federico Bianchi, Chao Yan, Tuukka Petäjä, and Markku Kulmala〈br〉 Atmos. Chem. Phys., 19, 115-138, https://doi.org/10.5194/acp-19-115-2019, 2019〈br〉 The characteristics of new particle formation (NPF) in China, including frequency, formation rate, and particle growth rate, were summarized comprehensively and were compared among observations in different environments. The interactions between air pollution and NPF are discussed, as well as the possible reasons for more frequent NPF under heavy pollution conditions than in our current understanding. Significant and future research directions for NPF studies in China are also summarized.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: 〈b〉Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging〈/b〉〈br〉 Chunlin Li, Quanfu He, Julian Schade, Johannes Passig, Ralf Zimmermann, Daphne Meidan, Alexander Laskin, and Yinon Rudich〈br〉 Atmos. Chem. Phys., 19, 139-163, https://doi.org/10.5194/acp-19-139-2019, 2019〈br〉 〈p〉Following wood pyrolysis, tar ball aerosols were laboratory generated from wood tar separated into polar and nonpolar phases. Chemical information of fresh tar balls was obtained from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and single-particle laser desorption/resonance enhanced multiphoton ionization mass spectrometry (SP-LD-REMPI-MS). Their continuous refractive index (RI) between 365 and 425 nm was retrieved using a broadband cavity enhanced spectroscopy (BBCES). Dynamic changes in the optical and chemical properties for the nonpolar tar ball aerosols in 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉-dependent photochemical process were investigated in an oxidation flow reactor (OFR). Distinct differences in the chemical composition of the fresh polar and nonpolar tar aerosols were identified. Nonpolar tar aerosols contain predominantly high-molecular weight unsubstituted and alkyl-substituted polycylic aromatic hydrocarbons (PAHs), while polar tar aerosols consist of a high number of oxidized aromatic substances (e.g., methoxy-phenols, benzenediol) with higher O : C ratios and carbon oxidation states. Fresh tar balls have light absorption characteristics similar to atmospheric brown carbon (BrC) aerosol with higher absorption efficiency towards the UV wavelengths. The average retrieved RI is 〈span〉1.661+0.020〈i〉i〈/i〉〈/span〉 and 〈span〉1.635+0.003〈i〉i〈/i〉〈/span〉 for the nonpolar and polar tar aerosols, respectively, with an absorption Ångström exponent (AAE) between 5.7 and 7.8 in the detected wavelength range. The RI fits a volume mixing rule for internally mixed nonpolar/polar tar balls. The RI of the tar ball aerosols decreased with increasing wavelength under photochemical oxidation. Photolysis by UV light (254 nm), without strong oxidants in the system, slightly decreased the RI and increased the oxidation state of the tar balls. Oxidation under varying OH exposure levels and in the absence of 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉 diminished the absorption (bleaching) and increased the O : C ratio of the tar balls. The photobleaching via OH radical initiated oxidation is mainly attributed to decomposition of chromophoric aromatics, nitrogen-containing organics, and high-molecular weight components in the aged particles. Photolysis of nitrous oxide (〈span〉N〈sub〉2〈/sub〉O〈/span〉) was used to simulate 〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉-dependent photochemical aging of tar balls in the OFR. Under high-〈span〉NO〈sub〉〈i〉x〈/i〉〈/sub〉〈/span〉 conditions with similar OH exposure, photochemical aging led to the formation of organic nitrates, and increased both oxidation degree and light absorption for the aged tar ball aerosols. These observations suggest that secondary organic nitrate formation counteracts the bleaching by OH radical photooxidation to eventually regain some absorption of the aged tar ball aerosols. The atmospheric implication and climate effects from tar balls upon various oxidation processes are briefly discussed.〈/p〉
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: 〈b〉Watershed classification for the Canadian prairie〈/b〉〈br〉 Jared D. Wolfe, Kevin R. Shook, Chris Spence, and Colin J. Whitfield〈br〉 Hydrol. Earth Syst. Sci. Discuss., https//doi.org/10.5194/hess-2018-625,2019〈br〉 〈b〉Manuscript under review for HESS〈/b〉 (discussion: open, 0 comments)〈br〉 Watershed classification can identify regions expected to respond similarly to disturbance. Methods should extend beyond hydrology to include other environmental questions, such as ecology and water quality. We developed a classification for the Canadian Prairie, and identified seven classes defined by watershed characteristics, including elevation, climate, wetland density, and surficial geology. Results provide a basis for evaluating watershed response to land management and climate condition.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: 〈b〉Implications of water management representations for watershed hydrologic modeling in the Yakima River basin〈/b〉〈br〉 Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek〈br〉 Hydrol. Earth Syst. Sci., 23, 35-49, https://doi.org/10.5194/hess-23-35-2019, 2019〈br〉 Complex water management activities challenge hydrologic modeling. We evaluated how different representations of reservoir operation and agricultural irrigation affect streamflow simulations in the Yakima River basin. Results highlight the importance of the inclusion of reliable reservoir and irrigation information in watershed models for improving watershed hydrology modeling. Models used here are public and hold the promise to benefit water assessment and management in other basins.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: 〈b〉Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition〈/b〉〈br〉 Megan D. Willis, Heiko Bozem, Daniel Kunkel, Alex K. Y. Lee, Hannes Schulz, Julia Burkart, Amir A. Aliabadi, Andreas B. Herber, W. Richard Leaitch, and Jonathan P. D. Abbatt〈br〉 Atmos. Chem. Phys., 19, 57-76, https://doi.org/10.5194/acp-19-57-2019, 2019〈br〉 The vertical distribution of Arctic aerosol is an important driver of its climate impacts. We present vertically resolved measurements of aerosol composition and properties made in the High Arctic during spring on an aircraft platform. We explore how aerosol properties are related to transport history and show evidence of vertical trends in aerosol sources, transport mechanisms and composition. These results will help us to better understand aerosol–climate interactions in the Arctic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: 〈b〉Estimating the soil N〈sub〉2〈/sub〉O emission intensity of croplands in northwest Europe〈/b〉〈br〉 Vasileios Myrgiotis, Mathew Williams, Robert M. Rees, and Cairistiona F. E. Topp〈br〉 Biogeosciences Discuss., https//doi.org/10.5194/bg-2018-490,2019〈br〉 〈b〉Manuscript under review for BG〈/b〉 (discussion: open, 0 comments)〈br〉 This study focuses on a northwest European cropland region and shows that the type of crop growing on a soil has notable effects on the emission of nitrous oxide (N〈sub〉2〈/sub〉O – a greenhouse gas) from that soil. It was found that N〈sub〉2〈/sub〉O emissions from soils under oilseed cultivation are significantly higher than soils under cereal cultivation. This variation is mostly explained by the fact that oilseeds require more nitrogen (fertiliser) than cereals especially at early crop growth stages.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019
    Description: 〈b〉A Double ITCZ Phenomenology of Wind Errors in the Equatorial Atlantic in Seasonal Forecasts with ECMWF Models〈/b〉〈br〉 Jonathan K. P. Shonk, Teferi D. Demissie, and Thomas Toniazzo〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-1316,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 Modern climate models are affected by systematic biases that harm their ability to produce reliable seasonal forecasts and climate projections. In this study, we investigate causes of biases in wind patterns over the tropical Atlantic during northern spring in three related models. We find that the wind biases are associated with an increase in excess rainfall and convergence in the tropical western Atlantic at the start of April, leading to the redirection of trade winds away from the equator.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: 〈b〉Spiky Fluctuations and Scaling in High-Resolution EPICA Ice Core Dust Fluxes〈/b〉〈br〉 Shaun Lovejoy and Fabrice Lambert〈br〉 Clim. Past Discuss., https//doi.org/10.5194/cp-2018-171,2019〈br〉 〈b〉Manuscript under review for CP〈/b〉 (discussion: open, 0 comments)〈br〉 We analyze the statistical properties of the eight past glacial-interglacial cycles as well as subsections of a generic glacial cycle using the high-resolution dust flux dataset from the Antarctic EPICA Dome C ice core. We show that the high southern latitude climate during glacial maxima, interglacial, and glacial inception is generally more stable but more drought-prone than during mid-glacial conditions.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: 〈b〉Nutrient distribution and nitrogen and oxygen isotopic composition of nitrate in water masses of the subtropical South Indian Ocean〈/b〉〈br〉 Natalie C. Harms, Niko Lahajnar, Birgit Gaye, Tim Rixen, Kirstin Dähnke, Markus Ankele, Ulrich Schwarz-Schampera, and Kay-Christian Emeis〈br〉 Biogeosciences Discuss., https//doi.org/10.5194/bg-2018-511,2019〈br〉 〈b〉Manuscript under review for BG〈/b〉 (discussion: open, 0 comments)〈br〉 The Indian Ocean subtropical gyre is a large oligotrophic area that is likely to adjust to continued warming by increasing stratification, reduced nutrient supply, and decreasing biological production. In this study, we investigated concentrations of nutrients and stable isotopes of nitrate. We determine the lateral influence of water masses entering the gyre from the northern Indian Ocean and from the Southern Ocean and quantify the input of nitrogen by N〈sub〉2〈/sub〉-fixation into the surface layer.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: 〈b〉New particle formation in the marine atmosphere during seven cruise campaigns〈/b〉〈br〉 Yujiao Zhu, Kai Li, Yanjie Shen, Yang Gao, Xiaohuan Liu, Yang Yu, Huiwang Gao, and Xiaohong Yao〈br〉 Atmos. Chem. Phys., 19, 89-113, https://doi.org/10.5194/acp-19-89-2019, 2019〈br〉 In this paper, we investigate new particle formation (NPF) events during seven cruises. NPF events were observed on 25 days and were most likely associated with the long-range transport of anthropogenic air pollutants. The relationship between the net generated amount of new particles and their apparent formation rate is established and explained in terms of the roles of different vapor precursors. The survival probability of new particles to CCN size is also discussed.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: 〈b〉Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition〈/b〉〈br〉 Megan D. Willis, Heiko Bozem, Daniel Kunkel, Alex K. Y. Lee, Hannes Schulz, Julia Burkart, Amir A. Aliabadi, Andreas B. Herber, W. Richard Leaitch, and Jonathan P. D. Abbatt〈br〉 Atmos. Chem. Phys., 19, 57-76, https://doi.org/10.5194/acp-19-57-2019, 2019〈br〉 The vertical distribution of Arctic aerosol is an important driver of its climate impacts. We present vertically resolved measurements of aerosol composition and properties made in the High Arctic during spring on an aircraft platform. We explore how aerosol properties are related to transport history and show evidence of vertical trends in aerosol sources, transport mechanisms and composition. These results will help us to better understand aerosol–climate interactions in the Arctic.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: 〈b〉Simulated single-layer forest canopies delay Northern Hemisphere snowmelt〈/b〉〈br〉 Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake〈br〉 The Cryosphere Discuss., https//doi.org/10.5194/tc-2018-270,2019〈br〉 〈b〉Manuscript under review for TC〈/b〉 (discussion: open, 0 comments)〈br〉 Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests being too cold and melting too late.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: 〈b〉Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning〈/b〉〈br〉 Benjamin J. Hatchett and Hilary G. Eisen〈br〉 The Cryosphere, 13, 21-28, https://doi.org/10.5194/tc-13-21-2019, 2019〈br〉 We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: 〈b〉Aerosol radiative effects with MACv2〈/b〉〈br〉 Stefan Kinne〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-949,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 〈p〉onthly global maps for aerosol properties of the MACv2 climatology are applied in an off-line radiative transfer model to determine aerosol radiative effects. For details beyond global averages in most cases global maps are presented to visualize regional and seasonal details. Aside from the direct radiative (aerosol presence) effect, including those for aerosol components as extracted from MACv2 aerosol optics, also the major aerosol indirect radiative effect is covered. Hereby, the impact of smaller drops in water clouds due to added anthropogenic aerosol was simulated by applying a satellite retrieval based fit from locally associations between aerosol and drop concentrations over oceans. Present-day anthropogenic aerosols of MACv2 – on a global average basis – reduce the radiative net-fluxes at the top of the atmosphere (TOA) by −1.0 W/m〈sup〉2〈/sup〉 and at the surface by −2.1 W/m〈sup〉2〈/sup〉. Direct cooling contributions are only about half of indirect contributions (−.35 vs −.65) at TOA, but about twice at the surface (−1.45 vs −.65), as solar absorption of the direct effect warms the atmosphere by +1.1 W/m〈sup〉2〈/sup〉. Natural aerosols are on average less absorbing (for a relatively larger solar TOA cooling) and larger in size (now contributing with IR greenhouse warming). Thus, average TOA direct forcing efficiencies for total and anthropogenic aerosol happen to be similar: −11 W/m〈sup〉2〈/sup〉/AOD at all-sky and −24 W/m〈sup〉2〈/sup〉/AOD at clear-sky conditions. The present-day direct impact by all soot (BC) is globally averaged +0.55W/m〈sup〉2〈/sup〉 and at least half of it should be attributed to anthropogenic sources. Hereby any accuracy of anthropogenic impacts, not just for soot, suffers from the limited access to a pre-industrial reference. Anthropogenic uncertainty has a particular strong impact on aerosol indirect effects, which dominate the (TOA) forcing. Accounting for uncertainties in the anthropogenic definition, present-day aerosol forcing is estimated to stay within the −0.7 to −1.6 W/m〈sup〉2〈/sup〉 range, with a best estimate at −1 W/m〈sup〉2〈/sup〉. Calculations with model predicted temporal changes to anthropogenic AOD indicate that qualitatively the anthropogenic aerosol forcing has not changed much over the last decades and is not likely to increase over the next decades, despite strong regional shifts. These regional shifts explain most solar insolation (brightening or dimming) trends that have been observed by ground-based radiation data.〈/p〉
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: 〈b〉Thermal structure of the mesopause region during the WADIS-2 rocket campaign〈/b〉〈br〉 Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, and Franz-Josef Lübken〈br〉 Atmos. Chem. Phys., 19, 77-88, https://doi.org/10.5194/acp-19-77-2019, 2019〈br〉 Simultaneous temperature measurements during the WADIS-2 rocket campaign are used to investigate the thermal structure of the mesopause region. Vertically and horizontally resolved in situ and remote measurements are in good agreement and show dominating long-term and large-scale waves with periods of 24 h and higher tidal harmonics. Only a few gravity waves with periods shorter than 6 h and small amplitudes are there.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: 〈b〉Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals〈/b〉〈br〉 Jing Li, Yufang Hao, Maimaiti Simayi, Yuqi Shi, Ziyan Xi, and Shaodong Xie〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-1133,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 We established an emission inventory of anthropogenic VOCs in the Beijing–Tianjin–Hebei region of China. The developed emission inventory was evaluated through ambient measurements and satellite retrieval results. To obtain a more accurate emission inventory, we propose the investigation of the household coal consumption, the adjustment of EFs based on the latest pollution control policies, and the verification of the source profiles of OVOCs and halocarbons.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: 〈b〉Classification of aerosol population type and cloud condensation nuclei properties in a coastal California littoral environment using an unsupervised cluster model〈/b〉〈br〉 Samuel A. Atwood, Sonia M. Kreidenweis, Paul J. DeMott, Markus D. Petters, Gavin C. Cornwell, Andrew C. Martin, and Kathryn A. Moore〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-1297,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 This paper presents measurements of aerosol particles at a coastal location. The particles were classified into distinct aerosol types using both microphysical measurements and meteorological information, allowing rapid changes between the aerosol types to be reliably identified. These particles can alter cloud and precipitation processes, and inclusion of the differences between types can improve atmospheric models and remote sensing retrievals in littoral zones.
    Print ISSN: 1680-7367
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: 〈b〉Development of a balloon-borne instrument for CO〈sub〉2〈/sub〉 vertical profile observations in the troposphere〈/b〉〈br〉 Mai Ouchi, Yutaka Matsumi, Tomoki Nakayama, Kensaku Shimizu, Takehiko Sawada, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Isamu Morino, Osamu Uchino, Tomoaki Tanaka, and Ryoichi Imasu〈br〉 Atmos. Meas. Tech. Discuss., https//doi.org/10.5194/amt-2018-376,2019〈br〉 〈b〉Manuscript under review for AMT〈/b〉 (discussion: open, 0 comments)〈br〉 A novel, practical observation system for measuring tropospheric carbon dioxide (CO〈sub〉2〈/sub〉) concentrations carried by a small helium-filled balloon (CO〈sub〉2〈/sub〉 sonde), has been developed for the first time. The low-cost CO〈sub〉2〈/sub〉 sondes can potentially be used for frequently measurements of vertical profiles of CO〈sub〉2〈/sub〉 in any parts of the world providing as useful information to understand the global and regional carbon budgets by replenishing the present sparse observation coverage.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019
    Description: 〈b〉Comparison of Different Sequential Assimilation Algorithms for Satellite-derived Leaf Area Index Using the Data Assimilation Research Testbed (lanai)〈/b〉〈br〉 Xiao-Lu Ling, Cong-Bin Fu, Zong-Liang Yang, and Wei-Dong Guo〈br〉 Geosci. Model Dev. Discuss., https//doi.org/10.5194/gmd-2018-232,2019〈br〉 〈b〉Manuscript under review for GMD〈/b〉 (discussion: open, 0 comments)〈br〉 Both observation and simulation can provide the temporal and spatial variation of vegetation characteristic, while they are not satisfactory for understanding the mechanism of the exchange between ecosystems and atmosphere. Data assimilation (DA) can combine the observation and models via mathematical statistical analysis.The results show that the Ensemble Adjust Kalman Filter (EAKF) is the optical algorithm. In addition, models perform better when the DA accept more proportion of observation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: 〈b〉The importance of crystalline phases in ice nucleation by volcanic ash〈/b〉〈br〉 Elena C. Maters, Donald B. Dingwell, Corrado Cimarelli, Dirk Müller, Thomas F. Whale, and Benjamin J. Murray〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-1326,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 This experimental study investigates the influence of volcanic ash chemical composition, crystallinity, and mineralogy on its ability to promote freezing of supercooled water. The results indicate that crystals in ash play a key role in this process, and suggest that alkali and plagioclase feldspars in ash may be highly ice-active. These findings contribute to improving understanding of the potential of ash emissions from different explosive eruptions to impact ice formation in the atmosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: 〈b〉Large increases in N〈sub〉cn〈/sub〉 and N〈sub〉ccn〈/sub〉 together with a nucleation-modeparticle pool over the northwestern Pacific Ocean in the spring of 2014〈/b〉〈br〉 Juntao Wang, Yanjie Shen, Kai Li, Yang Gao, Huiwang Gao, and Xiaohong Yao〈br〉 Atmos. Chem. Phys. Discuss., https//doi.org/10.5194/acp-2018-1089,2019〈br〉 〈b〉Manuscript under review for ACP〈/b〉 (discussion: open, 0 comments)〈br〉 In this paper, we studied the spatiotemporal variability of N〈sub〉cn〈/sub〉 and particle number size distributions, as well as N〈sub〉ccn〈/sub〉 and CCN activities over the NWPO in the spring of 2014. Several new findings have been revealed and discussed, e.g., large increases of N〈sub〉cn〈/sub〉 and N〈sub〉ccn〈/sub〉, against historical data and small contributions of dust and BB aerosols to N〈sub〉cn〈/sub〉 and N〈sub〉ccn〈/sub〉 on the monthly time scale, etc. This work may help understand the influence of the current outflow from the Asian continent on the climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: 〈b〉Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events〈/b〉〈br〉 Sumira Nazir Zaz, Shakil Ahmad Romshoo, Ramkumar Thokuluwa Krishnamoorthy, and Yesubabu Viswanadhapalli〈br〉 Atmos. Chem. Phys., 19, 15-37, https://doi.org/10.5194/acp-19-15-2019, 2019〈br〉 This paper is of first of its kind for the Jammu and Kashmir (western Himalayas) region, India. It shows the clear relation between the upper tropospheric Rossby wave activity (potential vorticity at the 350 K potential temperature and 200 mb level surface pressure) and the surface weather parameters (e.g., precipitation) over a period of 3 decades during 1980–2016. This indicates that the climatic weather pattern over the Kashmir region is influenced mostly by global climate change processes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...